
Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)

PSQF 6249:  Lecture 4 1

• Topics:

➢ Comparison of EFA and CFA

➢ CFA model parameters 

➢ Two parts of CFA model identification

➢ CFA model estimation 

➢ CFA model fit evaluation



EFA vs. CFA:  What gets analyzed

• EFA: Correlation matrix (of items = indicators)

➢ Only correlations among observed item responses are used

➢ Only a standardized solution is provided, so the original means 

and variances of the observed item responses are irrelevant

• CFA: Covariance matrix (of items = indicators)

➢ Variances and covariances of observed item responses are analyzed

➢ Item response means historically have been ignored (but not by us!)

➢ Output includes unstandardized AND standardized solutions

▪ Unstandardized solution predicts the original item covariance matrix

(regression solution retains original absolute information) 

▪ Standardized (STDYX) solution predicts the item correlation matrix 

(easier to interpret relative sizes of relationships as correlations)
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EFA vs. CFA:  Interpretation

• EFA: Rotation

➢ All items load on all factors (traits), no matter what!

➢ Goal is to pick a rotation that gives closest approximation to 

“simple structure” (clearly-defined factors, fewest cross-loadings)

➢ No way of distinguishing latent variables due to “content” (traits being 

measured) from “method” (correlation induced by common approach)

• CFA: Your job in the first place!

➢ CFA must be theory-driven: any structure is a testable hypothesis

➢ You specify number of latent variables and their inter-correlations

➢ You specify which items load on which latent variables (yes/no)

➢ You specify any additional relationships for method/other covariance

➢ You just need a clue; you don’t have to be right (misfit is informative)
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EFA vs. CFA:  Judging model fit

• EFA: Eye-balls and Opinion

➢ #Factors? Scree-ish plots, interpretability…

➢ Which rotation? Whichever makes most sense… (to you)

➢ Which items load on each factor? Arbitrary cut-off of .3-.4ish

• CFA: Inferential tests via Maximum Likelihood (ML or MLR)

➢ Global model fit test (and local model fit)

➢ Standard errors (and significance) of item loadings

➢ Standard errors of error variances (and covariances)

➢ Ability to test appropriateness of model constraints or 

model additions via tests for change in model fit
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EFA vs. CFA: Factor scores
• EFA: Don’t ever use factor scores from an EFA

➢ Factor scores are indeterminate (especially due to rotation)

➢ Inconsistency in how factor models are applied to data

▪ Factor model based on common variance only (factor is predictor)

▪ Summing items? That’s using total variance (component is outcome)

• CFA: Factor scores can be used, but only if necessary

➢ Best option: Test relations among latent factors directly through SEM

▪ Factors can either be predictors (“exogenous” variables) or outcomes 
(“endogenous” variables) or both at once as needed (e.g., as mediators)

▪ Relations between factors will be disattenuated for measurement error

➢ Factor scores are less indeterminate in CFA, and could be used

▪ In reality, though, factor scores are not known single values because 
they are modeled as random effects, not fixed effects per person

▪ Next-best option: Use “plausible values” or other two-stage approaches 
that acknowledge uncertainty in factor score estimates (stay tuned)
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Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)

PSQF 6249:  Lecture 4 6

• Topics:

➢ Comparison of EFA and CFA

➢ CFA model parameters 

➢ Two parts of CFA model identification

➢ CFA model estimation 

➢ CFA model fit evaluation



Confirmatory Factor Analysis (CFA)

• The CFA unit of analysis is the ITEM (as in any LTMM):

𝒚𝒊𝒔 = 𝝁𝒊+ 𝝀𝒊𝑭𝒔 + 𝒆𝒊𝒔 → both items AND subjects matter

➢ Observed response for item i and subject s

= intercept of item i (μ)

+ subject s’s latent factor (𝐹), weighted by item-specific loading 𝜆

+ error (e) of item i and subject s

• What does this look like? Linear regression (without an observed X)!

➢ 𝑦𝑠 = 𝛽0 + 𝛽1𝑋𝑠 + 𝑒𝑠→ written for each item → 𝑦𝑖𝑠 = 𝛽0𝑖 + 𝛽1𝑖𝑋𝑠 + 𝑒𝑖𝑠

➢ 𝛽0𝑖 Intercept = 𝜇𝑖 = expected outcome when F=0

➢ 𝛽1𝑖 Slope of Factor = 𝜆𝑖 = expected change in y for one-unit change in F

➢ 𝑒𝑖𝑠 Error (Residual) = 𝑒𝑖𝑠 = how far off predicted y is from real y
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Revisiting Vocabulary:

Item Psychometric Properties
• Item Discrimination: How related each item is to the latent trait 

➢ In CTT, discrimination is given by the item-total (or item-remainder) correlation

▪ The total score is the best estimate of the latent trait in CTT

➢ In CFA, discrimination is given by the factor loading/slope (𝝀𝒊)

▪ We now have a factor that directly represents the covariance among items

▪ Stronger standardized factor loadings indicate better, more discriminating items

• Item Difficulty/Severity: Location of item on the latent trait metric

➢ In CTT, difficulty is given by the item mean

➢ In CFA, difficulty is given by the item intercept (𝝁𝒊) – which is still backwards

➢ In contrast to other latent trait models (IRT), difficulty (intercepts) 

are often ignored in CFA… here’s why…
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Why Item Intercepts Are Often Ignored…

 Latent Factor →

Item 

Response

“Good item”

(𝛌 high ☺)

“Bad item”

(𝛌 low )

A “good” item has a large slope (i.e., factor loading) in predicting the item 

response from the factor. Because this is a linear slope, the item is assumed 

to be equally discriminating (equally good) across the entire latent trait.

Similarly, a “bad” item has a flatter linear slope that is equally bad across 

the entire range of the latent trait (where slope=0 means unrelated to trait). 

Here item intercepts are irrelevant in 

evaluating how “good” an item is, so 

they are not really needed in CFA. 

But we will estimate them, because 

item intercepts are critical when: 

• Testing factor mean differences 

in any latent factor model

• Items need to have a nonlinear 

slope in predicting the item 

response from the factor (IRT)
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Measurement Model 

for Items:

λ’s = factor loadings

e’s = error variances

μ’s = intercepts

Example Diagram of

Two-Factor CFA Model
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But some parameters 

will have to be fixed to 

known values for the 

model to be identified.

F1

y1 y2 y3

e1 e2 e3

λ11 λ21 λ31

F2

y4 y5 y6

e4 e5 e6

λ42 λ52 λ62

covF1,F2

1

μ1

μ2

μ3
μ4

μ5

μ6

κ1 κ2

Structural Model 

for Factors:

F’s = factor variances

Cov = factor covariances

K’s = factor means



2 Types of CFA Parameter Solutions

• Unstandardized→ predicts scale-sensitive original item response:

➢ Regression Model:  𝒚𝒊𝒔 = 𝝁𝒊 + 𝝀𝒊𝑭𝒔 + 𝒆𝒊𝒔
➢ Useful when comparing solutions across groups or time (when absolute values matter)

➢ Together, the model parameters predict the item means and item covariance matrix

➢ Note the solution asymmetry: item parameters μi and λi will be given in the item metric, 

but 𝒆𝒊𝒔 will be given as the error variance across persons for that item (squared metric)

➢ 𝑽𝒂𝒓(𝒚𝒊) = [𝝀𝒊
𝟐 ∗ 𝑽𝒂𝒓(𝑭)] + 𝑽𝒂𝒓(𝒆𝒊)

• Standardized→ Solution transformed to 𝑉𝑎𝑟 𝑦𝑖 = 𝑉𝑎𝑟 𝐹 = 1 via STDYX:

➢ Useful when comparing items within a solution (relative values on same scale)

➢ Together, the standardized model parameters predict the item correlation matrix

➢ Standardized intercept = 𝝁𝒊 / 𝑺𝑫(𝒚𝒊𝒔)→ not typically reported

➢ Standardized factor loading = [𝝀𝒊 ∗ 𝑺𝑫(𝑭𝒔)] / 𝑺𝑫(𝒚𝒊𝒔) = item correlation with factor

➢ Standardized error variance = 𝟏– 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅𝒊𝒛𝒆𝒅 𝝀𝒊
𝟐 = “variance due to not factor”

➢ 𝑹𝟐 for item = 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅𝒊𝒛𝒆𝒅 𝝀𝒊
𝟐 = “variance due to the factor”

Careful! There is 

also STDY and STD
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Example Two-Factor Model Equations
• Measurement model per numbered item for subject s:

➢ 𝒚𝟏𝒔 = 𝝁𝟏 + 𝝀𝟏𝟏𝑭𝟏𝒔 + 𝟎𝑭𝟐𝒔 + 𝒆𝟏𝒔

➢ 𝒚𝟐𝒔 = 𝝁𝟐 + 𝝀𝟐𝟏𝑭𝟏𝒔 + 𝟎𝑭𝟐𝒔 + 𝒆𝟐𝒔

➢ 𝒚𝟑𝒔 = 𝝁𝟑 + 𝝀𝟑𝟏𝑭𝟏𝒔 + 𝟎𝑭𝟐𝒔 + 𝒆𝟑𝒔

➢ 𝒚𝟒𝒔 = 𝝁𝟒 + 𝟎𝑭𝟏𝒔 + 𝝀𝟒𝟐𝑭𝟐𝒔 + 𝒆𝟒𝒔

➢ 𝒚𝟓𝒔 = 𝝁𝟓 + 𝟎𝑭𝟏𝒔 + 𝝀𝟓𝟐𝑭𝟐𝒔 + 𝒆𝟓𝒔

➢ 𝒚𝟔𝒔 = 𝝁𝟔 + 𝟎𝑭𝟏𝒔 + 𝝀𝟔𝟐𝑭𝟐𝒔 + 𝒆𝟔𝒔

Here is the general matrix equation for 

these 6 item-specific equations:

𝒀 = 𝝁 + 𝝀𝑭 + 𝒆

where 𝒀, 𝝁, and 𝒆 = 6x1 matrices 

(because each item gets one value); 

𝝀 = 6x2 matrix, and 𝑭 =2x1 matrix 

(because there are two factors)

You decide how many factors 

and if each item has an estimated 

loading on each factor or not.

Unstandardized loadings (𝝀) are 

the linear slopes predicting the 

item response (y) from the factor 

(F). Thus, the model assumes a 

linear relationship between the 

factor and the item response.

Standardized loadings are the 

slopes in a correlation metric 

(and Standardized Loading2 = 𝑹𝟐).

Intercepts (𝝁) are the expected item 

responses (ෝ𝒚) when all factors = 0. 
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The Role of the CFA Model Parameters

• Data going in to be predicted by the CFA model parameters 
= item covariance matrix (variances, covariances) and item means

• The CFA item intercepts (𝝁𝒊) predict the item means

➢ Item means are unconditional; item intercepts are conditional on 𝑭𝒔 = 0

➢ When each item gets its own intercept (the usual case), the item means 
will be perfectly predicted (so no room for mis-fit or mis-prediction) 

• The CFA item error variances (𝑽𝒂𝒓[𝒆𝒊]) predict the item variances

➢ Item variances are unconditional; item error variances are conditional 
(leftover variance after accounting for the contribution of the factor)

➢ When each item gets its own error variance (usual case), the item variances 
will be perfectly predicted (so no room for misfit or mis-prediction)

• The CFA item factor loadings (𝝀𝒊) predict the item covariances

➢ Given 3+ items, there will be more covariances among items to predict than 
item factor loadings to predict them, thus creating room for misfit
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CFA Model Predictions: (𝐹1 BY y1-y3, 𝐹2 BY y4-y6)

Items from same factor (room for misfit or mis-prediction):

• Unstandardized solution:  Covariance(𝑦1, 𝑦3) = 𝝀𝟏𝟏 ∗ 𝑽𝒂𝒓(𝑭𝟏) ∗ 𝝀𝟑𝟏

• Standardized solution:      Correlation(𝑦1, 𝑦3) = 𝝀𝟏𝟏 ∗ (𝟏) ∗ 𝝀𝟑𝟏  std loadings

• ONLY reason for correlation is their common factor (local independence, LI)

Items from different factors (room for misfit or mis-prediction):

• Unstandardized: Covariance(𝑦1, 𝑦6) = 𝝀𝟏𝟏 ∗ 𝑪𝒐𝒗(𝑭𝟏, 𝑭𝟐) ∗ 𝝀𝟔𝟐

• Standardized:     Correlation(𝑦1, 𝑦6) = 𝝀𝟏𝟏 ∗ 𝑪𝒐𝒓(𝑭𝟏, 𝑭𝟐) ∗ 𝝀𝟔𝟐 std loadings

• ONLY reason for correlation is the correlation between factors (again, LI)

Variances are additive (and will be reproduced correctly):

• 𝑽𝒂𝒓(𝒚𝟏) = (𝝀𝟏𝟏
𝟐) ∗ 𝑽𝒂𝒓(𝑭𝟏) + 𝑽𝒂𝒓(𝒆𝒊)→ note imbalance of 𝝀𝟐 and 𝒆𝒊
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Model-Predicted Item Covariance Matrix

• Matrix equation:  𝚺 = 𝚲𝚽𝚲T +𝚿

𝚺= model-predicted item 

covariance matrix is

created from:

𝚲 = item factor loadings

𝚽= factor variances

and covariances

𝚲𝐓= item factor loadings

transposed (→𝛌𝟐)

𝚿 = item error variances

(residual variances)
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0
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Model-Predicted Item Covariance Matrix

• 𝚺 = 𝚲𝚽𝚲T +𝚿 → Predicted Covariance Matrix
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

           +      

              +   

               2 2 2
2 62 F2 e6

 
 
 
 
 
 
 
 
 
   +  

Items within Factor 1

Items within Factor 2
The only reason why items 

from different factors should 

be related is the covariance

between the two factors.

The loadings also control how 

much of the item response is 

due to factor versus error.

The loadings control how 

related items from the same 

factor are predicted to be.



Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)
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Two Parts of Model Identification

• Part 1: Create a scale for each latent factor

➢ Each latent factor needs a mean and a variance

➢ Necessary but not sufficient for estimating the CFA model

• Part 2: Ensure the CFA model is estimable

➢ Data going in versus estimated parameters going out: 

▪ Item means → item intercepts (usually 1:1 ratio)

▪ Item variances → item residual variances (usually 1:1 ratio)

▪ Item covariances → item factor loadings (must have ratio ≥ 1)

➢ In practice, this means the number of estimated loadings 

may not exceed the number of observed item covariances
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CFA Model Identification Part 1:
Create a Scale for the Latent Factor Variance

• The factor doesn’t exist, so it needs a 
scale (it needs a mean and variance):

• There are two equivalent options to 
create a scale for the factor VARIANCE:

➢ (1) Fix factor variance to 1: “z-score”

▪ Factor is interpreted as standard z-scores

▪ Can’t be used in models with higher-order 
factors (coming later in this course)

➢ (2) Fix a “marker item” loading to 1

▪ Factor variance is then estimated the 
“reliable” part of the marker item variance

▪ Std. loading = 0.9, item variance = 16? 
Factor variance = (0.92)*16 = 12.96

▪ Can cause the model to blow up if marker 
item has no correlation with the factor at all

Factor

Var=1

y1 y2 y3

e1 e2 e3

λ11 λ21 λ31

Factor

Var=?

y1 y2 y3

e1 e2 e3

1 λ21 λ31

“Z-Score Factor” 

Method (1)

“Marker Item” 

Method (2)
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CFA Model Identification Part 1:
Create a Scale for the Latent Factor Mean

• The factor doesn’t exist, so it needs a 

scale (it needs a mean and variance):

• There are two equivalent options to 

create a scale for the factor MEAN:

➢ (1) Fix factor mean to 0: “z-score”

▪ Factor is interpreted as standard z-scores

▪ Can be used in models with higher-order 

factors (coming later in the course)

▪ Item intercepts = item means

➢ (2) Fix a “marker item” intercept to 0

▪ Factor mean = mean of marker item

▪ Item intercepts = expected item responses 

when factor = 0 (→ marker = 0)

Factor

Var=1

y1 y2 y3

e1 e2 e3

λ11 λ21 λ31

Factor

Var=?

y1 y2 y3

e1 e2 e3

1 λ21 λ31

1
μ2
μ3

μ1

1
μ2
μ3

0

Factor 

Mean 

= 0

Factor 

Mean 

= ?
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“Z-Score Factor” 

Method (1)

“Marker Item” 

Method (2)



Possible Factor Means and Variances

y1 y2 y3

e1 e2 e3

λ11 λ21 λ31

y1 y2 y3

e1 e2 e3

λ11 λ21 λ31

Mplus 

default

1
μ2
μ3

μ1

1
μ2
μ3

0

Factor 

Mean 

= 0

Factor 

Mean 

= ?

μ2
μ3

0

μ2
μ3

μ1

Factor

Var= ?

y1 y2 y3

e1 e2 e3

1 λ21 λ31

1

Factor 

Mean 

= 0

Factor

Var=?

y1 y2 y3

e1 e2 e3

1 λ21 λ31

1

Factor 

Mean 

= ?

Factor Variance = 1 Factor Variance Estimated

Factor 

Mean 

= 0

(fixed)

Factor 

Mean 

Est. = ?

(free)
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Factor

Var=1



Part 2 of CFA Model Identification
• Make sure the model is estimable; then try to reproduce observed item 

covariance matrix using as few estimated parameters as possible

➢ (Robust) Maximum likelihood used to estimate model parameters

▪ Measurement Model: Item factor loadings, item intercepts, item error variances

▪ Structural Model: Factor variances, factor covariances, factor means

➢ Global model fit is evaluated as difference between model-predicted and data-

observed covariance matrix (but only covariances usually contribute to misfit)

• How many possible parameters can you estimate: what is total DF? 

➢ Total 𝐃𝐅 = 
𝒗 𝒗+𝟏

𝟐
+ 𝒗 where 𝒗 is the # items (NOT people, like usual)

▪ Total DF = number of item means, variances, and covariances

▪ e.g., if 𝑣 = 4 items, then DF =
4 4+1

2
+ 4 = 14

➢ Model 𝐃𝐅 = data input − model output

➢ Model 𝐃𝐅 = # possible parameters − # estimated parameters
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Under-Identified Factor: 2 Items
• Model is under-identified if there are more unknown parameters then 

item variances, covariances, and means with which to estimate them

➢ Model cannot be estimated because there are an infinite number of different 

parameter estimates that would result in the same and perfect fit

➢ Example: x + y = 7 ??

y1 y2

Total possible DF = unique pieces of data = 5

0 factor variances

0 factor means

2 item loadings OR

2 item intercepts

2 error variances

DF = 5 – 6 = – 1

If 𝑐𝑜𝑟 𝑦1, 𝑦2 = .64, then:

𝜆11 = .800, 𝜆21 = .800 ??

𝜆11 = .900, 𝜆21 = .711 ?? 

𝜆11 = .750, 𝜆21 = .853 ??

1 factor variance

1 factor mean

1 item loading

1 item intercept

2 error variances

You’d have to constrain 

the loadings to be 

equal for the 

model to be 

estimable.

In other words, the assumptions required 

to calculate two-score reliability in CTT are 

the result of model under-identification.

F1

e1 e2

λ11 λ21

μ1 μ2
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Just-Identified Factor: 3 Items
• Model is just-identified if there are as many unknown parameters as 

item variances, covariances, and means with which to estimate them

➢ The model is estimable, so the parameter estimates have a unique solution

➢ But those parameters will perfectly reproduce the data-observed covariance 

matrix, so model fit is not testable—it’s just a re-arrangement of the data

➢ Example: Solve x + y = 7, 3x – y = 1

Total possible DF = unique pieces of data = 9

0 factor variances

0 factor means

3 item loadings OR

3 item intercepts

3 error variances

DF = 9 – 9 = 0

Not really a model—more like a description

F1

y1 y2 y3

e1 e2 e3

λ11 λ21 λ31

μ1 μ2 μ3

1 factor variance

1 factor mean

2 item loadings

2 item intercepts

3 error variances
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Example: Solving a Just-Identified Model

• Step 1:        𝑎𝑏 = .595
𝑎𝑐 = .448
𝑏𝑐 = .544

• Step 2: 𝑏 = .595/𝑎
𝑐 = .488/𝑎
(.595/𝑎)(.448/𝑎) = .544

• Step 3: .26656/𝑎2 = .544
𝑎 = .70

• Step 4: . 70𝑏 = .595 𝑏 = .85
.70𝑐 = .448 𝑐 = .64

• Step 5: 𝑉𝑎𝑟(𝑒1) = 1 − 𝑎2 = .51

F1 = 1

y1 y2 y3

e1 e2 e3

a b c

y1 y2 y3

y1 1.00

y2 .595   1.00

y3 .448   .544   1.00
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Over-Identified Factor: 4+ Items
• Model is over-identified if there are fewer unknown parameters than 

item variances, covariances, and means with which to estimate them

➢ The model is estimable, so the parameter estimates have a unique solution

➢ But now the parameters will NOT perfectly reproduce the observed matrix 

→ if DF > 0, we can test model fit!

Total possible DF = unique pieces of data = 14

0 factor variances

0 factor means

4 item loadings OR

4 item intercepts

4 error variances

DF = 14 – 12 = 2

Model fit: Did we do a “good enough” job 

reproducing the item covariance matrix with 2 

fewer parameters than it was possible to use?

1 factor variance

1 factor mean

3 item loadings

3 item intercepts

4 error variances

F1

y1 y2 y3 y4

e1 e2 e3 e4

λ11 λ21 λ31 λ41

μ1 μ2 μ3 μ4
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Oops: Empirical Under-Identification
• Did your model blow up (errors instead of output)? Double-check:

➢ Part 1: Make sure each factor has a scale: a mean and a variance

➢ Part 2: Make sure you aren’t estimating more parameters than you have DF

• Sometimes you can set up your model correctly and it will STILL

blow up because of empirical under-identification

➢ It’s not you; it’s your data—here are two examples of when these models should 

have been identified, but weren’t because of an unexpected 0 relationship

F1 = ?

y1 y2

e1 e2

1 λ21

F2 = ?

y3 y4

e3 e4

1 λ42

Cov = 0 F1 = 1

y1 y2 y3

e1 e2 e3

λ11 λ21 0
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That Other Kind of 

Measurement Model…

Factor Model:

• Composed of “Reflective” 

or “Effects” items

• Factor is thought to cause

observed item responses

• Items should be correlated

• Is identified with 3+ items 

(fit is testable with 4+ items)

Component Model:

• Composed of “Formative” or 

“Emergent” or “Cause” items

• Component is result of 

observed item responses

• Items may not be correlated

• Will not be identified no matter 

how many items without 

additional variables in the model

Remember the difference between principal components 

and factor analysis in terms of ‘types’ of items?
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Formative (Component) Models
(see Brown 2015 ch. 8 pp. 322-331)

Model A Parameters:

4 factor loadings/regression paths

1 factor disturbance (variance left over) 

10 item correlations

5 item variances

5 item means

𝐷𝐹 = 20 – 25 = −5

Not identified

Model C Parameters:

4 factor loadings/regression paths

1 factor disturbance (variance left over) 

3 item correlations

5 item variances/error variances

5 item means/intercepts

𝐷𝐹 = 20 – 18 = 2

Identified
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Formative measurement 

models are not identified 

without including other 

outcomes or predictors of 

the formative latent factor 

Model C has both 

formative and reflective 

indicators—the latter 

might also be “outcomes”



Intermediate Summary: CFA
• CFA is a linear model in which continuous observed item 

responses are predicted from latent factors (traits) and error

➢ Goal is to reproduce observed item covariance matrix using parameters 
(item intercepts, loadings, and error variances; factor variances/covariances) 

➢ Factor model makes specific testable mathematical predictions about how 
item responses should relate to each other: loadings predict covariances

➢ Need at least 3 items per latent factor for the model to be identified; 
need at least 4 items per latent factor for model fit to be testable

• CFA framework offers significant advantages over CTT by offering 
the potential for comparability across samples, groups, and time

➢ CTT: No separation of observed item responses from true score

▪ Sum across items = true score; item properties belong to that sample only

➢ CFA: Latent factor is estimated separately from item responses

▪ Separates interpretation of person trait levels from specific items given

▪ Separates interpretation of item properties from specific persons in sample
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Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)
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• Topics:

➢ Comparison of EFA and CFA

➢ CFA model parameters 

➢ Two parts of CFA model identification

➢ CFA model estimation 

➢ CFA model fit evaluation



Where the Answers Come From: 

The Big Picture of ML Estimation

ESTIMATOR = Robust Maximum Likelihood;

Mplus

… answers …

Any questions?
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What all do we have to estimate?

• For example, a model with two correlated factors for 𝑣 = 6 items:

➢ 𝑭𝟏 measured by items 1,2,3; 𝑭𝟐 measured by items 4,5,6 

➢ If we fix both factors to have mean=0 and variance=1, then we need:

6 intercepts (𝝁𝒊) + 6 factor loadings (𝝀𝒊) + 6 error variances (𝝈𝒆𝒊
𝟐 )

+ 1 factor covariance [𝑪𝒐𝒗(𝑭𝟏, 𝑭𝟐)]= 19 total parameters

• Item parameters are FIXED effects → inference about specific item

➢ It’s ok if missing data leads to different numbers of total items across persons

• What about the all the individual person factor scores? 

➢ The individual factor scores are NOT part of the model—in other words, factor 

scores are modeled as RANDOM effects assumed to be multivariate normal

➢ So we need the factor means, variances, and covariances as sufficient 

statistics, but we don’t need the factor scores for the individual respondents

PSQF 6249:  Lecture 4 33



The End Goals of Maximum 

Likelihood (ML) Estimation
1. Obtain “most likely” values for each unknown parameter in our model 

(intercepts, loadings, error variances, factor means, factor variances, 

factor covariances) → the answers → the estimates

2. Obtain some kind of index as to how likely each parameter value 

actually is (i.e., “really likely” or pretty much just a guess?) 

→ the standard error (SE) of the estimates (smaller is better)

3. Obtain some kind of index as to how well the model we’ve specified 

actually describes the data → the model fit indices

How does all this happen? The magic of multivariate normal…

(but let’s start with univariate normal first)
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Univariate Normal Distribution
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Sum over persons for log of 𝑓(𝑦𝑖)= 

Model Log-Likelihood → Model Fit

• This PDF tells us how 

likely (i.e., tall) any value 

of 𝒚𝒔 is given two things:

➢ Conditional mean ෝ𝒚𝒔

➢ Residual variance 𝝈𝒆
𝟐

• We can see this work 

using the NORMDIST 

function in excel!

➢ Easiest for empty model:

𝒚𝒔 = 𝜷𝟎 + 𝒆𝒔

• We can check our math 

via software using ML!



Multivariate Normal for Ys: 

all 𝑣 = 6 item responses from person s

• In our CFA model, the only fixed effects that predict the 6 item responses 
in 𝒀𝑠 are the item intercepts (now 𝑣 = 6 of them in the vector μ)

• CFA model also gives us the predicted variance and covariance 
matrix across the items (𝚺), assumed the same across persons:

➢ In matrices: 𝚲 = loadings, 𝚽 = factor variances and covariances, 𝚿 = item error variances

➢ Variance of Item 𝑖: 𝑽𝒂𝒓 𝒚𝒊 = 𝝀𝒊
𝟐 ∗ 𝑽𝒂𝒓 𝑭 + 𝑽𝒂𝒓(𝒆𝒊)

➢ Covariance of items on same factor: 𝑪𝒐𝒗(𝒚𝟏, 𝒚𝟐) = 𝝀𝟏𝟏 ∗ 𝑽𝒂𝒓(𝑭𝟏) ∗ 𝝀𝟐𝟏

➢ Covariance of items on different factors: 𝑪𝒐𝒗(𝒚𝟏, 𝒚𝟔) = 𝝀𝟏𝟏 ∗ 𝑪𝒐𝒗(𝑭𝟏, 𝑭𝟐) ∗ 𝝀𝟔𝟐

• Uses |𝚺| = determinant of 𝚺 = summary of non-redundant info

• 𝚺s
−1
→ matrix inverse → like dividing (so can’t be 0 or negative)
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Now Try Some Possible Answers... 
(e.g., for those 19 parameters in this example)

• Plug predictions into log-likelihood function, sum over persons:

• Try one set of possible parameter values, compute LL (total height)

• Try another possible set, compute revised LL….

➢ Different algorithms are used to decide which values to try given that each 
parameter has its own likelihood distribution → like an uncharted mountain

➢ Calculus helps the program scale this multidimensional mountain

▪ At the top, all first partial derivatives (linear slopes at that point) ≈ 0

▪ Positive first partial derivative? Too low, try again. Negative? Too high.

▪ Matrix of partial first derivatives = “score function” = “gradient”
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End Goals 1 and 2:

Model Estimates and SEs
• Process terminates (the model “converges”) when the next set 

of tried parameter values don’t improve the LL very much…

➢ e.g., Mplus default convergence criteria for this 𝐻0 Model LL = .00005 

(other values are used for different estimation problems—see manual)

➢ Those are the values for our model parameters that, relative to the other 

possible values tried, are “most likely” → Model (𝑯𝟎) LL and estimates

• But we also need to know how trustworthy those estimates are…

➢ Precision is indexed by the steepness of the multidimensional mountain, 

where steepness → more negative partial second derivatives

➢ Matrix of partial second derivatives = “Hessian matrix”

➢ Hessian matrix ∗ −1 = “information matrix”

➢ So steeper function = more information = more precision = smaller SE
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End Goal #3: How well do the 

model predictions match the data?
• Use your model 𝐿𝐿𝐻0 from predicting 𝚺→ so how good is it?

• Get the best possible 𝐿𝐿𝐻1 if we used the real data (𝐒) instead:

• Compute the ML fitting function that indexes how far off 

the model predictions are from the real data → 𝜒2:

• Combining and re-arranging the terms in 𝐿𝐿 for 𝐻0 and 𝐻1 yields 

this common (complete data) expression for the ML fitting function:
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What about item non-normality?
• The use of this multivariate normal ML function assumes:

➢ Persons and items are conditionally independent

➢ Item responses can be missing at random (MAR; ignorable)

➢ Factor scores (𝑭𝒔) have a multivariate normal distribution

➢ Item residuals (𝒆𝒊𝒔) have a multivariate normal distribution

➢ So in this case, the original item responses should have a multivariate 

normal distribution, too (given prediction by normal 𝑭𝒔+ normal 𝒆𝒊𝒔)

• Impact of non-normality of item responses:

➢ Linear model predicting item response from factor may not work well

▪ if 𝒚𝒊𝒔 is not really continuous, the slope needs to shut off at its boundaries

➢ SEs and χ2-based model fit statistics will be incorrect

➢ Three fixes: 1. Robust ML (or 2. transform the data, or 

3. use a different kind of factor model → IRT/IFA… stay tuned)
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Robust ML for Non-Normality: MLR
• MLR in Mplus: ≈ Yuan-Bentler 𝑇2 (permits MCAR or MAR missing data)

➢ Still a linear model between the item responses and latent factor, 
so the parameter estimates will be the same as in regular ML

• Adjusts fit statistics using an estimated scaling factor → for kurtosis:

➢ Scaling factor = 1.000 = perfectly multivariate normal → same as regular ML!

➢ Scaling factor > 1.000 = leptokurtosis (too-fat tails; fixes too-big 𝜒2) 

➢ Scaling factor < 1.000 = platykurtosis (too-thin tails; fixes too-small 𝜒2)

• SEs computed with Huber-White ‘sandwich’ estimator → uses an 
information matrix from the variance of the partial first derivatives to 
correct the information matrix from the partial second derivatives

➢ Leptokurtosis (too-fat tails) → increases information; fixes too small SEs

➢ Platykurtosis (too-thin tails) → lowers information; fixes too big SEs

• Because MLR simplifies to ML if the item responses actually are multivariate 
normally distributed, we will use MLR as our default estimator for CFA
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SEM Estimation in STATA v. 16

• Although SEMs can be estimated using STATA, it appears there 
are (currently) fewer combinations allowed than in Mplus:

➢ SEM option method( ) allows estimator choices:

▪ ML = regular limited-information ML (no missing data allowed)

▪ MLMV = full-information ML (MCAR or MAR missing data)

▪ ADF = asymptotic distribution free (requires huge 𝑁 for stable estimation)

➢ SEM option vce( ) allows robust standard error choices:

▪ Robust = Huber-White ‘sandwich’ version (as given by MLR in Mplus)

– Can be used with MLMV for missing data to adjust parameter SEs

– No scaling correction factor given to compute fit statistics (none given)

▪ Sbentler = Satorra–Bentler version (MLM in Mplus)

– Can only be used with ML estimation method (so no missing data allowed)

• Because there appears to be no combination that allows 
missing data + robust estimation of fit statistics and SEs, 
I’m not going to provide STATA SEM example code… 
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Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)
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• Topics:

➢ Comparison of EFA and CFA

➢ CFA model parameters 

➢ Two parts of CFA model identification

➢ CFA model estimation 

➢ CFA model fit evaluation



The Big Picture of Model Fit
• Aspects of the observed data to be predicted 

(assuming a z-score metric for the factors for simplicity):

• CFA model equation: 𝒚𝒊𝒔 = 𝝁𝒊+ 𝝀𝒊𝑭𝒔+ 𝒆𝒊𝒔
➢ Mean per item: Captured by intercept 𝝁𝒊 per item

▪ Not a source of misfit (unless constraints are applied on the intercepts)

➢ Variance per item: Captured by weighted factor + error

▪ 𝑽𝒂𝒓(𝒚𝒊) = 𝝀𝒊
𝟐 ∗ 𝑽𝒂𝒓(𝑭) + 𝑽𝒂𝒓(𝒆𝒊)→ output given as 𝝀𝒊 and 𝑽𝒂𝒓(𝒆𝒊)

▪ Factor and error variances are additive → not a source of misfit 

(whatever 𝑭𝒔 doesn’t get, 𝒆𝒊𝒔 picks up to get back to total 𝒚𝒊 variance)

➢ Covariance among items: Predicted via factor loadings 𝝀𝒊

▪ Loadings (multiplied) predict what observed covariance should be…

but they may not be right → THE PRIMARY SOURCE OF MISFIT
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Baselines for Assessing Fit in CFA
(Item means all saturated in both)
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Saturated (Unstructured; 𝑯𝟏) ModelIndependence (Null) Model

Your CFA model 

“𝑯𝟎” will go here

All item means and variances 

estimated separately; 

no covariances are estimated

𝒚𝒊𝒔 = 𝝁𝒊 + 𝝀𝒊𝑭𝒔+ 𝒆𝒊𝒔
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All item means and variances 

estimated separately; 

all covariances estimated 

are separately now, too



Baseline model comparisons are 

already given in Mplus output…
MODEL FIT INFORMATION (Abbreviated)

Number of Free Parameters                  18

Loglikelihood

H0 Value                      -11536.404

H0 Scaling Correction Factor      1.4158

for MLR

H1 Value                      -11322.435

H1 Scaling Correction Factor      1.4073

for MLR

Chi-Square Test of Model Fit

Value                            307.799*

Degrees of Freedom                     9

P-Value                           0.0000

Scaling Correction Factor         1.3903

for MLR

Chi-Square Test of Model Fit for the Baseline Model

Value                           1128.693

Degrees of Freedom                    15

P-Value                           0.0000
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𝑯𝟏 Saturated (Unstructured) Model
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“Model fit” χ2 is from a −2ΔLL test of your 

chosen 𝑯𝟎 model vs. saturated 𝑯𝟏 model

“Baseline model” 

χ2 is from −2ΔLL 

test of null model 

vs. saturated 𝑯𝟏

model (ignore)



4 Steps in Assessing Model Fit

1. Global model fit

➢ Does the model “work” overall: Does it reproduce the observed data?

2. Local model fit

➢ Are there any more specific problems (that cause global misfit)?

3. Inspection of model parameters

➢ Are the estimates, SEs, and the item responses they predict plausible?

4. Reliability and information per item

➢ How “good” is my test? How useful is each item?
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Step 1:  Indices of Global Model Fit
• Primary fit index: obtained model 𝝌𝟐 = 𝟐 ∗ 𝑵 ∗ 𝑭𝑴𝑳

➢ 𝜒2 is evaluated based on model DF (# parameters left over)

➢ Tests null hypothesis that 𝚺 = 𝐒 (that model = data is perfect), 
so significance is bad (i.e., smaller 𝜒2, bigger p-value is better)

▪ Is LRT (−2∆𝐿𝐿) of your 𝐻0 model versus saturated best 𝐻1 model

▪ Btw, don’t use “ratio rules” like χ2/DF > 2 or χ2/DF > 3

➢ Just using 𝜒2 to index model fit is usually insufficient, however:

▪ 𝜒2 depends largely on sample size (is overpowered with large 𝑁)

▪ Is “unreasonable” null hypothesis (perfect fit, really??)

▪ Btw, 𝜒2 is only possible given balanced data (as typical for CFA)

• Because of these issues, additional fit indices are usually used 
in conjunction with the χ2 test (that function like effect sizes)

➢ Absolute Fit Indices (besides χ2)—relative to “saturated” best model

➢ Comparative (Incremental) Fit Indices—relative to “null” worst model

➢ Cite a reference for any cut-offs you use… it’s now more complicated!
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Step 1:  Indices of Global Model Fit
• Absolute Fit: SRMR

➢ Standardized Root Mean Square Residual

➢ Get difference of standardized 𝐒 − 𝚺→ “residual” (leftover) matrix

➢ Sum the squared residuals of the predicted correlation matrix across 

items, divide by number of matrix elements, then take square root:

➢ 𝑆𝑅𝑀𝑅 =
2 σ𝑖=1

𝐼 σ
𝑗=1
𝐽 𝑠𝑖𝑗−𝜎𝑖𝑗

𝑠𝑖𝑖𝑠𝑗𝑗

2

𝐼(𝐼−1)

➢ Ranges from 0 to 1: smaller is better

➢ Convention: “.08 or less” → good fit

• Less common variant: RMR (Root Mean Square Residual)
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Step 1:  Indices of Global Model Fit
Parsimony-Corrected: RMSEA

• Root Mean Square Error of Approximation

• Relies on a “non-centrality parameter” (NCP) for 𝑇 (target 𝐻0)

➢ NCP indexes how far off your model is → adjusted 𝜒2 distribution

➢ 𝑁𝐶𝑃𝑇 = max 𝜒𝑇
2 − 𝐷𝐹𝑇 , 0 → scaled discrepancy 𝑑𝑇 = 𝑁𝐶𝑃𝑇/𝑁

➢ RMSEA =
max 𝜒𝑇

2−𝐷𝐹𝑇,0

𝐷𝐹𝑇∗𝑁
=

𝑑

𝐷𝐹𝑇
→ how far off per DF left

• RMSEA ranges from 0 to 1; smaller is better

➢ Conventions: < .05 or .06 = “good”, .05 to .08 = “adequate”

➢ In addition to point estimate, get 90% confidence interval (CI)

➢ RMSEA penalizes for model complexity—it’s discrepancy in fit 
per DF left in model (but not sensitive to 𝑁, although CI can be)

➢ Also get test of “close fit”: null hypothesis that RMSEA ≤ .05

PSQF 6249:  Lecture 4 50



Step 1:  Indices of Global Model Fit
Comparative (Incremental) Fit Indices (bigger is better)

• Fit evaluated relative to ”null” (independence) model of 0 covariances

• Relative to that, your model fit should be great! 

• Conventions: > .90 = “adequate”, > .95 = “good”

• CFI: Comparative Fit Index (ranges from 0 to 1)

➢ Also based on idea of NCP (𝜒𝑇
2–DF𝑇)

➢ 𝐶𝐹𝐼 =
max 𝜒𝑁

2−𝐷𝐹𝑁,0 −max(𝜒𝑇
2−𝐷𝐹𝑇,0)

max 𝜒𝑁
2−𝐷𝐹𝑁,0

• TLI: Tucker-Lewis Index (= Non-Normed Fit Index)

➢ 𝑇𝐿𝐼 =

𝜒𝑁
2

𝐷𝐹𝑁
−

𝜒𝑇
2

𝐷𝐹𝑁

𝜒𝑁
2

𝐷𝐹𝑁
−1

(so can go negative or > 1)
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𝑇 = target model (𝐻0)
𝑁 = null model (no covariances)
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4 Steps in Model Evaluation
1. Assess global model fit (summary)

➢ Recall that item intercepts, factor means, and variances are 

just-identified → misfit comes from mis-predicted covariances

➢ 𝜒2 is sensitive to large 𝑁, so pick at least one global fit index from 

each class; hope they agree (e.g., CFI, RMSEA) that fit is “good”

• Conventions of “good” absolute model fit largely stem 

from simulation studies reported in Hu & Bentler (1999)

➢ Been cited 68,000+ times! But no one study can cover everything…

▪ Held indicator reliability relatively constant: standardized loadings .70-.80

▪ Small-ish model of 15 indicators measuring 3 correlated factors

▪ Complete data, generated using perfectly multivariate normal indicators

➢ Research now suggests standards for what is “good” model fit will 

vary significantly as a function of these unaddressed features…

▪ Here are examples from recent studies (on your reading list or reference given)
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Good Fit is Easier with Missing Data
• Zhang & Savalei (2020): Cases that don’t have the indicators 

with mis-specification will contribute better fit (higher 𝐿𝐿)!

➢ Figure 4: Fit when a correlated residual (error) of increasing size is ignored 
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RMSEA gets less worse with 

more mis-specification when 

missing the indicators that have 

ignored correlated residuals 

CFI also gets less worse with 

more mis-specification when 

missing the indicators that have 

ignored correlated residuals 



Good Fit is Easier with Missing Data
• Zhang & Savalei (2020): Same problem when misfit is due to 

structural mis-specification (i.e., not localized to indicator errors)

➢ Figure 5: Fit when one factor is specified instead of two correlated factors 
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RMSEA gets less worse with 

more mis-specification with 

greater amounts of missing 

indicators with more relevance

CFI also gets less worse with 

more mis-specification with 

greater amounts of missing 

indicators with more relevance



Good Fit by Number of Indicators…
• …It’s complicated… see Shi, Lee, & Maydeu-Olivares (2019)

➢ Figure 1 and 3: Effects of # indicators for 𝑁=200, 500, 1000, and population
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CFI gets more worse with 

more indicators, smaller 𝑁, 

and low reliability (for 𝜆 = .40, 

CFI is much more variable)

Correct model: RMSEA gets a little worse 

(still ok) with more indicators and smaller 𝑁

Incorrect models: RMSEA gets better 

with more indicators (less so with small 𝑁) 

Right: Mis-specified 

residuals (errors) →

misfit limited to only 

some indicators 

(so having more 

properly specified 

indicators makes fit 

better on average) 



Good Fit* Is Easier With Lower Reliability

• Lower reliability → Lower standardized factor loadings

➢ McNeish, An, & Hancock (2018): 15 indicators measuring 3 factors 

➢ Figures 2 and 3: missing factor covariance → always good fit if 𝜆 = .40!

➢ Strong signal (i.e., more reliability) makes it easier to detect 

when model does not adequately capture that signal
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Wide variability in 

CFI with 𝜆 = .40! 



When Fit Indices Disagree
• *Opposite pattern also found for CFI using more incorrect 

models: CFI was lower (worse fit) with lower reliability
➢ From Heene, M., Hilbert, S., Draxler, C., Ziegler, M., & Bühner, M. (2011). Masking misfit in confirmatory factor analysis by 

increasing unique variances: A cautionary note on the usefulness of cutoff values of fit indices. Psychological Methods, 

16(3), 319–336. https://doi.org/10.1037/a0024917

• When might RMSEA and CFI disagree? It’s a complex function of 

amount of misfit and DF with which to test it (as well as reliability)
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• Figure 1 from: Lai, K. & Green, S. B. (2016). The 

problem with having two watches: assessment of 

fit when RMSEA and CFI disagree. Multivariate 

Behavioral Research, 51(2-3), 220-239, DOI: 

http://dx.doi.org/10.1080/00273171.2015.1134306

• x-axis = amount of misfit in your 

𝐻0 model (up to null model, 𝐹𝑏) 

• y-axis = model fit discrepancy function; 

>0 = CFI happier, <0 = RMSEA happier

https://doi.org/10.1037/a0024917
http://dx.doi.org/10.1080/00273171.2015.1134306


4 Steps in Model Evaluation
1. Assess global model fit (summary)

➢ Recall that item intercepts, factor means, and variances are 
just-identified → misfit comes from mis-predicted covariances

➢ Be aware that artificially good absolute fit can be created by 
indicators with low reliability and/or missing data; assessments 
of global fit can be more variable with smaller 𝑁 in large models

➢ Corrections for non-normality also continually being developed… 

• If model fit is not good (yet), you should NOT interpret 
the model estimates, because they will change as the 
model changes 

➢ If model fit is not good, you need to find out WHY → go to step 2

• Even if model fit IS good, it does not mean you are done:
still proceed to step 2, assessing local fit

➢ This should help protect against erroneous claims of good fit
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4 Steps in Model Evaluation:  Step 2

2. Identify local misfit: localized model strain

➢ Global model fit means that the observed and predicted item 

covariance matrices aren’t too far off on the whole… this says 

nothing about the specific covariances to be predicted

➢ Should inspect normalized model residuals for that → Local fit

▪ RESIDUAL output option in Mplus or ESTAT RESIDUAL in STATA

▪ “Normalized” is residual/SE → works like a z-score

▪ Relatively large absolute values indicate “localized strain”

▪ Positive residual → Items are more related than you predicted 

– More than just the factor (your model) creating a covariance

▪ Negative residual → Items are less related than you predicted

– Not as related as your model said they should be

➢ Evidence of localized strain tells you where the problems are, 

but not what to do about them…
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4 Steps in Model Evaluation:  Step 2

2. Identify localized model strain, continued…

• Parallel info: Modification Indices (aka, voo-doo)

➢ LaGrange Multiplier: decrease in model fit 𝜒2 by adding the 

listed model parameter (e.g., cross-loading, error covariance)

▪ Usually only pay attention if > 3.84 for DF = 1 (for 𝑝 < .05)

▪ Get expected parameter estimate for what’s to be added, 

but should only pay attention if its effect size is “meaningful”

▪ Also only pay attention if you can INTERPRET AND DEFEND IT

➢ Implement these ONE AT A TIME, because one addition 

to the model can alter the rest of the model substantially

• Keep in mind that voo-doo indices can only try to repair 

your current model; they will never suggest a new model!
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Testing Fixes to the Model
• Most common approach for assessing whether adding or 

subtracting parameters changes model fit is the likelihood 

ratio test (aka, −2ΔLL “deviance difference” test)

➢ Done for you in two cases: comparing saturated 𝐻1 to your 𝐻0
as model 𝜒2, and comparing saturated 𝐻1 to “null” model

➢ Implemented via direct difference in model χ2 values most often, 

but this is only appropriate when using regular ML estimation

• Variants of ML for non-normal data (like MLR) require a 

modified version of this −2ΔLL test (see Mplus website): 

http://www.statmodel.com/chidiff.shtml

➢ Is called “rescaled likelihood ratio test”

➢ Includes extra steps to incorporate scaling factors

➢ I built you a spreadsheet for this…you’re welcome ☺
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Testing Fixes to the Model: −2ΔLL
• Comparing nested models via a “likelihood ratio test” →

−2ΔLL (MLR rescaled version)

➢ 1. Calculate −2ΔLL = −2*(LLfewer – LLmore)

➢ 2. Calculate scaling correction for difference =

(#parmsfewer*scalefewer) – (#parmsmore*scalemore) 

(#parmsfewer – #parmsmore) 

➢ 3. Calculate rescaled difference = −2ΔLL / scaling correction 

➢ 4. Calculate Δdf = #parmsmore – #parmsfewer

➢ 5. Compare rescaled difference to 𝝌𝟐 with df = Δdf

▪ Add 1 parameter? LLdiff > 3.84, add 2 parameters: LLdiff > 5.99…

▪ Absolute values of LL are meaningless (is relative fit only)

▪ Process generalizes to many other kinds of models
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Note: Your LL will always 

be listed as the H0

(H1 is for the saturated, 

perfectly fitting model)

Fewer = simpler model

More = more parameters
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Testing Fixes to the Model: −2ΔLL

• If adding a parameter, model fit can either 

get better OR stay the same (“not better”):

➢ Better = larger LL for H0 and smaller model χ2

➢ e.g., add another factor, add error covariance, 

• If removing a parameter, model fit can either 

get worse OR stay the same (“not worse”)

➢ Worse = smaller LL for H0 and larger model χ2

➢ e.g., constrain item loadings equal → test “tau-equivalence”

• When testing parameters that have a boundary (e.g., factor 

correlation ≠ 1?), this test will be slightly conservative

➢ Should use p < .10 instead of p < .05 (or mixture χ2 distribution)

PSQF 6249:  Lecture 4 63



Testing Fixes to the Model, cont.

• For comparing non-nested models (e.g., should 𝑦1 load on 𝐹2
or 𝐹1 instead?), the −2ΔLL test is not applicable given same DF

• Use information criteria instead: AIC and BIC

➢ Akaike IC: AIC = −2LL + 2*#parameters

➢ Bayesian (Schwartz) IC = −2LL + log(𝑁)*#parameters

➢ Are NOT significance tests, just “smaller is better”, is “evidence”

➢ Still cannot be used on models with different items (outcomes)

• For both nested or non-nested model comparisons, 

differences in other fit indices should be examined, too

➢ No real critical values for changes in other fit indices, however

➢ They may disagree (especially RMSEA, which likes parsimony)
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Fixing the Model by Expanding
• A common (and relatively easy to fix) source of misfit is 

caused by items that are too correlated after accounting 

for their common factor—some possible solutions: 

➢ Add error covariance(s) (i.e., as suggested by voo-doo indices)

▪ Is additive: 𝐶𝑜𝑣(𝑦1, 𝑦2) = cov due to Factor + cov due to error covariance, 

so the residual covariance basically plugs the hole in the covariance matrix

▪ In models that do not allow error covariances (e.g., IFA, stay tuned), you can 

do the same via a separate uncorrelated “method factor” (for positive 

covariance, fix both loadings = 1; for negative covariance, use 1 and −1)

▪ Either way, this means you have unaccounted for multidimensionality

→ Explicit acknowledgement that you have measured your latent factor + 

something else that those items have in common (e.g., stem, valence, specific 

content) of unknown origin, so you must be able to defend error covariances

➢ Lots of problematic pairings? Re-consider factor dimensionality

▪ I’d generally recommend against adding cross-loadings, because if the item 

measures more than one thing, it will complicate the interpretation of factors
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Equivalent Ways of Addressing 
Multidimensionality… (Brown, 2015 p. 181)
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Here a general factor of “Social Interaction Anxiety” 

includes two items about public speaking specifically. 

The extra relationship between the two public 

speaking items can be modeled in different, yet 

statistically equivalent ways… error covariances 

represent another factor (which is why you should be 

able to explain and predict them if you include them).
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When to Simplify the Model
• Factors correlated > .85ish may suggest a simpler structure 

➢ Nested model comparison: fix factor variances to 1 so factor covariance becomes 
factor correlation, then test r ≠1 at p < .10 (because r is bounded from −1 to 1)

• When might you consider dropping an item?

➢ Non-significant loadings: If the item isn’t related, it is NOT 
measuring the latent trait, and so you pry don’t need it

➢ Negative loadings: Make sure to reverse-coded as needed 
ahead of time, otherwise, this indicates a big problem!

➢ Problematic leftover positive covariances between two items—such redundancy 
implies you may not need both (redundancy may indicate a “bloated specific”)

➢ If one item is responsible for many of the suggested error covariances, perhaps you 
might remove it (but be cautious, because often fewer items → less reliability)

• However: models with different items (outcomes) are NOT COMPARABLE 
AT ALL because their LL values are based on different input data!

➢ No model comparisons of any kind (including −2LL, AIC, and BIC)

➢ To do a true comparison, you’d need to leave the item in the model but 
set its loading = 0 (which is the same as the original test of its loading)
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What else can go wrong?
• Error message: “non-positive definite (NPD)”

➢ Both 𝐒 (data) and 𝚺 (predicted) matrices must be positive definite

▪ Because they get inverted in the LL formula (like matrix division)

➢ Non-positive definite means that the determinant is ≈ 0, 
or that the matrix is singular (has redundant information)

▪ Double-check that data are being read in correctly; otherwise 

you may need to drop items that are too highly correlated

▪ NPD means your model is broken and you can’t keep it

• Structural under-identification

➢ Does every factor have a mean and variance and at least 3 items?

➢ Does the marker item actually load on the factor???

• Empirical under-identification

➢ More likely with smaller sample sizes, fewer indicators per factor, 

and items with low communalities (R2 accounted for by factor)
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Open in case of emergency…

• If good model fit seems hopeless, you may need 

to go back to the drawing board… almost

➢ Actual EFA uses weird constraints to identify the model, so don’t use it

• Brown (2015) suggests an “E/CFA” approach of estimating 

an exploratory-like model staying within a CFA framework:

➢ Fix each factor variance to 1 and mean to 0 for identification

➢ Each factor gets one item that loads ONLY on it (loading fixed to 1)

➢ Rest of items can load on all factors

➢ Why bother? To get significance tests of factor loadings

➢ May suggest a useful alternative structure, which should then 

ideally be replicated in an independent sample using CFA
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Summary:  Model Evaluation Steps 1 and 2

1. Assess global model fit

➢ Recall that item intercepts, factor means, and variances are usually 

just-identified → so misfit comes from mis-predicted covariances

➢ χ2 is sensitive to large sample size, so pick at least one global fit 

index from each class (e.g., CFI, RMSEA); cutoffs with caveats

2. Identify localized model strain

➢ Global model fit means that the observed and predicted covariance 

matrices aren’t too far off on the whole… says nothing about the 

specific matrix elements (reproduction of each covariance)

➢ Consider normalized residuals and modification indices to try 

and “fix” the model (add or remove factors, add or remove 

residual covariances, etc.)—Has to be theoretically justifiable!!

Good global and local fit? Great, but we’re not done yet…
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4 Steps in Model Evaluation:  Step 3

PSQF 6249:  Lecture 4

3. Inspect parameter effect sizes and significance

➢ A 1-factor model will fit each of these correlation matrices perfectly:

➢ Good model fit does not guarantee a good model 

➢ A good model has meaningful factor loadings 

➢ If your items are not correlated, game over, regardless of fit

y1 y2 y3 y4

y1 1

y2 .1 1

y3 .1 .1 1

y4 .1 .1 .1 1

y1 y2 y3 y4

y1 1

y2 .8 1

y3 .8 .8 1

y4 .8 .8 .8 1
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4 Steps in Model Evaluation:  Step 3

3. Inspect parameter effect sizes and significance

➢ Model fit does not guarantee meaningful factor loadings 

▪ Can reproduce lack of covariance quite well and still not have anything 
useful—e.g., factor loading of 0.2 → 4% shared variance?!?

▪ Effect size (R2 of item variance from factor) is practical significance

➢ Get SEs and p-values for unstandardized estimates 
(at least report estimate from standardized solution)

▪ Marker items won’t have significance tests for their unstandardized 
loadings because they are fixed at 1, but you’ll still get standardized 
factor loadings for them (help to judge relative importance)

➢ Make sure all estimates are within bounds AND predicted item 
responses are plausible at expected latent factor values (±2 SD)

▪ No standardized factor loadings > 1 (unless the indicator 
has cross-loadings, in which case this is actually possible)

▪ No negative factor variances or negative error variances
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4 Steps in Model Evaluation:  Step 3
• CFA is a regression model, so you 

can plot the responses predicted 
from the unstandardized item 
intercepts and slopes (factor 
loadings) across factor values

• If the predicted responses exceed 
the possible range within ±2 SD, 
then the linear CFA may not be 
appropriate (responses are not 
“normal enough” to use CFA)

• CFI using logit-transformed item responses 
is a potential solution for bounded/skewed 
continuous items (creates a logistic curve)

➢ 𝐿 = 𝑚𝑖𝑛 − 1, 𝑈 = 𝑚𝑎𝑥 + 1

➢ 𝐿𝑜𝑔𝑖𝑡 = 𝐿𝑂𝐺
𝑦𝑖𝑠−𝐿

U−𝑦𝑖𝑠

➢ Predicted 𝑦𝑖𝑠 = 𝐿 + (𝑈 − 𝐿)
exp(𝐿𝑜𝑔𝑖𝑡)

1+exp(𝐿𝑜𝑔𝑖𝑡)

• For ordinal responses, choosing an IFA/IRT 
model is another option (stay tuned)
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4 Steps in Model Evaluation:  Step 4

4. Calculate item information and model-based reliability

➢ Item Information = (𝐮𝐧𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝𝐢𝐳𝐞𝐝 𝛌)𝟐 / 𝐕𝐚𝐫(𝐞)

→ What proportion of item variance is “true” relative to error?

▪ Size of unstandardized loadings by themselves is not enough, 

as their relative contribution depends on size of error variance

▪ The standardized loadings will give you the same rank order in terms of 

item information, which is why information is not often used within CFA 

(but stay tuned for item and test information in IRT/IFA models)

➢ “Omega” Sum Score Reliability = 
𝐕𝐚𝐫 𝐅 ∗ 𝚺𝛌 𝟐

𝐕𝐚𝐫 𝐅 ∗ 𝚺𝛌 𝟐 +𝚺𝐕𝐚𝐫(𝐞)+ 𝟐𝚺(𝐞 𝐜𝐨𝐯)

→ Factor variance * squared sum of unstandardized factor loadings, 

over that + summed error variances + 2*summed error covariances

▪ Although Omega should be calculated using unstandardized loadings, 

Omega can differ slightly across methods of model identification 

▪ Omega is calculated PER FACTOR because it assumes 

unidimensionality (which should have been tested already)
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CFA Model Evaluation:  Summary
• The primary advantage of working in a CFA framework 

is obtaining indices of global and local model fit

➢ 𝜒2 and model fit indices indicate how well the model-predicted 

covariance matrix matches the data-observed covariance matrix…

▪ .. But normalized residuals should still be examined for evidence of 

local misfit (e.g., mis-predicted covariances between certain items)

➢ Nested model comparisons via rescaled −2ΔLL can be conducted 

in order to compare the fit of augmented or simplified models…

▪ … But be careful relying too blindly on modification indices to do so

➢ Effect size and significance of model parameters matters, too

▪ … How well are your latent factors really defined anyway? Effect size!

▪ Watch out for out-of-bound estimates—this means something is wrong

▪ Watch for unreasonable predicted responses—this means you shouldn’t 

be using a linear slope CFA model (so you need a nonlinear slope model)
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Testing CTT Assumptions in CFA
• Alpha sum-score reliability assuming three things: 

➢ The items measure a single, unidimensional latent factor

➢ All factor loadings (discriminations) are equal, or that 
items are “true-score equivalent” or “tau-equivalent”

➢ Local independence (errors are uncorrelated)

• After assessing unidimensionality of each latent factor, we can then test 
the assumption of tau-equivalence via a −2ΔLL comparison against a 
model in which the factor loadings are constrained to be equal

➢ If model fit gets worse, the loadings are not equal; items differ in discrimination

➢ If so, don’t use alpha—use model-based reliability (omega) instead, 
because omega assumes unidimensionality, but not tau-equivalence

• The assumption of parallel items is then testable by constraining 
item error variances to be equal, too—does model fit get worse?

➢ Parallel items is needed to use Spearman-Brown formulas to predict reliability

➢ Parallel items will hardly ever hold in real data

➢ Note that if tau-equivalence doesn’t hold, then neither does parallel items
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Conclusion:  The Big Picture of CFA
• The CFA unit of analysis is the ITEM:  𝒚𝒊𝒔 = 𝝁𝒊 + 𝝀𝒊𝑭𝒔 + 𝒆𝒊𝒔

➢ Linear regression relating continuous item responses to latent factor predictor

➢ Both item AND subject properties matter in predicting item responses

➢ Latent factors are estimated as separate entities based on the observed 
covariances among items—latent factors represent testable assumptions

▪ Items are unrelated after controlling for factor(s) → local independence

▪ Modeling framework allows exceptions via error covariances and method factors

• Because item responses are included:

➢ Items are allowed to vary in discrimination (as factor loadings) 
→ thus, exchangeability (tau-equivalence) is a testable hypothesis

➢ Because difficulty (item intercepts) do not contribute to the covariance, they 
don’t really matter in CFA (unless you are testing factor mean differences)

➢ To make a test better, you need more items

▪ What kind of items? Ones with greater information → λ2/Var(e)

➢ Measurement error is still assumed constant across the latent trait

▪ People low-medium-high in Factor Score are measured equally well
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