Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)

- Topics:
> Comparison of EFA and CFA
> CFA model parameters
> Two parts of CFA model identification
> CFA model estimation
> CFA model fit evaluation
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EFA vs. CFA: What gets analyzed

- EFA: Correlation matrix (of items = indicators)
> Only correlations among observed item responses are used

> Only a standardized solution is provided, so the original means
and variances of the observed item responses are irrelevant

- CFA: Covariance matrix (of items = indicators)
> Variances and covariances of observed item responses are analyzed
> |tem response means historically have been ignored (but not by us!)

> Output includes unstandardized AND standardized solutions

- Unstandardized solution predicts the original item covariance matrix
(regression solution retains original absolute information)

« Standardized (STDYX) solution predicts the item correlation matrix
(easier to interpret relative sizes of relationships as correlations)
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EFA vs. CFA: Interpretation

- EFA: Rotation

> All items load on all factors (traits), no matter what!

> Goal is to pick a rotation that gives closest approximation to
“simple structure” (clearly-defined factors, fewest cross-loadings)

> No way of distinguishing latent variables due to “content” (traits being
measured) from “method” (correlation induced by common approach)

- CFA: Your job in the first place!
> CFA must be theory-driven: any structure is a testable hypothesis
> You specify number of latent variables and their inter-correlations
> You specify which items load on which latent variables (yes/no)
> You specify any additional relationships for method/other covariance

> You just need a clue; you don't have to be right (misfit is informative)
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EFA vs. CFA: Judging model fit

- EFA: Eye-balls and Opinion
> #Factors? Scree-ish plots, interpretability...
> Which rotation? Whichever makes most sense... (to you)

> Which items load on each factor? Arbitrary cut-off of .3-.4ish

- CFA: Inferential tests via Maximum Likelihood (ML or MLR)
> Global model fit test (and local model fit)
> Standard errors (and significance) of item loadings
> Standard errors of error variances (and covariances)

> Ability to test appropriateness of model constraints or
model additions via tests for change in model fit
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EFA vs. CFA: Factor scores

- EFA: Don’t ever use factor scores from an EFA
> Factor scores are indeterminate (especially due to rotation)
> Inconsistency in how factor models are applied to data

= Factor model based on common variance only (factor is predictor)
= Summing items? That's using total variance (component is outcome)

- CFA: Factor scores can be used, but only if necessary
> Best option: Test relations among latent factors directly through SEM

= Factors can either be predictors (“exogenous” variables) or outcomes
("“endogenous” variables) or both at once as needed (e.g., as mediators)

= Relations between factors will be disattenuated for measurement error
> Factor scores are less indeterminate in CFA, and could be used

= In reality, though, factor scores are not known single values because
they are modeled as random effects, not fixed effects per person

= Next-best option: Use “plausible values” or other two-stage approaches
that acknowledge uncertainty in factor score estimates (stay tuned)
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Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)

- Topics:
> Comparison of EFA and CFA
> CFA model parameters
> Two parts of CFA model identification
> CFA model estimation
> CFA model fit evaluation
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Confirmatory Factor Analysis (CFA)

- The CFA unit of analysis is the ITEM (as in any LTMM):
Yis = U; + A,F .+ e;. > both items AND subjects matter

> Observed response for item ( and subject s
= intercept of item ( ()
+ subject s's latent factor (F), weighted by item-specific loading 1
+ error (e) of item { and subject s

- What does this look like? Linear regression (without an observed X)!
> Vs = Bo + B1Xs + e; 2 written for each item 2 y;s = Bo; + B1iXs + €;s
> B, Intercept = u, = expected outcome when F=0
> By; Slope of Factor = 4, = expected change in y for one-unit change in F

> e Error (Residual) = e;, = how far off predicted y is from real y
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Revisiting Vocabulary:
ltem Psychometric Properties

- Item Discrimination: How related each item is to the latent trait

> In CTT, discrimination is given by the item-total (or item-remainder) correlation
The total score is the best estimate of the latent trait in CTT

> In CFA, discrimination is given by the factor loading/slope (1))

We now have a factor that directly represents the covariance among items
Stronger standardized factor loadings indicate better, more discriminating items

- Item Difficulty/Severity: Location of item on the latent trait metric

> In CTT, difficulty is given by the item mean
> In CFA, difficulty is given by the item intercept (u;) — which is still backwards

> In contrast to other latent trait models (IRT), difficulty (intercepts)
are often ignored in CFA... here’s why...
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Why ltem Intercepts Are Often Ignored...

A “"good” item has a large slope (i.e., factor loading) in predicting the item
response from the factor. Because this is a linear slope, the item is assumed
to be equally discriminating (equally good) across the entire latent trait.

Similarly, a “bad” item has a flatter linear slope that is equally bad across
the entire range of the latent trait (where slope=0 means unrelated to trait).

Item
Response

“Good item”
(A high ©)

“Bad item”
(A low ®)
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< Latent Factor 2

Here item intercepts are irrelevant in
evaluating how “good” an item is, so
they are not really needed in CFA.

But we will estimate them, because
item intercepts are critical when:

« Testing factor mean differences
in any latent factor model

* Items need to have a nonlinear
slope in predicting the item
response from the factor (IRT)




Example Diagram of
Two-Factor CFA Model

But some parameters
will have to be fixed to
known values for the

Measurement Model
for Items:

A's = factor loadings
e's = error variances
u's = intercepts
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M3

COVEq,r2

W, Structural Model
for Factors:

He F's = factor variances
Cov = factor covariances
K's = factor means

model to be identified.



2 Types of CFA Parameter Solutions

- Unstandardized - predicts scale-sensitive original item response:

>

- Standardized - Solution transformed to Var(y;) = Var(F) = 1 via STDYX:

Regression Model: y,. = u, + A,F_+ e,

Useful when comparing solutions across groups or time (when absolute values matter)

Together, the model parameters predict the item means and item covariance matrix

Note the solution asymmetry: item parameters p; and A; will be given in the item metric,
but e;. will be given as the error variance across persons for that item (squared metric)

Var(y;) = [A2*Var(F)] + Var(e;)

>

>

>

Careful! There is
also STDY and STD

Useful when comparing items within a solution (relative values on same scale)

Together, the standardized model parameters predict the item correlation matrix

Standardized intercept = p; / SD(y;s) = not typically reported

Standardized factor loading = [4; * SD(F)] / SD(y;s) = item correlation with factor

Standardized error variance = 1- standardized A = "variance due to not factor”

R? for item = standardized A;? = "variance due to the factor”
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Example Two-Factor Model Equations

- Measurement model per numbered item for subject s:

> Vs = Uy + A Fig + OF, + ey
> Vas = Uy + Ay Fig + OF,, + e,
> Y3s = Uz + A3Fig + OF,; + ey

> Yas = Uy + OF o + A,F, + ey
> Vss = Us + OF; + A5,F, + e
> Yos = Ug + OF + A5F,, + e

Here is the general matrix equation for
these 6 item-specific equations:
Y=u+A1AF +e

where Y, i, and e = 6x1 matrices
(because each item gets one value);
A = 6x2 matrix, and F =2x1 matrix
(because there are two factors)
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You decide how many factors
and if each item has an estimated
loading on each factor or not.

Unstandardized loadings (4) are
the linear slopes predicting the
item response (y) from the factor
(F). Thus, the model assumes a
linear relationship between the
factor and the item response.

Standardized loadings are the
slopes in a correlation metric
(and Standardized Loading? = R?).

Intercepts (i) are the expected item
responses (y) when all factors = 0.



The Role of the CFA Model Parameters

- Data going in to be predicted by the CFA model parameters
= item covariance matrix (variances, covariances) and item means

- The CFA item intercepts (u;) predict the item means
> Item means are unconditional; item intercepts are conditional on F, = 0

> When each item gets its own intercept (the usual case), the item means
will be perfectly predicted (so no room for mis-fit or mis-prediction)

- The CFA item error variances (Var|e,]|) predict the item variances

> Item variances are unconditional; item error variances are conditional
(leftover variance after accounting for the contribution of the factor)

> When each item gets its own error variance (usual case), the item variances
will be perfectly predicted (so no room for misfit or mis-prediction)

- The CFA item factor loadings (4;) predict the item covariances

> Given 3+ items, there will be more covariances among items to predict than
item factor loadings to predict them, thus creating room for misfit
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CFA Model Predictions: (F, BY y;-ys, F, BY y,-Ye)

Items from same factor (room for misfit or mis-prediction):

- Unstandardized solution: Covariance(y,,y3) = 4, * Var(Fq) * 45,
- Standardized solution:  Correlation(yy,y3) = 4,4 * (1) * A3, € std loadings

- ONLY reason for correlation is their common factor (local independence, LI)

Items from different factors (room for misfit or mis-prediction):

- Unstandardized: Covariance(y;,Ve) = 4,1 * Cov(Fq,F;) * 4,
- Standardized: Correlation(yy,ye) = 41, * Cor(F4, F3) * 4,, € std loadings

- ONLY reason for correlation is the correlation between factors (again, LI)

Variances are additive (and will be reproduced correctly):
- Var(y,) = (1,44 *Var(F,) + Var(e;) > note imbalance of 1?> and ¢;
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Model-Predicted Item Covariance Matrix

- Matrix equation: £ = A®A' + ¥

2

(o) (&)

y1 yty2  Oyiys  Oyiya  Oyiys  Oyiye

2
_ . . (¢) , (¢) (¢) , (@) 2Y (¢) 2’ (e) 2’ 6
XY= model-predicted item R < AR
. .. Oyayr Oyzy2  Oyz  Oyzya Oyzys Oyzye
covariance matrix Is Gyt Oyiyp Oyays Ol Oyays Oyays

. 2

Created from. Oysy1 Oysy2 Oysys Oysya  Oys  Oysye
Oyey1 Oyey2 Oyeys Oyeys Oyeys 056

° ° A 0

A = item factor loadings |, |

21

& = factor variances ha O [cﬁl c](x by Ay OO Oj
and covariances R
AT = item factor loadings | o

transposed (21?) h 0 0 0 0 0

0 o5 0 0 0 O

. . o o o, 0 0 O

Y = item error variances 0 0 0 o4 0 0
(residual variances) 0 0 0 0 o 0

0 0 0 0 0 ok
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Model-Predicted Item Covariance Matrix

.Y = APAT + ¥ > Predicted Covariance Matrix

The loadings control how
/ related items from the same
Items within Factor‘%/ factor are predicted to be.

2
7\'116F1+Ge1 P pTer=vY kllsFZ,le42 7\'116F2,F17\’52 }\‘110F2,F17\’62

2
>\‘210F1>“11 7\‘21GF1+Ge2 >\‘210F1>“31 7‘215F2,F17‘42 7\‘210F2,F1}\‘52 }“ZIGFZ,H}\‘GZ

2 2 2
A31Orhyg A31OFAgy }\“316F1 T O¢3 7\‘316F2,F1}\‘42 7‘310F2,F17‘52 7\‘316F2,F1}\‘62
2 2 2 2 2
}\’4ZGF2,F1}\‘11 }‘426F2,F17‘21 7¥425F2,F17‘31 A42OFrs + 04 AygyOpohs, A 420 Folg)
2 2 2 2 2
XSZGFZ,lell kSZGFZ,Fl}‘Zl }\‘SZGFZ,F17\‘31 M5y0 oA 4o A5y0F, + Ops A5y0 oM gy
. 2 2 2 2
7L620F2,F17¥11 7\‘626F2,F17\'21 >“62GF2,F1'\‘31 M620 oM g0 Me2Orohsy  AgoOpy + Oyl
Items within Factor 2
The only reason why items
from different factors should The loadings also control how
be related is the covariance much of the item response is
between the two factors. due to factor versus error.

PSQF 6249: Lecture 4



Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)

- Topics:
> Comparison of EFA and CFA
> CFA model parameters
> Two parts of CFA model identification
> CFA model estimation
> CFA model fit evaluation
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Two Parts of Model Identification

- Part 1: Create a scale for each latent factor
> Each latent factor needs a mean and a variance
> Necessary but not sufficient for estimating the CFA model

- Part 2: Ensure the CFA model is estimable

> Data going in versus estimated parameters going out:

= |tem means = item intercepts (usually 1:1 ratio)
= |tem variances = item residual variances (usually 1:1 ratio)
= |tem covariances - item factor loadings (must have ratio > 1)

> In practice, this means the number of estimated loadings
may not exceed the number of observed item covariances
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CFA Model Identification Part |:

Create a Scale for the Latent Factor Variance

- The factor doesn’t exist, so it needs a
scale (it needs a mean and variance):

"Z-Score Factor”
Method (1)

- There are two equivalent options to
create a scale for the factor VARIANCE:

> (1) Fix factor variance to 1: “z-score”

@ @ é) = Factor is interpreted as standard z-scores
: - = - Can’t be used in models with higher-order

factors (coming later in this course)

“Marker Item”

Method (2) > (2) Fix a “marker item” loading to 1

Factor variance is then estimated the
“reliable” part of the marker item variance

« Std. loading = 0.9, item variance = 167
2 y y Factor variance = (0.92)*16 = 12.96

= Can cause the model to blow up if marker
e e e item has no correlation with the factor at all
1 2 3
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CFA Model Identification Part |:

Create a Scale for the Latent Factor Mean

"Z-Score Factor’,

- The factor doesn't exist, so it needs a
Method (1)

scale (it needs a mean and variance):

Factor
Var=1

- There are two equivalent options to
create a scale for the factor MEAN:

@ > (1) Fix factor mean to 0: “z-score”
€3

Factor is interpreted as standard z-scores

Can be used in models with higher-order

Factor factors (coming later in the course)

Var=? ltem intercepts = item means

> (2) Fix a “marker item” intercept to 0

VE! =  Factor mean = mean of marker item

ltem intercepts = expected item responses

@ when factor = 0 (> marker = 0)
3
H3

PSQF 6249: Lecture 4
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Possible Factor Means and Variances

Factor Variance = 1

Factor Variance Estimated

Factor

Factor
Var=1

Mplus

Factor
Var="?

Factor
Mean
Est. =?
(free)

PSQF 6249: Lecture 4
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Part 2 of CFA Model Identification

- Make sure the model is estimable; then try to reproduce observed item
covariance matrix using as few estimated parameters as possible
> (Robust) Maximum likelihood used to estimate model parameters

Measurement Model: Item factor loadings, item intercepts, item error variances
Structural Model: Factor variances, factor covariances, factor means

> Global model fit is evaluated as difference between model-predicted and data-
observed covariance matrix (but only covariances usually contribute to misfit)

- How many possible parameters can you estimate: what is total DF?

1 . . .
. Total DF = 222 1 4 where v is the # items (NOT people, like usual)
= Total DF = number of item means, variances, and covariances
e.g. if v = 4 items, then DF = 29 | 4 = 14

> Model DF = data input — model output

> Model DF = # possible parameters — # estimated parameters

PSQF 6249: Lecture 4
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Under-ldentified Factor: 2 ltems

- Model is under-identified if there are more unknown parameters then
item variances, covariances, and means with which to estimate them

> Model cannot be estimated because there are an infinite number of different
parameter estimates that would result in the same and perfect fit

> Example:x +y =777

You'd have to constrain Total possible DF = unique pieces of data = 5
the loadings to be

equal for the 0 factor variances 1 factor variance
model to be 0 factor means 1 factor mean
estimable. 2 item loadings OR 1 item loading
A, 2 item intercepts 1 item intercept
2 error variances 2 error variances
b, Y1 DF=5-6=-1

If cor(y,,y,) = .64, then:

9 @ A, = .800,1,, = .800 ??

In other words, the assumptions required A1 =.900,45 =.711 27
to calculate two-score reliability in CTT are | A4; =.750,4,; =.853 77
the result of model under-identification.
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Just-ldentified Factor: 3 Items

- Model is just-identified if there are as many unknown parameters as
item variances, covariances, and means with which to estimate them

> The model is estimable, so the parameter estimates have a unique solution

> But those parameters will perfectly reproduce the data-observed covariance
matrix, so model fit is not testable—it's just a re-arrangement of the data

> Example: Solve x +y =7,3x-y =1

PSQF 6249: Lecture 4

Total possible DF = unique pieces of data = 9

0 factor variances 1 factor variance

0 factor means 1 factor mean

3 item loadings OR 2 item loadings

3 item intercepts 2 item intercepts

3 error variances 3 error variances
DF=9-9=0

Not really a model—more like a description
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Example: Solving a Just-ldentified Model

Y1
y, 1.00

Y, .595
y; .448
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Yo Y3

1.00
544 1.00

- Step 1:

- Step 2:

Y1 Y2 Y3
- Step 3:

- Step 4.

- Step 5:

ab = .595
ac = .448
bc = .544

b =.595/a

c =.488/a
(.595/a)(.448/a) = .544
26656/a* = .544
a=.70

.70b = .595 b = .85
70c = .448 ¢ = .64

Var(e,) = 1 —a?*= .51
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Over-ldentified Factor: 4+ ltems

- Model is over-identified if there are fewer unknown parameters than
item variances, covariances, and means with which to estimate them

> The model is estimable, so the parameter estimates have a unique solution

> But now the parameters will NOT perfectly reproduce the observed matrix
- if DF > 0, we can test model fit!
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Total possible DF = unique pieces of data = 14

0 factor variances 1 factor variance
0 factor means 1 factor mean

4 item loadings OR 3 item loadings
4 item intercepts 3 item intercepts
4 error variances 4 error variances

DF=14-12=2

Model fit: Did we do a “good enough” job
reproducing the item covariance matrix with 2
fewer parameters than it was possible to use?
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Oops: Empirical Under-ldentification

- Did your model blow up (errors instead of output)? Double-check:
> Part 1: Make sure each factor has a scale: a mean and a variance

> Part 2: Make sure you aren’t estimating more parameters than you have DF

- Sometimes you can set up your model correctly and it will STILL
blow up because of empirical under-identification

> It's not you; it's your data—here are two examples of when these models should
have been identified, but weren't because of an unexpected 0 relationship

Y1
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That Other Kind of
Measurement Model...

Remember the difference between principal components
and factor analysis in terms of ‘types’ of items?

Factor Model: Component Model:

- Composed of “Reflective” - Composed of “Formative” or
or “Effects” items “Emergent” or “"Cause” items

- Factor is thought to cause - Component is result of
observed item responses observed item responses

- Items should be correlated - Items may not be correlated

- Is identified with 3+ items - Will not be identified no matter
(fit is testable with 4+ items) how many items without

additional variables in the model
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Formative (Component) Models
(see Brown 2015 ch. 8 pp. 322-331)

Eb

;
I Chronie
| Life Stress |

|}{" x2|| X3 }Li'l|

A

f

Hd x5

—

E"
"'-u_,_‘_'..-' "

{  Chronic .|
Y Lifa St-eaﬁaF
LY

X1 &2 || x3
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Model A Parameters:

4 factor loadings/regression paths
1 factor disturbance (variance left over)

10 item correlations

5 item variances
5 item means

DF =20-25=-5

Not identified

Model C Parameters:

Formative measurement
models are not identified
without including other
outcomes or predictors of
the formative latent factor

4 factor loadings/regression paths
1 factor disturbance (variance left over)

3 item correlations
5 item variances/error variances
5 item means/intercepts

DF =20-18 =2
Identified

Model C has both
formative and reflective
indicators—the latter
might also be "outcomes”
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Intermediate Summary: CFA

- CFA is a linear model in which continuous observed item
responses are predicted from latent factors (traits) and error

> Goal is to reproduce observed item covariance matrix using parameters
(item intercepts, loadings, and error variances; factor variances/covariances)

> Factor model makes specific testable mathematical predictions about how
item responses should relate to each other: loadings predict covariances

> Need at least 3 items per latent factor for the model to be identified;
need at least 4 items per latent factor for model fit to be testable

- CFA framework offers significant advantages over CTT by offering
the potential for comparability across samples, groups, and time

> CTT: No separation of observed item responses from true score

= Sum across items = true score; item properties belong to that sample only
> CFA: Latent factor is estimated separately from item responses

Separates interpretation of person trait levels from specific items given
= Separates interpretation of item properties from specific persons in sample
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Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)

- Topics:
> Comparison of EFA and CFA
> CFA model parameters
> Two parts of CFA model identification
> CFA model estimation
> CFA model fit evaluation
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Where the Answers Come From:
The Big Picture of ML Estimation

ESTIMATOR = Robust Maximum Likelihood;

|

Any questions?

|

... dNSWers ...

PSQF 6249: Lecture 4
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What all do we have to estimate?

- For example, a model with two correlated factors for v = 6 items:

» F1 measured by items 1,2,3; F, measured by items 4,5,6

> |If we fix both factors to have mean=0 and variance=1, then we need:
6 intercepts (i;) + 6 factor loadings (4,) + 6 error variances (agi)
+ 1 factor covariance [Cov(F, F;)]= 19 total parameters

- Item parameters are FIXED effects - inference about specific item

> It's ok if missing data leads to different numbers of total items across persons

- What about the all the individual person factor scores?

> The individual factor scores are NOT part of the model—in other words, factor
scores are modeled as RANDOM effects assumed to be multivariate normal

> So we need the factor means, variances, and covariances as sufficient
statistics, but we don’t need the factor scores for the individual respondents
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The End Goals of Maximum
Likelihood (ML) Estimation

1. Obtain "most likely” values for each unknown parameter in our model
(intercepts, loadings, error variances, factor means, factor variances,
factor covariances) = the answers - the estimates

2. Obtain some kind of index as to how likely each parameter value
actually is (i.e., “really likely” or pretty much just a guess?)
- the standard error (SE) of the estimates (smaller is better)

3.  Obtain some kind of index as to how well the model we've specified
actually describes the data - the model fit indices

How does all this happen? The magic of multivariate normal...
(but let’s start with univariate normal first)

PSQF 6249: Lecture 4 34



Univariate Normal Distribution
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Sum over persons for log of f(y;)=
Model Log-Likelihood < Model Fit
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- This PDF tells us how
likely (i.e., tall) any value
of y. is given two things:

> Conditional mean y,

> Residual variance a2

- We can see this work
using the NORMDIST
function in excel!

> Easiest for empty model:
Ys = Bo + €
- We can check our math
via software using ML!
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Multivariate Normal for Y_:
all v = 6 item responses from person s

Univariate Normal PDF:f(yS):(Znog)m*exp[——( ys)(G 1(ys ys)}

\\\}

Multivariate Normal PDF: f (Y,) = (271)_\’3/2 *\2\_”2 *exp [— ; *(Y, — u)T (Z, )_1 (Ys—n)

- In our CFA model, the only fixed effects that predict the 6 item responses
in Y are the item intercepts (now v = 6 of them in the vector u)

- CFA model also gives us the predicted variance and covariance
matrix across the items (Z), assumed the same across persons:

> In matrices: A = loadings, ® = factor variances and covariances, ¥ = item error variances
: _ T
~ Variance of Item i: Var(y,) = 32 Var(F) + Var(e;) T=APA" +¥

> Covariance of items on same factor: Cov(yq,y2) = Ay *xVar(Fq) * 4,5,

> Covariance of items on different factors: Cov(yq,y6¢) = 4,1 * Cov(F1,F3) * A,
- Uses |X| = determinant of £ = summary of non-redundant info
- X;1 > matrix inverse - like dividing (so can't be 0 or negative)

PSQF 6249: Lecture 4
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Now Try Some Possible Answers...

(e.g., for those |9 parameters in this example)

- Plug predictions into log-likelihood function, sum over persons:

Model (H, ) Likelihood: L = ﬁ{(Zn)VS/Z *|x[ 2 *exp[—%(Ys —1)' (Z) (Y, —")}}

s=1

Model (H,)Log Likelihood: LL = ZN:{—%Iog(2n)}{—%Iogmqj{—%(ys _H)T():S)_l(Yi —u)}}

s=1

- Try one set of possible parameter values, compute LL (total height)

- Try another possible set, compute revised LL....

> Different algorithms are used to decide which values to try given that each
parameter has its own likelihood distribution = like an uncharted mountain

> Calculus helps the program scale this multidimensional mountain

At the top, all first partial derivatives (linear slopes at that point) = 0
Positive first partial derivative? Too low, try again. Negative? Too high.
Matrix of partial first derivatives = “score function” = “gradient”
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End Goals 1

and 2:

Model Estimates and SEs

- Process terminates (the model “converges”) when the next set
of tried parameter values don’t improve the LL very much...

> e.g. Mplus default convergence criteria for this H, Model LL = .00005
(other values are used for different estimation problems—see manual)

> Those are the values for our model parameters that, relative to the other
possible values tried, are “most likely” > Model (H,) LL and estimates

- But we also need to know how trustworthy those estimates are...

> Precision is indexed by the steepness of the multidimensional mountain,
where steepness = more negative partial second derivatives

> Matrix of partial second derivatives = “Hessian matrix”

> Hessian matrix * —1 = “information matrix”

Each parameter SE =

1

Jinformation

> So steeper function = more information = more precision = smaller SE
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End Goal #3: How well do the
model predictions match the data?’

- Use your model LLy, from predicting £ - so how good is it?
- Get the best possible LLy, if we used the real data (S) instead:

N
Saturated Model (H,) Log Likelihood: LL = Z{—%Iog(h)}+{—%Iog|s|}+{—%vs}}

s=1

- Compute the ML fitting function that indexes how far off

the model predictions are from the real data > x*

LL LL
ML Fitting Function: F, = :Ildata = HI(ImOdeI where x> =2*N*F,

- Combining and re-arranging the terms in LL for Hy and H; yields
this common (complete data) expression for the ML fitting function:

N
Fo = EZ{Iog\Z\ _ |Og\S\+trace[(Z)_ls}—vs}/ N If the model fits perfectly,
23\ U Y, both parts should be 0.

how far off correctiomor #items
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What about item non-normality?

« The use of this multivariate normal ML function assumes:
> Persons and items are conditionally independent
> Item responses can be missing at random (MAR; ignorable)
> Factor scores (F,) have a multivariate normal distribution
> Item residuals (e;,) have a multivariate normal distribution

> So in this case, the original item responses should have a multivariate
normal distribution, too (given prediction by normal F + normal e;,)

- Impact of non-normality of item responses:

> Linear model predicting item response from factor may not work well

= if y;, is not really continuous, the slope needs to shut off at its boundaries
> SEs and x?-based model fit statistics will be incorrect

> Three fixes: 1. Robust ML (or 2. transform the data, or
3. use a different kind of factor model - IRT/IFA... stay tuned)
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Robust ML for Non-Normality: MLR

- MLR in Mplus: = Yuan-Bentler T, (permits MCAR or MAR missing data)

> Still a linear model between the item responses and latent factor,
so the parameter estimates will be the same as in reqular ML

- Adjusts fit statistics using an estimated scaling factor - for kurtosis:
> Scaling factor = 1.000 = perfectly multivariate normal = same as regular ML!
> Scaling factor > 1.000 = leptokurtosis (too-fat talils; fixes too-big x?)
> Scaling factor < 1.000 = platykurtosis (too-thin tails; fixes too-small y?)

- SEs computed with Huber-White ‘sandwich’ estimator - uses an
information matrix from the variance of the partial first derivatives to
correct the information matrix from the partial second derivatives

> Leptokurtosis (too-fat tails) = increases information; fixes too small SEs
> Platykurtosis (too-thin tails) = lowers information; fixes too big SEs

- Because MLR simplifies to ML if the item responses actually are multivariate
normally distributed, we will use MLR as our default estimator for CFA
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SEM Estimation in STATA v. | 6

- Although SEMs can be estimated using STATA, it appears there
are (currently) fewer combinations allowed than in Mplus:

> SEM option method() allows estimator choices:

ML = regular limited-information ML (no missing data allowed)

MLMV = full-information ML (MCAR or MAR missing data)

ADF = asymptotic distribution free (requires huge N for stable estimation)
> SEM option vce( ) allows robust standard error choices:

= Robust = Huber-White ‘sandwich’ version (as given by MLR in Mplus)

— Can be used with MLMV for missing data to adjust parameter SEs
— No scaling correction factor given to compute fit statistics (none given)
« Sbentler = Satorra—Bentler version (MLM in Mplus)

— Can only be used with ML estimation method (so no missing data allowed)

- Because there appears to be no combination that allows
missing data + robust estimation of fit statistics and SEs,
I'm not going to provide STATA SEM example code...
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Confirmatory Factor Models
(CFA: Confirmatory Factor Analysis)

- Topics:
> Comparison of EFA and CFA
> CFA model parameters
> Two parts of CFA model identification
> CFA model estimation
> CFA model fit evaluation
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The Big Picture of Model Fit

- Aspects of the observed data to be predicted
(assuming a z-score metric for the factors for simplicity):

- CFA model equation: y;. = u; + A,F .+ e;,
> Mean per item: Captured by intercept u; per item

= Not a source of misfit (unless constraints are applied on the intercepts)

> Variance per item: Captured by weighted factor + error
Var(y,) = 1,2« Var(F) + Var(e;) - output given as 4; and Var(e,)

Factor and error variances are additive = not a source of misfit
(whatever F, doesn't get, e;, picks up to get back to total y, variance)

> Covariance among items: Predicted via factor loadings 4,

Loadings (multiplied) predict what observed covariance should be...
but they may not be right > THE PRIMARY SOURCE OF MISFIT
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Baselines for Assessing Fit in CFA
(Iltem means all saturated in both)

Independence (Null) Model

2 2

cSyl 0 0 0 0 0 Gyl Gyl,yZ Gyl,yS Gyl,y4 c5y1,y5 Gyl,yﬁ

2 2
0 op, O 0 0 0 Gyayt  Oy2 Oyoyz Oyaya Oyoys Oyaye
2 2
0 0 oy, O 0 0 Oyayi Oyayz  Oy3s  Oyays Oyays  Oyaye
2 2
0 O 0 oy, O 0 Oyayi Oyay2 Oyays  Oya  Oyays Oyaye
2 2

> 0 0 0 0 op O Gysyt Oysy2 Oysys Oysysa  Oys  Oysye
< 2 2
o 0 0 0 0 0 oy Gysyt Oyey2 Oysys Oysys Oysys  Oye
.g < =
7 : . : .
= Allitem means and variances All item means and variances
o. estimated separately; estimated separately;

no covariances are estimated

Yis = H; +$f\?7+ €is

all covariances estimated
are separately now, too

Your CFA model
“Hy” will go here
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Baseline model comparisons are
already given in Mplus output...

MODEL FIT INFORMATION (Abbreviated)

H, Saturated (Unstructured) Model

Number of Free Parameters 18 0511 Opyz Oyiys Oyiys Oyys Oyiys
2
Loglikelihood Oyayt  Oy2 Oyays Oyays Oyays Oyays
HO Value -11536.404 Oysyi Oyayo 053 Oyays Oyays Oyays
HO Scaling Correction Factor 1.4158 s 5 5 i o 5
for MLR y4yl “Fydy2 “y4y3 y4 Y‘;y5 y4y6
Opsyr Oysy2 Oysys Oysya Oys  Oysye
H1 Value ~11322.435 Gy Oy Oysys Oyays Oyays Ol
Hl Scaling Correction Factor 1.4073
for MIR “Model fit" x* is from a —2ALL test of your
Chi-Square Test of Model Fit chosen H, model vs. saturated H; model
Value 307.799%* L/
Degrees of Freedom 9
P-Value 0.0000
Scaling Correction Factor 1.3903 |ndependence (NU”) MOdel
for MLR -
. 2
“Baseline model” |[o» © ©0 0 0 0
2 0 o) 0 0 0 O
Chi-Square Test of Model Fit for the Baseline Modell | X IS from —2ALL 0 5’2 2 9 0 o0
Value 1128.693 ¢ test of null del Oys
est OT null mode 2
Degrees of Freedom 15 0 0 0 o, 0 0
P-Value 0.0000 vs.saturated Hy | o o o o o% 0
model (ignore) |lo o o o o &
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4 Steps in Assessing Model Fit

1. Global model fit

> Does the model “work” overall: Does it reproduce the observed data?

2. Local model fit

>  Are there any more specific problems (that cause global misfit)?

3. Inspection of model parameters

> Are the estimates, SEs, and the item responses they predict plausible?

4. Reliability and information per item

> How “good” is my test? How useful is each item?
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Step 1: Indices of Global Model Fit

- Primary fit index: obtained model y? =2 « N = Fy;;
> x? is evaluated based on model DF (# parameters left over)

> Tests null hypothesis that ¥ = S (that model = data is perfect),
so significance is bad (i.e,, smaller y?, bigger p-value is better)

Is LRT (—2ALL) of your Hy, model versus saturated best H; model
Btw, don't use “ratio rules” like x?>/DF > 2 or x?/DF > 3

> Just using x? to index model fit is usually insufficient, however:
= x? depends largely on sample size (is overpowered with large N)
Is “unreasonable” null hypothesis (perfect fit, really??)
Btw, x? is only possible given balanced data (as typical for CFA)

- Because of these issues, additional fit indices are usually used
in conjunction with the x? test (that function like effect sizes)

> Absolute Fit Indices (besides x?)—relative to “saturated” best model
> Comparative (Incremental) Fit Indices—relative to “null” worst model

> Cite a reference for any cut-offs you use... it's now more complicated!
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Step 1: Indices of Global Model Fit

- Absolute Fit: SRMR

>

>

>

Standardized Root Mean Square Residual
Get difference of standardized S — X = “residual” (leftover) matrix

Sum the squared residuals of the predicted correlation matrix across
items, divide by number of matrix elements, then take square root:

.._O'.. 2
25l 3] Y]
SRMR = a2
1(-1)

Ranges from 0 to 1: smaller is better

Convention: “.08 or less” = good fit

- Less common variant: RMR (Root Mean Square Residual)
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Step 1: Indices of Global Model Fit

Parsimony-Corrected: RMSEA
- Root Mean Square Error of Approximation

- Relies on a "non-centrality parameter” (NCP) for T (target H,)
> NCP indexes how far off your model is 2 adjusted y? distribution
> NCP; = max(y% — DFr,0) = scaled discrepancy d = NCP;/N

2 _
. RMSEA = \/maX(XT DPr0) _ |4 3 how far off per DF left
DFT*N DFT

- RMSEA ranges from 0 to 1; smaller is better
> Conventions: < .05 or .06 = “good”, .05 to .08 = “adequate”

> In addition to point estimate, get 90% confidence interval (Cl)

> RMSEA penalizes for model complexity—it's discrepancy in fit
per DF left in model (but not sensitive to N, although Cl can be)

> Also get test of “close fit": null hypothesis that RMSEA < .05
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Step 1: Indices of Global Model Fit

Comparative (Incremental) Fit Indices (bigger is better)
- Fit evaluated relative to "null” (independence) model of 0 covariances
- Relative to that, your model fit should be great!

- Conventions: > .90 = “adequate”, > .95 = “good”

- CFl: Comparative Fit Index (ranges from 0 to 1)
> Also based on idea of NCP (y%- DF7)

max(yy—DFy,0)—max(yz—DFr,0)

T = target model (Hy)
N = null model (no covariances)

» CFI =

max(yy—DFp,0)

« TLI: Tucker-Lewis Index (= Non-Normed Fit Index)
XN _ XT
> TLI = ZX_27N (50 can go negative or > 1)

AN _
DFN 1
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4 Steps in Model Evaluation

1. Assess global model fit (summary)

> Recall that item intercepts, factor means, and variances are
just-identified = misfit comes from mis-predicted covariances

> x%is sensitive to large N, so pick at least one global fit index from
each class; hope they agree (e.g., CFl, RMSEA) that fit is “good”

- Conventions of “good” absolute model fit largely stem
from simulation studies reported in Hu & Bentler (1999)

> Been cited 68,000+ times! But no one study can cover everything...

Held indicator reliability relatively constant: standardized loadings .70-.80
Small-ish model of 15 indicators measuring 3 correlated factors
Complete data, generated using perfectly multivariate normal indicators

> Research now suggests standards for what is “good” model fit will
vary significantly as a function of these unaddressed features...

Here are examples from recent studies (on your reading list or reference given)
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Good Fit is Easier with Missing Data

- Zhang & Savalei (2020): Cases that don't have the indicators
with mis-specification will contribute better fit (higher LL)!

> Figure 4: Fit when a correlated residual (error) of increasing size is ignored

RMSEA gets less worse with CFl also gets less worse with

more mis-specification when more mis-specification when
missing the indicators that have missing the indicators that have

ignored correlated residuals ignored correlated residuals
gQ ’ Q
§ ! i
3 :

Percent Missing
@ T

!

Size of Correlated Residual (Degree of Misfit) Size of Correlated Residual (Degree of Misfit)
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Good Fit is Easier with Missing Data

- Zhang & Savalei (2020): Same problem when misfit is due to
structural mis-specification (i.e., not localized to indicator errors)

> Figure 5: Fit when one factor is specified instead of two correlated factors

RMSEA gets less worse with CFl also gets less worse with

more mis-specification with more mis-specification with

greater amounts of missing greater amounts of missing
indicators with more relevance indicators with more relevance

MCAR ] Weak MAR Strong MAR

MCAR Weak MAR [ | Strong MAR

L ~
? 3
- .

JaNRd Buissipy wnusupy
. 2
wened Buissiy wnuwiugy

Percent Missing

f / }
0044 o . > 0%

[

CFI

& 20%

04
N
e 50% B
50% S a
L .
94

RMSEA

AR Buissiyy wnupeyy
° o
um|ied Buissipy wnwpepy

-
T

|

06 0.4 0210 08 0.6 04 0210 0.8 06 0.4 2
- : 0 08 6 04 0210 08 06 04 0210 08 0.6
Size of Factor Correlation (Degree of Misfit) Size of Factor Correlation (Degree of Misfit)
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Good Fit by Number of Indicators...

. ...It's complicated... see Shi, Lee, & Maydeu-Olivares (2019)
> Figure 1 and 3: Effects of # indicators for N=200, 500, 1000, and population

CFI gets more worse with Correct model: RMSEA gets a little worse

more indicators, smaller N, (still ok) with more indicators and smaller N
and low reliability (for 1 = .40,

CFl is much more variable)

Incorrect models: RMSEA gets better
with more indicators (less so with small N)

Model Condition

" " . . " " Model Condition
Correctl ly Specified Misspecified D ality

Correctly Specified Misspecified Dimensionality Misspecified Residuals

¥o

E
E
vo

Right: Mis-specified
residuals (errors) =
misfit limited to only
some indicators
¢| (so having more
properly specified
indicators makes fit
\ better on average)

CFI

sBuipeo- Jo3oe
RMSEA
o o

80
&

||||||||||||||||||||||||||||||
uuuuuuuuuuuuuuuuuuuuuuu
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Good Fit* Is Easier With Lower Reliability

- Lower reliability - Lower standardized factor loadings
> McNeish, An, & Hancock (2018): 15 indicators measuring 3 factors
> Figures 2 and 3: missing factor covariance = always good fit if A = .40!

> Strong signal (i.e., more reliability) makes it easier to detect
when model does not adequately capture that signal

140
300

250

250

O 0.40 Loading
B 0.70 Loading
W 090 Loading

O 0.40 Loading
B (.70 Loading
W 090 Loading

200

200

O 040 Loading
@ 0.70 Loading z
W 090 Loading

80 100 120

50

1

40 60
F
100
100 150

20
50
50

0

T T T T 1 I T T T T 1
0.00 0.05 0.10 0.15 020 025 0.00 005 010 015 020 070 075 0.80 085 0% 4 o009 1.00

RMSEA SRMR CFl

Wide variability in
CFl with 4 = .40!
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When Fit Indices Disagree

- *Opposite pattern also found for CFl using more incorrect
models: CFl was lower (worse fit) with lower reliability

> From Heene, M., Hilbert, S., Draxler, C., Ziegler, M., & Bihner, M. (2011). Masking misfit in confirmatory factor analysis by
increasing unique variances: A cautionary note on the usefulness of cutoff values of fit indices. Psychological Methods,
16(3), 319-336.

- When might RMSEA and CFl disagree? It's a complex function of
amount of misfit and DF with which to test it (as well as reliability)

- e S - Figure 1 from: Lai, K. & Green, S. B. (2016). The
P : . .
81 By problem with having two watches: assessment of
// B _ fit when RMSEA and CFI disagree. Multivariate
™ o - Behavioral Research, 51(2-3), 220-239, DOI:
\"1 :
- kY

.| + x-axis = amount of misfit in your
3 H, model (up to null model, F;)

5 | + y-axis = model fit discrepancy function;
" | >0 = CFl happier, <0 = RMSEA happier
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4 Steps in Model Evaluation

1. Assess global model fit (summary)

> Recall that item intercepts, factor means, and variances are
just-identified = misfit comes from mis-predicted covariances

> Be aware that artificially good absolute fit can be created by
indicators with low reliability and/or missing data; assessments
of global fit can be more variable with smaller N in large models

>  Corrections for non-normality also continually being developed...

- If model fit is not good (yet), you should NOT interpret
the model estimates, because they will change as the
model changes

> If model fit is not good, you need to find out WHY = go to step 2

- Even if model fit IS good, it does not mean you are done:
still proceed to step 2, assessing local fit

> This should help protect against erroneous claims of good fit
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4 Steps in Model Evaluation: Step 2

2. ldentify local misfit: localized model strain

> Global model fit means that the observed and predicted item
covariance matrices aren’t too far off on the whole... this says
nothing about the specific covariances to be predicted

>  Should inspect normalized model residuals for that > Local fit

« RESIDUAL output option in Mplus or ESTAT RESIDUAL in STATA
= “"Normalized” is residual/SE - works like a z-score

= Relatively large absolute values indicate “localized strain”

= Positive residual 2 Items are more related than you predicted

— More than just the factor (your model) creating a covariance
Negative residual = Items are less related than you predicted

— Not as related as your model said they should be

> Evidence of localized strain tells you where the problems are,
but not what to do about them...
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4 Steps in Model Evaluation: Step 2

2. ldentify localized model strain, continued...

- Parallel info: Modification Indices (aka, voo-doo)

> LaGrange Multiplier: decrease in model fit y? by adding the
listed model parameter (e.g., cross-loading, error covariance)

Usually only pay attention if > 3.84 for DF = 1 (for p < .05)

Get expected parameter estimate for what's to be added,
but should only pay attention if its effect size is “meaningful”

Also only pay attention if you can INTERPRET AND DEFEND IT

> Implement these ONE AT A TIME, because one addition
to the model can alter the rest of the model substantially

- Keep in mind that voo-doo indices can only try to repair
your current model; they will never suggest a new model!
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Testing Fixes to the Model

- Most common approach for assessing whether adding or
subtracting parameters changes model fit is the likelihood
ratio test (aka, —2ALL “"deviance difference” test)

> Done for you in two cases: comparing saturated H; to your H,
as model y?#, and comparing saturated H; to “null” model

> Implemented via direct difference in model x? values most often,
but this is only appropriate when using regular ML estimation

- Variants of ML for non-normal data (like MLR) require a
modified version of this —2ALL test (see Mplus website):

> Is called "rescaled likelihood ratio test”
> Includes extra steps to incorporate scaling factors

> | built you a spreadsheet for this...you’'re welcome ©

PSQF 6249: Lecture 4

6l


http://www.statmodel.com/chidiff.shtml

Testing Fixes to the Model: —2ALL

- Comparing nested models via a “likelihood ratio test” >

—2ALL (MLR rescaled version)
» 1. Calculate —2ALL = —2*(LL;y0, — LL o)

> 2. Calculate scaling correction for difference =
(#parmsfewer*scalefewer) — (#parmsmore*scalemore)

Note: Your LL will always

be listed as the HO
(H1 is for the saturated,
perfectly fitting model)

(#pa FMStaer — #pa rrnsmore)

Fewer = simpler model
More = more parameters

> 3. Calculate rescaled difference = —2ALL / scaling correction

> 4. Calculate Adf = #parms,,,.. — #parms;.

> 5. Compare rescaled difference to y? with df = Adf

= Add 1 parameter? LL ¢ > 3.84, add 2 parameters: LLg > 5.99...

= Absolute values of LL are meaningless (is relative fit only)

Process generalizes to many other kinds of models
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Testing Fixes to the Model: —2ALL

- If adding a parameter, model fit can either
get better OR stay the same (“not better”):

> Better = larger LL for HO and smaller model x?

> e.g., add another factor, add error covariance,

- If removing a parameter, model fit can either
get worse OR stay the same ("not worse”)

> Worse = smaller LL for HO and larger model x?

> e.g., constrain item loadings equal = test “tau-equivalence”

- When testing parameters that have a boundary (e.g., factor
correlation # 17?), this test will be slightly conservative

> Should use p < .10 instead of p < .05 (or mixture x? distribution)
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Testing Fixes to the Model, cont.

- For comparing non-nested models (e.g., should y, load on F,
or F; instead?), the —2ALL test is not applicable given same DF

- Use information criteria instead: AIC and BIC
> Akaike IC: AIC = —=2LL + 2*#parameters
> Bayesian (Schwartz) IC = —2LL + log(N)*#parameters
> Are NQOT significance tests, just “smaller is better”, is “evidence”

> Still cannot be used on models with different items (outcomes)

- For both nested or non-nested model comparisons,
differences in other fit indices should be examined, too

> No real critical values for changes in other fit indices, however

> They may disagree (especially RMSEA, which likes parsimony)
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Fixing the Model by Expanding

- A common (and relatively easy to fix) source of misfit is
caused by items that are too correlated after accounting
for their common factor—some possible solutions:

> Add error covariance(s) (i.e., as suggested by voo-doo indices)

= Is additive: Cov(y,, y,) = cov due to Factor + cov due to error covariance,
so the residual covariance basically plugs the hole in the covariance matrix

= In models that do not allow error covariances (e.g., IFA, stay tuned), you can
do the same via a separate uncorrelated “method factor” (for positive
covariance, fix both loadings = 1; for negative covariance, use 1 and -1)

- Either way, this means you have unaccounted for multidimensionality
- Explicit acknowledgement that you have measured your latent factor +
something else that those items have in common (e.g., stem, valence, specific
content) of unknown origin, so you must be able to defend error covariances

> Lots of problematic pairings? Re-consider factor dimensionality

I'd generally recommend against adding cross-loadings, because if the item
measures more than one thing, it will complicate the interpretation of factors
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Equivalent Ways of Addressing
Multidimensionality... (Brown, 2015 p. 181)

£ I E E g g

1 m [ Error Covariance Factor + Method Factor
al B2 B
i —_ L |E:5 _.f'E_ ; r"'ﬁ'- i E £ £ P
; . L 1 I_lT 1 |
Zooin Pubile L - 5 5 54 86 | &5
1

imeraion |
o K”“ﬂy

5| | se —.:___'

N3
/

su-:iu;\\, r"/fF'ul:\‘l

Two-Factor Models r:&‘;ﬂ ) homenon || Speskes |
E E £ E E E ll\ij-"{l llhx"‘— l\\' - 'J/
S !
LSQEE 53 -E-lnl [ 55| | 56
: , Here a general factor of “Social Interaction Anxiety”
- includes two items about public speaking specifically.
AR . |
ﬁnx-aw},-' Arcty I, The extra .relatlonshlp between the two public
speaking items can be modeled in different, yet
statistically equivalent ways... error covariances
oo represent another factor (which is why you should be
Q"ﬁ;ﬁ; / able to explain and predict them if you include them).
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When to Simplify the Model

- Factors correlated > .85ish may suggest a simpler structure

> Nested model comparison: fix factor variances to 1 so factor covariance becomes
factor correlation, then testr #1 at p < .10 (because r is bounded from —1 to 1)

- When might you consider dropping an item?

> Non-significant loadings: If the item isn't related, it is NOT
measuring the latent trait, and so you pry don't need it

> Negative loadings: Make sure to reverse-coded as needed
ahead of time, otherwise, this indicates a big problem!

> Problematic leftover positive covariances between two items—such redundancy
implies you may not need both (redundancy may indicate a “bloated specific”)

> If one item is responsible for many of the suggested error covariances, perhaps you
might remove it (but be cautious, because often fewer items - less reliability)

- However: models with different items (outcomes) are NOT COMPARABLE
AT ALL because their LL values are based on different input data!

> No model comparisons of any kind (including —2LL, AIC, and BIC)

> To do a true comparison, you'd need to leave the item in the model but
set its loading = 0 (which is the same as the original test of its loading)
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What else can go wrong?

- Error message: “non-positive definite (NPD)"
> Both S (data) and X (predicted) matrices must be positive definite

= Because they get inverted in the LL formula (like matrix division)

> Non-positive definite means that the determinant is =0,
or that the matrix is singular (has redundant information)

Double-check that data are being read in correctly; otherwise
you may need to drop items that are too highly correlated

NPD means your model is broken and you can’t keep it

- Structural under-identification
> Does every factor have a mean and variance and at least 3 items?

> Does the marker item actually load on the factor???

- Empirical under-identification

> More likely with smaller sample sizes, fewer indicators per factor,
and items with low communalities (R? accounted for by factor)
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Open in case of emergency...

- If good model fit seems hopeless, you may need
to go back to the drawing board... almost

>

Actual EFA uses weird constraints to identify the model, so don't use it

- Brown (2015) suggests an “"E/CFA" approach of estimating
an exploratory-like model staying within a CFA framework:

>

>

>

Fix each factor variance to 1 and mean to O for identification

Each factor gets one item that loads ONLY on it (loading fixed to 1)
Rest of items can load on all factors

Why bother? To get significance tests of factor loadings

May suggest a useful alternative structure, which should then
ideally be replicated in an independent sample using CFA
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Summary: Model Evaluation Steps 1 and 2

1. Assess global model fit

> Recall that item intercepts, factor means, and variances are usually
just-identified = so misfit comes from mis-predicted covariances

> X% is sensitive to large sample size, so pick at least one global fit
index from each class (e.g., CFl, RMSEA); cutoffs with caveats

2. ldentify localized model strain

>  Global model fit means that the observed and predicted covariance
matrices aren’t too far off on the whole... says nothing about the
specific matrix elements (reproduction of each covariance)

> Consider normalized residuals and modification indices to try
and “fix" the model (add or remove factors, add or remove
residual covariances, etc.)—Has to be theoretically justifiable!!

Good global and local fit? Great, but we're not done yet...

PSQF 6249: Lecture 4

70



3.

4 Steps in Model Evaluation: Step 3

Inspect parameter effect sizes and significance

>

A 1-factor model will fit each of these correlation matrices perfectly:

yl | y2 | y3 | y4 yl | y2 | y3 | y4
y1 1 y1 1
y2 | .1 1 y2 | .8 1
y3 | .1 .1 1 y3 | .8 | .8 1
y4 | .1 .1 1 1 y4 | 8 | .8 | .8 1

>

>

>

Good model fit does not guarantee a good model

A good model has meaningful factor loadings

If your items are not correlated, game over, regardless of fit
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4 Steps in Model Evaluation: Step 3

3. Inspect parameter effect sizes and significance
> Model fit does not guarantee meaningful factor loadings

Can reproduce lack of covariance quite well and still not have anything
useful—e.qg., factor loading of 0.2 - 4% shared variance?!?

Effect size (R? of item variance from factor) is practical significance

> Get SEs and p-values for unstandardized estimates
(at least report estimate from standardized solution)

= Marker items won't have significance tests for their unstandardized
loadings because they are fixed at 1, but you'll still get standardized
factor loadings for them (help to judge relative importance)

> Make sure all estimates are within bounds AND predicted item
responses are plausible at expected latent factor values (£2 SD)

No standardized factor loadings > 1 (unless the indicator
has cross-loadings, in which case this is actually possible)

No negative factor variances or negative error variances
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4 Steps in Model Evaluation: Step 3

0.1

- CFA is a regression model, so you

Can plot the responses predicted o Factor Predicted Original Item Responses_._038
from the unstandardized item g 140 i o
. o 120 /— 026
intercepts and slopes (factor 100 o .

30 =035

60

loadings) across factor values
40

- If the predicted responses exceed N o
the possible range within +2 SD, 0 e Lowes
then the linear CFA may not be  factor Scoe (Mean <0 Varance 3 = Hihes

appropriate (responses are not

“normal enough” to use CFA)

=030

042

Predicted Item Respon

w

- CFl using logit-transformed item responses

is a potentia so|ution for bounded/skewed Factor Predicted Back-Transformed Item Responses
. . . . —o— |38
continuous items (creates a logistic curve) 122 o
, S T e
> L=min—1, U=max +1 g % 3
o yis—L § o =130
> LOglt = LOG (U——yls) é 40 L42
. _ _ exp(Logit) § 20 L36
> Predicted y;s =L+ (U—-L) Trexp(Logit) & Lowest
. . _ - - Highest
- For ordinal responses, choosing an IFA/IRT T actor Score (Mean =0, Variancec )
model is another option (stay tuned)
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4 Steps in Model Evaluation: Step 4

4. Calculate item information and model-based reliability

> Item Information = (unstandardized 1)? / Var(e)
- What proportion of item variance is “true” relative to error?

> "“Omega” Sum Score Reliability = :

9

Size of unstandardized loadings by themselves is not enough,
as their relative contribution depends on size of error variance

The standardized loadings will give you the same rank order in terms of
item information, which is why information is not often used within CFA
(but stay tuned for item and test information in IRT/IFA models)

Var(F)*(ZA)?
Var(F)+(ZA)?] +ZVar(e)+ 2Z(e cov)

Factor variance * squared sum of unstandardized factor loadings,
over that + summed error variances + 2*summed error covariances

Although Omega should be calculated using unstandardized loadings,
Omega can differ slightly across methods of model identification

Omega is calculated PER FACTOR because it assumes
unidimensionality (which should have been tested already)
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CFA Model Evaluation: Summary

- The primary advantage of working in a CFA framework
Is obtaining indices of global and local model fit

> x?and model fit indices indicate how well the model-predicted
covariance matrix matches the data-observed covariance matrix...

.. But normalized residuals should still be examined for evidence of
local misfit (e.g., mis-predicted covariances between certain items)

> Nested model comparisons via rescaled —2ALL can be conducted
in order to compare the fit of augmented or simplified models...

= ... But be careful relying too blindly on modification indices to do so

> Effect size and significance of model parameters matters, too

... How well are your latent factors really defined anyway? Effect size!
Watch out for out-of-bound estimates—this means something is wrong

Watch for unreasonable predicted responses—this means you shouldn't
be using a linear slope CFA model (so you need a nonlinear slope model)
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Testing CTT Assumptions in CFA

- Alpha sum-score reliability assuming three things:
> The items measure a single, unidimensional latent factor

> All factor loadings (discriminations) are equal, or that
items are “true-score equivalent” or “tau-equivalent”

> Local independence (errors are uncorrelated)

- After assessing unidimensionality of each latent factor, we can then test
the assumption of tau-equivalence via a —2ALL comparison against a
model in which the factor loadings are constrained to be equa

> |f model fit gets worse, the loadings are not equal; items differ in discrimination

> If so, don't use alpha—use model-based reliability (omega) instead,
because omega assumes unidimensionality, but not tau-equivalence

- The assumption of parallel items is then testable by constraining
item error variances to be equal, too—does model tit get worse?

> Parallel items is needed to use Spearman-Brown formulas to predict reliability
> Parallel items will hardly ever hold in real data
> Note that if tau-equivalence doesn't hold, then neither does parallel items
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Conclusion: The Big Picture of CFA

- The CFA unit of analysis is the ITEM: y,. = i, + 4,F_ + e
> Linear regression relating continuous item responses to latent factor predictor
> Both item AND subject properties matter in predicting item responses

> Latent factors are estimated as separate entities based on the observed
covariances among items—Ilatent factors represent testable assumptions

= Items are unrelated after controlling for factor(s) - local independence
= Modeling framework allows exceptions via error covariances and method factors

- Because item responses are included:

> Items are allowed to vary in discrimination (as factor loadings)
- thus, exchangeability (tau-equivalence) is a testable hypothesis

> Because difficulty (item intercepts) do not contribute to the covariance, they
don’t really matter in CFA (unless you are testing factor mean differences)

> To make a test better, you need more items
«  What kind of items? Ones with greater information -> A2/Var(e)
> Measurement error is still assumed constant across the latent trait

» People low-medium-high in Factor Score are measured equally well
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