
Latent Trait Measurement 

Models for Binary Responses: 

Welcome to IRT and IFA!
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• Topics:

➢ The Big Picture of Latent Trait Measurement Models

➢ 1, 2, 3, and 4 Parameter IRT (and Rasch) Models

➢ Item and Test Information (for Indexing Reliability)

➢ From Item Response Theory Models to Item Factor Models

➢ Model Estimation, Comparison, and Evaluation



The Big Picture… of CTT

• CTT predicts the total: Ytotals = TrueScores + errors

➢ Items are assumed exchangeable, and their properties are not 

part of the model for creating a latent trait estimate (as total)

➢ Because the sum score serves AS the latent trait estimate, it 

can be problematic to make comparisons across different forms

▪ Item difficulty = mean of item (is sample-dependent)

▪ Item discrimination = item–remainder correlation (is sample-dependent)

➢ Estimates of reliability assume (without testing) unidimensionality 

and tau-equivalence (alpha) or parallel items (Spearman-Brown)

▪ Measurement error is (usually) assumed constant across the trait level

• How do you make your test better?

➢ Get more items. What kind of items? More.
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The Big Picture… of CFA
• CFA predicts the ITEM response:  𝒚𝒊𝒔 = 𝝁𝒊+ 𝝀𝒊𝑭𝒔+ 𝒆𝒊𝒔

➢ Linear regression relating continuous item response to latent predictor 𝑭𝒔

➢ Both items AND subjects matter in predicting item responses

▪ Item difficulty = intercept 𝝁𝒊 (in theory, sample independent)

▪ Item discrimination = factor loading 𝝀𝒊 (in theory, sample independent)

➢ The goal of the factor is to recreate the observed covariances among items, so 

factors represent testable assumptions about the pattern of item covariance

▪ Responses should be unrelated after controlling for factors → local independence

▪ But if not, error covariances could capture unexpected multidimensionality

• Because individual item responses are included:

➢ Items can vary in discrimination (→ Omega reliability) and difficulty 

➢ To make your test better, you need more BETTER items…

▪ With higher standardized factor loadings → with greater information = 𝜆𝑖
2/Var(𝑒𝑖)

• Measurement error is still assumed constant across the latent trait (one value)
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From CFA to IRT and IFA

Outcome Type →

Model Family Name

Observed 

Predictor X

Latent 

Predictor X

Continuous outcomes →

“General Linear Model”

“Linear” 

Regression

Confirmatory 

Factor Models

Discrete/categorical outcomes →

“Generalized Linear Model”

Logistic/Probit/

Multinomial

Regression

Item Response 

Theory and Item 

Factor Analysis
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• Basis of Item Response Theory (IRT) and Item Factor 

Analysis (IFA) lies in models for discrete outcomes, 

which are called “generalized” linear models

• Thus, IRT and IFA will be easier to understand after 

reviewing concepts from generalized linear models…

➢ For more, see Lecture 2 and Examples 2a and 2b from this class

https://www.lesahoffman.com/PSQF6270/index.html


3 Parts of Generalized Linear Models
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=A. Link 

Function

C. Actual 

Data

B. Same Linear 

Predictive Model

A. Link Function: Transformation of conditional mean to keep 

predicted outcomes within the bounds of the outcome

B. Same Linear Model: How the model linearly predicts the 

link-transformed conditional mean of the outcome

C. Conditional Distribution: How the outcome residuals could 

be distributed given the possible values of the outcome

Generalized linear models work for many kinds of outcomes…



Here’s how it works for binary outcomes
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• Let’s say we have a single binary (0 or 1) outcome…𝑦𝑖 (i=person)

• The mean of a binary outcome is the proportion of 1 values

➢ So given each person’s predictor values, the model tries to predict 

the conditional mean: the probability of having a 1: 𝒑(𝒚𝒊 = 𝟏)

▪ The conditional mean has more possible values than the outcome

➢ General linear model: 𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎+ 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊) + 𝒆𝒊

▪ 𝜷𝟎 = expected probability of 𝒚𝒊 = 𝟏 when all predictors = 0

▪ 𝜷’s = expected change in 𝒑(𝒚𝒊 = 𝟏) for per unit change in predictor

▪ 𝒆𝒊 = difference between observed and predicted binary values

➢ Model becomes 𝒚𝒊 = (𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝟏) + 𝒆𝒊

➢ What could possibly go wrong?



Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between 𝑥𝑖 and 𝑦𝑖??? 

• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 

• Linear relationship needs to shut off → made nonlinear
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We have this… But we need this…
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Generalized Models for Binary Outcomes
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• Solution to #1: Rather than predicting 𝒑(𝒚𝒊 = 𝟏) directly, we must 
transform it into an unbounded variable with a link function:

➢ Transform probability into odds: 
𝑝𝑖

1−𝑝𝑖
=

prob 𝑦𝑖=1

prob(𝑦𝑖=0)

▪ If 𝑝 𝑦𝑖 = 1 = .7 then Odds(1) = 2.33; Odds(0) = 0.429

▪ But odds scale is skewed, asymmetric, and ranges 0 to +∞ → Not a good outcome!

➢ Take natural log of odds → called “logit” link:  𝐋𝐨𝐠
𝒑𝒊

𝟏−𝒑𝒊
▪ If 𝑝 𝑦𝑖 = 1 = .7, then Logit(1) = 0.846; Logit(0) = −0.846

▪ Logit scale is now symmetric about 0, range is ±∞ → Now a good outcome to predict!

Probability

→ “data 

scale”

Logit

→ “model  

scale”
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0.90 2.2

0.50 0.0

0.10 −2.2



Solution to #1:  Probability to Logits
• A Logit link is a nonlinear transformation of probability:

➢ Equal intervals in logits are NOT equal intervals of probability

➢ Logits range from ±∞ and are symmetric about prob = .5 (→ logit = 0)

➢ Now we can use a linear model → The model will linearly predict the 

expected logit, which translates into a nonlinear prediction of probability 

→ the outcome conditional mean (probability) shuts off at 0 or 1 as needed

Probability:

𝒑(𝒚i= 𝟏)

Logit

(log odds):

𝐋𝐨𝐠
𝒑𝒊

𝟏 − 𝒑𝒊

Zero-point on 

each scale:

Prob = .5

Odds = 1

Logit = 0

Image borrowed from Figure 17.3 of: Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: 

An introduction to basic and advanced multilevel modeling (2nd ed.). Sage.
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Odds:
𝒑𝒊

𝟏−𝒑𝒊



Normal GLM for Binary Outcomes?
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Mean (𝑝𝑖)
Variance

Mean and Variance of a Binary Variable

• General linear model:  𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊) + 𝒆𝒊

• If 𝒚𝒊 is binary, then 𝒆𝒊 can only be 2 things:  𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊
➢ If 𝒚𝒊 = 0 then 𝒆𝒊= (0 − predicted probability)

➢ If 𝒚𝒊 = 1 then 𝒆𝒊 = (1 − predicted probability)

• Problem #2a: So the residuals can’t be normally distributed

• Problem #2b: The residual variance can’t be constant over ෝ𝒚𝒊
as in GLM because the mean and variance are dependent

➢ Variance of binary variable: 𝑽𝒂𝒓 𝒚𝒊 = 𝒑𝒊 (𝟏 − 𝒑𝒊)



Solution to #2:  Bernoulli Distribution
• Rather than using a normal conditional distribution for the 

outcome, we will use a Bernoulli conditional distribution

Top image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution 

Bottom image borrowed from: https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/dist_ref/dists/bernoulli_dist.html
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• Logit:  𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊)

➢ Predictor effects are linear and additive like in GLM, 
but 𝜷 = change in logit per one-unit change in predictor

• Odds:  
𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= 𝐞𝐱𝐩 𝜷𝟎 + 𝜷𝟏𝒙𝟏𝒊 + 𝜷𝟐𝒙𝟐𝒊

• Probability:     𝒑 𝒚𝒊 = 𝟏 =
𝐞𝐱𝐩 𝜷

𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊

𝟏+𝐞𝐱𝐩 𝜷
𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊

or equivalently   𝒑 𝒚𝒊 = 𝟏 =
𝟏

𝟏+𝐞𝐱𝐩 −𝟏(𝜷
𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊
)

• Foreshadowing: IRT models are usually described using the 
probability version, whereas IFA models use the logit version

Predicted Binary Outcomes

PSQF 6249: Lecture 5 12

𝐠(⋅) link

𝐠−𝟏(⋅)
inverse 

link



Converting Across the 3 Scales

• e.g., for 𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= ෝ𝒚𝒊 = 𝜷𝟎+ 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊)

• You can unlogit the model-predicted conditional mean all the way back 
into probability to express predicted outcomes, but you can only unlogit
the slopes back into odds ratios (not all the way back to probability)

13

Direction Conditional

Mean

Slope 

for 𝒙𝟏𝒊

Slope 

for 𝒙𝟐𝒊
Predicted logit outcome

(i.e., given by “the link”):
ෝ𝒚𝒊 𝜷𝟏 𝜷𝟐

From logits to odds (or 

odds ratios for effect sizes):

Odds: 

𝐞𝐱𝐩(ෝ𝒚𝒊)
Odds ratio:

𝐞𝐱𝐩(𝜷𝟏)
Odds ratio:

𝐞𝐱𝐩(𝜷𝟐)

From logits to probability 

(i.e., by the “inverse link”):

𝐞𝐱𝐩 (𝒚𝒊)
𝟏 + 𝐞𝐱𝐩 (ෝ𝒚𝒊)

Doesn’t 

make 

any sense!

Doesn’t 

make 

any sense!
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“Latent Responses” for Binary Data

So when predicting 𝒚𝒊
∗, then 

𝑒𝑖 ~ Logistic 0, 𝝈𝒆
𝟐 = 3.29

Logistic Distribution:

Mean = 𝜇, Variance = 
𝜋2

3
𝑠2, 

where 𝑠 = scale factor that 

allows for “over-dispersion” 

(must be fixed to 1 for binary 

responses for identification)

Logistic Distributions

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝛽0 ∗ −1 is given 

in Mplus, not the intercept

Image borrowed from: https://en.wikipedia.org/wiki/Logistic_distribution 
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• This model is sometimes expressed by calling the logit(𝒚𝒊) 
an underlying continuous (“latent”) response of 𝒚𝒊

∗ instead:

Empty Model: 𝒚𝒊
∗ = −𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 + 𝒆𝒊

➢ In which 𝒚𝒊 = 𝟏 if 𝑦𝑖
∗ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , or 𝒚𝒊 = 𝟎 if 𝑦𝑖

∗ ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

https://en.wikipedia.org/wiki/Logistic_distribution


• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a Probit Regression model:

➢ A probit link, such that now your model predicts a different transformed 𝒚𝒊: 
Probit 𝑦𝑖 = 1 = Φ−1[𝑝 𝑦𝑖 = 1 ] = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

▪ Φ = standard normal cumulative distribution function, so the link-transformed 𝒚𝒊
is the z-value that corresponds to the location on standard normal curve below

which the conditional mean probability is found (i.e., z-value for area to the left)

▪ Requires integration to inverse link from probits to predicted probabilities

➢ Same Bernoulli distribution for the conditional binary outcomes, in which 

residual variance cannot be separately estimated (so no 𝑒𝑖 in the model)

▪ Model scale: Probit can also predict “latent” response:   𝒚𝒊
∗ = −𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 + 𝒆𝒊

▪ But Probit says 𝒆𝒊 ~𝑵𝒐𝒓𝒎𝒂𝒍 𝟎, 𝝈𝒆
𝟐 = 1.00 , whereas logit 𝝈𝒆

𝟐 = 
𝝅𝟐

𝟑
= 3.29

➢ So given this difference in variance, probit coefficients are on a different 

scale than logit coefficients, and so their estimates won’t match… however…

Other Link Functions for Binary Data

𝐠(⋅) link
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Probit vs. Logit: Should you care? Pry not.

• Other fun facts about probit:

➢ Probit = “ogive” in the Item Response Theory (IRT) world

➢ Probit has no odds ratios (because it’s not based on odds)

➢ Probit is the only option in IFA models using limited-information estimation!

• Both logit and probit assume symmetry of probability curve, 
but there are other asymmetric options as well: (comp) log-log

Probit 𝝈𝒆
𝟐 = 1.00

(SD=1)

Logit 

𝝈𝒆
𝟐 = 3.29

(SD=1.8)

You’d think it would 

be 1.8 to rescale, 

but it’s actually 1.7…

𝑦𝑖 = 0
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P
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b
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𝑦𝑖 = 1

Link-Transformed 𝑦𝑖
∗

Link-Transformed 𝑦𝑖
∗
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Left image: exact source now unknown, but I think it was from Don Hedeker

Right image: borrowed from Jonathan Templin
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Rescale to equate 

linked outcomes: 

𝜷𝒍𝒐𝒈𝒊𝒕 =

𝜷𝒑𝒓𝒐𝒃𝒊𝒕 ∗

𝟏. 𝟕(. 𝟎𝟏)



How IRT/IFA are the same as CFA
• NOW BACK TO YOUR REGULARLY SCHEDULED MEASUREMENT CLASS

• IRT/IFA = confirmatory measurement model in which latent traits are the 

model predictors (so you decide which items measure which traits)

➢ Like CFA, both items and persons matter because their properties are included 

in the measurement model (item difficulty, item discrimination; person 𝐹)

➢ Item discrimination means the same thing in IRT and IFA, but they differ in how 

location of the item on the trait is indexed (item “difficulties” versus “thresholds”)

• After controlling for a person’s latent trait score (𝑭 is now called Theta, θ), 

the item responses should be uncorrelated (also called local independence)

➢ The ONLY reason item responses are correlated is a (unidimensional) Theta

➢ Otherwise, we CAN fit confirmatory multidimensional factor models instead, 

and then responses are independent after controlling for ALL the Thetas

➢ As in CFA, can be violated by other types unaccounted for multidimensionality 

or dependency (e.g., method factors, common stem, “testlets”)

▪ Error covariances must be specified using method factors when using ML estimation
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How IRT/IFA are different from CFA

• IRT/IFA uses the same family of link functions (transformations) as in 

generalized models, it’s just that the predictor is latent instead of observed

➢ IRT/IFA = logistic/probit regression instead of linear regression

➢ Predictor = Latent factor/trait in IRT/IFA = “Theta” θ, and its slopes are still 

supposed to predict the “covariance” across item responses, just like in CFA

• IRT/IFA specifies a nonlinear relationship between binary, ordinal, or 

nominal item responses and the latent trait (now called “Theta” θ)

➢ Probability is bounded between 0 and 1, so the effect (slope) of Theta must be 

nonlinear, so it will shut off at the extremes of Theta (as an S-shaped curve)

➢ Errors cannot have constant variance across Theta or be normally distributed

➢ Full-information estimators use logit (𝜎𝑒∗
2 = 3.29) or probit (𝜎𝑒∗

2 = 1.00) link 

functions, but limited-information estimators only have probit (𝜎𝑒∗
2 = 1.00) 

▪ Logit = 1.7*Probit, so it’s pretty much the same result either way

▪ Probit in IRT models is called “ogive” (as discussed in Embretson & Reise)
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Nonlinear Prediction by θ in IRT/IFA

• The relationship between Theta and the probability of response=1 

is “nonlinear” → a monotonic s-shaped logistic curve whose 

shape and location are dictated by the estimated item parameters

➢ Linear prediction of the logit → nonlinear prediction of probability

• Btw, it may be that other kinds of non-linear relationships could be more 

appropriate and thus fit better → These are “non-parametric” IRT models

β0 = 0
β1 = 1

PSQF 6249: Lecture 5 19



Item Response Theory (IRT) = 

Item Factor Analysis (IFA) Models
Mplus can do ALL of these 

model/estimator combinations:

Model form with 

discrimination and 

difficulty parameters

Model form with 

loadings and 

thresholds

Full-information estimation via 

Maximum Likelihood (“Marginal ML”) 

→ uses original item responses

“IRT”

(Mplus gives only for 

binary responses)

“?”

(Mplus gives 

for all models) 

Limited-information estimation via 

Weighted Least Squares (“WLSMV”) 

→ uses item response summary

“?”

(Mplus gives only for 

binary responses)

“IFA”

(Mplus gives for 

all models) 

• CFA assumes normally distributed, continuous item responses, but 

“CFA models for categorical responses” = IRT and IFA models

• These different names are used to reflect the combination of how the 

model is specified and how it is estimated, but it’s the same core model

➢ Btw, R Lavaan only has limited-information estimation for these models…
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Model Format in IRT and IFA

• Item Factor Analysis (IFA) models look very similar to CFA, 

but Item Response Theory (IRT) models look quite different 

• Partly due to predicting logits/probits (IFA) vs. probability (IRT):

➢ Logit:  𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= 𝜷𝟎+ 𝜷𝟏𝒙𝟏𝒊 + 𝜷𝟐𝒙𝟐𝒊

➢ Probability:  𝒑 𝒚𝒊 = 𝟏 =
𝐞𝐱𝐩 𝜷

𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊

𝟏+𝐞𝐱𝐩 𝜷
𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊

• Partly due to different model parameterizations (stay tuned)

• These two model forms are just re-arrangements of each other, 

but historically have been estimated using different methods 

(full vs. limited information) and for different purposes 

• Mplus provides both kinds of output for binary data, but only 

IFA output for categorical data (we will calculate IRT version)

• We’ll start with IRT for binary responses, then move to IFA …
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Latent Trait Measurement 

Models for Binary Responses: 

Welcome to IRT and IFA!
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• Topics:

➢ The Big Picture of Latent Trait Measurement Models

➢ 1, 2, 3, and 4 Parameter IRT (and Rasch) Models

➢ Item and Test Information (for Indexing Reliability)

➢ From Item Response Theory Models to Item Factor Models

➢ Model Estimation, Comparison, and Evaluation



Simplest IRT Model: One-Parameter Logistic 

(1-PL or Rasch) Model for Binary Responses (0/1)

• 1PL model is written in different, but equivalent ways (Embretson & Reise):

➢ Logit:   Log
𝑝(𝑦𝑖𝑠=1)

1−𝑝(𝑦𝑖𝑠=1)
= 𝜃𝑠 − 𝑏𝑖

➢ Probability:    𝑝 𝑦𝑖𝑠 = 1 =
exp 𝜃𝑠−𝑏𝑖

1+exp 𝜃𝑠−𝑏𝑖

➢ 𝜽𝒔 = subject trait → most likely latent trait score (Theta, a random effect) 
for subject s given their pattern of item responses

➢ 𝒃𝒊 = “item difficulty” → location on latent trait (estimated as a fixed effect)
(like an intercept, but it’s actually “difficulty” now!)

• Probability of 𝑦𝑖𝑠 = 1 depends on person trait (theta) vs. item difficulty:

➢ If trait > difficulty, then logit > 0, and probability > .50

➢ If difficulty > trait, then logit < 0, and probability < .50
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𝑦𝑖𝑠 is 0 or 1 response 

to item 𝑖 for subject 𝑠



Fundamentals of IRT
• Back in CTT, scores only have meaning relative to the persons 

in the same sample, and thus sample norms are needed to 

interpret a person’s score

➢ “I got a 12. Is that good?”

“Well, that puts you into the 90th percentile.”

“Great!”

➢ “I got a 12. Is that good?”

“Well, that puts you into the 10th percentile.”

“Doh!”

➢ Same score in both cases, but different reference groups!

• In IRT, the properties of items and persons are placed along 

the same underlying latent continuum= “conjoint scaling”

➢ This concept can be illustrated using construct maps that order 

both persons in terms of ability and items in terms of difficulty…

PSQF 6249: Lecture 5 24



A Real-World Construct Map Example

A Latent Continuum of 

80s Pop Culture Knowledge

Person Side

Me

.

My Brother

.

Undergraduates

.

Average Adult

.

My Mom

Item Side

Home of Alf

.

WHAM

.

Duckie

.

Cosby Kids

.

Mickey

Person locations 

are ordered in 

Theta amount 

ability/severity

Item locations 

are ordered in 

difficulty/severity

Person Theta and Item Difficulty share the same latent metric

Theta 𝜃𝑠 = Item 

difficulty level at 

which one has a 

50% probability 

of 𝑦𝑖𝑠 = 1

Trait Theta 𝜃𝑠 is 

interpreted 

relative to items 

at that location, 

not group norms
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Norm-Referenced Measurement in CTT

In CTT, the ability level of 

each person is relative to 

the abilities of the rest of 

the test sample

Here, we would say that 

Anna is functioning 

relatively worse than 

Paul, Mary, and Vera, 

who are each above 

average (which is 0)

26

Image from Embretson & Reise (2000)
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Item-Referenced Measurement in IRT

Each person’s Theta 

score reflects the 

level of activity they 

are predicted to be 

able to do on their 

own with prob = .50

The model predicts 

the probability of 

accomplishing each 

task given Theta

27

Image from Embretson & Reise (2000)
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Interpretation of Theta Latent Traits

• Theta estimates are ‘sample-free’ and ‘scale-free’

➢ Theta estimate does not depend on who took the test with you

➢ Theta estimate does not depend on which items were on the test

▪ AFTER calibrating all items to same metric, can get a person’s location on 

latent ability metric regardless of which particular items were given

• However: although the Theta estimate does not depend 

on the particular items given, its standard error does

➢ Extreme Thetas without many items of comparable difficulty will 

not be estimated that well → large SE (flat likelihood)

➢ Likewise, items of extreme difficulty without many persons of 

comparable ability will not be estimated that well → large SE
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Another version of the 1PL (Rasch) Model

➢ Logit:  Log
𝑝(𝑦𝑖𝑠=1)

1−𝑝(𝑦𝑖𝑠=1)
= 𝑎 𝜃𝑠 − 𝑏𝑖

➢ Probability:  𝑝 𝑦𝑖𝑠 = 1 =
exp 𝑎(𝜃𝑠−𝑏𝑖)

1+exp 𝑎(𝜃𝑠−𝑏𝑖)

➢ 𝒂 = “item discrimination” = relation of item to latent trait = slope of 
the s-shape curve at probability = .50 (its max slope) = fixed effect

➢ The 1-PL model has “𝒂” and not “𝒂𝒊” – that’s because 𝒂 is assumed 
constant across items (and thus, the 1 parameter that is estimated 
for each item is still difficulty 𝒃𝒊)

➢ If using the probit link function, the predicted outcome is the z-score for 
the area to the left under the normal curve for that predicted probability

➢ Previously Mplus factored out 𝟏. 𝟕 next to the 𝒂 so that the model 
parameters would be comparable regardless of using a probit or logit 
link, but the 1.7 is now embedded in the parameters instead (still)

Relative a logit-link model, 

parameters from a probit-

link (ogive) model will be 

smaller by a factor of ~1.7
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1-PL (Rasch) Model Predictions

Item Characteristic Curves - 1-PL (Rasch) Model
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Trait (q)

P
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1
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item1

item2

item3

item4

𝒃𝟏 = −𝟐 𝒃𝟐 = −𝟏 𝒃𝟑 = 𝟎 𝒃𝟒 = +𝟏

𝒃𝒊 = item difficulty

location on latent 

trait at which

probability = .50

𝒂 = discrimination

slope at prob = .50, 

(logit = 0, which is 

point of inflection)

Note: equal 𝒂 terms

means curves will 

never cross → this 

idea is called 

“Specific Objectivity”

PSQF 6249: Lecture 5 30

Person Latent Trait (𝜽𝒔)



Can you guess what’s next?

2-Parameter Logistic Model (2PL)
• The 1-PL (Rasch) model assumes tau-equivalence → equal discrimination

• The 2-PL frees this constraint by changing “𝒂” to “𝒂𝒊” (as fixed effects):

➢ Logit: Log
𝑝(𝑦𝑖𝑠=1)

1−𝑝(𝑦𝑖𝑠=1)
= 𝑎𝑖 𝜃𝑠 − 𝑏𝑖

➢ Probability:  𝑝 𝑦𝑖𝑠 = 1 =
exp 𝑎𝑖(𝜃𝑠−𝑏𝑖)

1+exp 𝑎𝑖(𝜃𝑠−𝑏𝑖)

➢ 𝒂𝒊 = “item discrimination” = relation of each item to latent trait 
= slope of the s-shape curve at probability = .50 (its max slope)

➢ 𝒃𝒊 is still item difficulty (location where probability = .50)

➢ Note that 𝒂𝒊 is a linear slope for theta θ predicting the logit of 𝒚𝒊𝒔 = 𝟏
but a nonlinear slope for theta θ predicting the probability of 𝒚𝒊𝒔 = 𝟏
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“IRT” vs. “Rasch”

• According to most IRT people, a “Rasch” model is just an IRT model with 

item discrimination 𝒂𝒊 held equal across items (a tau-equivalent model)

➢ Rasch = 1-PL where 𝒃𝒊 item difficulty is the only item parameter

➢ Slope = discrimination 𝒂𝒊 = strength of relation of item to latent trait theta 𝜃𝑠

➢ “Items may not be equally ‘good’, so why not just let their slopes vary?”

• According to most Rasch people, the 2PL and rest of IRT is bananas

➢ Rasch models have specific properties that are lost once you allow the item 

curves to cross (by using item-varying 𝒂𝒊) → “Loss of Specific Objectivity”

▪ Under the Rasch model, persons are ordered the same in terms of predicted 

responses regardless of which item difficulty location you’re looking at

▪ Under the Rasch model, items are ordered the same in terms of predicted 

responses regardless of what level of person theta you’re looking at

▪ 𝒂𝒊 item discrimination represents a theta*item interaction → the item curves 

cross, so the ordering of persons or items is no longer invariant, and this is “bad”

➢ “Items should not vary in discrimination if you know your construct!”
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Item Characteristic Curves - 2-PL Model
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Item Characteristic Curves: 2PL Model

Note: unequal 𝒂𝒊

→ curves cross 

→ violates Specific 

Objectivity

At Theta 𝜽𝒔 = −𝟏:

Items 3 and 4 are 

harder than 1 and 2 

→ lower prob of 1

At Theta 𝜽𝒔 = +𝟐:

Item 1 is now harder 

than Item 4 →

lower prob of 1

𝒃𝟏 = −𝟏, 𝒂𝟏 = . 𝟓

𝒃𝟐 = −𝟏, 𝒂𝟐 = 𝟏

𝒃𝟑 = 𝟎, 𝒂𝟑 = . 𝟓

𝒃𝟒 = 𝟎, 𝒂𝟒 = 𝟏

𝒃𝒊 = difficulty = location on latent trait at which 𝑝𝑖 = .50 (or logit = 0)

𝒂𝒊 = discrimination slope at 𝑝𝑖 = .50 (at the point of curve inflection)
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“IRT” vs. “Rasch”:

What Goes into Theta
• In Rasch models, the sum score is a “sufficient statistic” for Theta (𝜃𝑠)

➢ For example, given 5 items ordered in difficulty from easiest to hardest, 

each of these response patterns where 3/5 are correct would yield the 

same estimate of Theta: 

1 1 1 0 0 (most consistent)

0 1 1 1 0

0 0 1 1 1

1 0 1 0 1  (???) 

…. (and so forth)

• In 2-parameter models, items with higher discrimination (𝒂𝒊) count 

more towards Theta (and theta SE will be lower with higher ai items) 

➢ It not only matters how many items you got correct, but which ones

➢ Rasch people don’t like this idea, because then the ordering 

of persons on Theta is dependent on the item properties
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Yet Another Model for Binary Responses:

3-Parameter Logistic Model (3PL)

𝑝 𝑦𝑖𝑠 = 1 = 𝑐𝑖 + (1 − 𝑐𝑖)
exp 𝑎𝑖(𝜃𝑠 − 𝑏𝑖)

1 + exp 𝑎𝑖(𝜃𝑠 − 𝑏𝑖)

• 𝒃𝒊 = item difficulty → location (still a fixed effect)

➢ Higher values → more difficult items (lower probability of a 1)

• 𝒂𝒊 = item discrimination → slope at 𝑏𝑖 (still a fixed effect)

➢ Higher values = more discriminating items = better items at its location

• 𝒄𝒊 = item lower asymptote → “guessing” (where 𝒄𝒊 > 𝟎; is a fixed effect)

➢ Lower bound of probability of 1 independent of Theta

➢ e.g., would be around .25 given 4 equally guess-able multiple-choice responses

➢ Could estimate a common 𝑐 across items as an alternative (but is not typically done)

• Probability starts at guessing 𝑐𝑖 then depends on Theta 𝜃𝑠, 𝑎𝑖 , and 𝑏𝑖
➢ 3-PL model is available in and after Mplus 7.4; 𝑐𝑖 is labeled as $2

➢ Require 1000s of people because 𝑐𝑖 parameters are hard to estimate—you must have 
enough low theta people to determine what the probability of guessing is likely to be 
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Item Characteristic Curves - 3-PL Model (a = .5)
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Item Characteristic Curves - 3-PL Model (a = 1)
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𝒃𝟏 = −𝟏, 𝒄𝟏 = . 𝟎

𝒃𝟐 = −𝟏, 𝒄𝟐 = . 𝟐

𝒃𝟑 = 𝟏, 𝒄𝟑 = . 𝟎

𝒃𝟒 = 𝟏, 𝒄𝟒 = . 𝟐

Top: Items with lower

discrimination (𝒂𝒊 = . 𝟓)

Below: Items with 

higher discrimination 

(𝒂𝒊 = 𝟏)

Note that item difficulty 𝑏𝑖
values are no longer where 

prob = .50 → the expected 

prob at 𝑏𝑖 is increased by 

the lower asymptote 𝑐𝑖
parameter
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𝒃𝟏 = −𝟏, 𝒄𝟏 = . 𝟎

𝒃𝟐 = −𝟏, 𝒄𝟐 = . 𝟐

𝒃𝟑 = 𝟏, 𝒄𝟑 = . 𝟎

𝒃𝟒 = 𝟏, 𝒄𝟒 = . 𝟐



One Last Model for Binary Responses:

4-Parameter Logistic Model (4PL)

𝑝 𝑦𝑖𝑠 = 1 = 𝑐𝑖 + (𝑑𝑖 − 𝑐𝑖)
exp 𝑎𝑖(𝜃𝑠 − 𝑏𝑖)

1 + exp 𝑎𝑖(𝜃𝑠 − 𝑏𝑖)

• 𝒃𝒊 = item difficulty → location

• 𝒂𝒊 = item discrimination → slope

• 𝒄𝒊 = item lower asymptote → “guessing”

• 𝒅𝒊 = item upper asymptote → “carelessness” (so 𝑑𝑖 < 1)

➢ Maximum probability to be achieved independent of trait (Theta 𝜃𝑠)

➢ Could be carelessness or unwillingness to endorse the item no matter what

• Probability starts at “guessing” 𝑐𝑖 , tops out at “carelessness” 𝑑𝑖 , 
then in between depends on Theta 𝜃𝑠, 𝑎𝑖, and 𝑏𝑖
➢ 4-PL model is in or after Mplus 7.4; 𝑐𝑖 and 𝑑𝑖 are labeled as $2 and $3

➢ But good luck estimating it! May need to use a common 𝑐 and 𝑑 instead
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remain fixed effects 



Latent Trait Measurement 

Models for Binary Responses: 

Welcome to IRT and IFA!
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• Topics:

➢ The Big Picture of Latent Trait Measurement Models

➢ 1, 2, 3, and 4 Parameter IRT (and Rasch) Models

➢ Item and Test Information (for Indexing Reliability)

➢ From Item Response Theory Models to Item Factor Models

➢ Model Estimation, Comparison, and Evaluation



Anchoring: Model Identification in IRT
• As in CFA, we have a latent trait (a pretend predictor) without a scale: 

so we need to give each Theta 𝜃𝑠 a mean and a variance

➢ This is called “anchoring” in IRT → CFA calls it “model identification”

➢ As in CFA, there are 2 equivalent options: Anchor by Persons or Anchor by Items

• Anchor by persons: Fix Theta 𝜃𝑠 mean = 0 and Theta 𝜃𝑠 variance = 1

➢ This is the “z-score” approach to model identification used in CFA

➢ All item difficulties 𝑏𝑖 and item discriminations 𝑎𝑖 are then estimated

➢ In Rasch model, the common 𝑎 would be estimated but equal across items

• Anchor by items: Fix one item difficulty 𝑏𝑖 = 0 and one item 𝑎𝑖 = 1

➢ This is the “marker item” approach to model identification used in CFA

➢ Mean and variance of Theta 𝜃𝑠 are estimated instead

➢ Fixing mean of item difficulty = 0 is another way (more common in Europe)

• Big picture: as in CFA, the numerical scale doesn’t matter, all that matters 
is that persons and items are on the same scale → “conjoint scaling”
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Information: Reliability in IRT Models

• “Information” ≈ reliability → measurement precision

• In CFA models (continuous 𝑦𝑖𝑠), item-specific “information” 

is rarely referred to, because standardized loadings cover it:

➢ How good is my item → how much information is in it?

▪ How much of its variance is “true” (shared with the factor) 

relative to how much of its variance is “error”?

▪ Information = unstandardized loading2 / error variance

➢ Note that information is assumed constant across trait values in CFA

▪ Items with a greater proportion of true variance are better, the end

▪ So the instrument’s “information function” is FLAT across trait values

➢ How do I make my test better? 

▪ More items with more information (with stronger factor loadings)

➢ Sum of information across items = Test information function

▪ Test information function will also be flat across trait values in CFA
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Item Information in CFA Models

• CFA has a linear slope (factor loading) → predicts the same increase in 

the 𝒚𝒊𝒔 item response for a one-unit change in 𝑭𝒔 (all across levels of 𝐹𝑠)

• 𝑦1 has more information than 𝑦6 (and a higher standardized factor 

loading), so 𝑦1 is better than 𝑦6, period (for all possible factor scores)

𝑦1𝑠 = 4.55 + 1.23(𝐹𝑠) + 𝑒1𝑠
𝑒1𝑠
2 = 1.53

𝑦6𝑠 = 5.32 + 0.82(𝐹𝑠) + 𝑒6s

𝑒6𝑠
2 = 1.67

Std 𝑦1𝑠 = 2.60 + 0.71 𝐹𝑠 + 𝑒1𝑠

Std 𝑦6𝑠 = 3.48 + 0.54 𝐹𝑠 + 𝑒6𝑠

Info 𝑦1 = 1.232 / 1.53 = .998

Info 𝑦6 = 0.822 / 1.67 = .401
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Test Information in IRT Models

• Test information can be converted to a reliability metric as follows:

➢ Reliability = information / (information+1)

▪ Information of 4 converts to reliability of .80 

▪ information of 9 converts to reliability of .90

• This formula comes from classical test theory:

➢ Reliability = true var / (true var + error var)

➢ Reliability = 1 / (1 + error var), where error var = 1/info

➢ Reliability = 1 / 1 + (1/info) → info / (info+1)

• An analog of overall model-based reliability (omega) could be computed 

by summing reliabilities for each possible theta, weighted by the number 

of people at each level of Theta, but (to me) that’s missing the point…

• Because the slopes relating Theta to the probability of an item response 

are non-linear, this means that reliability must VARY over Theta

➢ So FOR WHOM is your test sufficiently reliable??
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Item Information in CFA vs. IRT
Item Characteristic Curves - 2-PL Model
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Trait (𝜽𝒔)

If Theta variance =1, 

at a given theta value, 

binary item information 

= 𝑎2 ∗ 𝑝 𝑦𝑖𝑠 = 1
∗ 𝑝(𝑦𝑖𝑠 = 0)

IRT Item 

Information 

Functions



Effects of Item Parameters 

on Item Characteristic Curves

Item Characteristic Curves
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An important result of 

the non-linear slopes in 

an IRT model is that the

slope stops working

(so reliability decreases) 

as you move away from 

the item difficulty 

location. 

In the CFA model with 

linear slopes, the slope 

never stops working

(at least in theory).

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item
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Effects of Item Parameters 

on Item Information Curves

Item Information Functions
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Items with greater 𝑎𝑖
item discrimination 

values have greater 

absolute information.

Information (reliability) 

is maximized around 

the item difficulty 

location.

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item
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Test Information (and SE) by Theta
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If you sum all the item 

information curves, you get 

a test information curve 

that describes how reliable 

your set of items is over the 

range of the trait (Theta).

Test Information is very 

useful to know—it can tell 

you where the holes are 

in your measurement 

precision, it and guides you 

in adding/removing items.

There is no single ‘ideal’ test information function—only what is 

optimal for your purposes of measurement. Here are a few examples….

( )
1

SE θ =
Test Info
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Another Example of (Not-So-Good) 

Test Information
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The goal of this test was 

to identify persons with 

deficits in the latent trait. 

Hence, it is most useful to 

have test information 

maximized over the 

lower range of Theta.

If subjects are high 

(enough) in ability, 

it doesn’t matter 

how high.

But test 

info only 

gets up 

to ~2…

(Uh oh!)

Image from my dissertation (the “done” kind)!
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Other Shapes of Test Information
• If the goal is to measure a trait across persons equally well, and you expect 

people to be normally distributed, then your best bet is to create a test 

with information highest in the middle (where most people are likely to be)

• If your goal is to identify individuals below or above a cut-point, however, 

your test information function should ideally look more like this:

➢ Want to maximize sensitivity near

the cut-point region, and not waste

time measuring people well who are 

far away from the cut-point

➢ If classifying people is the goal of 

measurement, however, you might 

be better off with a different family 

of latent trait models in which Theta

is already a categorical “attribute” instead:

Diagnostic Classification Models, as covered

by the book Diagnostic Measurement …

 Theta → cut-point

Test

Info
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The Google:

https://www.amazon.com/Diagnostic-Measurement-Applications-Methodology-Sciences/dp/1606235273


How to Improve Your Reliability
• In CTT, because item properties are not part of the model, 

items are seen as exchangeable, and more items is better

➢ Thus, any new item is equally better for the model

• In CFA and IRT, more items is still better…

➢ In CFA, the question is “how much better”?

▪ This depends on the standardized loading; intercepts are not important 

▪ Specifies a linear relationship between theta and the item responses, 

so “for whom” isn’t relevant—a better item is better for everyone equally

➢ In IRT, the question is “how much better, and for whom?”

▪ Depends on the discrimination (𝑎𝑖 slope) and the difficulty (𝑏𝑖 location), 

respectively (difficulties are important, and are always estimated)

▪ Because of the nonlinear relationship between theta and the item 

responses, items are only useful for thetas in the middle of their S-curves
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Effects of Item Parameters 

on Item Information Curves

Item Information Functions
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Content aside, items with 

higher 𝑎𝑖 will be more useful

In addition to 𝑎𝑖
item discrimination, 

though, you want to 

make sure you are 

covering the range 

of difficulty where 

you want to measure 

people best.

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item
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IRT and Adaptive Testing:

Fewer Items Can Actually Be Better

• In a normal distribution of the 
latent trait and a comparable 
distribution of item difficulty, 
extreme people are usually 
measured less well
(higher SE).

• For fixed-item tests, more 
items is generally better, 
but one can get the same 
precision of measurement with 
fewer items by using adaptive 
tests with items of targeted 
levels of difficulty. Different 
forms across person are given 
to maximize efficiency.

Image from Embretson & Reise (2000)
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IRT (and CFA) Help Measure Change AND
Maintain Sensitivity across Samples

• Theta is scaled and interpreted relative to the items, not relative 

to the other persons in the sample (is item difficulty at prob = .50)

➢ This means you can give different forms over time and still compare Thetas

➢ MUST have some “linking items” → common set of items across occasions

➢ Although this property is helpful when dealing with “accidental”

alternative forms (e.g., changed response options, dropped items), 

linking items can be used advantageously as well

➢ Here, we grow a test over time within a sample

(i.e., using “vertical scaling”):

Latent Trait Time 1

1 2 3 4 5 6

Latent Trait Time 2

3 4 5 6 7

Latent Trait Time 3

4 5 6 7 8 9
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SF-36: measure of higher
physical functioning

ADL: measure of lower
physical functioning

Don’t choose: Administer a 
core set of linking items from 
both tests to a single sample

Linking items then form a 
common metric

– More precision than single test

– Allows for comparisons across 
groups or studies

See Mungas & Reed (2000) for an 
example of linking over forms

Linking Thetas 
across Tests
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Another Benefit of IRT (and CFA)

• IRT: If the model fits, the scale of Theta is linear/interval

➢ Supports mathematical operations that assume interval measurement

➢ Same ordering of persons as in raw scores, but the distances between 

persons are likely to be different, especially at the ends

• CTT: Sum scores have an ordinal relationship to the latent 

trait at best

➢ Does not support operations that assume interval measurement, 

which can bias tests of mean differences, regression slopes, etc.

➢ Spurious interactions can result in tests of mean differences if groups 

differ in how well they are measured (i.e., floor and ceiling effects)

• Bottom line: Measurement matters for testing everyday hypotheses, 

NOT just when fitting measurement models for specific issues
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Example from Mungas & Reed (2000)

Test Curve for MMSE Total

Interval Theta

The bottom and top of the 

MMSE total score (ordinal) 

are “squished” relative to the 

latent trait scale (interval).

This means that one-unit 

changes along the MMSE 

total do not really have the 

same meaning across the 

latent trait, which makes 

many kinds of comparisons 

problematic.

Δ5

Δ2SD

Δ5

Δ.5SD
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Example from Mungas & Reed (2000)

Right: They combined 3 tests to 

get better measurement, as 

shown in the test curve →

Below: Items at each trait location 

contribute to scale’s capacity to 

differentiate persons in ability at 

each point in the continuum.

There is a hole near the 

top, which explains the 

flattening of the curve 

(less information there).
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Latent Trait Measurement 

Models for Binary Responses: 

Welcome to IRT and IFA!
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• Topics:

➢ The Big Picture of Latent Trait Measurement Models

➢ 1, 2, 3, and 4 Parameter IRT (and Rasch) Models

➢ Item and Test Information (for Indexing Reliability)

➢ From Item Response Theory (IRT) Models 

to (IFA) Item Factor Models

➢ Model Estimation, Comparison, and Evaluation



Relating Item Factor Analysis (IFA)

to Item Response Models (IRT)
• CFA → linear regression as IRT → logistic regression

➢ Predictor 𝑥𝑠 is observed, but predictor 𝐹𝑠 is latent (aka, factor, variable, trait)

• Linear regression model and CFA model (for continuous responses):

𝑦𝑖𝑠 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠 + 𝑒𝑖𝑠 𝑦𝑖𝑠 = 𝜇𝑖 + 𝜆𝑖𝐹𝑠 + 𝑒𝑖𝑠

• Logistic regression model (for 0/1 responses, so there is no 𝑒𝑖𝑠 residual):

Log
𝑝(𝑦𝑖𝑠=1)

1−𝑝(𝑦𝑖𝑠=1)
= 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠

• 2-PL IRT model (for 0/1 responses, so there is no 𝑒𝑖𝑠 residual):

Log
𝑝(𝑦𝑖𝑠=1)

1−𝑝(𝑦𝑖𝑠=1)
= 𝑎𝑖(𝜃𝑠– 𝑏𝑖)

Why does this IRT model look so 

different than the CFA model? Here’s 

how these models all relate…

PSQF 6249: Lecture 5 58

𝒊 = item, 𝒔 = subject



• Linear regression model and     (Linear) Confirmatory FA model:

𝑦𝑖𝑠 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠 + 𝑒𝑖𝑠 𝑦𝑖𝑠 = 𝜇𝑖 + 𝜆𝑖𝐹𝑠 + 𝑒𝑖𝑠

• Binary regression models and    Binary Item Factor Analysis models:

Logit [𝑝(𝑦𝑖𝑠 = 1)] = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠 Logit[𝑝(𝑦𝑖𝑠 = 1)] = −𝜏𝑖 + 𝜆𝑖𝐹𝑠

Probit 𝑝 𝑦𝑖𝑠 = 1 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠 Probit[𝑝(𝑦𝑖𝑠 = 1)] = −𝜏𝑖 + 𝜆𝑖𝐹𝑠

• Binary Item Response Theory models:

2PL:       Logit [𝑝(𝑦𝑖𝑠 = 1)] = 𝑎𝑖(𝜃𝑠– 𝑏𝑖)

Ogive: Probit[𝑝(𝑦𝑖𝑠 = 1)] = 𝑎𝑖(𝜃𝑠– 𝑏𝑖)

• In CFA, item loading 𝝀𝒊 = “discrimination” and item intercept 𝝁𝒊 = “difficulty”, 

but difficulty was backwards (easier or less severe items had higher means)…

• In IFA for binary items within Mplus, the intercept 𝝁𝒊 (which was really “easiness”) 

becomes a “threshold” 𝝉𝒊 that really IS “difficulty”: 𝝁𝒊 = −𝝉𝒊
→ this provides continuity of direction with the IRT 𝑏𝑖 difficulty values

• The IRT and IFA models get re-arranged into each other as follows…

Relating Regression, CFA, IFA, and IRT
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Logit to Probability:

prob =
𝑒𝑥𝑝 logit

1 + 𝑒𝑥𝑝(logit)



From IFA to IRT

IFA with “easiness” intercept 𝝁𝒊:   𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝝁𝒊+ 𝝀𝒊𝑭𝒔 𝝁𝒊 = −𝝉𝒊

IFA with “difficulty” threshold 𝝉𝒊:  𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = –𝝉𝒊 + 𝝀𝒊𝑭𝒔

IFA model with “difficulty” thresholds can be written as a 2-PL IRT Model:

IRT model: IFA model:

𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔– 𝒃𝒊) = –𝒂𝒊𝒃𝒊 + 𝒂𝒊𝜽𝒔

Convert IFA to IRT: Convert IRT to IFA:

𝑎𝑖 = 𝜆𝑖 ∗ Theta Variance 𝜆𝑖 =
𝑎𝑖

Theta Variance

𝑏𝑖 =
𝜏𝑖−(𝜆𝑖∗Theta Mean)

𝜆𝑖∗ Theta Variance
𝜏𝑖 = 𝑎𝑖𝑏𝑖 +

𝑎𝑖∗Theta Mean

Theta Variance

𝝉𝒊 𝝀𝒊

𝒂𝒊 = discrimination

𝒃𝒊 = difficulty

𝜽𝒔 = 𝑭𝒔 latent trait 

Note: These formulas 

rescale 𝑎𝑖 and 𝑏𝑖 so 

that theta M=0, VAR=1 

If you don’t want to 

rescale theta, use M=0 

and VAR=1 to keep 

your current scale
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Thus, IFA = IRT

• An item factor model for binary outcomes is the same as a 

two-parameter IRT model, so you can keep both camps happy:

➢ IFA loadings 𝝀𝒊 → 2-PL IRT discriminations 𝒂𝒊

➢ IFA thresholds 𝝉𝒊 = − 𝝁𝒊 → 2-PL IRT difficulties 𝒃𝒊

• CFA/SEM crowd?  Call it 𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = –𝝉𝒊 + 𝝀𝒊𝑭𝒔

➢ “I did IFA” → Report item “factor loadings” 𝝀𝒊 and “thresholds” 𝝉𝒊

➢ See also “CFA for categorical data” as sufficiently synonymous

• IRT crowd?  Call it 𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔 − 𝒃𝒊)

➢ “I did IRT” → Report item “discriminations” 𝒂𝒊 and “item difficulties” 𝒃𝒊

IRT: IFA:

𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔 − 𝒃𝒊) = –𝒂𝒊𝒃𝒊 + 𝒂𝒊𝜽𝒔

𝝉𝒊 𝝀𝒊
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3 Kinds of Output in Mplus

• IFA unstandardized solution:

➢ Item threshold 𝝉𝒊 = expected logit/probit of 𝒚𝒊𝒔 = 𝟎 when 𝜽𝒔 = 𝟎

➢ Item loading 𝝀𝒊 = Δ in logit/probit of 𝒚𝒊𝒔 = 𝟏 for a 1-unit Δ in 𝜽𝒔 (Theta)

➢ Item residual variance not estimated, but is 3.29 in logit or 1.00 in probit for 𝑦𝑖𝑠
∗

• IFA standardized solution:

➢ Variance of logit/probit (of 𝑦𝑖𝑠 = 1) → (𝜆𝑖
2 * Theta Variance) + (3.29 or 1)

➢ std 𝝉𝒊 = unstd 𝝀𝒊 / SD(Logit or Probit Y) → not usually interpreted

➢ std 𝝀𝒊 = unstd 𝝀𝒊 * SD(Theta) / SD(Logit or Probit of 𝑦𝑖𝑠 = 1) 

→ correlation of logit/probit of item response with Theta

• IRT solution (only one type; only given in Mplus for binary items):

➢ 𝒃𝒊 = Theta at which prob(𝑦𝑖𝑠 = 1) = .50 or logit or probit = 0

➢ 𝒂𝒊 = Δ in logit or probit of 𝑦𝑖𝑠 = 1 for a 1-unit Δ in 𝜽𝒔 (Theta) 

= slope of item characteristic curve at 𝒃𝒊 item difficulty location

IFA solution should 

not be used to 

compute Omega.
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Item Parameter Interpretations
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IFA model with loading and “easiness” intercept 𝝁𝒊:   𝐋𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = 𝝁𝒊+ 𝝀𝒊𝑭𝒔

IFA model with loading and “difficulty” threshold 𝝉𝒊:  𝐋𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = –𝝉𝒊 + 𝝀𝒊𝑭𝒔

2-PL IRT model with discrimination and difficulty:    𝐋𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔–𝒃𝒊)

𝒃𝟏 = −𝟎. 𝟑𝟕𝟔= 
Theta needed for 

50% 𝑝(𝑦1 = 𝟏)

From IRT to IFA:
𝜆𝑖 = 𝑎𝑖
𝜏𝑖 = 𝑎𝑖𝑏𝑖

𝝁𝟏 = 𝟏. 𝟔𝟐𝟗= 
Logit of 𝑝(𝑦1 = 𝟏) 

if Theta = 0 →

𝑝(𝑦1 = 𝟏) = .836

𝝉𝟏 = −𝟏. 𝟔𝟐𝟗= 
Logit of 𝑝(𝑦1 = 𝟎) 

if Theta = 0 →

𝑝(𝑦1 = 𝟎) = .164

−𝟏 ∗

𝒂𝟏 = 𝝀𝟏 =
𝟒. 𝟑𝟐𝟖→

slope at 𝑝 = .5



Item Parameter Interpretation

• IFA and IRT item slope parameters are interpreted similarly:

➢ IFA loading 𝜆𝑖= Δ in logit/probit of 𝑦𝑖𝑠 = 1 for a 1-unit Δ in Theta

➢ IRT discrimination 𝑎𝑖 = slope of ICC at prob=.50 (logit/probit = 0)

• IFA and IRT item location parameters are interpreted differently:

➢ IFA intercept 𝝁𝒊= logit/probit of 𝒚𝒊𝒔 = 𝟏 when Theta (x) = 0

➢ IFA threshold 𝝉𝒊= logit/probit of 𝒚𝒊𝒔 = 𝟎 when Theta (x) = 0

➢ IRT difficulty 𝒃𝒊 = amount of Theta needed for logit/probit (y) = 0

▪ So 𝒃𝒊 difficulty values are more interpretable as measures of location
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IFA model with loading and “easiness” intercept 𝝁𝒊:   𝐋𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = 𝝁𝒊+ 𝝀𝒊𝑭𝒔

IFA model with loading and “difficulty” threshold 𝝉𝒊:  𝐋𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = –𝝉𝒊 + 𝝀𝒊𝑭𝒔

2-PL IRT model with discrimination and difficulty:    𝐋𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔–𝒃𝒊)



CFA vs. IRT/IFA vs. ???
• CFA assumes continuous, normally distributed item responses

➢ Robust ML can be used to adjust fit statistics and parameter SEs for 
non-normality, but it’s still a linear model for the Factor predicting 𝑦𝑖𝑠

➢ A linear model may not be plausible for Likert item responses 
(i.e., the model-predicted responses may extend beyond the 
possible response options for possible Factor levels)

• IRT/IFA is for categorical, binary/multinomial item responses

➢ Linear model between Theta and logit/probit(𝒚𝒊𝒔) instead

➢ Because Likert item responses are bounded and only ordinal, not interval, 
IRT/IFA should probably be used for this kind of data

➢ CFA may not be too far off given ≥ 5 normally distributed responses, 
but then you can’t see how useful your answer choices are (stay tuned!) 

• For non-normal but continuous (not categorical) responses, other 
latent trait measurement models are possible (stay tuned!)
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Summary: Binary IRT/IFA Models

• IRT/IFA are a family of models that specify the relationship between the 

latent trait (“Theta”) and a link-transformation of probability of 𝑦𝑖𝑠 = 1

➢ Linear relationship between Theta and Logit or Probit of 𝑦𝑖𝑠 = 1
→ nonlinear relationship between Theta and Probability of 𝑦𝑖𝑠 = 1

• The form of the trait–response relationship depends on:

➢ At least the location on the latent trait (given by difficulty 𝑏𝑖 or threshold 𝜏𝑖)

➢ Perhaps the strength of relationship may vary across items (given by 𝑎𝑖 or 𝜆𝑖)

▪ If not, its a “1-PL” or “Rasch model” → assumes tau-equivalence

➢ Also maybe lower and upper asymptotes (𝑐𝑖 and 𝑑𝑖) → but good luck with that!

• Because the slopes are non-linear, this implies that reliability

(now called “test information”) must vary across theta values

➢ So items are not just “good” or “bad”, but are “good” or “bad” for whom?

• Now what about model fit??? Let’s talk estimation first…
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Latent Trait Measurement 

Models for Binary Responses: 

Welcome to IRT and IFA!
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• Topics:

➢ The Big Picture of Latent Trait Measurement Models

➢ 1, 2, 3, and 4 Parameter IRT (and Rasch) Models

➢ Item and Test Information (for Indexing Reliability)

➢ From Item Response Theory Models to Item Factor Models

➢ Model Estimation, Comparison, and Evaluation



What all do we have to estimate?

• For example, a 7-item binary test and a 2-PL model, (assuming 

we fix the Theta distribution to have mean=0 and variance=1):

➢ 7 item discriminations (𝑎𝑖) and 7 item difficulties (𝑏𝑖) = 14 parameters

• Item parameters are FIXED effects → specific item inference

➢ Missing data can lead to different numbers of total items across persons

• What about the all the individual person Thetas? 

➢ The individual factor scores are not part of the model—in other words, 

Theta scores are modeled as RANDOM effects (= U’s in MLM, btw)

➢ Thus, our inference is about the distribution of the latent traits in the 

population of persons, which we assume to be multivariate normal 

➢ i.e., we need the Theta means, variances, and covariances in the 

sample, but not the Theta estimates for each person per se
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Estimation:  Items, then People

3 full-information item estimation methods:

• “Full-information” → uses individual item responses

• 3 methods differ with respect to how they handle unknown person thetas

• First, two less-used and older methods:

➢ “Conditional” ML → Theta? We don’t need no stinking theta…

▪ Uses total score as “Theta” (so can’t include people with all 0’s or all 1’s)

▪ Thus, is only possible within Rasch models (where the total is sufficient for theta)

▪ If the Rasch model holds, estimators are consistent and efficient and can be 

treated like true likelihood values (i.e., can be used in model comparisons)

➢ “Joint” ML → Um, can we just pretend the thetas are fixed effects instead?

▪ Iterates back and forth between persons and items (each as fixed effects) until 

item parameters don’t change much—then calls it done (i.e., converged)

▪ Many disadvantages: estimators are biased, inconsistent, with too 

small SEs and likelihoods that can’t be used in model comparisons

▪ More persons → more parameters to estimate, too → so bad gets even worse
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Marginal ML Estimation 

(with Numeric Integration)
• Gold standard of estimation (used in Mplus, but not lavaan!)

➢ This is the same idea of multivariate height, just using a different 
distribution than multivariate normal for the log-likelihood function

• Relies on two assumptions of independence:

➢ Item responses are independent after controlling for Theta: “local”

▪ This means that the joint probability (likelihood) of two item 
responses is just the probability of each multiplied together

➢ Persons are independent (no clustering or nesting)

▪ You can add random effects to capture dependency, but then the 
assumption is “independent after controlling for random effects”

• Doesn’t assume it knows the individual thetas, but it does 
assume that the distribution of theta(s) is (multivariate) normal
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Marginal ML via Numeric Integration

• Step 1: Select starting values for all item parameters (e.g., using CTT values)

• Step 2: Compute the likelihood for each person given by the current

parameter values (using start values or updated values later on)

➢ IRT model gives probability of response given item parameters and Theta

➢ To get likelihood per person, take each predicted item probability and plug 

them into: Likelihood (all responses) = Product over items of: py(1−p)1−y

➢ But we don’t have Theta yet! No worries: computing the likelihood for each set 

of possible parameters requires removing the individual Thetas from the model 

equation—by integrating across the possible Theta values for each person

➢ Integration is done by “Gaussian Quadrature” → summing up rectangles 

that approximate the integral (the area under the curve) for each person

• Step 3: Decide if you have the right answers, which occurs when the sum 

of the log-likelihoods changes very little across iterations (i.e., it converges)

• Step 4: If you aren’t converged, choose new parameters values

➢ Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (Thetas =missing data)
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“Marginal” ML Estimation
• More on Step 2: Divide the Theta distribution into rectangles

→ “Gaussian Quadrature” (# rectangles = # “quadrature points”)

➢ Divide the whole distribution into rectangles, and then take the most 

likely section for each person and rectangle that more specifically

▪ This is “adaptive quadrature” and is computationally more demanding, 

but gives more accurate results with fewer rectangles (Mplus uses 15)

➢ Unfortunately, each additional Theta or Factor adds another dimension 

of integration (so 2 factors = 15*15 rectangles to try at each iteration)

The likelihood of each person’s response 

pattern at each Theta rectangle is then 

weighted by that rectangle’s probability of 

being observed (as given by the normal 

distribution). The weighted likelihoods are 

then added together across all rectangles.

→ ta da! “numeric integration”

PSQF 6249: Lecture 5 72



Example of Numeric Integration
1. Start values for item parameters (here with 𝑎 = 1): 

➢ Item 1: mean = .73 → logit = +1, so starting 𝑏1 = −1

➢ Item 2: mean = .27 → logit = −1, so starting 𝑏2 = +1

2. Compute per-person likelihood using item parameters and 

possible Thetas (−2,0,2) with IRT model: logit(𝑦𝑖𝑠 = 1) = 𝑎(𝜃 − 𝑏𝑖)

IF y=1 IF y=0 Likelihood Theta Theta Product

Theta = -2 Logit Prob 1-Prob if both y=1 prob width per Theta
Item 1 b = -1 (-2 - -1) -1 0.27 0.73 0.0127548 0.05 2 0.001275
Item 2 b = +1 (-2 - 1) -3 0.05 0.95

Theta = 0 Logit Prob 1-Prob
Item 1 b = -1 (0 - -1) 1 0.73 0.27 0.1966119 0.40 2 0.15729
Item 2 b = +1 (0 - 1) -1 0.27 0.73

Theta = +2 Logit Prob 1-Prob
Item 1 b = -1 (2 - -1) 3 0.95 0.05 0.6963875 0.05 2 0.069639
Item 2 b = +1 (2 - 1) 1 0.73 0.27

Overall Likelihood (Sum of Products over All Thetas): 0.228204

(then multiply over all people)

(repeat with new values of item parameters until find highest overall likelihood)
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Once we have the item parameters, 

we can get some Thetas…
• Let’s say we are searching for Theta given observed responses to 5 items 

with known difficulty values, so we try out 2 possible Thetas

➢ Step 1: Compute prob(Y) using IRT model given each possible Theta

▪ 𝑏1 = −2, 𝜃𝑠 = −1: Logit(𝑦𝑖𝑠 = 1) = (−1 − −2) = 1, so 𝑝(𝑦𝑖𝑠 = 1)= .73

▪ 𝑏5 = 2, 𝜃𝑠 = −1: Logit(𝑦𝑖𝑠 = 1) = (−1 − 2) = −3, so 𝑝(𝑦𝑖𝑠 = 1) = .05→ 𝑝(𝑦𝑖𝑠 = 0) = .95

➢ Step 2: Multiple item probabilities together → product = “likelihood”

▪ Products get small really fast, but if we take the log, then we can add them instead

➢ Step 3: See which Theta has the 

highest likelihood (here, +2)

▪ More quadrature points 

→ better estimate of Theta

➢ Step 4: Because people are 

independent, we can multiply

all their response likelihoods 

together and solve all at once

Item b Y Term

θ = -1 θ = +2

1 -2 1 p 0.73 0.98

2 -1 1 p 0.50 0.95

3 0 1 p 0.27 0.88

4 1 1 p 0.12 0.73

5 2 0 1-p 0.95 0.50

Product of values: 0.01 0.30

Value if…
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Theta Estimation via Newton Raphson

• We could calculate the likelihood over wide range of Thetas for each 

person and plot those likelihood values to see where the peak is…

➢ But we have lives to lead, so we can solve it mathematically instead by finding 

where the slope of the likelihood function (the 1st derivative, 𝑑′) = 0 (its peak)

• Step 1: Start with a guess of Theta, calculate 1st derivative 𝒅′ at that point

➢ Are we there (𝑑′ = 0) yet? Positive 𝑑′ = too low; negative 𝑑′ = too high

Most likely Theta is where 

slope of tangent line to 

curve (1st derivative 𝒅′) = 0

Let’s say we started 

over here…
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Theta Estimation via Newton Raphson

• Step 2: Calculate the 2nd derivative (slope of slope, 𝑑′′) at current theta guess

➢ Tells us how far off we are, which is used to figure out how much to adjust by

➢ 𝑑′′ will always be negative as we approach top, but d' can be positive or negative

• Calculate new guess of Theta: 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 – (𝑑′/𝑑′′)

➢ If (𝑑′/𝑑′′) < 0 →Theta increases 

If (𝑑′/𝑑′′) > 0 →Theta decreases 

If (𝑑′/𝑑′′) = 0 then at the peak!

• 2nd derivative 𝒅′′ also tells you

how good of a peak you have

➢ Need to know where your best

Theta is (at 𝑑′ = 0), as well as 

how precise it is (from 𝑑′′) 

➢ If the function is flat, 

𝑑′′ will be smallish

➢ Want large 𝒅′′ because

1/SQRT(𝒅′′) = Theta’s SE

F irs t-D erivative of L og -L ikelihood
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𝑑′′ = Slope of 𝑑′
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Theta Estimation: ML with Help

• ML is used to come up with the most likely Theta given observed item 

response pattern and the item parameters…

…but can’t estimate Theta if item responses are all 0’s or all 1’s!

• Prior distributions to the rescue (Bayes, *cough cough*)!

➢ Multiply likelihood function for Theta with prior distribution 

(usually we assume multivariate normal)

➢ Contribution of the prior is minimized with increasing items, 

but allows us to get Thetas for all 0 or all 1 response patterns 

• Note the implication of this for what Theta really is for each person:

➢ THETA IS A RANDOM EFFECT—A DISTRIBUTION, NOT A VALUE!

➢ Although we can find the most likely value, we can’t ignore its probabilistic 

nature or how good of an estimate it is (how peaked the LL function is)

▪ SE is constant for CFA factor scores, but SE is NOT constant for IRT Thetas

➢ THIS IS WHY YOU SHOULD AVOID OUTPUTTING THETAS

PSQF 6249: Lecture 5 77



Theta Estimation: 3 Methods
• ML: Maximum Likelihood Scoring

➢ Uses just item parameters to come up with Thetas

➢ Can’t estimate Theta if none or all are answered correctly

• MAP: Maximum a Posteriori Scoring

➢ Combine ML estimate with a continuous normal prior distribution

➢ Theta estimate is mode of combined posterior distribution

➢ Theta will be regressed toward mean if reliability is low

➢ Is used in Mplus WLSMV

• EAP: Expected A Posteriori Scoring

➢ Combine ML estimate with a ‘rectangled’ normal prior distribution 

➢ Theta estimate is mean of combined posterior distribution

➢ Is used in Mplus ML for CFA or IRT/IFA (and is best version)
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Model Comparisons in IRT:

Relative Model Fit via −2ΔLL Tests
• Nested models can be compared with the same −2ΔLL tests we used in 

CFA → without the “robust” part of ML, so they get simpler (scale factor=1)

➢ Step 1: Calculate −2ΔLL = −2(LLfewer – LLmore)

➢ Step 2: Calculate Δdf = dfmore – dffewer (given as “# free parms”)

➢ Compare −2ΔLL with df = Δdf to χ2 critical values (or excel CHIDIST)

➢ Add 1 parameter? −2ΔLL(1) > 3.84, add 2: −2ΔLL(2) > 5.99…

• If adding parameters, model fit can be better or not better

• If removing parameters, model fit can be worse or not worse

• AIC and BIC values (from −2LL) can be used to compare non-nested 

models (given same sample of people and items), smaller is better

• No trustable absolute global fit measures available via full information ML 

for IRT → categorical data can’t be summarized by just a covariance matrix
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Local Model Fit Using ML IRT

• IRT programs (but not Mplus) provide “item fit” and “person fit” statistics

➢ Item fit: Predicted vs. observed ICCs—how well do they match? 

Or via inferential tests (Bock Chi-Square Index or BILOG version)

➢ Person fit “Z” based on predicted vs. observed response patterns

➢ Many require the use of outputted thetas, which makes then problematic

• Using ML in Mplus: Local item fit available with TECH10 output

➢ Univariate item fits: How well did the model reproduce the observed 

response proportions? (Not likely to have problems here)

➢ Bivariate item fits: Contingency tables for pairs of responses → Get χ2 value for 

each pair of items for their remaining dependency after controlling for Theta(s)

• Bivariate item fit is the basis of the newest absolute fit statistics (e.g., work 

by Maydeu-Olivares): M2 (analogous to χ2 test), RMSEA2, and SRMR2

➢ Not currently provided in Mplus; not yet standard practice across areas
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What Goes Wrong for Absolute 

(Global) Model Fit using ML…
• ML is a full-information estimator, and it is now trying to reproduce 

the observed item response pattern, not a covariance matrix!

• Model DF is based on FULL response pattern: #responses#items

➢ DF = # possible observed patterns – # parameters – 1

➢ So, for an example of 24 binary items in a 1-PL Model: 

▪ Max DF = 224 – #𝑎𝑖 –#𝑏𝑖 – 1 = 16,777,216 – 1 – 24 – 1 = 𝟏𝟔, 𝟕𝟕𝟕, 𝟏𝟗𝟎!

▪ If some cells aren’t observed (Mplus deletes them from the 𝜒2 calculation), 
then DF may be < Max DF, and thus 𝜒2 won’t have the right distribution

• Pearson χ2 based on classic formula: (observed – expected)2 / expected

➢ Good luck finding enough people to fill up all possible patterns!

➢ Other 𝜒2 given in output is “Likelihood Ratio” 𝜒2 , calculated differently

➢ Linda Muthén suggests “if these don’t match, they should not be used”

➢ 𝝌𝟐 generally won’t work well for assessing absolute global fit in IRT
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Summary:  ML for IRT Models
• Full-information Marginal ML with numeric integration for IRT models tries 

to find the item parameters that are most likely given the observed item 
response pattern → IFA or IRT parameters on logit or probit scales

• Because of the integration (rectangling Theta) required at each step of 
estimation, it may not be feasible to use ML for IRT models in small 
samples or for many factors at once (too many rectangles simultaneously)

➢ This where MCMC estimation can be a more practical strategy

• IRT using ML does not have agreed-upon measures of absolute global fit

➢ Categorical item responses cannot be summarized by just a covariance matrix 
anymore, but by all possible response patterns instead

➢ Usually there are not enough people to fill up all possible response patterns, 
so there’s no valid basis for an absolute fit comparison

➢ Nested models (on same items) can still have relative fit compared via −2ΔLL

• There is another game in town for IRT in Mplus, however…
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Another Alternative:  WLSMV

• WLSMV: “Weighted Least Square parameter estimates use a diagonal 

weight matrix and a Mean- and Variance-adjusted χ2 test”

➢ Called “diagonally-weighted least squares” by non-Mplus people

• Translation: WLSMV is a limited-information estimator that uses a 

different summary of responses instead → a “linked” covariance matrix

• Fit can then be assessed in regular CFA ways, because what is 

trying to be reproduced is again a type of covariance matrix 

➢ Instead of the full item response pattern (as in ML)

➢ We can then get the typical measures of absolute fit as in CFA

• Normally CFA uses the observed covariance matrix of the items…

➢ But correlations among binary items will be less than 1 any time 

𝑝 differs from .5, so the covariances will be restricted as well…

➢ What if we could fit a covariance matrix on the logit or probits instead???
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WLSMV Estimation (Diagonally Weighted Least Squares)

Data y2 = 0 y2 = 1

y1 = 0 a c

y1 = 1 b d

• WLSMV first estimates correlation matrix of underlying item responses (probit scale)

➢ For binary responses → “tetrachoric correlation matrix”

➢ For ordinal (polytomous) responses → “polychoric correlation matrix”

• The model then tries to find item parameters to predict this new correlation matrix

• The diagonal W “weight” part then tries to emphasize reproducing latent variable 
correlations that are relatively well-determined more than those that aren’t

➢ The full weight matrix is of order z*z, where z is number of elements to estimate

➢ The “diagonal” part means it only uses the preciseness of the estimates themselves, not the 
covariances among the “preciseness-es” (much easier, and not a whole lot of info lost)

• The “MV” corrects the 𝜒2 test for bias arising from this weighting process

Use the observed cell 

proportions as the area 

under the curve of each 

section of the bivariate 

normal distribution to 

determine what the 

correlation would be →
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More about WLSMV Estimation
• Works much faster than ML when you have small samples or 

many factors to estimate (because no rectangling is required)

• Does assume missing data are missing completely at random,

whereas ML assumes only missing at random (conditionally random)

• Because a saturated covariance matrix is used as the input data, we get 

absolute fit indices as in CFA, but they should be interpreted with caution

➢ Fewer people → less well-estimated “saturated” matrix to start from

➢ More skewness, fewer categories → easier to get falsely good model fit

• Model parameters will be on the probit scale instead of logit scale

➢ Unlike full-information ML, in which you can choose logit or probit, though

• Two item variance scalings in Mplus via the PARAMETERIZATION option 

on the ANALYSIS command, where a 1 is needed for identification

➢ “Delta” (default): variance (Y*) = factor + error = 1 = “marginal parameterization”

➢ “Theta”: error variance = 1 instead = “conditional parameterization”

▪ WE WILL USE THIS ONE TO HELP SIMPLIFY IRT CONVERSIONS
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Model Comparisons with WLSMV 

using DIFFTEST in Mplus

• Not the same process! Model DF is NOT calculated in usual 

way, and model fit is not compared in the usual way

➢ Absolute 𝜒2 model fit values are meaningless—they are not comparable!

➢ Difference in model 𝜒2 are not distributed as 𝜒2

• Here’s how you do nested model comparisons in WLSMV:

➢ Step 1: Estimate model with more parameters, adding this command:

▪ SAVEDATA: DIFFTEST=more.dat;  → Saves needed derivatives to file

➢ Step 2: Estimate model with fewer parameters, adding this command:

▪ ANALYSIS: DIFFTEST=fewer.dat;   → Uses those derivatives to do Δ𝜒2 test

➢ Step 2 model output will have a new 𝜒2 difference test in it that 

you can use, with df difference to compare to a 𝜒2 distribution
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Assessing Local Model Fit

• The need to check local model fit is the same in IRT/IFA as in CFA

• Using ML: Local item fit in Mplus available with TECH10 option

➢ Univariate item fits: How well did the model reproduce the observed response 

frequencies? (Not likely to have problems here if each item has own location)

➢ Bivariate item fits: Contingency tables for pairs of responses → Get 𝜒2 value for 

each pair of items for their remaining dependency after controlling for Theta(s)

• Under WLSMV: Residual correlation matrix (i.e., model–data discrepancy) 

via the RESIDUAL option on OUTPUT statement (just like in CFA)

➢ Predicted and residual (left-over) item correlations given in correlation metric

➢ Look for large residual correlations in absolute value (but no significance tests)

➢ Will be MUCH easier to do for many items than bivariate fit in ML 
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Error Covariances in IRT/IFA
• Additional relationships between items can be included:

➢ Via error covariances (the same as in CFA) when using WLSMV

because the model is being estimated on the tetrachoric/polychoric 

correlation matrix (so the error of the underlying probit can covary, 

even if item error or total variances =1 for identification)

➢ Error covariances are not allowed when using maximum likelihood

➢ Instead, you can specify “method factors” (in WLSMV or ML), also 

known as a “bifactor model” (which can also be used in CFA models)

• Here is an example using WLSMV to demonstrate both ways:
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! Primary factor/theta

Trait BY item1-item5*;

[Trait@0]; Trait@1;

! Error covariance

item2 WITH item3*;

! Primary factor/theta

Trait BY item1-item5*;

[Trait@0]; Trait@1;

! Uncorrelated factor to 

create error covariance

ErrFact BY item2@1 item3@1;

[ErrFact@0]; ErrFact*;

ErrFact WITH Trait@0;



Error Covariances in IRT/IFA
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! Primary factor/theta

Trait BY item1-item5*;

[Trait@0]; Trait@1;

! Uncorrelated factor to 

create error covariance

ErrFact BY item2@1 item3@1;

[ErrFact@0]; ErrFact*;

ErrFact WITH Trait@0;

TRAIT    BY

ITEM1    0.994      0.078     12.724      0.000

ITEM2    2.138      0.148     14.459      0.000

ITEM3    1.823      0.125     14.527      0.000

ITEM4    1.106      0.090     12.311      0.000

ITEM5    0.232      0.045      5.200      0.000

ERRFACT  BY

ITEM2    1.000      0.000    999.000    999.000

ITEM3    1.000      0.000    999.000    999.000

ERRFACT  WITH

TRAIT    0.000      0.000    999.000    999.000

Variances

TRAIT    1.000      0.000    999.000    999.000

ERRFACT  1.996      0.314      6.357      0.000

The variance of ErrFact

holds the positive error 

covariance between 

items 2 and 3.

To create a negative 

error covariance, fix 

the ErrFact loadings 

to 1 and −1 instead.

For models with many method 
factors, add the ANALYSIS:

option MODEL=NOCOVARIANCES 

to made all factors uncorrelated

by default (instead of correlated 
by default as usual)



IRT/IFA Model Estimation: Summary

• Full-information Marginal ML estimation with numeric integration provides:

➢ “Best guess” as to the value of each item parameter (and person theta if you ask for it)

➢ SE that conveys the uncertainty of that prediction

• The “best guesses” for the model parameters do not depend on the sample:

➢ Item estimates do not depend on the particular individuals that provided responses

➢ Person estimates do not depend on the particular items that were administered 

➢ Thus, model parameter estimates are sample-invariant

• The SEs for those model parameters DO depend on the sample 

➢ Item parameters will be estimated less precisely where there are fewer individuals

➢ Person parameters will be estimated less precisely where there are fewer items

• WLSMV in Mplus is a limited-estimation approach for IFA or IRT models

➢ Uses an estimated tetrachoric correlation matrix as input for the factor analysis

➢ Works better for many factors than ML (but can be less trustworthy overall)

➢ But beware missing data! ML assumes MAR, whereas WLSMV assumes MCAR instead!
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