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Example 4: CFA of Forgiveness of Situations (𝑵 = 𝟏𝟏𝟎𝟑) in Mplus v. 8.4  
 

This example comes from the Heartland Forgiveness Scale (Yamhure Thompson et al., 2005). Here we focus on the 
Forgiveness of Situations Subscale includes six items, three of which are reverse-coded, each on a 7-point scale: 

1. When things go wrong for reasons that can’t be controlled, I get stuck in negative thoughts about it. (R) 
2. With time I can be understanding of bad circumstances in my life. 
3. If I am disappointed by uncontrollable circumstances in my life, I continue to think negatively about them. (R) 
4. I eventually make peace with bad situations in my life. 
5. It’s really hard for me to accept negative situations that aren’t anybody’s fault. (R) 
6. Eventually I let go of negative thoughts about bad circumstances that are beyond anyone’s control. 

 
Response Anchors: 1 = Almost Always False of Me, 2=?, 3 = More Often False of Me, 4 = ?, 
                                 5 = More Often True of Me, 6 = ?, 7 = Almost Always True of Me 

Observed Correlation Matrix R1 2 R3 4 R5 6 

 R1 1.000      

 2 0.240 1.000     

 R3 0.647 0.317 1.000    

 4 0.300 0.570 0.369 1.000   

 R5 0.453 0.255 0.482 0.289 1.000  

 6 0.297 0.457 0.356 0.448 0.304 1.000 

 Means 4.547 5.289 4.896 5.359 4.860 5.321 

 Variances 3.049 1.903 2.543 1.967 2.945 2.341 
 

Observed Covariance Matrix R1 2 R3 4 R5 6 

 R1 3.049      

 2 0.577 1.903     

 R3 1.802 0.697 2.543    

 4 0.734 1.103 0.824 1.967   

 R5 1.358 0.604 1.319 0.695 2.945  

 6 0.795 0.965 0.868 0.962 0.798 2.341 
To do CFA modeling, you only really need means, variances, and either correlations or covariances among items: 
𝑪𝒐𝒗(𝒚𝟏, 𝒚𝟐) = 𝑪𝒐𝒓(𝒚𝟏, 𝒚𝟐) ∗ 𝑺𝑫(𝒚𝟏) ∗ 𝑺𝑫(𝒚𝟐)   OR    𝑪𝒐𝒓(𝒚𝟏, 𝒚𝟐) = 𝑪𝒐𝒗(𝒚𝟏, 𝒚𝟐) /  𝑺𝑫(𝒚𝟏) ∗ 𝑺𝑫(𝒚𝟐)    
 
Distributions of item responses – do these look “normal enough” to you? 

   

   

https://www.lesahoffman.com/PSQF6249/Yamhure_Thompson_et_al._2005_HFS.pdf
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Mplus Code to Read in Data: 
 
TITLE:       CFA of Situation Factor 

DATA:        FILE = Example4.csv; ! Don’t need path if in same directory 

             FORMAT = free;  ! Default 

             TYPE = INDIVIDUAL;  ! Default 

 

VARIABLE:    NAMES = PersonID Self1 Self2r Self3 Self4r Self5 Self6r 

                     Other1r Other2 Other3r Other4 Other5r Other6 

                     Sit1r Sit2 Sit3r Sit4 Sit5r Sit6 

                     Selfsub Othsub Sitsub HFSsum;   ! Every variable in DATASET 

 

             USEVARIABLES = Sit1r Sit2 Sit3r Sit4 Sit5r Sit6; ! Every variable in MODEL 

             MISSING = ALL (99999);     ! Identify missing values 

IDVARIABLE = PersonID;     ! Identify person ID variable 

  

ANALYSIS:    TYPE = GENERAL;  ! Default 

             ESTIMATOR = MLR;  ! Robust ML  

 

SAVEDATA: SAVE = FSCORES; FILE = FactorScores.dat;  ! To save factor scores (optional) 

  

PLOT:      TYPE = PLOT1 PLOT2 PLOT3; ! To get all plots (e.g., factor score distributions) 

 

OUTPUT:     MODINDICES (6.635)  ! Voodoo to improve the model at p <.01 for df=1 

      STDYX    ! Fully standardized solution 

      RESIDUAL  ! Standardized and normalized residuals for local fit 

 FSDETERMINACY; ! Correlation of factor scores with “true” factor scores 

 

MODEL:      ! (model syntax goes here, to be changed for each model as shown below) 

 
Model 1. Fully Z-Scored Factor Model Identification  
(Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated) 
 
The following code refers to EVERY model parameter for completeness: 
 
! Model 1 – Fully Z-Scored Factor Identification Approach 

 

    ! Item factor loadings --> @=fixed, *=free → * REQUIRED for first item if free 

      Sit BY Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 

 

    ! Item intercepts --> [ ] indicates means or intercepts, @=fixed, *=free 

      [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*]; 

 

    ! Item error variances --> just list item by itself, @=fixed, *=free 

      Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 

 

    ! Factor variance --> just list factor by itself, @=fixed, *=free 

      Sit@1; 

 

    ! Factor mean --> [ ] indicates means or intercepts, @=fixed, *=free 

      [Sit@0]; 

 
In reality, all you’d need to write to define this model is: 
 
    ! Item factor loadings --> @=fixed, *=free → * REQUIRED for first item if free 

      Sit BY Sit1r* Sit2 Sit3r Sit4 Sit5r Sit6; 

 

    ! Factor variance --> just list factor by itself, @=fixed, *=free 

      Sit@1; 

 
By default, all intercepts are estimated separately and the factor mean is fixed at 0. 
By default, all residual variances for the items are estimated separately, too. 
By default, factor variances and covariances are estimated freely.  
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Model 1. Fully Z-Scored Identification Approach for a Single Factor Model 
(Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated) 
 
UNSTANDARDIZED MODEL RESULTS 
                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

 

FACTOR LOADINGS (regression slopes of item response on factor) 

SIT      BY 

    SIT1R              1.234      0.069     17.906      0.000 

    SIT2               0.702      0.074      9.441      0.000 

    SIT3R              1.241      0.063     19.846      0.000 

    SIT4               0.784      0.069     11.334      0.000 

    SIT5R              1.023      0.053     19.179      0.000 

    SIT6               0.819      0.069     11.942      0.000 

 

Means (of Factor) 

999 = “cannot be computed” – here, because the parameter is fixed to 0 already 

    SIT                0.000      0.000    999.000    999.000  

 

Intercepts (of Items) – HERE, ARE ACTUAL ITEM MEANS BECAUSE FACTOR MEAN IS ZERO 

    SIT1R              4.547      0.053     86.474      0.000 

    SIT2               5.289      0.042    127.347      0.000 

    SIT3R              4.896      0.048    101.959      0.000 

    SIT4               5.359      0.042    126.895      0.000 

    SIT5R              4.860      0.052     94.060      0.000 

    SIT6               5.321      0.046    115.493      0.000 

 

Variances (of Factor) 

999 = “cannot be computed” – here, because the parameter is fixed to 1 already 

    SIT                1.000      0.000    999.000    999.000 

 

 Residual Variances (variance of e’s) 

    SIT1R              1.526      0.149     10.217      0.000 

    SIT2               1.409      0.128     11.014      0.000 

    SIT3R              1.004      0.135      7.456      0.000 

    SIT4               1.352      0.127     10.672      0.000 

    SIT5R              1.899      0.118     16.025      0.000 

    SIT6               1.671      0.159     10.517      0.000 

 
Making use of the unstandardized model estimates: 
 
Writing out the model—individual predicted values: 
 
𝑦1𝑠  =  𝜇1  +  𝜆1𝐹𝑠  +  𝑒1𝑠    

𝑦1𝑠  =  4.547 +  1.234𝐹𝑠  + 𝑒1𝑠 

 
Writing out the model—predicted item variances and covariances: 
 

𝑉𝑎𝑟(𝑦1)  =  (𝜆1
2) 𝑉𝑎𝑟(𝐹)  +  𝑉𝑎𝑟(𝑒1) 

𝑉𝑎𝑟(𝑦1) =  (1.2342)(1) +  1.526 = 3.049 (= original item variance) 

 
𝐶𝑜𝑣(𝑦1, 𝑦2)  =  𝜆1 ∗ 𝑉𝑎𝑟(𝐹) ∗ 𝜆2 

𝐶𝑜𝑣(𝑦1, 𝑦2) =  1.234 ∗ 1 ∗ 0.702 = 0.866  

(actual covariance = 0.577, so the model over-predicted how related items 1 and 2 should be) 
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STDYX STANDARDIZED MODEL RESULTS (FULLY STANDARDIZED WITH RESPECT TO X & Y) 
 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

 

FACTOR LOADINGS (correlations of item response with factor) 

Square these to get reliability (proportion “true variance”) per item 

 SIT      BY 

    SIT1R              0.707      0.035     19.983      0.000 

    SIT2               0.509      0.053      9.545      0.000 

    SIT3R              0.778      0.034     22.655      0.000 

    SIT4               0.559      0.048     11.641      0.000 

    SIT5R              0.596      0.029     20.528      0.000 

    SIT6               0.535      0.047     11.392      0.000 

 

 Means (of Factor) 

    SIT                0.000      0.000    999.000    999.000 

 

 Intercepts (of Items) → is intercept / SD(Y) → not usually reported 

    SIT1R              2.604      0.057     45.888      0.000 

    SIT2               3.834      0.111     34.394      0.000 

    SIT3R              3.070      0.072     42.921      0.000 

    SIT4               3.821      0.111     34.441      0.000 

    SIT5R              2.832      0.066     43.095      0.000 

    SIT6               3.477      0.101     34.573      0.000 

 

 Variances (of Factor) → will always be 1 in a standardized solution 

    SIT                1.000      0.000    999.000    999.000 

 

 Residual Variances (standardized variance of e’s) 

    SIT1R              0.500      0.050     10.009      0.000 

    SIT2               0.741      0.054     13.628      0.000 

    SIT3R              0.395      0.053      7.388      0.000 

    SIT4               0.687      0.054     12.786      0.000 

    SIT5R              0.645      0.035     18.619      0.000 

    SIT6               0.714      0.050     14.187      0.000 

 

R-SQUARE (equals 1-residual variance OR standardized loading squared) 

    SIT1R              0.500      0.050      9.991      0.000 

    SIT2               0.259      0.054      4.772      0.000 

    SIT3R              0.605      0.053     11.327      0.000 

    SIT4               0.313      0.054      5.821      0.000 

    SIT5R              0.355      0.035     10.264      0.000 

    SIT6               0.286      0.050      5.696      0.000 

 

The standardized solution will look identical across methods of model identification with respect to the factor loadings, 
error variances, and R-square values for the items. The standardized intercepts will change because they depend on 
the unstandardized intercepts (but nobody reports them anyway). 
 

Making use of the standardized model estimates: 
 
Writing out the model – predicted item correlations: 
 
𝐶𝑜𝑟(𝑦1, 𝑦2)  =  𝜆1 ∗ 𝑉𝑎𝑟(𝐹) ∗ 𝜆2 

𝐶𝑜𝑟(𝑦1, 𝑦2) =  .707 ∗ 1 ∗ .509 = .360  

(actual correlation = . 240, so the model over-predicted how related 1 and 2 should be) 

Next up: two equivalent ways of getting the same model, but with different scaling  
(i.e., illustrating the results of different methods of identification…)
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Now let’s see the model parameters when using the marker item for model identification instead… 

Model 2. Marker Item Loading = 1, Factor Mean = 0 (Factor Variance, All Intercepts Estimated) 
 
! Model 2 -- Marker Item Loading with Factor Mean = 0 – MOST COMMON APPROACH AND DEFAULT IN MPLUS 

    Sit BY Sit1r@1 Sit2* Sit3r* Sit4* Sit5r* Sit6*;     ! Loadings (#1 fixed=1) 

    [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*];           ! Intercepts (all free) 

     Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*;            ! Residual variances (all free) 

    Sit*;                                               ! Factor variance (free)    

    [Sit@0];                                            ! Factor mean (fixed=0) 

 

UNSTANDARDIZED MODEL RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

 

FACTOR LOADINGS (regression slopes of item response on factor) 

Here, loading for SIT1R is not tested because it is fixed=1 

 SIT      BY 

    SIT1R              1.000      0.000    999.000    999.000 

    SIT2               0.569      0.083      6.830      0.000 

    SIT3R              1.005      0.035     28.555      0.000 

    SIT4               0.636      0.082      7.741      0.000 

    SIT5R              0.829      0.053     15.698      0.000 

    SIT6               0.664      0.081      8.143      0.000 

 

 Means (of Factor) 

    SIT                0.000      0.000    999.000    999.000 

 

 Intercepts (of Items) – EXPECTED Y WHEN FACTOR = 0, or for mean of factor in sample  

    SIT1R              4.547      0.053     86.474      0.000 

    SIT2               5.289      0.042    127.347      0.000 

    SIT3R              4.896      0.048    101.960      0.000 

    SIT4               5.359      0.042    126.896      0.000 

    SIT5R              4.860      0.052     94.060      0.000 

    SIT6               5.321      0.046    115.492      0.000 

 

 Variances (of Factor) 

    SIT                1.523      0.170      8.954      0.000 

 Residual Variances (variances of e’s) 

    SIT1R              1.526      0.149     10.217      0.000 

    SIT2               1.409      0.128     11.014      0.000 

    SIT3R              1.004      0.135      7.456      0.000 

    SIT4               1.352      0.127     10.673      0.000 

    SIT5R              1.899      0.118     16.026      0.000 

    SIT6               1.671      0.159     10.517      0.000 

 
Yet another equivalent alternative method for scaling the factor… 
Model 3. Marker Item Loading = 1 and Intercept = 0 (Factor Variance and Mean Estimated) 
 

! Model 3 -- Marker Item Loading and Intercept 

    Sit BY Sit1r@1 Sit2* Sit3r* Sit4* Sit5r* Sit6*;     ! Loadings (1 fixed=1) 

    [Sit1r@0 Sit2* Sit3r* Sit4* Sit5r* Sit6*];          ! Intercepts (1 fixed=0) 

     Sit1r*  Sit2* Sit3r* Sit4* Sit5r* Sit6*;           ! Residual variances (all free) 

    Sit*;                                               ! Factor variance (free)    

    [Sit*];                                             ! Factor mean (free) 

 
Means (of Factor) → Note is mean of marker item 1 

    SIT                4.547      0.053     86.474      0.000 

 

Intercepts (of Items) – EXPECTED Y WHEN FACTOR = 0  

HERE, WHICH IS WHEN ITEM 1 = 0 → beyond scale of item, so values are very low 

    SIT1R              0.000      0.000    999.000    999.000 

    SIT2               2.701      0.383      7.046      0.000 

    SIT3R              0.325      0.171      1.899      0.058 

    SIT4               2.469      0.380      6.504      0.000 

    SIT5R              1.092      0.246      4.431      0.000 

    SIT6               2.304      0.369      6.250      0.000



PSQF 6249 Example 4 page 6 

  

Calculating model degrees of freedom: 

Total DF =
𝑣(𝑣+1)

2
+ 𝑣 =

6(6+1)

2
+ 6 = 27  

Spent: Model DF = 18 
Leftover: DF =  9    

 
Model fit information for a single-factor model (same regardless of factor scaling method): 
 

Number of Free Parameters               18  → is # of estimated parameters (“free” to be not 0) 

 

Loglikelihood – use for testing differences in model fit across nested models 

 

  H0 Value                      -11536.404  → this is for your specified model 

  H0 Scaling Correction Factor      1.4158  → indicates how far off from normal=1 

       for MLR 

  H1 Value                      -11322.435  → this is for a saturated (perfect) model 

  H1 Scaling Correction Factor      1.4073  → indicates how far off from normal=1 

       for MLR 

 

Information Criteria → “smaller is better” – use for nested or non-nested model comparisons 

 

   Akaike (AIC)                   23108.808  → AIC = (-2*LLH0) + (2*estimated parameters) 

   Bayesian (BIC)                 23198.912  → BIC = (-2*LLH0) + (LN N*estimated parameters) 

   Sample-Size Adjusted BIC       23141.739  → BIC replacing N with (N + 2) / 24 

      (n* = (n + 2) / 24) 

 

 

Chi-Square Test of Model Fit (Significance is bad here) → for your specified model 

 

    Value                            307.799 

    Degrees of Freedom                     9 → leftover after estimating our one-factor model 

    P-Value                           0.0000 

    Scaling Correction Factor       1.3903 → indicates how far off from normal=1 

        for MLR           > 1 = leptokurtic distribution (too-fat tails) 

       < 1 = platykurtotic distribution (too-thin tails) 

 

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used 

    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 

    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 

    and ULSMV difference testing is done using the DIFFTEST option. 

_________________________________________________________________________________________________ 

 
Where does this χ2 value for “model fit” come from? A rescaled −2LL model comparison of this one-
factor model (H0) against the saturated model (H1) that perfectly reproduces the data covariances: 
 
Step 1: Original −2ΔLL = −2*(LLfewer – LLmore) = −2(−11,536.404 + 11,322.435) = 427.938 
 
Step 2: Scaling correction = [ (#parmsfewer*scalefewer) – (#parmsmore*scalemore)  ] / (#parmsfewer – #parmsmore) 
                                          = [ (18 * 1.4158) – (27 * 1.4073) ] / (18 – 27) =  −12.501 / −9 = 1.3903 
 
Step 3: Rescaled −2ΔLL = −2ΔLL / scaling correction = 427.938 / 1.903 = 307.803  → ~matches model χ2  
Step 4: Difference in df = #parmsmore – #parmsfewer = 27 – 18 = 9 

 
FYI for demonstration purposes, here is how to fit the saturated (Unstructured) Baseline Model:  
Item means, variances, and covariances in original data 
 
! Saturated Model 

    ! Item means --> [ ] indicates means or intercepts, @=fixed, *=free 

      [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*]; 

    ! Item variances --> just list item by itself, @=fixed, *=free 

      Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 

    ! Item covariances --> just list all by all, @=fixed, *=free 

      Sit1r  Sit2  Sit3r  Sit4  Sit5r  Sit6  WITH  

      Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 
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Model fit information for the saturated model: illustrating what the χ2 test of global model fit means 
 

Number of Free Parameters                       27 → all possible means, variances, covariances 

 

Loglikelihood 

          H0 Value                      -11322.435 

          H0 Scaling Correction Factor      1.4073 

            for MLR 

          H1 Value                      -11322.435 

          H1 Scaling Correction Factor      1.4073 

            for MLR 

 

Information Criteria 

          Akaike (AIC)                   22698.870 

          Bayesian (BIC)                 22834.027 

          Sample-Size Adjusted BIC       22748.268 

            (n* = (n + 2) / 24) 

 

Chi-Square Test of Model Fit 

          Value                              0.000* 

          Degrees of Freedom                     0 

          P-Value                           0.0000 

          Scaling Correction Factor         1.0000 

            for MLR 

_______________________________________________________________________________________________ 

 

Now back to the rest of the one-factor model fit statistics: 
 
RMSEA (Root Mean Square Error Of Approximation)(want close to 0 = saturated model) 

 

    Estimate                           0.173 

    90 Percent C.I.             0.157  0.190 

    Probability RMSEA <= .05           0.000 → so RMSEA does NOT overlap .05 (is signif > .05) 

 

 

CFI/TLI (want close to 1 = saturated model) 

 

    CFI                                0.732 

    TLI                                0.553 

 

SRMR (Standardized Root Mean Square Residual)(want close to 0 = saturated model) 

 

   Value                              0.086 

 

Chi-Square Test of Model Fit for the Baseline Model → for the “no covariances” model 

 

     Value                           1128.693   

     Degrees of Freedom                    15 

     P-Value                           0.0000 

_______________________________________________________________________________________________ 

 
Where does this χ2 value for “fit of the baseline model” come from? A rescaled −2LL model 
comparison of the independence model with NO covariances to the saturated model: 
 
Step 1: Original −2ΔLL = −2*(LLfewer – LLmore) = −2(−12,312.952 + 11,322.435) = 1,981.034 
 
Step 2: Scaling correction = [ (#parmsfewer*scalefewer) – (#parmsmore*scalemore)  ] / (#parmsfewer – #parmsmore) 
                                          = [ (12 * 0.9725) – (27 * 1.4073) ] / (12 – 27) =  –26.372 / −15 = 1.7551 
 
Step 3: Rescaled −2ΔLL = −2ΔLL / scaling correction = 1,981.034 / 1.7551 = 1,128.704  → ~matches baseline χ2  
Step 4: Difference in df = #parmsmore – #parmsfewer = 27 – 12 = 15 

 
What’s the point? This baseline model fit test tells us whether there are any covariances at all  
(i.e., whether it even makes sense to try to fit latent factors to predict them). 

Note that H0 and H1 are now the same! 
Our H0 model IS the H1 saturated model. 
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As another FYI for demonstration purposes, here is how to fit the Independence (Null) Baseline 
Model: Item means and variances, but NO covariances 
 
! Independence Model 

    ! Item means --> [ ] indicates means or intercepts, @=fixed, *=free 

      [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*]; 

    ! Item variances --> just list item by itself, @=fixed, *=free 

      Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 

    ! NO Item covariances --> just list all by all, @=fixed to 0 

      Sit1r  Sit2  Sit3r  Sit4  Sit5r  Sit6  WITH  

      Sit1r@0 Sit2@0 Sit3r@0 Sit4@0 Sit5r@0 Sit6@0; 

 

 

Model fit for the independence “null” model: illustrating what RMSEA, CFI, and TLI mean 
 
Number of Free Parameters                       12 

 

Loglikelihood 

          H0 Value                      -12312.952 

          H0 Scaling Correction Factor      0.9725 

            for MLR 

          H1 Value                      -11322.435 

          H1 Scaling Correction Factor      1.4073 

            for MLR 

 

Information Criteria 

          Akaike (AIC)                   24649.904 

          Bayesian (BIC)                 24709.974 

          Sample-Size Adjusted BIC       24671.859 

            (n* = (n + 2) / 24) 

 

Chi-Square Test of Model Fit 

          Value                           1128.692* 

          Degrees of Freedom                    15 

          P-Value                           0.0000 

          Scaling Correction Factor         1.7552 

            for MLR 

 

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used 

    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 

    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 

    and ULSMV difference testing is done using the DIFFTEST option. 

 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.259 

          90 Percent C.I.                    0.247  0.272 

          Probability RMSEA <= .05           0.000 

 

CFI/TLI 

          CFI                                0.000 

          TLI                                0.000 

 

Chi-Square Test of Model Fit for the Baseline Model 

          Value                           1128.693 

          Degrees of Freedom                    15 

          P-Value                           0.0000 

 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.300  

Note that the model fit is the same as 
the “baseline” model fit given before. 

Although not 0, this is the worst possible 
RMSEA while still allowing separate 
means and variances per item in these 
data. RMSEA is a parsimony-corrected 
absolute fit index (so, its fit is relative to 
the saturated model).  
 
CFI and TLI are 0 because they are 
“incremental fit” indices relative to the 
independence model (which this is). 
 
SRMR is also an absolute fit index 
(relative to saturated model), so this is 
the worst it gets for these data, too. 
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So global fit for the one-factor model is not so good… (RMSEA = .173, CFI = .732) 
What do the voo-doo modification indices suggest we do to fix it? 
 

MODEL MODIFICATION INDICES 

Minimum M.I. value for printing the modification index    6.635 

EPC = EXPECTED PARAMETER CHANGE 

 

                                    M.I.    E.P.C.   Std E.P.C.   StdYX E.P.C.  

 

WITH Statements (SUGGESTED ERROR COVARIANCES for unknown multidimensionality) 

 

SIT2     WITH SIT1R               49.618    -0.464     -0.464       -0.316 

SIT3R    WITH SIT1R              143.624     1.023      1.023        0.827 

SIT3R    WITH SIT2                34.877    -0.357     -0.357       -0.300 

SIT4     WITH SIT1R               36.280    -0.403     -0.403       -0.280 

SIT4     WITH SIT2               161.318     0.702      0.702        0.509 

SIT4     WITH SIT3R               29.202    -0.336     -0.336       -0.288 

SIT6     WITH SIT1R               24.079    -0.358     -0.358       -0.224 

SIT6     WITH SIT2                63.893     0.486      0.486        0.317 

SIT6     WITH SIT3R               22.386    -0.319     -0.319       -0.246 

SIT6     WITH SIT4                46.541     0.415      0.415        0.276 

 

Another approach—how about we examine local fit and see where the problems seem to be?  
The means and variances of the items will be perfectly reproduced, so that’s not an issue…  
misfit results from the difference between the observed and model-predicted covariances. 
 
Mplus gives us the “residual” (defined as observed – predicted) or “leftover” matrix of indicator covariances,  
as well as the correlation version (NOT the same as “residual correlations”, which are error correlations): 
 
Residuals for Correlations (Observed – Predicted Correlations) 

              SIT1R         SIT2          SIT3R         SIT4          SIT5R       SIT6 

              ________      ________      ________      ________      ________    ________ 

 SIT1R          0.000 

 SIT2          -0.120         0.000 

 SIT3R          0.097        -0.079         0.000 

 SIT4          -0.096         0.285        -0.067         0.000 

 SIT5R          0.032        -0.048         0.018        -0.045         0.000        

 SIT6          -0.081         0.185        -0.061         0.149        -0.015       0.000 

 

Mplus also gives us “normalized” residuals, which can be thought of as z-scores for how large the residual 
leftover covariance is in absolute terms. Because the denominator decreases with sample size, however, 
these values may be inflated in large samples, so look for relatively large values. 
 

“Normalized” Residuals for Inter-Item Covariances = (observed – predicted) / SE(observed) 
 

Normalized Residuals for Covariances 

                SIT1R         SIT2          SIT3R         SIT4          SIT5R        SIT6 

              ________      ________      ________      ________      ________     ________ 

 SIT1R          0.000 

 SIT2          -3.503         0.000 

 SIT3R          2.977        -2.253         0.000 

 SIT4          -2.928         6.560        -1.959         0.000 

 SIT5R          0.960        -1.434         0.548        -1.372         0.000 

 SIT6          -2.345         4.721        -1.756         3.925        -0.444        0.000 

 
NEGATIVE NORMALIZED RESIDUAL → Less related than you predicted (don’t want to be together) 
POSITIVE   NORMALIZED RESIDUAL → More related than you predicted (want to be more together) 
 
Why might the normalized residuals (leftover correlations) for the positive-worded items be larger than for 
the negatively-worded items?  
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These results suggest that wording valence is playing a larger role in the pattern of covariance 
across items than what the one-factor model predicts. Rather than adding voo-doo covariances 
among the residuals for specific items, how about a two-factor model based on wording instead? 
 
Model 4. Model with Two Fully Z-Scored Factors 
 

! Model 4 -- Fully Z-Scored 2-Factor Model 

    SitP BY Sit2*  Sit4*  Sit6*;               ! SitP loadings (all free) 

    SitN BY Sit1r* Sit3r* Sit5r*;              ! SitN loadings (all free) 

    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 

    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  

    Sit2*   Sit4*  Sit6*;                      ! SitP residual variances (all free) 

    Sit1r*  Sit3r* Sit5r*;                     ! SitN residual variances (all free) 

    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 

    SitP WITH SitN*;                           ! Factor covariance (free) 

    [SitP@0 SitN@0];                           ! Factor means (fixed=0)  

 
MODEL FIT INFORMATION 

 

Number of Free Parameters                 19 

 

Loglikelihood 

    H0 Value                      -11340.140 

    H0 Scaling Correction Factor      1.4017 

         for MLR 

    H1 Value                      -11322.435 

    H1 Scaling Correction Factor      1.4073 

         for MLR 

 

Information Criteria 

    Akaike (AIC)                   22718.281 

    Bayesian (BIC)                 22813.391 

    Sample-Size Adjusted BIC       22753.042 

       (n* = (n + 2) / 24) 

 

Chi-Square Test of Model Fit 

    Value                             24.924* 

    Degrees of Freedom                     8 

    P-Value                           0.0016 

    Scaling Correction Factor         1.4207 

          for MLR 

 

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used 

    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 

    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 

    and ULSMV difference testing is done using the DIFFTEST option. 

 

RMSEA (Root Mean Square Error Of Approximation) 

    Estimate                           0.044 

    90 Percent C.I.             0.025  0.064 

    Probability RMSEA <= .05           0.667 

 

CFI/TLI 

    CFI                                0.985 

    TLI                                0.972 

 

Chi-Square Test of Model Fit for the Baseline Model 

    Value                           1128.693 

    Degrees of Freedom                    15 

    P-Value                           0.0000 

 

SRMR (Standardized Root Mean Square Residual) 

    Value                              0.029 

 

 

Is the 2-factor model better than the  
1-factor model? How do we know?  
 
Rescaled likelihood ratio test  
(−2LL rescaled difference test): 
 
1. −2ΔLL = −2* difference in LL:  
    −2*(−11,536.404 + 11,340.140) = 392.528 
 
2. difference scaling correction: 
  (parms1*scale1) − (parms2*scale2) / (parms1 – parms2) 
    (18*1.4158) – (19*1.4017) / (18 – 19) = 1.1479 
 
3. rescaled difference = −2ΔLL / scaling correction:  
    392.528 / 1.1479 = 341.953 
 

4. compare rescaled difference to 𝝌𝟐 with DF = ΔDF: 

    critical 𝜒2 for DF =1 is 3.84, so because 341.953 
    is > 3.84, the model fit significantly improved 
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UNSTANDARDIZED RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

SITP     BY 

    SIT2               1.007      0.052     19.487      0.000 

    SIT4               1.064      0.050     21.195      0.000 

    SIT6               0.956      0.053     18.203      0.000  

SITN     BY 

    SIT1R              1.325      0.048     27.698      0.000 

    SIT3R              1.349      0.044     30.514      0.000 

    SIT5R              1.009      0.055     18.358      0.000 

 

SITP WITH SITN = factor covariance (= correlation if variances=1) 

   0.564      0.041     13.776      0.000 

Means 

    SITP               0.000      0.000    999.000    999.000 

    SITN               0.000      0.000    999.000    999.000 

 

Intercepts 

    SIT1R              4.547      0.053     86.474      0.000 

    SIT2               5.289      0.042    127.347      0.000 

    SIT3R              4.896      0.048    101.959      0.000 

    SIT4               5.359      0.042    126.896      0.000 

    SIT5R              4.860      0.052     94.060      0.000 

    SIT6               5.321      0.046    115.492      0.000 

  

Variances 

    SITP               1.000      0.000    999.000    999.000 

    SITN               1.000      0.000    999.000    999.000 

 

Residual Variances 

    SIT1R              1.294      0.103     12.547      0.000 

    SIT2               0.888      0.097      9.173      0.000 

    SIT3R              0.724      0.092      7.857      0.000 

    SIT4               0.835      0.093      9.003      0.000 

    SIT5R              1.926      0.119     16.128      0.000 

    SIT6               1.428      0.134     10.684      0.000 

 

STDYX STANDARDIZED RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

 SITP     BY 

    SIT2               0.730      0.032     22.794      0.000 

    SIT4               0.759      0.029     25.995      0.000 

    SIT6               0.625      0.035     17.949      0.000 

 SITN     BY 

    SIT1R              0.759      0.022     34.072      0.000 

    SIT3R              0.846      0.021     39.657      0.000 

    SIT5R              0.588      0.030     19.651      0.000 

 

SITP     WITH 

    SITN               0.564      0.041     13.776      0.000 

 

Residual Variances 

    SIT1R              0.425      0.034     12.567      0.000 

    SIT2               0.467      0.047      9.976      0.000 

    SIT3R              0.285      0.036      7.895      0.000 

    SIT4               0.425      0.044      9.589      0.000 

    SIT5R              0.654      0.035     18.576      0.000 

    SIT6               0.610      0.043     14.029      0.000 

 

R-SQUARE 

    SIT1R              0.575      0.034     17.036      0.000 

    SIT2               0.533      0.047     11.397      0.000 

    SIT3R              0.715      0.036     19.829      0.000 

    SIT4               0.575      0.044     12.998      0.000 

    SIT5R              0.346      0.035      9.826      0.000 

    SIT6               0.390      0.043      8.974      0.000 

Omega =  
 
Var(Factor) * (Sum of loadings)2 / 
Var(Factor)* (Sum of loadings)2 +  
 Sum of error variances +  
 2* Sum of error covariances 
 
Omega for Positive Factor = .744    
   1.0*(1.007+1.064+0.956)2 / 
   1.0*(1.007+1.064+0.956)2 + 
   (0.888+0.835+1.428) + 2*0  
 
   (alpha was .746, btw) 
 
Omega for Negative Factor = .775 
   1.0*(1.325+1.349+1.009)2 / 
   1.0*(1.325+1.349+1.009)2 + 
   (1.294+0.724+1.926) + 2*0  
 
   (alpha was .780) 
 



PSQF 6249 Example 4 page 12 

  

Wouldn’t it be nice if Mplus would compute Omegas for you? It can, if you (a) label the parameters it 
needs to do the math, and (b) create new terms for the Omega estimates via MODEL CONSTRAINT: 
 
Model 4. Fully Z-Scored, 2-Factor Model again, now with parameter labels  
 

! Model 4 -- Fully Z-Scored 2-Factor Model with all parameters labeled for reference 

    SitP BY Sit2*  Sit4*  Sit6*  (L1-L3);      ! SitP loadings (all free) 

    SitN BY Sit1r* Sit3r* Sit5r* (L4-L6);      ! SitN loadings (all free) 

    [Sit2*  Sit4*  Sit6*]   (I1-I3);           ! SitP intercepts (all free) 

    [Sit1r* Sit3r* Sit5r*]  (I4-I6);           ! SitN intercepts (all free)  

    Sit2*   Sit4*  Sit6*    (E1-E3);           ! SitP residual variances (all free) 

    Sit1r*  Sit3r* Sit5r*   (E4-E6);           ! SitN residual variances (all free) 

    SitP@1 (VarP); SitN@1   (VarN);            ! Factor variances (fixed=1) 

    SitP WITH SitN*  (FactCov);                ! Factor covariance (free) 

    [SitP@0 SitN@0]  (MeanP MeanN);            ! Factor means (fixed=0)  

 
MODEL CONSTRAINT:       ! Calculate omega model-based reliability per factor 

    NEW(OmegaP OmegaN); ! Using 1 as placeholder for factor variances 

    OmegaP = (1*(L1+L2+L3)**2) / ((1*(L1+L2+L3)**2) + (E1+E2+E3)); 

    OmegaN = (1*(L4+L5+L6)**2) / ((1*(L4+L5+L6)**2) + (E4+E5+E6)); 

 

Output now provided in unstandardized solution: 
 

New/Additional Parameters 

    OMEGAP             0.744      0.020     37.956      0.000 

    OMEGAN             0.775      0.014     56.803      0.000 

 
Any more local fit problems? Let’s see… 
 
Residuals of correlation matrix (how far off each predicted correlation is from data): 
              SIT1R         SIT2          SIT3R         SIT4          SIT5R    SIT6 

              ________      ________      ________      ________      ________    ________ 

 SIT1R          0.000 

 SIT2          -0.073         0.000 

 SIT3R          0.006        -0.031         0.000 

 SIT4          -0.025         0.016         0.007         0.000 

 SIT5R          0.007         0.013        -0.015         0.037         0.000     

 SIT6           0.030         0.001         0.057        -0.026         0.097     0.000 

 
“Normalized” residuals (z-like statistic for how far off each covariance is): 
                SIT1R         SIT2          SIT3R         SIT4          SIT5R        SIT6 

              ________      ________      ________      ________      ________     ________ 

 SIT1R          0.000 

 SIT2          -2.125         0.000 

 SIT3R          0.172        -0.896         0.000 

 SIT4          -0.768         0.370         0.192         0.000 

 SIT5R          0.212         0.382        -0.464         1.128         0.000 

 SIT6           0.869         0.031         1.658        -0.676         2.847        0.000 

 
Any suggested voo-doo? (only available when not using MODEL CONSTRAINT, though)    
        

MODEL MODIFICATION INDICES 

Minimum M.I. value for printing the modification index    6.635 

 

                            M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C. 

 

BY Statements – these are cross-loadings 

 

SITN     BY SIT2            9.775    -0.224     -0.224       -0.162 

SITN     BY SIT6           10.828     0.245      0.245        0.160 

 

WITH Statements – these are error covariances 

 

SIT4     WITH SIT2         10.830     0.332      0.332        0.386 

SIT6     WITH SIT4          9.773    -0.273     -0.273       -0.250 
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Because we have no real theoretical or defendable reason to fit any of these suggested  
parameters, we will not add any new parameters. This will be about as good as it gets.  
 
Let’s examine the estimated distribution of the factor scores for each factor:  
 

SUMMARY OF FACTOR SCORES 

     FACTOR SCORE INFORMATION (COMPLETE-DATA PATTERN) 

           FACTOR DETERMINACIES 

           SITP       0.882 

           SITN       0.908 

 

SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES 

     SAMPLE STATISTICS 

           Means 

              SITP          SITP_SE       SITN          SITN_SE 

              ________      ________      ________      ________ 

 1              0.000         0.472         0.000         0.418 

           Covariances 

              SITP          SITP_SE       SITN          SITN_SE 

              ________      ________      ________      ________ 

 SITP           0.777 

 SITP_SE        0.000         0.000 

 SITN           0.533         0.000         0.825 

 SITN_SE        0.000         0.000         0.000         0.000 

           Correlations 

              SITP          SITP_SE       SITN          SITN_SE 

              ________      ________      ________      ________ 

 SITP           1.000 

 SITP_SE      999.000         1.000 

 SITN           0.665       999.000         1.000 

 SITN_SE      999.000       999.000       999.000         1.000 

 

 

 
The positive factor scores have 
an estimated mean of 0 with a 
variance of 0.78 instead of 1.00.  
 
The SE for each person’s factor 
score is 0.472. Treating factor 
scores as observed variables is 
like saying SE = 0. 
 
Positive factor score =  
Score ± 2*0.472 = Score ± 0.944! 

 

 
The negative factor scores have 
an estimated mean of 0 with a 
variance of 0.825 instead of 1.00.  
 
The SE for each person’s factor 
score is 0.418, so ± 0.836! 
 
The negative factor scores retain 
more variance (and have a 
smaller SE) because there is 
more information in them, due to 
higher factor loadings (greater 
reliability) of their items. 

Although the variance of each 
factor was supposed to be 1.0, 
the variance of the factor scores 
is < 1.0 because of shrinkage. 
 
Likewise, the correlation 
between the factors was .56,  
but the correlation between the 
estimated factor scores is .67 
instead (given the shrinkage). 
 

The factor determinacy, the correlation 
between the estimated and true factor 
scores, is .882 for the positive factor 
and .908 for the negative factor. 
 
Positive factor score SE = 0.472 
Negative factor score SE = 0.418 
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Model-predicted item responses by factor scores: 

  
 
What if we had just taken the mean of the three items for each subscale? 

  

  

There are problems with either of these observed variable approaches: The mean of the items appears to have less 
variability (i.e., fewer possible scores) and assumes that all items should be weighted equally and have no error. The 
estimated factor scores do not have the same properties as estimated for the factor in the model (i.e., less variance 
for each factor, higher correlation among the factors).  
What to do instead of either of these? Stay tuned for options involving plausible values… 
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Another example: Formal Tests of CTT Assumptions 
 
We will test the CTT assumption of tau-equivalence (equal factor loadings), one factor at a time.  
If those hold, we can then test the assumption of parallel items (equal error variances, too). 
First, in Model 5 we will test “tau-equivalence” (equal loadings) of the negative factor only: 
 
! Model 5 -- Tau-Equivalent Negative Items Only 2-Factor Model 

    SitP BY Sit2*  Sit4*  Sit6*;               ! SitP loadings (all free) 

    SitN BY Sit1r* Sit3r* Sit5r* (NegLoad);    ! SitN loadings (all held equal) 

    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 

    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  

    Sit2*  Sit4*  Sit6*;                       ! SitP residual variances (all free) 

    Sit1r* Sit3r* Sit5r*;                      ! SitN residual variances (all free) 

    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 

    SitP WITH SitN*;                           ! Factor covariance (free) 

    [SitP@0 SitN@0];                           ! Factor means (fixed=0) 

 
UNSTANDARDIZED MODEL RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

SITP     BY 

    SIT2               1.007      0.052     19.491      0.000 

    SIT4               1.063      0.050     21.202      0.000 

    SIT6               0.957      0.052     18.257      0.000 

 

 SITN     BY 

    SIT1R              1.254      0.032     38.957      0.000 

    SIT3R              1.254      0.032     38.957      0.000 

    SIT5R              1.254      0.032     38.957      0.000 

 

 SITP     WITH 

    SITN               0.575      0.041     13.855      0.000 

 

 Residual Variances 

    SIT1R              1.335      0.083     16.150      0.000 

    SIT2               0.889      0.096      9.217      0.000 

    SIT3R              0.857      0.069     12.337      0.000 

    SIT4               0.837      0.092      9.045      0.000 

    SIT5R              1.806      0.115     15.716      0.000 

    SIT6               1.425      0.134     10.630      0.000 

 

STANDARDIZED STYDX MODEL RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

SITP     BY 

    SIT2               0.730      0.032     22.840      0.000 

    SIT4               0.758      0.029     26.037      0.000 

    SIT6               0.626      0.035     17.958      0.000 

 

 SITN     BY 

    SIT1R              0.735      0.016     46.189      0.000 

    SIT3R              0.805      0.016     50.774      0.000 

    SIT5R              0.682      0.015     45.076      0.000 

 

 Residual Variances 

    SIT1R              0.459      0.023     19.604      0.000 

    SIT2               0.467      0.047     10.017      0.000 

    SIT3R              0.353      0.025     13.835      0.000 

    SIT4               0.425      0.044      9.633      0.000 

    SIT5R              0.535      0.021     25.887      0.000 

    SIT6               0.609      0.044     13.969      0.000 

Why are the standardized factor loadings for the negative factor not held equal like the unstandardized 
loadings are? 
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Fit of previous 2-factor model as baseline: 
 
Number of Free Parameters                 19 

 

Loglikelihood 

    H0 Value                      -11340.140 

    H0 Scaling Correction Factor      1.4017 

         for MLR 

    H1 Value                      -11322.435 

    H1 Scaling Correction Factor      1.4073 

         for MLR 

 

RMSEA (Root Mean Square Error Of 

Approximation) 

    Estimate                           0.044 

    90 Percent C.I.             0.025  0.064 

    Probability RMSEA <= .05           0.667 

 

CFI/TLI 

     CFI                                0.985 

     TLI                                0.972 

 

Fit of tau-equivalent negative items 2-factor model: 
 

Number of Free Parameters                  17 

 

Loglikelihood 

     H0 Value                      -11357.612 

     H0 Scaling Correction Factor      1.4474 

            for MLR 

     H1 Value                      -11322.435 

     H1 Scaling Correction Factor      1.4073 

            for MLR  

 

RMSEA (Root Mean Square Error Of 

Approximation) 

      Estimate                           0.062 

      90 Percent C.I.             0.046  0.079 

      Probability RMSEA <= .05           0.102 

 

CFI/TLI 

     CFI                                0.962 

     TLI                                0.943 

 

Does the assumption of tau-equivalence hold for the negative items? How do we know? 
 
 
 
Second, Model 6 tests tau-equivalence of the factor loadings for the positive factor only: 
 
! Model 6 -- Tau-Equivalent Positive Items Only 2-Factor Model 

    SitP BY Sit2*  Sit4*  Sit6* (PosLoad);     ! SitP loadings (all held equal) 

    SitN BY Sit1r* Sit3r* Sit5r*;              ! SitN loadings (all free) 

    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 

    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  

    Sit2*  Sit4*  Sit6*         (E1-E3);       ! SitP residual variances (all free) 

    Sit1r* Sit3r* Sit5r*;                      ! SitN residual variances (all free) 

    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 

    SitP WITH SitN*;                           ! Factor covariance (free) 

    [SitP@0 SitN@0];                           ! Factor means (fixed=0) 

 

MODEL CONSTRAINT:   

    NEW(AlphaP);   ! This is now equivalent to alpha 

    AlphaP = (1*(Posload*3)**2) / ((1*(Posload*3)**2) + (E1+E2+E3)); 

 

Number of Free Parameters                 17 

 

Loglikelihood 

    H0 Value                      -11341.773 

    H0 Scaling Correction Factor      1.4187 

          for MLR 

    H1 Value                      -11322.435 

    H1 Scaling Correction Factor      1.4073 

          for MLR 

 
RMSEA (Root Mean Square Error Of Approximation) 

    Estimate                           0.040 

    90 Percent C.I.             0.023  0.058 

    Probability RMSEA <= .05           0.797 

 

CFI/TLI 

    CFI                                0.984 

    TLI                                0.976 

 

 

 

Does the assumption of tau-equivalence hold 
for the positive items? How do we know? 
 



PSQF 6249 Example 4 page 17 

  

UNSTANDARDIZED MODEL RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

SITP     BY 

    SIT2               1.014      0.036     28.389      0.000 

    SIT4               1.014      0.036     28.389      0.000 

    SIT6               1.014      0.036     28.389      0.000 

 

 SITN     BY 

    SIT1R              1.325      0.048     27.727      0.000 

    SIT3R              1.349      0.044     30.531      0.000 

    SIT5R              1.010      0.055     18.370      0.000 

 

 SITP     WITH 

    SITN               0.567      0.040     14.131      0.000 

 

 Residual Variances 

    SIT1R              1.295      0.103     12.580      0.000 

    SIT2               0.881      0.083     10.587      0.000 

    SIT3R              0.725      0.092      7.873      0.000 

    SIT4               0.886      0.075     11.767      0.000 

    SIT5R              1.925      0.119     16.117      0.000 

    SIT6               1.384      0.118     11.737      0.000 

 

New/Additional Parameters 

    ALPHAP             0.746      0.020     38.200      0.000 

 

STANDARDIZED STDYX MODEL RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

SITP     BY 

    SIT2               0.734      0.023     32.593      0.000 

    SIT4               0.733      0.021     35.611      0.000 

    SIT6               0.653      0.022     29.743      0.000 

 

 SITN     BY 

    SIT1R              0.759      0.022     34.139      0.000 

    SIT3R              0.846      0.021     39.706      0.000 

    SIT5R              0.588      0.030     19.663      0.000 

 

 SITP     WITH 

    SITN               0.567      0.040     14.131      0.000 

 

 Residual Variances 

    SIT1R              0.425      0.034     12.598      0.000 

    SIT2               0.461      0.033     13.965      0.000 

    SIT3R              0.285      0.036      7.910      0.000 

    SIT4               0.463      0.030     15.350      0.000 

    SIT5R              0.654      0.035     18.562      0.000 

    SIT6               0.574      0.029     20.019      0.000 

 
Given that tau-equivalence held for the positive factor, in Model 7 we can also test the assumption 
of parallel items as equal residual variances (in addition to equal factor loadings): 
 
! Model 7 -- Parallel Items on Positive Only 2-Factor Model 

    SitP BY Sit2*  Sit4*  Sit6*  (PosLoad);    ! SitP loadings (all held equal) 

    SitN BY Sit1r* Sit3r* Sit5r*;              ! SitN loadings (all free) 

    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 

    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  

    Sit2*  Sit4*  Sit6*          (PosError);   ! SitP residual variances (all held equal) 

    Sit1r* Sit3r* Sit5r*;                      ! SitN residual variances (all free) 

    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 

    SitP WITH SitN*;                           ! Factor covariance (free) 

    [SitP@0 SitN@0];                           ! Factor means (fixed=0) 

MODEL CONSTRAINT:   

    NEW(SpearP);   ! This is now Spearman-Brown reliability 

    SpearP = (1*(Posload*3)**2) / ((1*(Posload*3)**2) + (PosError*3)); 
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Number of Free Parameters                       15 

 

Loglikelihood 

          H0 Value                      -11361.960 

          H0 Scaling Correction Factor      1.3443 

            for MLR 

          H1 Value                      -11322.435 

          H1 Scaling Correction Factor      1.4073 

            for MLR 

 

 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.056 

          90 Percent C.I.             0.041  0.072 

          Probability RMSEA <= .05           0.244 

 

CFI/TLI 

          CFI                                0.963 

          TLI                                0.954 

 

UNSTANDARDIZED MODEL RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

 

SITP     BY 

    SIT2               1.005      0.035     28.455      0.000 

    SIT4               1.005      0.035     28.455      0.000 

    SIT6               1.005      0.035     28.455      0.000 

 

 SITN     BY 

    SIT1R              1.325      0.048     27.816      0.000 

    SIT3R              1.347      0.044     30.623      0.000 

    SIT5R              1.011      0.055     18.408      0.000 

 

 SITP     WITH 

    SITN               0.581      0.040     14.581      0.000 

 

 Residual Variances 

    SIT1R              1.294      0.102     12.645      0.000 

    SIT2               1.060      0.061     17.452      0.000 

    SIT3R              0.728      0.091      7.992      0.000 

    SIT4               1.060      0.061     17.452      0.000 

    SIT5R              1.922      0.119     16.095      0.000 

    SIT6               1.060      0.061     17.452      0.000 

 

STANDARDIZED STDYX MODEL RESULTS 

 

 SITP     BY 

    SIT2               0.698      0.019     37.365      0.000 

    SIT4               0.698      0.019     37.365      0.000 

    SIT6               0.698      0.019     37.365      0.000 

 

 SITN     BY 

    SIT1R              0.759      0.022     34.339      0.000 

    SIT3R              0.845      0.021     40.011      0.000 

    SIT5R              0.589      0.030     19.713      0.000 

 

 SITP     WITH 

    SITN               0.581      0.040     14.581      0.000 

 

 Residual Variances 

    SIT1R              0.424      0.034     12.652      0.000 

    SIT2               0.512      0.026     19.616      0.000 

    SIT3R              0.286      0.036      8.024      0.000 

    SIT4               0.512      0.026     19.616      0.000 

    SIT5R              0.653      0.035     18.520      0.000 

    SIT6               0.512      0.026     19.616      0.000

Does the assumption of parallel items hold for 
the positive items? How do we know? 
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Example results section describing these analyses… 
 
(Note: You may borrow the phrasing contained in this example to describe various aspects of your 
analyses, but your own results sections will not mimic this example exactly—they should be  
customized to describe the how and the why of what you did, specifically). 
 
(Descriptive information for the sample and items would have already been given in the method section…) 
 
The reliability and dimensionality of six items each assessing forgiveness of situations was assessed in a 
sample of 1,103 persons with a confirmatory factor analysis using robust maximum likelihood estimation 
(MLR) in Mplus v. 8.4 (Muthén & Muthén, 1998–2017). All models were identified by setting any latent factor 
means to 0 and latent factor variances to 1, such that all item intercepts, item factor loadings, and item 
residual variances were then estimated. The six items utilized a seven-point response scale, and three 
items were reverse-coded prior to analysis such that higher values then indicated greater levels of situation 
forgiveness for all items. As reported in Table 1, model fit statistics include the obtained model χ2, its scaling 
factor (in which values different than 1.000 indicate deviations from multivariate normality), its degrees of 
freedom, and its p-value (in which non-significance is desirable for good fit), CFI, or Comparative Fit Index 
(in which values higher than .95 are desirable for good fit), and the RMSEA, or Root Mean Square Error of 
Approximation, point estimate and 90% confidence interval (in which values lower than .06 are desirable for 
good fit). As reported in Table 2, nested model comparisons were conducted using the rescaled −2ΔLL with 
degrees of freedom equal to the rescaled difference in the number of parameters between models (i.e., a 
rescaled likelihood ratio test). The specific models examined are described in detail below. 
 
Although a one-factor model was initially posited to account for the pattern of covariance across these six 
items, it resulted in poor fit, as shown in Table 1. Although each item had a significant factor loading (with 
standardized loadings ranging from .509 to .778), a single latent factor did not adequately describe the 
pattern of relationship across these six items as initially hypothesized. Sources of local misfit were identified 
using the normalized residual covariance matrix, available via the RESIDUAL output option in Mplus, in 
which individual values were calculated as: (observed covariance – expected covariance) / SE of observed 
covariance. Relatively large positive residual covariances were observed among items 2, 4, and 6 (the 
positively-worded items), indicating that these items were more related than was predicted by the single-
factor model. Modification indices, available via the MODINDICES output option in Mplus, corroborated this 
pattern, further suggesting additional remaining relationships among the negatively-worded items as well.  
 
The necessity of separate latent factors for the positively-worded and negatively-worded items was tested 
by specifying a two-factor model in which the positively-worded items 2, 4, and 6 indicated a forgiveness 
factor, and in which negatively-worded items 1, 3, and 5 indicated a not unforgiveness factor, and in which 
the two factors were allowed to correlate. The two-factor model fit was acceptable by every criterion except 
the significant χ2, likely due to the large sample. In addition, the two-factor model fit significantly better than 
the one-factor model, as reported in Table 2, indicating that the estimated correlation between the two 
factors of .564 was significantly less than 1.000. Thus, the six items appeared to measure two separate but 
related constructs. Further examination of local fit via normalized residual covariances and modification 
indices yielded no interpretable remaining relationships, and thus this two-factor model was retained.  
 
Table 3 provides the estimates and their standard errors for the item factor loadings, intercepts, and 
residual (error) variances from both the unstandardized and standardized solutions. All factor loadings and 
the factor covariance were statistically significant. As shown in Table 3, standardized loadings for the 
forgiveness factor items ranged from .625 to .759 (with R2 values for the amount of item variance accounted 
for by the factor ranging from .390 to .575), and standardized loadings for the not unforgiveness factor 
ranged from .588 to .846 (with R2 values of .346 to .715), suggesting the factor loadings were practically 
significant as well. Omega model-based reliability was calculated for the sum scores of each factor as 
described in Brown (2015) as the squared sum of the factor loadings divided by the squared sum of the 
factor loadings plus the sum of the error variances plus twice the sum of the error covariances (although no 
error covariances were included here). Omega was .744 for the forgiveness factor and .775 for the not 
unforgiveness factor, suggesting marginal reliability for each of the three-item scales. 
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The resulting distribution of the factors was examined by requesting empirical Bayes estimates of the 
individual scores for each factor, as shown in Figure 1. Factor determinacy estimates, available via the 
FSDETERMINACY output option in Mplus, were .882 and .908, respectively, for the forgiveness and not 
unforgiveness factors (with standard errors for the factor scores of .472 and .418), indicating that the 
estimated factor scores were strongly related to their model-based counterparts. In addition, Figure 2 shows 
the predicted response for each item as a linear function of the latent factor based on the estimated model 
parameters. As shown, the predicted item response goes above the highest response option just before a 
latent factor score of +2 (i.e., 2 SDs above the mean), resulting in a ceiling effect for both sets of factor 
scores, as also shown in Figure 1. In addition, for the not unforgiveness factor, the predicted item response 
goes below the lowest response option just before a latent factor score of −3 (i.e., 3 SDs below the mean), 
resulting in a floor effect for the not unforgiveness factor, as also shown in Figure 1. 
 
The extent to which the items within each factor could be seen as exchangeable was then examined via an 
additional set of nested model comparisons, as reported in Table 1 (for fit) and Table 2 (for comparisons of 
fit). First, the assumption of tau-equivalence (i.e., true-score equivalence, equal discrimination across items) 
was examined by constraining the factor loadings to be equal within a factor. For the not unforgiveness 
factor, the tau-equivalent model fit was acceptable but was significantly worse than the original two-factor 
model fit (i.e., in which all loadings were estimated freely). For the forgiveness factor, however, the tau-
equivalent model fit was acceptable and was not significantly worse than the original two-factor model fit. 
Thus, the assumption of tau-equivalence held for the forgiveness factor items only. Finally, the assumption 
of parallel items (i.e., equal factor loadings and equal residual variances, or equal reliability across items) 
was examined for the forgiveness factor items only, and the resulting model fit was acceptable but was 
significantly worse than the tau-equivalent forgiveness factor model fit. Thus, the assumption of parallel 
items did not hold for the forgiveness factor items. In summary, while the not unforgiveness factor items 
were not exchangeable, the forgiveness factor items were exchangeable with respect to their factor 
loadings only (i.e., equal discrimination, but not equal item residual variances or item reliability). 
 
Tables would be built as seen in the excel workbook: 
 
Table 1 → “Model Fit Table 1” worksheet 
Table 2 → “MLR Comparisons Table 2” worksheet 
Table 3 → “Model Estimates Table 3” worksheet 
 
Figures would be built as seen in this example: 
 
Figure 1 → Can be built in Mplus  
Figure 2 → Can be built using “Factor Model Predictions” worksheet  
 
References: 
 
Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York, NY: Guilford. 
 
Muthén, L. K., & Muthén, B.O. (1998–2017). Mplus user’s guide (8th ed.). Los Angeles, CA: Muthén & 
Muthén. 
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Example 4 Continued: CFA of Forgiveness of Situations (N = 1103) using SAS MIXED 
 

SAS Code to Read in Mplus Data: 
 

* Import data from Mplus, becomes var1-var23 without names at top; 

PROC IMPORT OUT=work.Situation DATAFILE= "&example.\Study2.csv" DBMS=CSV REPLACE; 

     GETNAMES=NO; DATAROW=1; RUN; 

 

* Rename variables, remove missing values; 

DATA Situation; SET Situation; 

 ARRAY old(23) var1-var23; 

 ARRAY new(23) PersonID Self1 Self2r Self3 Self4r Self5 Self6r 

                   Other1r Other2 Other3r Other4 Other5r Other6 

                   Sit1r Sit2 Sit3r Sit4 Sit5r Sit6 

                   Selfsub Othsub Sitsub HFSsum; 

 DO i=1 TO 23; new(i)=old(i); IF new(i)=99999 THEN new(i)=.; END; 

 DROP i var1-var23; RUN; 

 

* Stack situation items; 

DATA SituationStacked; SET Situation; 

 ARRAY aitem(6)  Sit1r Sit2 Sit3r Sit4 Sit5r Sit6; 

 DO i=1 TO 6; itemnum=i; response=aitem(i); OUTPUT; END; DROP i; RUN; 

 

Independence (Null) Baseline Model: Item means and variances, but NO covariances 
 
TITLE "Independence (Null) CFA Model in MIXED"; 

PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 

 CLASS PersonID itemnum; 

 MODEL response = itemnum / SOLUTION NOINT NOTEST; 

 REPEATED itemnum / TYPE=TOEPH(1) SUBJECT=PersonID R; RUN; 

 

                      Estimated R Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      3.0493 

   2                  1.9028 

   3                              2.5431 

   4                                          1.9672 

   5                                                      2.9451 

   6                                                                  2.3412 

 

                 Covariance Parameter Estimates 

Cov                                Standard         Z 

Parm       Subject     Estimate       Error     Value      Pr > Z 

Var(1)     PersonID      3.0493      0.1298     23.48      <.0001 

Var(2)     PersonID      1.9028     0.08102     23.48      <.0001 

Var(3)     PersonID      2.5431      0.1083     23.48      <.0001 

Var(4)     PersonID      1.9672     0.08377     23.48      <.0001 

Var(5)     PersonID      2.9451      0.1254     23.48      <.0001 

Var(6)     PersonID      2.3412     0.09969     23.48      <.0001 

 

                            Information Criteria 

Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 

    24625.9       12    24649.9    24650.0    24672.6    24710.0    24722.0 

 

                        Solution for Fixed Effects 

                                   Standard 

Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 

itemnum     1            4.5467     0.05258    5509      86.47      <.0001 

itemnum     2            5.2892     0.04153    5509     127.35      <.0001 

itemnum     3            4.8957     0.04802    5509     101.96      <.0001 

itemnum     4            5.3590     0.04223    5509     126.90      <.0001 

itemnum     5            4.8604     0.05167    5509      94.06      <.0001 

itemnum     6            5.3209     0.04607    5509     115.49      <.0001 

 

The R matrix shows the 
unconditional variances per 
item—repeated in the next 
piece of output as Var(item).  
Note that this independence 
“null” model predicts NO 
covariances between items. 

The fixed effects show the 
unconditional means per item. 

Model fit is given as −2LL 
rather than LL (but otherwise is 
the same as given from Mplus). 

TYPE=TOEPH(1) predicts a 
diagonal matrix (would be the 
same as TYPE=UN(1). 
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Saturated (Unstructured) Baseline Model: Item means, variances, and covariances in original data 
 

TITLE "Saturated (Unstructured) CFA Model in MIXED"; 

PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 

 CLASS PersonID itemnum; 

 MODEL response = itemnum / SOLUTION NOINT NOTEST; 

 REPEATED itemnum / TYPE=UN(6) SUBJECT=PersonID R RCORR; RUN; 

 

                      Estimated R Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      3.0493      0.5772      1.8022      0.7339      1.3583      0.7946 

   2      0.5772      1.9028      0.6974      1.1029      0.6043      0.9652 

   3      1.8022      0.6974      2.5431      0.8244      1.3191      0.8676 

   4      0.7339      1.1029      0.8244      1.9672      0.6947      0.9618 

   5      1.3583      0.6043      1.3191      0.6947      2.9451      0.7982 

   6      0.7946      0.9652      0.8676      0.9618      0.7982      2.3412 

 

                Estimated R Correlation Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      1.0000      0.2396      0.6472      0.2997      0.4533      0.2974 

   2      0.2396      1.0000      0.3170      0.5700      0.2553      0.4573 

   3      0.6472      0.3170      1.0000      0.3686      0.4820      0.3555 

   4      0.2997      0.5700      0.3686      1.0000      0.2886      0.4482 

   5      0.4533      0.2553      0.4820      0.2886      1.0000      0.3040 

   6      0.2974      0.4573      0.3555      0.4482      0.3040      1.0000 

                  Covariance Parameter Estimates 

                                    Standard         Z 

Cov Parm    Subject     Estimate       Error     Value        Pr Z 

UN(1,1)     PersonID      3.0493      0.1298     23.48      <.0001 

UN(2,1)     PersonID      0.5772     0.07458      7.74      <.0001 

UN(2,2)     PersonID      1.9028     0.08102     23.48      <.0001 

UN(3,1)     PersonID      1.8022     0.09988     18.04      <.0001 

UN(3,2)     PersonID      0.6974     0.06948     10.04      <.0001 

UN(3,3)     PersonID      2.5431      0.1083     23.48      <.0001 

UN(4,1)     PersonID      0.7339     0.07699      9.53      <.0001 

UN(4,2)     PersonID      1.1029     0.06705     16.45      <.0001 

UN(4,3)     PersonID      0.8244     0.07178     11.49      <.0001 

UN(4,4)     PersonID      1.9672     0.08377     23.48      <.0001 

UN(5,1)     PersonID      1.3583     0.09907     13.71      <.0001 

UN(5,2)     PersonID      0.6043     0.07356      8.21      <.0001 

UN(5,3)     PersonID      1.3191     0.09148     14.42      <.0001 

UN(5,4)     PersonID      0.6947     0.07543      9.21      <.0001 

UN(5,5)     PersonID      2.9451      0.1254     23.48      <.0001 

UN(6,1)     PersonID      0.7946     0.08393      9.47      <.0001 

UN(6,2)     PersonID      0.9652     0.06988     13.81      <.0001 

UN(6,3)     PersonID      0.8676     0.07798     11.13      <.0001 

UN(6,4)     PersonID      0.9618     0.07081     13.58      <.0001 

UN(6,5)     PersonID      0.7982     0.08264      9.66      <.0001 

UN(6,6)     PersonID      2.3412     0.09969     23.48      <.0001 

 

                            Information Criteria 

Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 

    22644.9       27    22698.9    22699.1    22750.0    22834.0    22861.0 

 

                        Solution for Fixed Effects 

                                   Standard 

Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 

itemnum     1            4.5467     0.05258    5509      86.47      <.0001 

itemnum     2            5.2892     0.04153    5509     127.35      <.0001 

itemnum     3            4.8957     0.04802    5509     101.96      <.0001 

itemnum     4            5.3590     0.04223    5509     126.90      <.0001 

itemnum     5            4.8604     0.05167    5509      94.06      <.0001 

itemnum     6            5.3209     0.04607    5509     115.49      <.0001 

TYPE=UN(6) predicts a fully-
estimated matrix with no 
constraints whatsoever. 

The R matrix shows the 
unconditional variances and 
covariances for the items. 
 
RCORR is the unconditional 
correlation matrix. 
 
Note THIS IS THE DATA—
the only discrepancies you’d 
see relative to descriptive 
statistics would be from 
missing data, as these are ML 
estimates (that assume MAR 
rather than MCAR as in 
listwise deletion). 

The fixed effects again show the 
unconditional means per item. 



PSQF 6249 Example 4 page 23 

  

Model 1. Single Factor with Fully Z-Scored Factor Model Identification  
(Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated) 
 

TITLE "Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED"; 

PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 

 CLASS PersonID itemnum; 

 MODEL response = itemnum / SOLUTION NOINT NOTEST; 

 REPEATED itemnum / TYPE=FA(1) SUBJECT=PersonID R RCORR; 

RUN; 

 

                      Estimated R Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      3.0493      0.8670      1.5313      0.9682      1.2626      1.0108 

   2      0.8670      1.9028      0.8716      0.5511      0.7187      0.5753 

   3      1.5313      0.8716      2.5431      0.9733      1.2692      1.0161 

   4      0.9682      0.5511      0.9733      1.9672      0.8025      0.6424 

   5      1.2626      0.7187      1.2692      0.8025      2.9451      0.8378 

   6      1.0108      0.5753      1.0161      0.6424      0.8378      2.3412 

 

                Estimated R Correlation Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      1.0000      0.3600      0.5499      0.3953      0.4213      0.3783 

   2      0.3600      1.0000      0.3962      0.2848      0.3036      0.2726 

   3      0.5499      0.3962      1.0000      0.4351      0.4638      0.4164 

   4      0.3953      0.2848      0.4351      1.0000      0.3334      0.2994 

   5      0.4213      0.3036      0.4638      0.3334      1.0000      0.3191 

   6      0.3783      0.2726      0.4164      0.2994      0.3191      1.0000 

 

                  Covariance Parameter Estimates 

                                    Standard         Z 

Cov Parm    Subject     Estimate       Error     Value        Pr Z 

 

FA(1)       PersonID      1.5259     0.09440     16.16      <.0001 

FA(2)       PersonID      1.4093     0.07096     19.86      <.0001 

FA(3)       PersonID      1.0038     0.07755     12.94      <.0001 

FA(4)       PersonID      1.3518     0.07071     19.12      <.0001 

FA(5)       PersonID      1.8986     0.09312     20.39      <.0001 

FA(6)       PersonID      1.6706     0.08330     20.05      <.0001 

 

FA(1,1)     PersonID      1.2342     0.05332     23.15      <.0001 

FA(2,1)     PersonID      0.7025     0.04720     14.88      <.0001 

FA(3,1)     PersonID      1.2407     0.04783     25.94      <.0001 

FA(4,1)     PersonID      0.7845     0.04679     16.76      <.0001 

FA(5,1)     PersonID      1.0230     0.05202     19.67      <.0001 

FA(6,1)     PersonID      0.8190     0.05019     16.32      <.0001 

 

                            Information Criteria 

Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 

    23072.8       18    23108.8    23108.9    23142.9    23198.9    23216.9 

 

                        Solution for Fixed Effects 

                                   Standard 

Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 

itemnum     1            4.5467     0.05258    5509      86.47      <.0001 

itemnum     2            5.2892     0.04153    5509     127.35      <.0001 

itemnum     3            4.8957     0.04802    5509     101.96      <.0001 

itemnum     4            5.3590     0.04223    5509     126.90      <.0001 

itemnum     5            4.8604     0.05167    5509      94.06      <.0001 

itemnum     6            5.3209     0.04607    5509     115.49      <.0001

TYPE=FA(1) creates the covariance 
matrix that would be predicted by a 
single-factor model. 

The R matrix shows the 
predicted variances and 
covariances for the items. 
 
RCORR is the single-factor 
predicted correlation matrix. 
 
THIS IS NO LONGER THE 
DATA. So the objective is to 
see how close this predicted 
covariance matrix is from the 
one given by the saturated 
model (which was the data). 

The FA(item) terms are the item residual 
variances. The FA(item, factor) terms are 
the item factor loadings. 
 

So the total variance per item is given by: 
loading2(1) + error variance, as shown in 
the R matrix above. 
 
Item 1 = 1.2342^2 + 1.5259 = 3.0493 
 
The covariance between items is given 
by their loadings multiplied together. 
 
Item 1 and 2 cov = 1.2342*0.7025 = 
0.8670 

The fixed effects now show the 
intercepts per item conditional on 
factor = 0 (which then are equal 
to the original item means). 
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Tau-Equivalent Items Single-Factor Model with Marker Item Factor Model Identification  
(Factor Variance = ?, Factor Mean = 0, All Loadings Equal at 1) 
 
TITLE "Tau-Equivalent Items Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED"; 

PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 

 CLASS PersonID itemnum; 

 MODEL response = itemnum / SOLUTION NOINT NOTEST; 

 RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID  G V VCORR; 

 REPEATED itemnum / TYPE=TOEPH(1) SUBJECT=PersonID R; RUN; 

                      Estimated R Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      2.0017 

   2                  1.1357 

   3                              1.4550 

   4                                          1.0866 

   5                                                      2.0552 

   6                                                                  1.4565 

           Estimated G Matrix 

                     Person 

 Row    Effect       ID            Col1 

   1    Intercept       1        0.9127 

                      Estimated V Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      2.9143      0.9127      0.9127      0.9127      0.9127      0.9127 

   2      0.9127      2.0483      0.9127      0.9127      0.9127      0.9127 

   3      0.9127      0.9127      2.3677      0.9127      0.9127      0.9127 

   4      0.9127      0.9127      0.9127      1.9993      0.9127      0.9127 

   5      0.9127      0.9127      0.9127      0.9127      2.9679      0.9127 

   6      0.9127      0.9127      0.9127      0.9127      0.9127      2.3691 

                Estimated V Correlation Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      1.0000      0.3735      0.3474      0.3781      0.3103      0.3473 

   2      0.3735      1.0000      0.4144      0.4510      0.3702      0.4143 

   3      0.3474      0.4144      1.0000      0.4195      0.3443      0.3853 

   4      0.3781      0.4510      0.4195      1.0000      0.3747      0.4194 

   5      0.3103      0.3702      0.3443      0.3747      1.0000      0.3442 

   6      0.3473      0.4143      0.3853      0.4194      0.3442      1.0000 

 

                  Covariance Parameter Estimates 

                                    Standard         Z 

Cov Parm    Subject     Estimate       Error     Value      Pr > Z 

UN(1,1)     PersonID      0.9127     0.04938     18.48      <.0001 

Var(1)      PersonID      2.0017     0.09613     20.82      <.0001 

Var(2)      PersonID      1.1357     0.05929     19.15      <.0001 

Var(3)      PersonID      1.4550     0.07304     19.92      <.0001 

Var(4)      PersonID      1.0866     0.05703     19.05      <.0001 

Var(5)      PersonID      2.0552     0.09729     21.13      <.0001 

Var(6)      PersonID      1.4565     0.07161     20.34      <.0001 

 

                            Information Criteria 

Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 

    23131.1       13    23157.1    23157.1    23181.7    23222.2    23235.2 

 

                        Solution for Fixed Effects 

                                   Standard 

Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 

itemnum     1            4.5467     0.05140    5510      88.45      <.0001 

itemnum     2            5.2892     0.04309    5510     122.74      <.0001 

itemnum     3            4.8957     0.04633    5510     105.67      <.0001 

itemnum     4            5.3590     0.04257    5510     125.87      <.0001 

itemnum     5            4.8604     0.05187    5510      93.70      <.0001 

itemnum     6            5.3209     0.04635    5510     114.81      <.0001 

A random intercept creates a constant 
source of covariance across all items. 

The R matrix shows the item 
residual variances. 
 
The G matrix shows the 
variance due to the factor for 
all items. 
 
V is the predicted covariance 
matrix from putting G and R 
back together, and VCORR is 
the predicted correlation 
matrix. 
 
 

The fixed effects still show the 
intercepts per item conditional on 
factor = 0 (which then are equal 
to the original item means). 
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Parallel Items Single-Factor Model with Marker Item Factor Model Identification  
(Factor Variance = ?, Factor Mean = 0, All Loadings = 1 and All Error Variances Equal) 
 
TITLE "Parallel Items Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED"; 

PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 

 CLASS PersonID itemnum; 

 MODEL response = itemnum / SOLUTION NOINT NOTEST; 

 RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID G V VCORR; 

 REPEATED itemnum / TYPE=VC SUBJECT=PersonID R; RUN; 

 
                      Estimated R Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      1.5180 

   2                  1.5180 

   3                              1.5180 

   4                                          1.5180 

   5                                                      1.5180 

   6                                                                  1.5180 

           Estimated G Matrix 

                     Person 

 Row    Effect       ID            Col1 

   1    Intercept       1        0.9401 

                      Estimated V Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      2.4581      0.9401      0.9401      0.9401      0.9401      0.9401 

   2      0.9401      2.4581      0.9401      0.9401      0.9401      0.9401 

   3      0.9401      0.9401      2.4581      0.9401      0.9401      0.9401 

   4      0.9401      0.9401      0.9401      2.4581      0.9401      0.9401 

   5      0.9401      0.9401      0.9401      0.9401      2.4581      0.9401 

   6      0.9401      0.9401      0.9401      0.9401      0.9401      2.4581 

 

                Estimated V Correlation Matrix for PersonID 1 

 Row        Col1        Col2        Col3        Col4        Col5        Col6 

   1      1.0000      0.3825      0.3825      0.3825      0.3825      0.3825 

   2      0.3825      1.0000      0.3825      0.3825      0.3825      0.3825 

   3      0.3825      0.3825      1.0000      0.3825      0.3825      0.3825 

   4      0.3825      0.3825      0.3825      1.0000      0.3825      0.3825 

   5      0.3825      0.3825      0.3825      0.3825      1.0000      0.3825 

   6      0.3825      0.3825      0.3825      0.3825      0.3825      1.0000 

 

                  Covariance Parameter Estimates 

                                    Standard         Z 

Cov Parm    Subject     Estimate       Error     Value      Pr > Z 

UN(1,1)     PersonID      0.9401     0.05103     18.42      <.0001 

itemnum     PersonID      1.5180     0.02891     52.51      <.0001 

 

                            Information Criteria 

Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 

    23254.0        8    23270.0    23270.1    23285.2    23310.1    23318.1 

 

                        Solution for Fixed Effects 

                                   Standard 

Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 

itemnum     1            4.5467     0.04721    5510      96.31      <.0001 

itemnum     2            5.2892     0.04721    5510     112.04      <.0001 

itemnum     3            4.8957     0.04721    5510     103.71      <.0001 

itemnum     4            5.3590     0.04721    5510     113.52      <.0001 

itemnum     5            4.8604     0.04721    5510     102.96      <.0001 

itemnum     6            5.3209     0.04721    5510     112.71      <.0001 

 

Unfortunately, multiple factor models in MIXED appear to be EFA models instead of CFA models,  
so no examples of two-factor models are given here. PROC CALIS can be used for CFA in SAS. 

A random intercept creates a constant 
source of covariance across all items. 
A Type=VC R matrix means equal 
residual variance across items. 

The R matrix shows the item 
residual variances. 
 
The G matrix shows the 
variance due to the factor for 
all items. 
 
V is the predicted covariance 
matrix from putting G and R 
back together, and VCORR is 
the predicted correlation 
matrix. 
 
This type of predicted 
covariance matrix has a special 
name: compound symmetry. 
 
 

The fixed effects still show the 
intercepts per item conditional on 
factor = 0 (which then are equal 
to the original item means). 


