
Measurement Invariance (MI)

in CFA and Differential Item 

Functioning (DIF) in IRT/IFA
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• Topics:

➢ What are MI and DIF?

➢ Testing measurement invariance in CFA

➢ Testing differential item functioning in IRT/IFA

➢ Btw: If you have many groups to compare, a newer “alignment” 

method may also be useful (see Asparouhov & Muthén, 2014) 

➢ Btw: If you have more than discrete groups to compare, see slide 36

https://doi.org/10.1080/10705511.2014.919210


The Big Picture
• In CFA, we can assess “measurement invariance” (MI), also 

known as “factorial invariance” or “measurement equivalence”

• Concerns the extent to which the psychometric properties of 
the observed indicators are transportable or generalizable 
across groups (e.g., by language, country) or time/conditions

➢ In other words, we are testing whether the indicators measure the same 
construct in the same way in different groups or over time/conditions

➢ If so, then indicator responses should depend only on latent trait scores, 
and not on group membership or time/conditions, such that observed 
response differences are only caused by TRUE differences in the trait

• In IRT/IFA, lack of measurement invariance is known as 
“differential item functioning” (DIF), but it’s the same idea

➢ But note the inversion:  Measurement Invariance = Non-DIF
                                      Measurement Non-Invariance = DIF
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2 Distinct Types of Invariance
• Measurement Invariance concerns how the indicators (items) 

measure the latent trait across groups or time/conditions

➢ An invariant measurement model has the same factor loadings, 

item intercepts/thresholds, and residual variances (and covariances)

➢ Measurement model invariance is a precursor to ANY group or 

time/condition comparison (whether it is explicitly tested or not)

➢ It’s NOT ok if you don’t have at least partial measurement invariance 

to make subsequent comparisons across groups or time/condition

• Structural Invariance concerns how the latent traits are 

distributed and related across groups or time/condition

➢ An invariant structural model has the same factor variances, factor 

covariances (or same higher-order structure), and factor means

➢ Given (at least partial) measurement invariance, it IS ok if you don’t 

have structural invariance, because trait differences may be real
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Model Options for Testing Invariance
• Invariance testing in CFA (or DIF testing in IRT/IFA) proceeds 

differently depending on the type of groups to be compared

• Independent groups? Use a “multiple-group” model

➢ Estimate separate group-specific factor models simultaneously

➢ Use GROUP= or KNOWNCLASS= in Mplus and separate MODEL: per group

➢ An alternative approach of MIMIC models, in which the grouping variable is 
entered as a predictor, does not allow testing of equality of factor loadings 
or factor variances (so MIMIC is less useful than a full multiple-group model)

• Dependent (e.g., longitudinal, repeated, dyadic) groups? 

➢ All indicator responses go into SAME model, with separate factors 
per occasion/condition (allowing all factor covariances by default)

➢ Usually, the same indicators also have residual covariances by default
(which may have to be implemented as method/specific factors in IRT/IFA)

➢ Given measurement invariance, growth modeling of the latent 
traits can serve as a specific type of structural invariance testing

➢ It is INCORRECT to use a multiple-group model if the groups are dependent 
(ignores likely covariances among factors and for same-indicator residuals)
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Repeated Measures Invariance Model
Residual covariances for 

same indicators across 

different occasions are 

included by default in 

CFA and limited-info IFA 

(full-info IRT needs 

specific factors instead)

Separate factors are 

estimated for each 

occasion; covariances 

are always estimated 

to capture relation of 

latent traits over time

FYI: A structural model in which all factor means, variances, and 

covariances are estimated is analogous to a “saturated means, 

unstructured variance model” for observed variables in MLM terms

Figure 7.2 borrowed from Brown (2015)
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Measurement Model 

Parms for Each Item:

 𝝀 = factor loading

𝒆 → error variance 𝝈𝒆
𝟐

𝝁 = intercept

Remember the CFA model?

  Let’s start MI testing here….
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Structural Model 

Parms for Each Factor:

 𝑭 → factor variance 𝝈𝑭
𝟐

𝝈𝑭𝟏,𝑭𝟐 = factor covariance

𝜿 = factor mean

𝝈𝑭𝟐

𝟐𝝈𝑭𝟏

𝟐

𝟏 𝟏 𝟏 𝟏 𝟏 𝟏

We will begin with my 

preferred default of a 

fixed factor mean=0 

and factor variance=1



Steps of Testing Invariance across Groups

• Step 0 (optional): Omnibus test of equality of the overall 

indicator (item) covariance matrix across groups

➢ Do the covariances matrices differ between groups on the whole?

➢ If not, game over. You are done. You have invariance. Congratulations.

➢ Many people disagree about the necessity or usefulness of this 

omnibus test to begin testing invariance… why might that be?

➢ People also differ in whether invariance should go from top-down 

or bottom-up directions… I favor bottom-up for the same reason

• Let’s proceed with an example with 2 factors, 6 indicators 

(3 per factor; simple structure), and 2 groups…

➢ Total possible # parameters = 
𝑣 𝑣+1

2
+ 𝑣 =

6 6+1

2
+ 6 = 27 per group

➢ So our COMBINED total possible DF = 54 across 2 groups
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Step 1:  Test “Configural” Invariance
• Do the groups have the same general factor structure?

• Same number of factors, same pattern of free/0 loadings 
→ same conceptual definition of latent constructs

• In practice, begin by testing the factor structure within 
each group separately; hope they are “close enough”

• Then estimate group-specific models simultaneously, but 
allow all estimated parameters to differ across groups 

➢ This will be the baseline model for further comparisons

➢ Absolute fit 𝜒2 and DF are additive across groups (but different group 
sample sizes will result in differential weighting of 𝜒2 across groups)

• This is as good fit as it gets! From here forward, our goal is to 
make model fit NOT WORSE by constraining parameters equal

➢ That means if the configural model fits badly, game over…
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Configural Invariance: Game Over
• Configural invariance 

requires the same factor 
structure across groups 
with respect to how the 
items relate to their factors

• The factors need to 
plausibly measure the 
same latent constructs, 
otherwise it’s game over

• Example: Groups A and B 
both have two factors, but 
they are measured using 
different items

• So it doesn’t make sense 
to test if the items relate 
the same way across 
groups to different factors!
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𝒚𝟏𝒔 𝒚𝟐𝒔 𝒚𝟑𝒔

𝒆𝟏𝒔 𝒆𝟐𝒔 𝒆𝟑𝒔

𝝀𝟐 𝝀𝟑𝝀𝟏

𝒚𝟒𝒔 𝒚𝟓𝒔 𝒚𝟔𝒔

𝒆𝟒𝒔 𝒆𝟓𝒔 𝒆𝟔𝒔

𝝀𝟓 𝝀𝟔𝝀𝟒

𝒚𝟏𝒔 𝒚𝟐𝒔 𝒚𝟑𝒔

𝒆𝟏𝒔 𝒆𝟐𝒔 𝒆𝟑𝒔

𝝀𝟐

𝝀𝟑
𝝀𝟏

𝒚𝟒𝒔 𝒚𝟓𝒔 𝒚𝟔𝒔

𝒆𝟒𝒔 𝒆𝟓𝒔 𝒆𝟔𝒔

𝝀𝟓

𝝀𝟔

𝝀𝟒

Group 

A
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𝟐 = 𝟏

𝝈𝑭𝟏,𝑭𝟐
< 𝟏

𝝈𝑭𝟏

𝟐 = 𝟏 𝝈𝑭𝟐

𝟐 = 𝟏

𝝈𝑭𝟏,𝑭𝟐
< 𝟏



Configural Invariance: Work Around
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• Configural invariance 
requires the same factor 
structure across groups 
with respect to how the 
items relate to their factors

• Different numbers of 
factors could be ok IF you 
can find a way to phrase 
the models equivalently

• Example: Group A needs 
2 factors, but Group B 
only needs 1 factor

• Solution: Fit 2 factors in 
both groups, but let the 
factor covariance differ 
(may need to constrain it 
to prevent NPD solutions)



Testing Invariance Constraints
• As usual, we will test whether removing parameters (by constraining 

them) worsens model fit via likelihood ratio (aka, −2ΔLL, χ2) tests

➢ Implemented via a direct difference in 𝐻0 model 𝜒2 values most often, 
but this is only appropriate when using regular ML estimation

• MLR requires a modified version of this −2ΔLL test (see 
Mplus website): http://www.statmodel.com/chidiff.shtml

➢ Is called a “rescaled likelihood ratio test” when you explain it

➢ Includes extra steps to incorporate scaling factors (1.00 = regular ML)

➢ I built you a spreadsheet for this…you’re still welcome ☺ (or use R anova)

• If removing parameters (e.g., in invariance testing), 𝐻0 model fit can get 
worse OR not worse (as indicated by smaller LL OR by larger −2LL and 𝜒2)

➢ This is what we are doing in testing invariance!

• If adding parameters (e.g., in adding factors), 𝐻0 model fit can get 
better OR not better (as indicated by larger LL OR by smaller −2LL and 𝜒2)
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Testing Nested Models via −2ΔLL
• Comparing nested models via a “likelihood ratio test” → 

−2ΔLL (MLR rescaled version)

➢ 1. Calculate −2ΔLL = −2*(LLfewer – LLmore)

➢ 2. Calculate difference scaling correction =

     (#parmsfewer*scalefewer) – (#parmsmore*scalemore) 

                 (#parmsfewer – #parmsmore) 

➢ 3. Calculate rescaled difference = −2ΔLL / scaling correction 

➢ 4. Calculate Δdf = #parmsmore – #parmsfewer 

➢ 5. Compare rescaled difference to χ2 with df = Δdf

▪ Add 1 parameter? LLdiff > 3.84, add 2 parameters: LLdiff > 5.99…

▪ Absolute values of LL are meaningless (is relative fit only)

▪ Process generalizes to any other model estimated using maximum 

likelihood (such as IRT/IFA) that provides LL height for the 𝑯𝟎 model
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Note: Your LL will always 

be listed as the 𝑯𝟎

(𝐻1 is for the saturated, 

perfectly fitting model)

Fewer = simpler model

More = more parameters
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1. Configural Invariance Model: 
Same Factor Structure;  All Parameters Separate

Group 1 (subscript = item, group):

• 𝑦11𝑠 =  𝜇11 +  𝜆11𝐹1𝑠 +  𝑒11𝑠

• 𝑦21𝑠 =  𝜇21 +  𝜆21𝐹1𝑠 +  𝑒21𝑠

• 𝑦31𝑠 =  𝜇31 +  𝜆31𝐹1𝑠 +  𝑒31𝑠

• 𝑦41𝑠 =  𝜇41 +  𝜆41𝐹2𝑠 +  𝑒41𝑠

• 𝑦51𝑠 =  𝜇51 +  𝜆51𝐹2𝑠 +  𝑒51𝑠

• 𝑦61𝑠 =  𝜇61 +  𝜆61𝐹2𝑠 +  𝑒61𝑠

• Estimated factor covariance, 

but both factor means = 0 

and both factor variances = 1

Group 2 (subscript = item, group):

• 𝑦12𝑠 =  𝜇12 +  𝜆12𝐹1𝑠 +  𝑒12𝑠

• 𝑦22𝑠 =  𝜇22 +  𝜆22𝐹1𝑠 +  𝑒22𝑠

• 𝑦32𝑠 =  𝜇32 +  𝜆32𝐹1𝑠 +  𝑒32𝑠

• 𝑦42𝑠 =  𝜇42 +  𝜆42𝐹2𝑠 +  𝑒42𝑠

• 𝑦52𝑠 =  𝜇52 +  𝜆52𝐹2𝑠 +  𝑒52𝑠

• 𝑦62𝑠 =  𝜇62 +  𝜆62𝐹2𝑠 +  𝑒62𝑠

• Estimated factor covariance, 

but both factor means = 0 

and both factor variances = 1

Model 𝐃𝐅 across groups = 54 – 38 = 16 =

 54 − 12𝜇𝑖 + 12𝜎𝑒𝑖
2 + 12𝜆𝑖 + 0𝜎𝐹

2 + 2𝜎𝐹1,𝐹2
+ 0𝜅𝐹 = 16
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Step 2:  Test “Metric” Invariance 

• Also called “weak factorial invariance”

• Do the groups have the same factor loadings?

➢ Each indicator is still allowed to have a different loading 

within each group → this is not a tau-equivalent model

➢ Loadings for same indicator are constrained equal across groups

• Estimate all newly constrained factor loadings, but 

fix all factor variances to 1 in the reference group 

(freely estimate all factor variances in other group)

➢ Why? Loadings for marker items (fixed=1 for identification) would be 

assumed invariant, and thus they could not be tested for invariance

➢ This alternative specification allows us to evaluate ALL loadings and 

still identify the model (see Yoon & Millsap, 2007), which is BETTER
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2. Metric Invariance Model: 
Same Factor Loadings Only (saves 4 𝐷𝐹)

Group 1 (subscript = item, group):

• 𝑦11𝑠 =  𝜇11 +  𝝀𝟏𝑭𝟏𝒔 +  𝑒11𝑠

• 𝑦21𝑠 =  𝜇21 +  𝝀𝟐𝑭𝟏𝒔 +  𝑒21𝑠

• 𝑦31𝑠 =  𝜇31 +  𝝀𝟑𝑭𝟏𝒔 +  𝑒31𝑠

• 𝑦41𝑠 =  𝜇41 +  𝝀𝟒𝑭𝟐𝒔 +  𝑒41𝑠

• 𝑦51𝑠 =  𝜇51 +  𝝀𝟓𝑭𝟐𝒔 +  𝑒51𝑠

• 𝑦61𝑠 =  𝜇61 +  𝝀𝟔𝑭𝟐𝒔 +  𝑒61𝑠

• Both factor variances = 1 for 

identification, factor covariance 

is estimated, but both factor 

means are STILL = 0

Group 2 (subscript = item, group):

• 𝑦12𝑠 =  𝜇12 +  𝝀𝟏𝑭𝟏𝒔 
+  𝑒12𝑠

• 𝑦22𝑠 =  𝜇22 +  𝝀𝟐𝑭𝟏𝒔 +  𝑒22𝑠

• 𝑦32𝑠 =  𝜇32 +  𝝀𝟑𝑭𝟏𝒔 +  𝑒32𝑠

• 𝑦42𝑠 =  𝜇42 +  𝝀𝟒𝑭𝟐𝒔 +  𝑒42𝑠

• 𝑦52𝑠 =  𝜇52 +  𝝀𝟓𝑭𝟐𝒔 +  𝑒52𝑠

• 𝑦62𝑠 =  𝜇62 +  𝝀𝟔𝑭𝟐𝒔 +  𝑒62𝑠

• Both factor variances are now 

estimated, factor covariance is 

still estimated, but both factor 

means are STILL = 0

Model 𝐃𝐅 across groups = 54 – 34 = 20 =

 54 − 12𝜇𝑖 + 12𝜎𝑒𝑖
2 + 𝟔𝝀𝒊 + 𝟐𝝈𝑭

𝟐 + 2𝜎𝐹1,𝐹2
+ 0𝜅𝐹 = 20
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2. Metric Invariance Model
• Compare metric invariance to configural invariance model: 

Is the model fit not worse (−2ΔLL not significant)?

➢ Check that factor variances are fixed to 1 in the reference group only: 
they should be freely estimated in the other group, otherwise you are 
imposing a structural constraint too (that groups have same variability) 

➢ Otherwise, inspect the modification indices to see if there are any 
indicators whose loadings want to differ across groups instead

➢ Re-estimate the model after releasing one loading at a time, starting 
with the largest modification index, and continue until your partial 
metric invariance model is not worse than the configural model

• Do you have partial metric invariance (1+ loading per factor)?

➢ Your trait is (sort of) measured in the same way across groups

➢ If not, it doesn’t make sense to evaluate how relationships involving 
the factor differ across groups (because the factor itself differs)

➢ Even if full invariance holds, check the modification indices anyway 
(because individual discrepancies can be washed out in overall test)

PSQF 6249: Lecture 7 16    



Step 3:  Test “Scalar” Invariance 

• Also called “strong factorial invariance”

• Do the groups have the same indicator intercepts?

➢ Each indicator is still allowed to have a different intercept, but 
intercepts for same indicator are constrained equal across groups

➢ Indicators that failed metric invariance traditionally do not get 
tested for scalar invariance (single-elimination), but they could be 

➢ Scalar invariance is required for factor mean comparisons!

• Previous (partial) metric invariance model is starting point 

• Estimate all newly constrained intercepts, but 
fix the factor means to 0 in the reference group 
(free the factor means in the other group)

➢ Why? Intercepts for marker items (if fixed=0 for identification) 
would be assumed invariant, and thus they could not be tested
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3. Scalar Invariance Model: 
Same Factor Loadings + Same Intercepts (saves +4 𝐷𝐹)

Group 1 (subscript = item, group):

• 𝑦11𝑠 =  𝝁𝟏 +  𝜆1𝐹1𝑠 +  𝑒11𝑠

• 𝑦21𝑠 =  𝝁𝟐 +  𝜆2𝐹1𝑠 +  𝑒21𝑠

• 𝑦31𝑠 =  𝝁𝟑 +  𝜆3𝐹1𝑠 +  𝑒31𝑠

• 𝑦41𝑠 =  𝝁𝟒 +  𝜆4𝐹2𝑠 +  𝑒41𝑠

• 𝑦51𝑠 =  𝝁𝟓 +  𝜆5𝐹2𝑠 +  𝑒51𝑠

• 𝑦61𝑠 =  𝝁𝟔 +  𝜆6𝐹2𝑠 +  𝑒61𝑠

• Both factor variances fixed to 1, 

both factor means fixed to 0 for 

identification, and factor 

covariance is still estimated 

Group 2 (subscript = item, group):

• 𝑦12𝑠 =  𝝁𝟏 +  𝜆1𝐹1𝑠 
+  𝑒12𝑠

• 𝑦22𝑠 =  𝝁𝟐 +  𝜆2𝐹1𝑠 +  𝑒22𝑠

• 𝑦32𝑠 =  𝝁𝟑 +  𝜆3𝐹1𝑠 +  𝑒32𝑠

• 𝑦42𝑠 =  𝝁𝟒 +  𝜆4𝐹2𝑠 +  𝑒42𝑠

• 𝑦52𝑠 =  𝝁𝟓 +  𝜆5𝐹2𝑠 +  𝑒52𝑠

• 𝑦62𝑠 =  𝝁𝟔 +  𝜆6𝐹2𝑠 +  𝑒62𝑠

• Both factor variances estimated, 

both factor means estimated to 

become mean differences, and 

factor covariance is still estimated

Model 𝑫𝑭 across groups = 54 – 30 = 24 =

54 − 𝟔𝝁𝒊 + 12𝜎𝑒𝑖
2 + 6𝜆𝑖 + 2𝜎𝐹

2 + 2𝜎𝐹1,𝐹2
+ 𝟐𝜿𝑭 = 24
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Implications of Non-Invariance
Yes Metric 

Yes Scalar

Yes Metric 

No Scalar

No Metric 

(so Scalar?)
No Metric 

No Scalar

Latent Factor Latent Factor

Without metric 

invariance: 

Because unequal 

loadings implies 

non-parallel slopes, 

the intercept can 

differ as a result. 

The size of the 

difference depends 

on where trait=0 

This is why scalar 

invariance is often 

not tested if metric 

invariance fails for 

a given indicator

19    
Figure 7.4 borrowed from Brown (2015)
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3. Scalar Invariance Model
• Compare scalar invariance to last metric invariance model: 

Is the model fit not worse (−2ΔLL not significant)?

➢ Check that factor means are fixed to 0 in reference group only: 
they should be freely estimated in the other group, otherwise you 
are imposing a structural constraint (groups have same means) too 

➢ Otherwise, inspect the modification indices to see if there are any 
indicators whose intercepts want to differ across groups instead

➢ Re-estimate the model after releasing one intercept at a time, 
starting with the largest modification index, and continue until your 
partial scalar invariance model is not worse than last metric model

• Do you have partial scalar invariance (1+ intercept per factor)?

➢ Your trait is (sort of) responsible for mean differences across groups

➢ If not, it doesn’t make sense to evaluate factor means differs across 
groups (because something else is causing those differences)

➢ Even if full invariance holds, check the modification indices anyway
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Step 4:  Test Error Variance Invariance 

• Also called “strict factorial invariance”

• Do the groups have the same error variances?

➢ Each indicator is still allowed to have a different error variance 
(i.e., this is not a parallel items model), but error variances for 
the same indicator are constrained equal across groups

➢ Indicators that failed scalar invariance traditionally do not get 
tested for error variance invariance (although they could be)

➢ Error invariance is of debatable importance, because it means 
that whatever created “not the factor” does not differ by group

➢ Equal error variances are commonly misinterpreted to mean 
“equal reliabilities”—this is ONLY the case if the factor variances 
are the same across groups, too (stay tuned)

• Without error covariances, this is the last step of 
“measurement invariance” (otherwise they are last)
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4. Error Invariance Model: 
+ Same Error Variances (saves +6 𝐷𝐹)

Group 1 (subscript = item, group):

• 𝑦11𝑠 =  𝜇1 +  𝜆1𝐹1𝑠 +  𝒆𝟏𝒔

• 𝑦21𝑠 =  𝜇2 +  𝜆2𝐹1𝑠 +  𝒆𝟐𝒔

• 𝑦31𝑠 =  𝜇3 +  𝜆3𝐹1𝑠 +  𝒆𝟑𝒔

• 𝑦41𝑠 =  𝜇4 +  𝜆4𝐹2𝑠 +  𝒆𝟒𝒔

• 𝑦51𝑠 =  𝜇5 +  𝜆5𝐹2𝑠 +  𝒆𝟓𝒔

• 𝑦61𝑠 =  𝜇6 +  𝜆6𝐹2𝑠 +  𝒆𝟔𝒔

• Both factor variances fixed to 1, 

both factor means fixed to 0 for 

identification, and factor 

covariance is still estimated 

Group 2 (subscript = item, group):

• 𝑦12𝑠 =  𝜇1 +  𝜆1𝐹1𝑠 
+  𝒆𝟏𝒔

• 𝑦22𝑠 =  𝜇2 +  𝜆2𝐹1𝑠 +  𝒆𝟐𝒔

• 𝑦32𝑠 =  𝜇3 +  𝜆3𝐹1𝑠 +  𝒆𝟑𝒔

• 𝑦42𝑠 =  𝜇4 +  𝜆4𝐹2𝑠 +  𝒆𝟒𝒔

• 𝑦52𝑠 =  𝜇5 +  𝜆5𝐹2𝑠 +  𝒆𝟓𝒔

• 𝑦62𝑠 =  𝜇6 +  𝜆6𝐹2𝑠 +  𝒆𝟔𝒔

• Both factor variances estimated, 

both factor means estimated to 

become mean differences, and 

factor covariance is still estimated

Model 𝐃𝐅 across groups = 54 – 24 = 30 =

54 − 6𝜇𝑖 + 𝟔𝝈𝒆𝒊
𝟐 + 6𝜆𝑖 + 2𝜎𝐹

2 + 2𝜎𝐹1,𝐹2
+ 2𝜅𝐹 = 30
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4. Error Variance Invariance Model

• Compare error invariance model to last scalar invariance 
model: Is the model fit not worse (−2ΔLL not significant)?

➢ Otherwise, inspect the modification indices to see if there are any 
indicators whose residual variances want to differ across groups

➢ Re-estimate the model after releasing one residual variance at a time, 
starting with the largest modification index, and continue until your 
partial residual invariance model is not worse than last scalar model

• Do you have partial error variance invariance 
(1+ error variance per factor)?

➢ Your groups have the same amount of “not the factor” variance in each 
item (so that’s good, I guess???)

➢ Even if full invariance holds, check the modification indices anyway

➢ Also assess any error covariances across groups if you have those

• Your (partial) error invariance model is the 
new baseline for assessing structural invariance…
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Testing Structural Invariance
• Are the factor variances the same across groups? (+1 DF per factor)

➢ Fix each factor variance in the alternative group to 1 (as in the ref group)

➢ Is model fit worse? If so, the groups differ in their factor variances

• Are the factor covariances the same across groups? (+1 DF per pair)

➢ Fix each factor covariance equal across groups, is model fit worse?

➢ Factor correlation will only be the same across groups if the factor variances 
are the same, too (if factor variances differ, then factor covariance will, too)

• Are the factor means the same across groups? (+1 DF per factor)

➢ Fix each factor mean in the alternative group to 0 (as in the ref group)

➢ Is model fit worse? If so, the groups differ in their factor means

➢ Btw, the Wald test for the factor means already tell you this (=difference from 0)

• It is not a problem if structural invariance doesn’t hold!

➢ Given measurement invariance, this is a substantive issue about differences 
in the amounts and relations of the latent traits (and that’s ok)

➢ Might stop at measurement invariance for testing RQs involving the traits
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Summary: Invariance Testing in CFA

• In CFA: Testing invariance has two distinct parts:

➢ Measurement invariance: Is your construct being measured 

in the same way by the indicators across groups/time? 

▪ Hope for at least “partial” invariance… otherwise, it’s game over for 

comparing how factors relate (or mean differences) across groups/time

➢ Structural invariance: Do your groups/times differ in their 

distribution and/or means of the construct? Let’s find out!

▪ Structural differences are real and interpretable differences

given measurement invariance of the constructs

• In IFA:  Still called “testing invariance” 

➢ Conducted similarly (but not exactly the same) in Mplus

• In IRT:  Now called testing “differential item functioning” 

➢ With different names and rules, not directly tested in Mplus
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Differential Item Functioning (DIF)
• In IRT (model with 𝑎𝑖 discrimination and 𝑏𝑖 difficulty), measurement 

NON-invariance = DIF

➢ Note the inversion:   Measurement Invariance = Non-DIF
                                  Measurement Non-Invariance = DIF

• An item has “DIF” when persons with equal trait amounts, but from 
different groups, have different expected item responses

• An item has “non-DIF” if persons with the same trait amount have the 
same expected item response, regardless of group

• DIF can be examined across groups, over time, over repeated 
conditions, etc., the same as in CFA/IFA

➢ Independent groups? Multiple-group model

➢ Dependent “groups”? One factor per “group” in same model

➢ Be wary of any approach to testing DIF that involves using predicted thetas 
as perfectly measured observed variables in a secondary analysis!

▪ Theta is an estimate of central tendency of each individual’s distribution of possible 
thetas AND is estimated assuming the model fits and its parameters are invariant!
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2 Types of DIF (as described in IRT)
• “Uniform DIF” → Analogous to scalar NON-invariance

➢ IRT 𝒃𝒊 parameters differ across groups

➢ Item is systematically more difficult/severe for members of one 
group, even for persons with the same amount of the theta trait

➢ Example: “How often do you cry?” → Would men and women with the 
same amount of depression have the same expected item response?

• “Non-Uniform DIF” → Analogous to metric NON-invariance

➢ IRT 𝒂𝒊 (and possibly 𝒃𝒊) parameters differ across groups

➢ Item is systematically more related to theta for members of one group → higher 
discrimination (item “works better” in one group than another) 

➢ Group-related shift in item difficulty is not consistent across the trait

• What about error variance invariance? It depends:

➢ Doesn’t exist in MML: no estimated error variance (is logit=3.29 or probit=1.00 for 𝑦∗)

➢ Will exist in WLSMV after constraining loadings and thresholds, but not before…

PSQF 6249: Lecture 7 27    



0.0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

Ability (q)

P
 (

u
 =

 1
 |
 q

) Plot of Uniform DIF: 

ICC is shifted over for one 

group due to different 𝑏𝑖 

location parameter where 

prob=.50, but the 𝑎𝑖 slope 

parameter is the same 

across groups

P
ro

b
a
b

il
it

y
 𝒚

𝒊𝒈
𝒔

=
𝟏

Item Characteristic 

Curves (ICC) for same 

item for two groups

PSQF 6249: Lecture 7 28    

Latent Trait Theta



0.0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

Ability (q)

P
 (

u
 =

 1
 |
 q

)

Plot of Non-Uniform DIF: 

ICC is steeper for one group due to 

different 𝑎𝑖 slope (and so 𝑏𝑖 location 

parameter where prob=.50 could 

also potentially differ as a result of 

different 𝑎𝑖 slope, although not here)

P
ro

b
a
b

il
it

y
 𝒚

𝒊𝒈
𝒔

=
𝟏

Item Characteristic 

Curve (ICC) for same 

item for two groups:

PSQF 6249: Lecture 7 29    

Latent Trait Theta



Testing Measurement Invariance

for Categorical Outcomes
• 2 versions of model for polytomous outcomes in Mplus:

➢ IRT:  Logit or Probit 𝑦𝑘𝑖𝑠 = 1 = 𝑎𝑖(𝜃𝑠 − 𝑏𝑘𝑖)

➢ IFA:  Logit or Probit(𝑦𝑘𝑖𝑠 = 1) = – 𝜏𝑘𝑖 + 𝜆𝑖𝜃𝑠 

▪ Logit or Probit in MML; only Probit available in WLSMV

• Mplus estimates the IFA 𝜏𝑘𝑖 
and 𝜆𝑖 

parameters, then converts to the IRT 𝑎𝑖 

and 𝑏𝑘𝑖 parameters for binary outcomes after rescaling trait (M=0, SD=1)

➢ Tests of measurement invariance are thus specifically for 𝜏𝑘𝑖 
and 𝜆𝑖 

, not 𝑎𝑖 and 𝑏𝑘𝑖

➢ So Mplus and Lavaan do not directly test “DIF” for 𝑎𝑖 and 𝑏𝑖 parameters

• IFA 𝝉𝒌𝒊 
and 𝝀𝒊 

parameters are held directly invariant, not IRT 𝒂𝒊 and 𝐛𝐢 

➢ So even if 𝜆𝑖 
factor loadings are invariant across groups, the IRT 𝑎𝑖 discriminations 

given by Mplus will still differ across groups due to differences in their theta variances 

(but you can calculate the invariant 𝑎𝑖 parameters yourself via MODEL CONSTRAINT)

➢ Likewise, even if 𝜏𝑘𝑖 
thresholds are invariant across groups/time, Mplus IRT 𝑏𝑖 difficulty 

parameters will still differ due to their rescaling of the trait (but you can fix this too)

The 𝑘 thresholds divide the 

𝐶 item responses into 𝐶 − 1 

cumulative binary submodels 

(𝑦 = 0 if lower, 𝑦 = 1 if higher)

PSQF 6249: Lecture 7 30    



Review: From IFA to IRT

IFA with “easiness” intercept 𝝁𝒊:   𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 =  𝝁𝒊 + 𝝀𝒊𝑭𝒔    𝝁𝒊 = −𝝉𝒊

IFA with “difficulty” threshold 𝝉𝒊:  𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = – 𝝉𝒊 + 𝝀𝒊𝑭𝒔 

 

IFA model with “difficulty” thresholds can be written as a 2-PL IRT Model:

IRT model:                        IFA model: 

𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔– 𝒃𝒊)   = – 𝒂𝒊𝒃𝒊 
+  𝒂𝒊𝜽𝒔 

  
 Convert IFA to IRT:         Convert IRT to IFA:

 𝑎𝑖  = 𝜆𝑖 ∗ Theta Variance      𝜆𝑖 =
𝑎𝑖

Theta Variance
 

 𝑏𝑖 =
𝜏𝑖−(𝜆𝑖∗Theta Mean)

𝜆𝑖∗ Theta Variance
        𝜏𝑖 = 𝑎𝑖𝑏𝑖 +

𝑎𝑖∗Theta Mean

Theta Variance

𝝉𝒊 𝝀𝒊

𝒂𝒊 = discrimination

𝒃𝒊 = difficulty

𝜽𝒔 = 𝑭𝒔 latent trait 

Note: These formulas 

rescale 𝑎𝑖 and 𝑏𝑖 so 

that theta M=0, VAR=1 

If you don’t want to 

rescale theta, use M=0 

and VAR=1 to keep 

your current scale
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Invariance Testing in Mplus
• IFA models using Full-Information MML: Mplus must be tricked 

into estimating a multiple-group models (e.g., here, by group):

➢ VARIABLE: CLASSES=group(2); KNOWNCLASS = group (female=0 1); 

➢ ANALYSIS: TYPE = MIXTURE; ESTIMATOR = ML; ALGORITHM = INTEGRATION;

➢ MODEL:   %OVERALL% (… model for reference group listed here)

            %group#2%  (… model for alternative group goes here)

• IFA models using Limited-Information WLSMV: Mplus directly 
estimates multiple-group models, with a few useful other benefits

➢ Faster estimation if you have multiple factors/thetas (but assumes missing=MCAR!)

➢ DIFFTEST does nested model comparisons for you (still going for “not worse”)

➢ Can get modification indices to determine sources of non-invariance

➢ Can test differences in residual variances (in THETA parameterization)

• In WLSMV, the same category responses must be observed for 
each group; otherwise, you cannot test the item thresholds

➢ But using MML, you can estimate more thresholds in one group than another

PSQF 6249: Lecture 7 32    



Configural Invariance Baseline Model 

for Categorical Outcomes (2 Groups)

• Factor variances: fixed to 1 in both groups

• Factor covariances: if any, free in both groups

• Factor means: fixed to 0 in both groups

• Factor loadings: all freely estimated (so each can be tested later)

➢ Remember: the IRT 𝑎𝑖 parameters Mplus gives you will still vary across groups even 

after loadings are constrained because of group differences in theta variance

• Item Thresholds: all freely estimated (so each can be tested later)

➢ Remember: the IRT 𝑏𝑘𝑖 parameters Mplus gives you will still vary across groups even after 

thresholds are constrained because of group differences in theta mean and theta variance

• Fix all error variances=1 in all groups if using WLSMV

➢ Groups will eventually be allowed to differ in both factor variance and “error variance” 

(proxy for differential total variation in WLSMV models; I call it a “slop” parameter)

We use the same configural 

model identification as in 

CFA for simplicity (but it 

doesn’t really matter how 

it’s identified here)
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Sequential Invariance Models 
Note: In WLSMV, save for DIFFTEST at each step!

• Step 1: Fit same baseline configural invariance model across groups

➢ Should be “close enough” factor structures, otherwise game over

➢ Alternative group is allowed different loadings and thresholds

• Step 2 (Metric-ish): Constrain all loadings equal, but free the factor 
variances in alternative group—is fit worse than the configural model?

➢ If using WLSMV, check MODINDICES to see misfit of constraints; release problematic constrained 
loadings one at a time; check fit against configural model to see if it’s not worse yet

• Step 3 (Scalar-ish): Constrain thresholds equal for items (that passed metric) 
but free factor means in alternative group—is fit worse than the metric model?

➢ If using WLSMV, check MODINDICES to see misfit of constraints; release problematic constrained 
thresholds one item at a time; check fit against metric model to see if it’s not worse yet

➢ If using WLSMV, MODINDICES may want the “intercept” free, but this is not possible 
to do in IRT/IFA, so focus on problematic (non-invariant) item thresholds instead

➢ Reasonable people disagree: Mplus creators recommend doing steps 2 and 3 in one step 
because loadings and thresholds are dependent; me and others disagree (i.e., otherwise 
“uniform DIF” as it is known in IRT could not be a thing)
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Sequential Invariance Models 
Note: In WLSMV, save for DIFFTEST at each step!

• Step 4: WLSMV only: Test if error variances for items (that passed scalar) in 

alternative group ≠1 → differ from reference group (of residual variance = 1)

➢ Differences in error variances between groups are not identified unless some loadings and 

thresholds constrained across groups (Mplus creators do this in same step as scalar, but I don’t)

➢ Consequently, this test proceeds backwards: first estimated is the “bigger” non-invariant error 

variance model, second estimated is the “smaller” original scalar invariance model 

with a new name (in which error variances were fixed to 1 for all items for all groups)

➢ Differential error variances can be a proxy for group differences in overall variability (or slop), 

but this model may not always converge (if it doesn’t, just skip this step, but report doing so)

• Steps 5, 6, 7: Test Structural Invariance (just like before in CFA): 

➢ Constrain equal across groups in sequential models: factor variances, then factor covariances, 

and then factor means (hold equal to 0) to test for “real” structural group differences

➢ Same story as in CFA: Only if you have at least partial measurement invariance 

can structural group/time/condition differences be meaningfully interpreted

• Factors/thetas all should have a multivariate normal distribution no matter 

what measurement model was used to create them… so now we can do SEM!
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What If I Don’t Have Discrete Groups?
• Invariance/DIF testing traditionally occurs across discrete levels 

of categorical (grouping) variables, but it doesn’t have to

• If you want to examine invariance across ranges of quantitative and 
categorical predictors (and interactions thereof), you can do so via 
“moderated nonlinear factor analysis” (MNLFA)

➢ See Bauer & Hussong (2009) and Curran et al. (2014) for examples

• Key idea: Allow loadings and intercepts/thresholds to differ 
systematically across persons using a linear model

➢ e.g., Per item: 𝜆𝑖 = 𝛽0𝐿 + 𝛽1𝐿 𝑎𝑔𝑒𝑠 + 𝛽2𝐿 𝑔𝑟𝑜𝑢𝑝𝑠 + 𝛽3𝐿 𝑎𝑔𝑒𝑠 𝑔𝑟𝑜𝑢𝑝𝑠
                       𝜇𝑖 = 𝛽0𝐼 + 𝛽1𝐼 𝑎𝑔𝑒𝑠 + 𝛽2𝐼(𝑔𝑟𝑜𝑢𝑝𝑠) + 𝛽3𝐼 𝑎𝑔𝑒𝑠 𝑔𝑟𝑜𝑢𝑝𝑠

➢ Can be done in Mplus using MODEL CONSTRAINT (need to add variables 
used in linear model to CONSTRAINT= in VARIABLE section)

➢ Item parameters are usually still treated as fixed effects, but they could be 
modeled as random effects instead (i.e., as in explanatory IRT models, in 
which leftover variation in discrimination and/or difficulty is in the model)

➢ Of course there is an R package for MNFLA, too
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