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Example 9: Structural Equation Modeling with Latent Variables (or their Observed Variables)
(complete syntax and output available electronically for Mplus 8.8; partial for R Lavaan 0.6-12)

These data were adapted from my dissertation work (see references below) in which 152 adults age 63—-87 years were
measured on visual impairment (distance acuity and five degrees of contrast sensitivity), processing speed, divided
visual attention, and selective visual attention (as measured by the Useful Field of View subtests for each), attentional
search efficiency (DriverScan), and simulator driving impairment (as measured by six driving performance indicators).

Hoffman, L., Yang, X., Bovaird, J. A., & Embretson, S. E. (2006). Measuring attention in older adults: Development
and psychometric evaluation of DriverScan. Educational and Psychological Measurement, 66, 984-1000.

Hoffman, L., McDowd, J. M., Atchley, P., & Dubinsky R. A. (2005). The role of visual attention in predicting driving
impairment in older adults. Psychology and Aging, 20(4), 610-622.

This example will demonstrate how to estimate structural equation models, including models with mediation and latent
variable interactions. But because simultaneous estimation of all effects of interest may not always be possible, this
example will also show how to generate and use EAP factor score estimates instead. (For a version of this handout
that also works with plausible values of factor scores, see Example9c from this previous class.)

Mplus Code to Read in Data:

TITLE: SEM Example for Driverscan
DATA: FILE = driverscanSEM.csv; ! FILE is file to be analyzed
FORMAT = free; ! Free is default
TYPE = INDIVIDUAL; ! Individual data is default
VARIABLE: ! Every variable in data set

NAMES = PersonID sex age75 lncsl5 lncs3 lncs6 lncsl2 1lncsl8 far lnps
lnda lnsa Dscan lane da_task crash stop speed time;

! Every variable in EACH MODEL

USEVARIABLES = (to be changed for each model) ;

IDVARIABLE = PersonlID; ! To keep ID variable for merging
MISSING = ALL (-9999); ! Value to denote missing values
ANALYSIS: ESTIMATOR = MLR; ! For continuous items whose residuals may not be normal
OUTPUT: SAMPSTAT ! Sample descriptives to verify data
MODINDICES (3.84) ! Cheat codes to improve model fit (at p<.05)
STDYX ! Requests fully standardized solution
RESIDUAL ! Requests standardized and normalized residuals
SVALUES; ! Write code with estimated parameters as start values
TECH4 ; ! Latent variable correlation matrix
SAVEDATA: SAVE = FSCORES; FILE = FactorScores.dat; ! Change .dat name by model
MISSFLAG = 99; ! Missing data item indicator
MODEL: ! (model syntax goes here, to be changed for each model)

We will begin by fitting single-factor measurement models for each latent factor. This is for two reasons:
(1) we need to ensure each unidimensional factor fits its indicators, and (2) we will generate the EAP factor scores to
use later to demonstrate how to include reliability-corrected factor scores as a replacement for latent variables.

Given MLR estimation, the EAP (expected a posteriori estimate) is the mean of the expected factor score distribution
for each person. So anytime factor score SE>0 (and reliability is <1), this means the factor score still has error with it
that we should correct for to avoid bias in the structural model parameters...


https://www.lesahoffman.com/Research/015%202006%20Hoffman%20et%20al.%20EPM%20DriverScan.pdf
https://www.lesahoffman.com/Research/015%202006%20Hoffman%20et%20al.%20EPM%20DriverScan.pdf
https://www.lesahoffman.com/Research/009%202005%20Hoffman%20et%20al.%20P&A%20DriverScan.pdf
https://www.lesahoffman.com/Research/009%202005%20Hoffman%20et%20al.%20P&A%20DriverScan.pdf
https://www.lesahoffman.com/CLDP948/index.html

Measurement Model 1 for Visual Impairment (including Omega)

VARIABLE:

MODEL: ! Measurement model

Vision BY farQ@l
lncsl5* lncs3* lncs6*
[far* 1lncsl5* 1lncs3* lncsé6*
far* lncsl5* lncs3* lncs6*
[Vision@0]; Vision* (Fvar);

! Every variable in THIS MODEL
USEVARIABLES = 1lncsl5 1lncs3 lncs6 lncsl2 lnesl8 far;

lncsl2* 1lncsl8* (L2-L6) ;
lncsl2* 1lncsl8*];
lncsl2* 1lncsl8* (E1-E6);

MODEL CONSTRAINT: ! TO GET OMEGA
NEW (SumLoad2 SumError SumRCov Omega) ;
SumLoad2 =( 1+L2+L3+L4+L5+L6)**2;

SumError = E1+E2+E3+E4+E5+E6;
SumRCov = 2* (0) ;

! Omega = true variance / total variance

Omega = SumlLoad2*Fvar / (SumLoad2*Fvar+SumError+SumRCov) ;

MODEL FIT INFORMATION

Number of Free Parameters 18
Loglikelihood
HO Value -747.948
HO Scaling Correction Factor 1.1255
for MLR
H1 Value -739.282
H1 Scaling Correction Factor 1.1171
for MLR
Information Criteria
Akaike (AIC) 1531.897
Bayesian (BIC) 1586.327
Sample-Size Adjusted BIC 1529.357
(n* = (n + 2) / 24)
Chi-Square Test of Model Fit
Value 15.752%*
Degrees of Freedom 9
P-Value 0.0722
Scaling Correction Factor 1.1003
for MLR
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.070
90 Percent C.TI. 0.000 0.126
Probability RMSEA <= .05 0.246
CFI/TLI
CFI 0.973
TLT 0.955

Chi-Square Test of Model Fit for the Baseline Model

Value
Degrees of Freedom
P-Value

264.950
15
0.0000

SRMR (Standardized Root Mean Square Residual)

Value

0.041
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1 marker loading
All intercepts
Residual variances
Factor M=0, Var=?



Measurement Model 1 for Vision:

MODEL RESULTS

Estimate
VISION BY
FAR 1.000 0
LNCS15 0.497 0
LNCS3 0.594 0
LNCS6 0.764 0
LNCS12 1.296 0
LNCS18 1.504 0
Means
VISION 0.000 0
Intercepts
LNCS15 -3.698 0
LNCS3 -3.938 0
LNCS6 -3.730 0
LNCS12 -2.368 0
LNCS18 -1.406 0
FAR 3.026 0
Variances
VISION 0.224 0
Residual Variances
LNCS15 0.133 0
LNCS3 0.105 0
LNCS6 0.145 0
LNCS12 0.282 0
LNCS18 0.488 0
FAR 0.460 0
New/Additional Parameters
SUMLOAD2 31.983 7
SUMERROR 1.613 0
SUMRCOV 0.000 0
OMEGA 0.816 0
STANDARDIZED MODEL RESULTS
STDYX Standardization
Estimate
VISION BY
FAR 0.572 0
LNCS15 0.541 0
LNCS3 0.656 0
LNCS6 0.688 0
LNCS12 0.756 0
LNCS18 0.713 0
Normalized Residuals for
LNCS15 LNCS3
LNCS15 0.000
LNCS3 1.651 0.000
LNCS6 -0.045 0.261
LNCS12 -0.455 -0.241
LNCS18 -0.629 -0.458
FAR -0.471 -0.731

S

LE.

.000
.103
.118
.136
.207
.237

.000

.035
.035
.043
.066
.081
.067

.067

.018
.014
.028
.047
.062
.055

.564
.102
.000
.024

S

.E.

.062
.074
.062
.057
.051
.041

Est./S.E.

999.

4
5
5.
6
6

999.

-105.
-113.
-87.
-36.
-17.
45.

[ BENING NG BENEEN |

15.

33.

000

.815
.018

628

L2717
.353

000

136
273
639
000
389
130

.333

.435
.451
.231
.947
.933
.349

.228

822

.000

851

Est./S.E.

9.
7
10.
12.
14.
17.

190

.305

605
062
815
293

Two-Tailed
P-Value

999.000
.000
.000
.000
.000
.000

O O O OO

999.000

.000
.000
.000
.000
.000
.000

OO O OO o

.000
.000
.000
.000
.000
.000

[oNeoNoNoNeNo]

.000
.000
.000
.000

o OO

Two-Tailed
P-Value

.000
.000
.000
.000
.000
.000

O OO O OO
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For factor score reliability
SAMPLE STATISTICS FOR ESTIMATED
FACTOR SCORES

Means
VISION VISION SE
©0.000  0.194
Covariances
VISION  0.186
224
P ==E;ZITE§E==.856

Factor score reliability uses the
factor variance as “true” and the
SE? of the factor scores (given just
above) as “error” (because these
factor scores have error in them
anytime reliability is < 1).

If we were going to sum the
indicators, omega would have
been used for reliability instead.

Covariances/Correlations/Residual Correlations

LNCS6

0.000
0.021
-0.177
-0.062

LNCS12

LNCS18

Local fit looks good as well...

0.000
0.353
0.198

0.000
0.558
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Measurement Model 2 for Driving Impairment (including Omega)

VARIABLE: ! Every variable in THIS MODEL
USEVARIABLES = lane da_task crash stop speed time;

MODEL: ! Measurement model
Driving BY crash@l
da_ task* lane* stop* speed* time* (L2-L6); ! 1 marker loading
[lane* da_task* crash* stop* speed* time¥*]; ! All intercepts
lane* da_task* crash* stop* speed* time* (E1-E6); ! Residual variances
[Driving@0]; Driving* (Fvar) ! Factor M=0, Var=?
speed WITH time* (ResCov) ; ! Residual covariance

MODEL CONSTRAINT: ! TO GET OMEGA

NEW (SumLoad2 SumError SumRCov Omega) ;

SumLoad2 = ( 1+L2+L3+L4+L5+L6)**2;

SumError = El+E2+E3+E4+ES5+E6;

SumRCov = 2* (ResCov) ;

! Omega = true variance / total variance

Omega = SumlLoad2*Fvar / (SumLoad2*Fvar+SumError+SumRCov) ;

*** WARNING
Data set contains cases with missing on all variables. ..
These cases were not included in the analysis. A total of 20 pa}rtlmpantS v_ve_re unable to
Number of cases with missing on all variables: 20 complete the_ SlmUIatO_r d”ymg task, so
they are not included in this model...

MODEL FIT INFORMATION

Number of Free Parameters 19
Loglikelihood
HO Value -37.119
HO Scaling Correction Factor 1.1566
for MLR
H1 Value -30.710
H1 Scaling Correction Factor 1.1108
for MLR

Information Criteria

Akaike (AIC) 112.239

Bayesian (BIC) 167.012

Sample-Size Adjusted BIC 106.915
(n* = (n + 2) / 24)

Chi-Square Test of Model Fit

Value 12.791*

Degrees of Freedom 8

P-Value 0.1192

Scaling Correction Factor 1.0021
for MLR

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.067

90 Percent C.I. 0.000 0.133

Probability RMSEA <= .05 0.293
CFI/TLI

CFI 0.922

TLI 0.854

Chi-Square Test of Model Fit for the Baseline Model

Value 76.677
Degrees of Freedom 15
P-Value 0.0000

SRMR (Standardized Root Mean Square Residual)
Value 0.054



Measurement Model 2 for Driving:

MODEL RESULTS

S

LE.

.000
.057
.074
.163
.138
.043

.004

.000

.015
.013
.053
.038
.042
.009

.062

.004
.004
.055
.031
.028
.001

.185
.067
.009
.076

S.

E.

.117
.123
.132
.115
.107
.145

0.

Estimate
DRIVING BY
CRASH 1.000 0
LANE 0.150 0
DA TASK 0.173 0
STOP 0.347 0
SPEED 0.422 0
TIME 0.048 0
SPEED WITH
TIME -0.023 0
Means
DRIVING 0.000 0
Intercepts
LANE 0.815 0
DA TASK 0.256 0
CRASH 0.859 0
STOP 0.205 0
SPEED 0.836 0
TIME 3.1406 0
Variances
DRIVING 0.159 0
Residual Variances
LANE 0.027 0
DA TASK 0.017 0
CRASH 0.209 0
STOP 0.174 0
SPEED 0.210 0
TIME 0.010 0
New/Additional Parameters
SUMLOAD2 4.578 1
SUMERROR 0.647 0
SUMRCOV -0.046 0
OMEGA 0.548 0
STANDARDIZED MODEL RESULTS
STDYX Standardization
Estimate
DRIVING BY
CRASH 0.657 0
LANE 0.340 0
DA TASK 0.470 0
STOP 0.315 0
SPEED 0.345 0
TIME 0.185 0
SPEED WITH
TIME -0.494
Normalized Residuals for
LANE DA TASK
LANE 0.000
DA TASK -0.487 0.000
CRASH 0.359 -0.390
STOP 0.769 0.503
SPEED 0.458 -0.836
TIME -1.508 2.067

090

Est./S.E.

.000
.608
.348
.124
.054
.104

HwbNDDNDDND

.393

999.000

53.293
20.102
16.292

5.349
19.687

349.081

2.574

.596
.613
.781
.575
.391
.639

O ~J U W o

3.865
9.627
.393
7.166

Est./S.E.

.596
.767
.576
.748
.226
.275

P wbhDwdN o

-5.478

Two-Tailed
P-Value

999.000
.009
.019
.034
.002
.270

[oNoNeNoNe]

999.000

.000
.000
.000
.000
.000
.000

[ecNoNeNoNoNo]

.000
.000
.000
.000
.000
.000

[cNoNeRoNoNo]

.000
.000
.000
.000

[ecNoNeNe)

Two-Tailed
P-Value

.000
.006
.000
.006
.001
.202

[oNeoNeoNeoNoNe)

0.000
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For factor score reliability
SAMPLE STATISTICS FOR ESTIMATED
FACTOR SCORES

Means
DRIVING DRIVING SE
0.000 0.247
Covariances
DRIVING 0.098
.159
p=——"— =723 Uh-oh..
159+ .2472

Factor score reliability uses the
factor variance as “true” and the
SE? of the factor scores (given just
above) as “error” (because these
factor scores have error in them
anytime reliability is < 1).

Covariances/Correlations/Residual Correlations

CRASH

0.000
.004
0.471
.346

STOP

SPEED

Local fit looks mostly ok, with one exception...

0.000
-0.482
-0.545

0.000
0.000
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Measurement Model 3 for Attentional Impairment (including Omega)

VARIABLE: ! Every variable in THIS MODEL
USEVARIABLES = lnda lnsa Dscan;

MODEL: ! Measurement model
Attn BY 1lnda@l
lnsa* dscan* (L2-L3)
[lnda* lnsa* dscan¥*];
lnda* lnsa* dscan* (E1-E3);
[Attn@0]; Attn* (Fvar);

I

MODEL CONSTRAINT: ! TO GET OMEGA

NEW (SumLoad2 SumError SumRCov Omega) ;

SumLoad2 = ( 1+L2+L3)**2;
SumError = El1+E2+E3;
SumRCov = 2* (0) ;

! Omega = true variance / total variance

Omega = Sumload2*Fvar / (SumLoad2*Fvar+SumError+SumRCov) ;

1 marker loading
All intercepts
Residual variances
Factor M=0, Var=?

Can you guess why I didn’t include the model fit results???

Measurement Model 3 for Attention:

MODEL RESULTS

Estimate

ATTN BY

LNDA 1.000

LNSA 0.516

DSCAN 1.107
Means

ATTN 0.000
Intercepts

LNDA 4.354

LNSA 5.581

DSCAN -0.012
Variances

ATTN 0.443
Residual Variances

LNDA 0.516

LNSA 0.081

DSCAN 0.449

New/Additional Parameters

SUMLOAD2 6.876
SUMERROR 1.045
SUMRCOV 0.000
OMEGA 0.745

STANDARDIZED MODEL RESULTS
STDYX Standardization

Estimate

ATTN BY
LNDA 0.680
LNSA 0.770
DSCAN 0.740

S.E.

0.000
.071
0.139

(@]

0.079
0.036
0.081

0.068
.017
.086

o O

.960
.102
.000
.038

[ecNeNeNe]

0.055
0.055
0.056

Est./S.E.

999.
.275
7.

7

999.

54.
154.
-0.

000

933

000

825
256
154

.008

.597
.674
.243

.165
10.
.000
19.

212

728

Est./S.E.

12.
14.
13.

275
087
153

Two-Tailed
P-Value

999.000
0.000
0.000

999.000

0.000
.000
0.878

(@]

0.000
.000
.000

o O

.000
.000
.000
.000

o OO

Two-Tailed
P-Value

0.000
0.000
0.000

For factor score reliability
SAMPLE STATISTICS FOR ESTIMATED
FACTOR SCORES

Means
ATTN ATTN_ SE
©0.000  0.313
Covariances
ATTN 0.345
443
P ==;Z§:;H§E==.819

Factor score reliability uses the
factor variance as “true” and the
SE? of the factor scores (given just
above) as “error” (because these
factor scores have error in them
anytime reliability is < 1).
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Now we are ready to test the model of interest, Model 4a as shown below (drawn by Mplus, made prettier
by me). We'll begin with a saturated structural model that has main effects of the latent variables only.
This model uses directed arrows and covariances among the latent variables (but bivariate relations instead
of unique relations will be provided by the model-estimated latent variable covariance matrix in the output).

VARIABLE: ! Every variable in THIS MODEL
USEVARIABLES = lncsl5 1lncs3 lncs6 lncsl2 1lnesl8 far
lane da_task crash stop speed time
1nda 1lnsa Dscan age75 lnps;
549 475 380
Model 4a STDY X solution shown
Inda Inza dscan
T2 724 787
|
age’s lane T
274 da_task — 779
600 .315/
017 o8 A70
-)‘___,J cragh [ 669
{;— M// 575
| vision -122 driving
A ’\ \ R N Py
950
| 963 298
160 074 164 “\.
580 531 653 694 749 717 hﬁx&“‘xx:::::‘f/,l H///// 325
\\\::HMH“\ d

i

¥

AN

far

IncslS

Ings3

Incsh

Incs12

N

speed "_ﬁ” 1

\\\\ 544
]

e FR54

time

Ines 18 N
R

003 TR 373 518 440 RS

MODEL: ! Measurement models
Vision BY far@l lncsl5* lncs3* lncs6* lncsl2* lncsl8*;
[far* 1lncsl5* lncs3* lncs6* lncsl2* lncsl8*];
far* lncsl5* lncs3* lncs6* lncsl2* lncsl8*;
[Vision@0]; Vision¥*;

Driving BY crash@l da task* lane* stop* speed* time*;
[lane* da_task* crash* stop* speed* time*];

lane* da_task* crash* stop* speed* time*;
[Driving@O0]; Driving¥*;

speed WITH time* (ResCov) ;

Attn BY 1lnda@l lnsa* dscan*;
[lnda* lnsa* dscan*];
lnda* lnsa* dscan¥*;
[Attn@O]; Attn¥*;

Pspeed BY lnps@l; 1lnps@O;
[1nps* Pspeed@0]; Pspeed*; !

1 marker loading
All intercepts
Residual variances
Factor M=0, Var=?

1 marker loading
All intercepts
Residual variances
Factor M=0, Var=?
Residual covariance

1 marker loading
All intercepts
Residual variances
Factor M=0, Var=?

! Bring processing speed into likelihood
Move its variance to a factor,

factor mean=0
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! Structural model with all possible main effects
Vision Attn Pspeed Driving ON Age75* (Agel-Age4)
Attn Pspeed Driving ON Vision* (Visl-Vis3)
Attn WITH Pspeed¥*;
Driving ON Pspeed* Attn* (Speedl Attnl);

Age --> outcomes

Vision --> outcomes

Res cov for Attn and Pspeed
Pspeed, Attn --> Driving

e N

MODEL CONSTRAINT: ! Example of how to request indirect effects

NEW (AgeVis AgeSpeed AgeAttn) ;

AgeVis = Agel*Vis3; ! Indirect effect of age to vision to driving

AgeSpeed = Age3*Speedl; ! Indirect effect of age to processing speed to driving
AgeAttn = Age2*Attnl; ! Indirect effect of age to attention to driving

MODEL FIT INFORMATION

Number of Free Parameters 58
Loglikelihood
HO Value -1310.811
HO Scaling Correction Factor 1.1063
for MLR
H1 Value -1238.221
H1 Scaling Correction Factor 1.0405
for MLR

Information Criteria

Akaike (AIC) 2737.622
Bayesian (BIC) 2913.007
Sample-Size Adjusted BIC 2729.438
(n* = (n + 2) / 24)
Chi-Square Test of Model Fit .. .
Value 144.331% Overall model fit is good enough according to
Degrees of Freedom 110 RMSEA and SRMR (how much worse is our H,
E‘Vi%ue . Cion Tact (1)8(1)22 model than the perfect saturated H; model), but
Co g porreeron racter . maybe a little lacking according to CFl and TLI
(how much better is our H, model against the
RMSEA (Root Mean Square Error Of Approximation) worst possible null model of no covariances).
Estimate 0.045
90 Percent C.TI. 0.021 0.064 . e
Probability RMSEA <= .05 0.635 But any misfit must be due to the cross-factor
measurement model (i.e., covariances of
CFI/TLI indicators from different factors not predicted
o o accurately) because our structural model is
saturated—every possible direct relationship
SRMR (Standardized Root Mean Square Residual) among the latent variables has been included.
Value 0.063

UNSTANDARDIZED MODEL RESULTS (TRUNCATED FOR SPACE)
Two-Tailed
Estimate S.E. Est./S.E. P-Value
MEASUREMENT MODEL RESULTS GIVEN FIRST (BY STATEMENTS)
VISION BY

FAR 1.000 0.000 999.000 999.000
LNCS15 0.481 0.099 4.837 0.000
LNCS3 0.584 0.115 5.076 0.000
LNCS6 0.759 0.136 5.583 0.000
LNCS12 1.265 0.203 6.248 0.000
LNCS18 1.491 0.232 6.416 0.000
DRIVING BY
CRASH 1.000 0.000 999.000 999.000
LANE 0.161 0.066 2.444 0.015
DA TASK 0.197 0.065 3.022 0.003
STOP 0.381 0.164 2.330 0.020
SPEED 0.418 0.164 2.540 0.011
TIME 0.097 0.053 1.819 0.069
ATTN BY
LNDA 1.000 0.000 999.000 999.000
LNSA 0.491 0.061 8.000 0.000
DSCAN 1.192 0.170 7.022 0.000

PSPEED BY
LNPS 1.000 0.000 999.000 999.000



REGRESSION PATHS GIVEN NEXT (ON STATEMENTS)
ATTN ON

VISION 0.287 0.137 2.095
PSPEED ON

VISION 0.167 0.100 1.658
DRIVING ON

VISION -0.089 0.109 -0.814

PSPEED 0.114 0.083 1.387

ATTN 0.365 0.127 2.884
VISION ON

AGET75 0.024 0.011 2.187
ATTN ON

AGET75 0.059 0.014 4.393
PSPEED ON

AGET5 0.008 0.008 0.988
DRIVING ON

AGE75 0.001 0.011 0.119

COVARIANCES GIVEN LAST (WITH STATEMENTS)

ATTN WITH

PSPEED 0.061 0.027 2.292
SPEED WITH

TIME -0.025 0.004 -5.512

INDIRECT EFFECTS REQUESTED USING MODEL CONSTRAINT
New/Additional Parameters

AGEVIS -0.002 0.003 -0.830
AGESPEED 0.001 0.001 0.764
AGEATTN 0.022 0.009 2.507

STANDARDIZED MODEL RESULTS
STDYX Standardization

(TRUNCATED FOR SPACE)

Estimate S.E. Est./S.E.
VISION BY
FAR 0.580 0.062 9.424
LNCS15 0.531 0.076 6.999
LNCS3 0.653 0.061 10.646
LNCS6 0.694 0.059 11.851
LNCS12 0.749 0.051 14.647
LNCS18 0.717 0.042 17.024
DRIVING BY
CRASH 0.575 0.107 5.378
LANE 0.319 0.130 2.446
DA TASK 0.470 0.100 4.694
STOP 0.302 0.115 2.630
SPEED 0.298 0.102 2.911
TIME 0.325 0.132 2.470
ATTN BY
LNDA 0.672 0.058 11.501
LNSA 0.724 0.053 13.543
DSCAN 0.787 0.045 17.608
PSPEED BY
LNPS 1.000 0.000 999.000
DRIVING ON
VISION -0.122 0.148 -0.826
PSPEED 0.164 0.120 1.368
ATTN 0.690 0.149 4.617
PSPEED ON
VISION 0.160 0.094 1.715
ATTN ON
VISION 0.209 0.096 2.191
DRIVING ON
AGE75 0.017 0.148 0.118
VISION ON
AGE75 0.224 0.087 2.582
ATTN ON
AGE75 0.413 0.081 5.085
PSPEED ON
AGE75 0.074 0.075 0.986
ATTN WITH
PSPEED 0.221 0.088 2.523
SPEED WITH

TIME -0.544 0.090 -6.061

0.036

0.097

0.415

0.165

0.004

0.029

0.000

0.022

0.000

0.406
.445
0.012

(=]

Two-Tailed
P-Value

.000
.000
.000
.000
.000
.000

O OO o oo

.000
.014
.000
.009
.004
.014

O O O o oo

o

.000
.000
0.000

o

999.000

o

.409
0.171
0.000

0.086

0.324

0.000

PSQF6249 Example 9 page 9

Left: The ON statements among the
latent variables describe the standardized
(correlation metric) unique relations of
each latent predictor for the same latent
outcome.

Below: The estimated latent variable
correlation matrix describes the bivariate
relations among the latent predictors and
outcomes instead. It's useful to
understand both types of relations in
describing the results (that way you can
differentiate what is not related bivariately
from what is not related any more after
controlling for something else).

ESTIMATED CORRELATION MATRIX
FOR LATENT VARIABLES

VISION DRIVING ATTN PSPEED
VISION 1.000
DRIVING 0.119 1.000
ATTN 0.302 0.705 1.000
PSPEED 0.177 0.331 0.270 1.000
AGE75 0.224 0.325 0.459 0.110
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R-SQUARE
Latent Two-Tailed
Variable Estimate S.E. Est./S.E. P-Value
VISION 0.050 0.039 1.291 0.197
DRIVING 0.532 0.151 3.526 0.000
ATTN 0.253 0.077 3.264 0.001
PSPEED 0.037 0.032 1.129 0.259

! Reduced structural model 4b (no age or vision --> driving)

Vision Attn Pspeed ON Age75* (Age2-Aged) ! Age --> outcomes, not driving
Attn Pspeed ON Vision* (Vis2-Vis3); ! Vision --> outcomes, not driving
Attn WITH Pspeed¥*; ! Res cov for Attn and Pspeed
Driving ON Pspeed* Attn* (Speedl Attnl); ! Pspeed, Attn --> Driving
MODEL FIT INFORMATION Did constraining these two structural paths to 0
Number of Free Parameters 56 make the model worse?
Loglikelihood DN _
HO Value ~1311.286 Rescaled -2ALL(2) = 0.646, p = .72, so no
HO Scaling Correction Factor 1.0933
for MLR This model comparison is the appropriate way to
H1 Value -1238.221 test chan L
; . ges to the structural model, whose job is
H1 Scaling Correction Factor 1.0405 .
for MLR to reproduce the covariance among the latent
Information Criteria factors and any observed predictors (but not
Akaike (AIC) 2734.572 among any observed predictors themselves).
Bayesian (BIC) 2903.909
Sample-Size Adjusted BIC 2726.670 A ) X
(n* = (n + 2) / 24) Relying on good global model fit (which will mostly
Chi-Square Test of Model Fit reflect the measurement models) is not sufficient
Value 144.090* to say a structural model fits. Instead, one should
Degrees of Freedom 112 identified st t | del ith
P—Value 0.0221 compare any overidentified structural mode (wi
Scaling Correction Factor 1.0142 paths missing) to the saturated structural model to
for MLR see if the fit is “not worse”. One might compute a
RMSEA (Root Mean Square Error Of Approximation) new version of the H1 model that reflects a
Estimate 0.043 | | Il |
90 percent C.I. 0.018 0.063| Saturated structural model (and a new null mode
Probability RMSEA <= .05 0.691 that reflects an independent structural model) to be
CFI/TLI used in computing structural model fit indices...
CFI 0.940
TLT 0.927 . . .
SRMR (Standardized Root Mean Square Residual) We will continue with a saturated structural model
Value 0.063 in the model variants that follow...

What if we wanted to test a latent variable interaction? Model 5a (same measurement model as in
Model 4a, including a full structural model with additions shown below)

Note that latent variable interactions can only be model predictors (and they cannot have covariances)
Latent variable interactions do not appear to be possible within R lavaan (or | couldn’t find it if so)

ANALYSIS: ESTIMATOR = MLR; ! For continuous items whose residuals may not be normal
TYPE = RANDOM; ALGORITHM = INTEGRATION; ! New estimation options needed
! Full structural model
Vision Attn Pspeed Driving ON Age75* (Agel-Aged);
Attn Pspeed Driving ON Vision* (Visl-Vis3);
Attn WITH Pspeed¥*;
Driving ON Pspeed* Attn* (Speedl Attnl)

Age --> outcomes

Vision --> outcomes

Res cov for Attn and Pspeed
Pspeed, Attn --> Driving

! Interaction between two latent variables (would be same if one variable was observed)

VisAttn | Vision XWITH Attn; ! VisAttn = new latent variable interaction
Driving ON VisAttn* (VxAa); ! Latent variable interaction --> Driving
MODEL CONSTRAINT: ! Original latent factor variance of attn = .443, of vision = .224

NEW (V4low V4high A4low Aédhigh);
V4low = Vis3 - VxA*SQRT(.443); ! Vision slope for -1SD attn
Vdhigh = Vis3 + VxA*SQRT(.443); ! Vision slope for +1SD attn
Adlow = Attnl - VxXA*SQRT(.224); ! Attn slope for -1SD vision
Adhigh = Attnl + VxXA*SQRT(.224) ; ! Attn slope for -+1SD vision



MODEL FIT INFORMATION
Number of Free Parameters
Loglikelihood

Informatio

HO Value
HO Scaling Correction Fa
for MLR

n Criteria

Akaike (AIC)

Bayesian (BIC)

Sample-Size Adjusted BIC
(n* = (n + 2) / 24)

ctor

59

-1310.261
1.1066

2738.522
2916.931
2730.197
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The absolute model fit indices have
disappeared once we’ve used numeric
integration (no H, saturated covariance
matrix to come back to anymore).
STDYX disappears for the same reason.

New structural model output only—note that the VisAttn interaction is related only to driving:

UNSTANDARDIZED MODEL RESULTS
Estimate S.E.
ATTN ON
VISION 0.305 0.142
PSPEED ON
VISION 0.168 0.101
DRIVING ON
VISION -0.106 0.114
PSPEED 0.118 0.083
ATTN 0.363 0.130
VISATTN 0.139 0.142
VISION ON
AGE75 0.024 0.011
ATTN ON
AGE75 0.059 0.014
PSPEED ON
AGE75 0.008 0.008
DRIVING ON
AGE75 0.002 0.011
ATTN WITH
PSPEED 0.060 0.027
New/Additional Parameters
VA4LOW -0.198 0.167
V4HIGH 0.013 0.126
A4LOW 0.297 0.139
A4HIGH 0.428 0.153
STDYX Standardization
Estimate S.E.
ATTN ON
VISION 0.220 0.099
PSPEED ON
VISION 0.160 0.093
DRIVING ON
VISION -0.145 0.155
PSPEED 0.170 0.120
ATTN 0.692 0.152
VISATTN 0.125 0.126
VISION ON
AGE75 0.227 0.088
ATTN ON
AGE75 0.413 0.081
PSPEED ON
AGE75 0.074 0.075
DRIVING ON
AGE75 0.020 0.151
ATTN WITH
PSPEED 0.217 0.088

Est./S.E.
2.140
1.662

.924

.423

.785
.978

oN O

-1.181
-0.105
2.134
2.793

Est./S.E.

2.233

.939
.417
.564
.999

o b = O

5.071

Two-Tailed
P-Value

0.032
0.096
.355
.155

.005
.328

o o oo

0.892

.237
.916
.033
.005

o O O o

Two-Tailed
P-Value

0.026

0.085

.348
.157
.000
.318

O O O o

0.000

0.894

simple vision slope at attn=0

simple attn slope at vision=0
n.s. interaction

simple
simple
simple
simple

vision slope at attn=-1SD
vision slope at attn=+1SD
attn slope at vision=-13D
attn slope at vision=+1SD
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What would have happened if we used the mean of each person’s factor score distribution from the
single-factor models as observed constructs instead (i.e., replaced the latent circles with observed
boxes)? Let’s compare two possible ways of doing this—with or without reliability correction.

TITLE: SEM Example for Driverscan using Single Factor Scores;

DATA:
FILE = SEMfactorscores.csv; ! EAP factor scores merged into original data
TYPE = INDIVIDUAL; FORMAT = FREE; ! Defaults

VARIABLE:

! List of ALL variables in data file
NAMES = PersonID sex age75 lncsl5 lncs3 lncs6 lncsl2 lncsl8 far lnps
1nda 1lnsa Dscan lane da_ task crash stop speed time
VisFact DrivFact AttnFact; ! New factor scores
! Variables to be analyzed in this model
USEVARIABLE = age75 lnps VisFact DrivFact AttnFact;
! Missing data identifier
MISSING = ALL (-9999);
! ID variable;
IDVARIABLE = PersonlID;

ANALYSIS: ESTIMATOR = MLR;

TYPE = RANDOM; ALGORITHM = INTEGRATION; ! New estimation options for latent interaction
OUTPUT: STDYX RESIDUAL; ! Standardized model, local fit
SAMPSTAT; ! Get descriptive stats for variables

Model 5b: Using Reliability-Corrected Single Factor Scores (and Latent Interaction)

MODEL:
! Measurement models for "factors" (factor mean=0 used to do centering)
! "Res" labels used to Incorporate factor score unreliability

Vision BY VisFact@l; Vision*; VisFact* (ResVis); |[Vision@O0 VisFact¥*];

Attn BY AttnFact@l; Attn¥*; AttnFact* (ResAttn); [Attn@O AttnFact*];
Pspeed BY lnps@1l; Pspeed*; 1lnps* (ResPspd) ; [Pspeed@0 1lnps*];

Driving BY DrivFact@l; Driving*; DrivFact* (ResDriv); [Driving@O DrivFact*];
VisAttn | Vision XWITH Attn; ! Latent interaction term (to address unreliability)

! Structural model among "factors"
Vision Attn Pspeed Driving ON Age75* (Agel-Aged);
Attn Pspeed Driving ON Vision* (Visl-Vis3);
Attn WITH Pspeed*;
Driving ON Pspeed* Attn* (Speedl Attnl);
Driving ON VisAttn* (VxA);

Age --> outcomes

Vision --> outcomes

Res cov for Attn and Pspeed
Pspeed, Attn --> Driving
Interaction --> Driving

MODEL CONSTRAINT: ! Factor score variance of attn = .345, of vision = .186
NEW (V4low V4high Adlow Adhigh);

V4low = Vis3 - VxA*SQRT(.345); ! Vision slope for -1SD attn

V4high = Vis3 + VxA*SQRT(.345); ! Vision slope for +1SD attn

Adlow = Attnl - VxA*SQRT(.186); ! Attn slope for -1SD vision

Adhigh = Attnl + VxA*SQRT(.186); ! Attn slope for -+1SD vision

! (1-Reliability) * (factorvar+ (SE*SE)) to fix residual variances to "error" variance
ResVis =(1-.856)*(0.224+(.194*.194)) ;
ResAttn=(1-.819)*(0.443+(.313*.313));
ResPspd=0; ! Processing speed assumed perfectly reliable
ResDriv=(1-.723)*(0.159+(.247*.247)) ;

! Processing speed assumed perfectly reliable

Model 5c: Using Uncorrected Single Factor Scores (Reliability=1 for all; changes to code below)

VARIABLE: ! Variables to be analyzed in this model
USEVARIABLE = age75 lnps VisFact DrivFact AttnFact VisAttn;

DEFINE: VisAttn = VisFact * AttnFact; ! Interaction is now an observed variable instead of latent
ANALYSIS: ESTIMATOR = MLR; ! Integration no longer needed

MODEL: ! All measurement and structural model code is the same as 5b after removing latent interaction
1VisAttn | Vision XWITH Attn; ! Latent interaction term removed (is now observed)

MODEL CONSTRAINT:
! Residual variances as "error" variances now ALL fixed to 0
ResVis=0;
ResAttn=0;
ResPspd=0;
ResDriv=0;
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Model fit is acceptable for Model 5¢c (DF=3), but not available for Model 5b (given latent interaction)

What about the results? Let's compare the standardized solution across our 3 options:

Estimates Standard Errors P-Values
5a 5b 5c 5a 5b 5c 5a 5b 5c
MODEL SEM CF UF SEM CF UF SEM CF UF
Age -->
VISION 227 232 .203 .088 .086 .077 .009 .007 .008
ATTN 413 418 .362 .081 .08 .073 .000 .000 .000
PSPEED .074 .073 .081 .075 .076 .074 327 337  .275
DRIVING .020 -.069 .046 151 160 .082 .894 665 .576
Vision -->
PSPEED 160 162 144 .093 .091 .081 .085 .076 .077
ATTN 220 246 .170 .099 .105 .075 .026 .019 .022
ATTN<-->PSPEED 217 230 .198 .088 .093 .073 .014 .014 .007
DRIVING <--
PSPEED 170 .150 129 120 .144 081 157 299 110
VISION -.145 -172 -.035 155 190 .087 .348 364 .686
ATTN .692 934 415 152 187  .082 .000 .000 .000
VISATTN 125 189 .028 126 155 .073 318 223 .705
R2 Latent
Variable
VISION .052 .054 .041 .040 .040 .031 195 179 .186
ATTN .260 .283 185 .081 .091 .060 .001 .002 .002
PSPEED .037 .037 .032 .032 .032 .027 258 245 237
DRIVING 551 872 226 147 248  .061 .000 .000 .000
® 5b CF A 5¢ UF = 5b CF A 5cUF
R?2=0.9703 R2=0.9103 R?=0.9609 R?=0.5501
1.0 0.20
0.9
0.8 0.18
0.7 & "
i S - -
% 04 L % 0.14 /
K] © A ]
g g:j e % 0.12 /. -
g 01 A_/m ® 010 [ o
& oo
.,“": -0.1 -/ ; 0.08 *‘: /
-0.2
03 - 0.06 : : : : : : .
-03-02-01 00 01 02 03 04 05 06 07 08 09 1.0 006 008 010 012 014 016 018 020
Alternative Model Parameter Estimate Alternative Model Parameter SE

From our informal comparison of methods, it looks like reliability-corrected version (model 5b) of the full SEM model 5a
appears to do a better job of reproducing parameter estimates (left figure) and standard errors (right figure) than the
uncorrected version (model 5¢). Note that a single estimate of reliability cannot be used as demonstrated here when
factors are created using IRT/IFA, in which reliability is trait-specific instead (although it may be possible to trick Mplus
into doing so, I’'m not aware of any work on this).

For an example SEM results section, see Hoffman et al. (2005) reference given on page 1.



