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• Topics:

➢ Review of IRT parameters (and choosing between models)

➢ From Item Response Theory to Item Factor Analysis

➢ Model estimation, comparison, and evaluation



IRT Models for Binary Responses
• Range from 1–4 item parameters that predict the link-transformed 

probability of 𝑦𝑖𝑠 = 1 (correct or endorsed)

➢ Link = logit → natural log of the odds of the probability (of a 1)

➢ Link = probit = ogive → z-score for area to the left of the probability under 

a standard normal distribution (inverse link requires integration)

➢ No estimated residual variances → Var(𝑦𝑖
∗) = 3.29 for logit, 1.00 for probit

➢ Latent factor (per subject) is now called theta (𝜃), but it’s the same idea

• Estimated parameters (as fixed effects) per item:

➢ 𝒃𝒊 = difficulty → location on theta latent trait

➢ 𝒂𝒊 = slope → discrimination → relation to trait at 𝑏 location

▪ In “Rasch” models, items differ only in difficulty (and common 𝑎 slope = 1)

➢ 𝒄𝒊 = lower asymptote → guessing → lowest possible probability

➢ 𝒅𝒊 = upper asymptote → carelessness → highest possible probability

▪ In multidimensional IRT models, 𝑑 is used for an intercept instead (I know, I’m sorry)
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IRT → IFA 

above the line 

below only



Model Comparisons in IRT:

Decide Between Models via −2ΔLL Tests

• Nested models can be compared with the same −2ΔLL tests we used in 

CFA → without the “robust” part of ML, so they get simpler (scale factor=1)

➢ e.g., Does a 2-parameter model fit better than a 1-parameter model? 

➢ Step 1: Calculate −2ΔLL = −2(LLfewer – LLmore)

➢ Step 2: Calculate Δdf = dfmore – dffewer (given as “# free parms”)

➢ Compare −2ΔLL with df = Δdf to χ2 critical values (or excel CHIDIST)

• If adding parameters, model fit can get better or not better

• If removing parameters, model fit can get worse or not worse

• AIC and BIC values (from −2LL) can be used to compare non-nested 

models (given same sample of subjects and items), smaller is better

• Models with different items are still not comparable by −2LL, AIC, or BIC!!!

• Assessing global and local model fit can be much trickier… stay tuned!
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Item Response Theory (IRT) = 

Item Factor Analysis (IFA) Models
Mplus can do ALL of these 

model/estimator combinations:

Model form: with 

discrimination and 

difficulty parameters

Model form: with 

loadings and 

threshold parms

Full-information estimation via 

Maximum Likelihood (“Marginal ML”) 

→ uses original item responses

“IRT”

(Mplus gives only for 

binary responses)

“?”

(Mplus gives 

for all models) 

Limited-information estimation via 

Weighted Least Squares (“WLSMV”) 

→ uses item response summary

“?”

(Mplus gives only for 

binary responses)

“IFA”

(Mplus gives for 

all models) 

• CFA assumes normally distributed, continuous item responses, but 

“CFA models for categorical responses” = IRT and IFA models

• These different names are used to reflect the combination of how the 

model is specified and how it is estimated, but it’s the same core model

➢ Btw, R Lavaan only has limited-information estimation for these models… (so use MIRT)
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Relating Item Factor Analysis (IFA)

to 2-P Item Response Models (IRT)
• CFA → linear regression as IRT → logistic regression

➢ Predictor 𝑥𝑠 is observed, but predictor 𝐹𝑠 is latent (aka, factor, variable, trait)

• Linear regression model → CFA model (for continuous responses):

𝑦𝑖𝑠 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠 + 𝑒𝑖𝑠 𝑦𝑖𝑠 = 𝜇𝑖 + 𝜆𝑖𝐹𝑠 + 𝑒𝑖𝑠

• Logistic regression model (for 0/1 responses, so there is no 𝑒𝑖𝑠 residual):

Log
𝑝(𝑦𝑖𝑠=1)

𝑝(𝑦𝑖𝑠=0)
= 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠

• 2-PL IRT model (for 0/1 responses, so there is no 𝑒𝑖𝑠 residual):

Log
𝑝(𝑦𝑖𝑠=1)

𝑝(𝑦𝑖𝑠=0)
= 𝑎𝑖(𝜃𝑠– 𝑏𝑖)

Why does the IRT model below look 

so different than the CFA model? 

Here’s how these models all relate…
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𝒊 = item, 𝒔 = subject



• Linear regression model and     (Linear) Confirmatory FA model:

𝑦𝑖𝑠 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠 + 𝑒𝑖𝑠 𝑦𝑖𝑠 = 𝜇𝑖 + 𝜆𝑖𝐹𝑠 + 𝑒𝑖𝑠

• Binary regression models and    Binary Item Factor Analysis models!

Logit [𝑝(𝑦𝑖𝑠 = 1)] = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠 Logit[𝑝(𝑦𝑖𝑠 = 1)] = −𝜏𝑖 + 𝜆𝑖𝐹𝑠

Probit 𝑝 𝑦𝑖𝑠 = 1 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑠 Probit[𝑝(𝑦𝑖𝑠 = 1)] = −𝜏𝑖 + 𝜆𝑖𝐹𝑠

• Binary Item Response Theory models:

2PL:       Logit [𝑝(𝑦𝑖𝑠 = 1)] = 𝑎𝑖(𝜃𝑠– 𝑏𝑖)

Ogive: Probit[𝑝(𝑦𝑖𝑠 = 1)] = 𝑎𝑖(𝜃𝑠– 𝑏𝑖)

• In CFA, item loading 𝝀𝒊 → discrimination and item intercept 𝝁𝒊 → difficulty, 

but difficulty was backwards (easier or less severe items had higher means)…

• In IFA for binary items within Mplus, the intercept 𝝁𝒊 (which was really easiness) 

becomes a “threshold” 𝝉𝒊 that really does index difficulty: 𝝁𝒊 = −𝝉𝒊

→ this provides continuity of direction with the IRT 𝑏𝑖 “difficulty” values

• The 2-P IRT and IFA models get re-arranged into each other as follows…

Relating Regression, CFA, IFA, and IRT
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Logit to Probability:

prob =
exp logit

1 + exp(logit)



From IFA to IRT

IFA with “easiness” intercept 𝝁𝒊:   𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝝁𝒊 + 𝝀𝒊𝑭𝒔 𝝁𝒊 = −𝝉𝒊

IFA with “difficulty” threshold 𝝉𝒊:  𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = – 𝝉𝒊 + 𝝀𝒊𝑭𝒔

IFA model with “difficulty” thresholds can be written as a 2-PL IRT Model:

IRT model: IFA model:

𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔– 𝒃𝒊) = – 𝒂𝒊𝒃𝒊 + 𝒂𝒊𝜽𝒔

Convert IFA to IRT: Convert IRT to IFA:

𝑎𝑖 = 𝜆𝑖 ∗ theta variance 𝜆𝑖 =
𝑎𝑖

theta variance

𝑏𝑖 =
𝜏𝑖−(𝜆𝑖∗theta mean)

𝜆𝑖∗ theta variance
𝜏𝑖 = 𝑎𝑖𝑏𝑖 +

𝑎𝑖∗theta mean

theta variance

𝝉𝒊 𝝀𝒊

𝒂𝒊 = discrimination

𝒃𝒊 = difficulty

𝜽𝒔 = 𝑭𝒔 latent trait 

Note: These formulas 

rescale 𝑎𝑖 and 𝑏𝑖 so 

that theta M=0, VAR=1 

If you don’t want to 

rescale theta, use M=0 

and VAR=1 for it to 

keep your current scale
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Thus, IFA = 2-P IRT, just re-arranged!

• An item factor model for binary outcomes is the same as a 

two-parameter IRT model, so you can keep both camps happy:

➢ IFA loadings 𝝀𝒊 can be converted into 2-P IRT discriminations 𝒂𝒊

➢ IFA thresholds 𝝉𝒊 = − 𝝁𝒊 can be converted into 2-P IRT difficulties 𝒃𝒊

• CFA/SEM crowd?  Use 𝐥𝐨𝐠𝐢𝐭 𝐨𝐫 𝐩𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = – 𝝉𝒊 + 𝝀𝒊𝑭𝒔

➢ “I used IFA” → Report item “factor loadings” 𝝀𝒊 and “thresholds” 𝝉𝒊

➢ See also “CFA for categorical data” as usually synonymous

• IRT crowd?  Use 𝐥𝐨𝐠𝐢𝐭 𝐨𝐫 𝐩𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔 − 𝒃𝒊)

➢ “I used IRT” → Report item “discriminations” 𝒂𝒊 and “difficulties” 𝒃𝒊

2-P IRT:                            IFA: 

𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔 − 𝒃𝒊) = – 𝒂𝒊𝒃𝒊 
+  𝒂𝒊𝜽𝒔 

𝝉𝒊 𝝀𝒊
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IFA model with loading and “easiness” intercept 𝝁𝒊:   𝐥𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 =  𝝁𝒊 + 𝝀𝒊𝑭𝒔     

IFA model with loading and “difficulty” threshold 𝝉𝒊:  𝐥𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = – 𝝉𝒊 + 𝝀𝒊𝑭𝒔 

2-P IRT model with discrimination and difficulty 𝒃𝒊:  𝐥𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔– 𝒃𝒊) 

𝒃𝟏 = −𝟎. 𝟑𝟕𝟔= 
theta needed for 

𝑝(𝑦1 = 𝟏) = .50
→ logit/probit = 0  

From IRT to IFA if 
theta M=0, SD=1:

𝜆𝑖 = 𝑎𝑖

𝜏𝑖 = 𝑎𝑖𝑏𝑖

𝝁𝟏 = 𝟏. 𝟔𝟐𝟗= 
Logit of 𝑝(𝑦1 = 𝟏) 

at theta = 0 →

𝑝(𝑦1 = 𝟏) = .836

𝝉𝟏 = −𝟏. 𝟔𝟐𝟗= 
Logit of 𝑝(𝑦1 = 𝟎) 

at theta = 0 →

𝑝(𝑦1 = 𝟎) =  .164

−𝟏 ∗

𝒂𝟏 = 𝝀𝟏 =
𝟒. 𝟑𝟐𝟖 → 

slope at 𝑝 = .5



Item Parameter Interpretations

• IFA and 2-P IRT item slope parameters are interpreted similarly:

➢ IFA loading 𝜆𝑖= Δ in logit/probit of 𝑦𝑖𝑠 = 1 per unit Δ in theta

➢ IRT discrimination 𝑎𝑖 = slope of ICC at prob=.50 (where logit/probit = 0)

• IFA and 2-P IRT item location parameters are different:

➢ IFA intercept 𝝁𝒊= logit/probit of 𝒚𝒊𝒔 = 𝟏 when theta (x) = 0

➢ IFA threshold 𝝉𝒊= logit/probit of 𝒚𝒊𝒔 = 𝟎 when theta (x) = 0

➢ IRT difficulty 𝒃𝒊 = amount of theta needed for logit/probit (y) = 0

▪ So 𝒃𝒊 difficulty values are more useful (to me) to index location
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IFA model with loading and “easiness” intercept 𝝁𝒊:  𝐥𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 =  𝝁𝒊 + 𝝀𝒊𝑭𝒔     

IFA model with loading and “difficulty” threshold 𝝉𝒊:  𝐥𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = – 𝝉𝒊 + 𝝀𝒊𝑭𝒔 

2-P IRT model with discrimination and difficulty 𝒃𝒊: 𝐥𝐨𝐠𝐢𝐭 𝒚𝒊𝒔 = 𝒂𝒊(𝜽𝒔– 𝒃𝒊) 



3 Kinds of 2-P Model Output in Mplus
• IFA unstandardized solution:

➢ Item threshold 𝝉𝒊 = expected logit/probit of 𝒚𝒊𝒔 = 𝟎 when theta 𝜽𝒔 = 𝟎

➢ Item loading 𝝀𝒊 = Δ in logit/probit of 𝒚𝒊𝒔 = 𝟏 per unit Δ in 𝜽𝒔 (theta)

➢ Item residual variance not estimated, but is 3.29 in logit or 1.00 in probit for 𝑦𝑖𝑠
∗

• IFA standardized solution:

➢ Total variance of logit or probit of 𝑦𝑖 = 1 → (𝜆𝑖
2 * theta variance) + (3.29 or 1)

➢ std 𝝉𝒊 = unstd 𝝀𝒊 / SD(logit or probit of 𝑦𝑖 = 1) → not usually interpreted

➢ std 𝝀𝒊 = unstd 𝝀𝒊 * SD(theta) / SD(logit or probit of 𝑦𝑖 = 1) 

→ Correlation of logit or probit of item response with theta

• IRT solution (only one type; only given directly in Mplus for binary items):

➢ 𝒃𝒊 = theta at which prob(𝑦𝑖𝑠 = 1) = .50 (where logit or probit = 0)

➢ 𝒂𝒊 = Δ in logit or probit of 𝑦𝑖𝑠 = 1 per unit Δ in 𝜽𝒔 (theta) 

= slope of item characteristic curve at 𝒃𝒊 item difficulty location

IFA solution should 

not be used to 

compute Omega!
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CFA vs. IRT/IFA vs. ???
• CFA assumes continuous, normally distributed item responses

➢ Robust ML can be used to adjust fit statistics and parameter SEs for 
non-normality, but it’s still a linear model for the factor predicting 𝑦𝑖𝑠

➢ A linear model may not be plausible for ordinal or other bounded responses 
(i.e., the model-predicted responses may extend beyond the possible 
response options for plausible ranges of values of the latent factor)

• IRT/IFA is for binary (or ordinal or nominal) item responses

➢ Linear model between theta and logit or probit of 𝒚𝒊𝒔 instead

➢ Because ordinal item responses are bounded and are not really numbers, 
IRT/IFA should probably be used for these kinds of responses

➢ CFA may not be too far off given ≥ 5 normally distributed responses, 
but then you can’t see how useful your answer choices are (stay tuned!) 

• For non-normal but continuous (not categorical) responses, other 
latent trait measurement models are possible (stay tuned!)
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Summary: Binary IRT/IFA Models
• IRT/IFA are a family of models that specify the relationship between the 

latent trait (“theta”) and a link-transformation of probability of 𝑦𝑖𝑠 = 1

➢ Linear relationship between theta and logit or probit of 𝑦𝑖𝑠 = 1
→ nonlinear relationship between theta and probability of 𝑦𝑖𝑠 = 1

• The form of the trait–response relationship depends on:

➢ At least the location on the latent trait (given by difficulty 𝒃𝒊 or threshold 𝝉𝒊)

➢ Strength of relationship with theta; may vary across items (given by 𝒂𝒊 or 𝝀𝒊)

▪ If not, its a “1-P” or “Rasch model” → assumes tau-equivalence (equal discrimination)

➢ Also maybe lower and upper asymptotes (𝒄𝒊 and 𝒅𝒊) → but good luck with that!

• Because the loadings/slopes relate nonlinearly to theta, this implies that 

reliability (now called “test information”) must vary across theta values

➢ So items are not just “good” or “bad”, but are “good” or “bad” for whom?

• Now what about model fit??? We have to talk estimation first…
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What all do we have to estimate?
• For example, a 7-item binary test and a 2-PL model, (assuming 

we fix the theta distribution to have mean=0 and variance=1):

➢ 7 item discriminations (𝒂𝒊) and 7 item difficulties (𝒃𝒊) = 14 parameters

• Item parameters are FIXED effects → specific item inference

➢ Fixed effects do not have a distribution (at least in frequentist-land)

• What about the all the individual subject thetas? 

➢ These factor scores are not part of the model likelihood—thetas are 

RANDOM effects (= U’s in multilevel, btw) that have a distribution

➢ Thus, our inference is about the distribution of the latent traits in the 

population of subjects, which we assume to be multivariate normal 

➢ So we will need the theta means, variances, and covariances for 

the sample, but not the theta estimates for each subject per se
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Estimation: Items, then Subjects
3 full-information item estimation methods:

• “Full-information” → uses individual item responses

• 3 methods differ with respect to how they handle unknown subject thetas

• First, two less-used and older methods:

➢ “Conditional” ML → theta? We don’t need no stinkin’ theta…

▪ Uses total score as “theta” (so can’t include subject with all 0 or 1 responses)

▪ Thus, is only possible within Rasch models (where the total is sufficient for theta)

▪ If the Rasch model holds, estimators are consistent and efficient and can be 

treated like true likelihood values (i.e., can be used in model comparisons)

➢ “Joint” ML → Um, can we just pretend the thetas are fixed effects instead?

▪ Iterates back and forth between subjects and items (each as fixed effects) until 

item parameters don’t change much—then calls it done (i.e., converged)

▪ Many disadvantages: estimators are biased, inconsistent, with too 

small SEs and likelihoods that can’t be used in model comparisons

▪ More subjects → more parameters to estimate, too → so bad gets even worse!
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Marginal ML Estimation 

(with Numeric Integration)
• Gold standard of estimation (used in Mplus, but not lavaan!)

➢ This is the same idea of multivariate height, just using a different 
distribution than multivariate normal for the log-likelihood function

• Relies on two assumptions of independence:

➢ Item responses are “locally” independent after controlling for theta

▪ This means that the joint probability (likelihood) of two item 
responses is just the probability of each multiplied together

➢ Subjects are independent (no clustering or nesting)

▪ You can add random effects to capture dependency, but then the 
assumption is “independent after controlling for random effects”

• Doesn’t assume it knows the individual thetas, but it does 
assume that the distribution of theta(s) is (multivariate) normal
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Marginal ML via Numeric Integration

• Step 1: Select starting values for all item parameters (e.g., using CTT)

• Step 2: Compute the likelihood for each subject given by the current

parameter values (using start values or updated values later on)

➢ IRT model gives probability of response given item parameters and theta

➢ To get likelihood per subject, take each predicted item probability and plug 

them into: likelihood (all responses) = product over items of: py(1−p)1−y

➢ But we don’t have theta yet! No worries: computing the likelihood for each set 

of possible parameters requires removing the individual thetas from the model 

equation—by integrating across the possible theta values for each subject

➢ Integration is done by “Gaussian Quadrature” → summing up rectangles 

that approximate the integral (the area under the curve) for each subject

• Step 3: Decide if you have the right answers, which occurs when the sum 

of the log-likelihoods changes very little across iterations (i.e., it converges)

• Step 4: If you aren’t converged, choose new parameters values

➢ Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (thetas =missing data)
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“Marginal” ML Estimation
• More on Step 2: Divide the theta distribution into rectangles

→ “Gaussian Quadrature” (# rectangles = # “quadrature points”)

➢ Divide the whole distribution into rectangles, and then take the most 

likely section for each subject and rectangle that more specifically

▪ This is “adaptive quadrature” and is computationally more demanding, 

but gives more accurate results with fewer rectangles (Mplus uses 15)

➢ Unfortunately, each additional theta or factor adds another dimension 

of integration (so 2 factors = 15*15 rectangles to try at each iteration)

The likelihood of each subject’s response 

pattern at each theta rectangle is then 

weighted by that rectangle’s probability of 

being observed (as given by the normal 

distribution). The weighted likelihoods are 

then added together across all rectangles.

 → ta da! “numeric integration”
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Example of Numeric Integration
1. Start values for item parameters (here, 𝑎 = 1 for convenience): 

➢ Item 1: mean = .73 → logit = +1, so starting 𝑏1 = −1

➢ Item 2: mean = .27 → logit = −1, so starting 𝑏2 = +1

2. Compute per-subject likelihood using item parameters and set of 

thetas (e.g., −2,0,2) with IRT model: logit(𝑦𝑖𝑠 = 1) = 𝑎(𝜃 − 𝑏𝑖)

IF y=1 IF y=0 Likelihood Theta Theta Product

Theta = -2 Logit Prob 1-Prob if both y=1 prob width per Theta
Item 1 b = -1 (-2 - -1) -1 0.27 0.73 0.0127548 0.05 2 0.001275
Item 2 b = +1 (-2 - 1) -3 0.05 0.95

Theta = 0 Logit Prob 1-Prob
Item 1 b = -1 (0 - -1) 1 0.73 0.27 0.1966119 0.40 2 0.15729
Item 2 b = +1 (0 - 1) -1 0.27 0.73

Theta = +2 Logit Prob 1-Prob
Item 1 b = -1 (2 - -1) 3 0.95 0.05 0.6963875 0.05 2 0.069639
Item 2 b = +1 (2 - 1) 1 0.73 0.27

Overall Likelihood (Sum of Products over All Thetas): 0.228204

(then multiply over all people)

(repeat with new values of item parameters until find highest overall likelihood)
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Once we have the item parameters, 

we can get some thetas…
• Let’s say we are searching for theta given observed responses to 5 items 

with “calibrated” (known) difficulty values, so we try out 2 possible thetas

➢ Step 1: Compute prob(𝑦𝑖𝑠 = 1) using IRT model given each possible theta

▪ 𝑏1 = −2, 𝜃𝑠 = −1: Logit(𝑦𝑖𝑠 = 1) = (−1 − −2) = 1, so 𝑝(𝑦𝑖𝑠 = 1)= .73

▪ 𝑏5 = 2, 𝜃𝑠 = −1: Logit(𝑦𝑖𝑠 = 1) = (−1 − 2) = −3, so 𝑝(𝑦𝑖𝑠 = 1) = .05 → 𝑝(𝑦𝑖𝑠 = 0) = .95

➢ Step 2: Multiple item probabilities together → product = “likelihood”

▪ Products get really small, but if we take the log, then we can add them instead

➢ Step 3: See which theta has the 

highest likelihood (here, +2)

▪ More quadrature points 

→ better estimate of theta

➢ Step 4: Because subjects are 

independent, we can multiply

all their response likelihoods 

together and solve all at once

Item b Y Term

θ = -1 θ = +2

1 -2 1 p 0.73 0.98

2 -1 1 p 0.50 0.95

3 0 1 p 0.27 0.88

4 1 1 p 0.12 0.73

5 2 0 1-p 0.95 0.50

Product of values: 0.01 0.30

Value if…
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Theta Estimation via Newton Raphson

• We could calculate the likelihood over wide range of thetas for each 

subject and plot those likelihood values to see where the peak is…

➢ But we have lives to lead, so we can solve it mathematically instead by finding 

where the slope of the likelihood function (the 1st derivative, 𝑑′) = 0 (its peak)

• Step 1: Start with a guess of theta, calculate 1st derivative 𝒅′ at that point

➢ Are we there (𝑑′ = 0) yet? Positive 𝑑′ = too low; negative 𝑑′ = too high

Most likely theta is where 

slope of tangent line to 

curve (1st derivative 𝒅′) = 0

Let’s say we started 

over here…
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Theta Estimation via Newton Raphson

• Step 2: Calculate the 2nd derivative (slope of slope, 𝑑′′) at current theta guess

➢ Tells us how far off we are, which is used to figure out how much to adjust by

➢ 𝑑′′ will always be negative as we approach top, but d' can be positive or negative

• Calculate new guess of theta: 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 – (𝑑′/𝑑′′)

➢ If (𝑑′/𝑑′′) < 0 → theta increases 

If (𝑑′/𝑑′′) > 0 → theta decreases 

If (𝑑′/𝑑′′) = 0 then you are correct!

• 2nd derivative 𝒅′′ also tells you

how good of a peak you have

➢ Need to know where your best

theta is (at 𝑑′ = 0), as well as 

how precise it is (from 𝑑′′) 

➢ If the function is flat, 

𝑑′′ will be smallish

➢ Want large 𝒅′′ because

1/SQRT(𝒅′′) = theta’s SE
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𝑑′′ = Slope of 𝑑′
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Theta Estimation: ML with Help
• ML is used to search for and find the most likely theta given 

observed item response pattern and the item parameters…

…but can’t estimate theta if item responses are all 0’s or all 1’s!

• Prior distributions to the rescue (yes, it’s using Bayes)!

➢ Multiply likelihood function for theta with prior distribution 

(usually we assume multivariate normal, as used in most software)

➢ Contribution of the prior is minimized with increasing items, 

but allows us to get thetas for all 0 or all 1 response patterns 

• Note the implication of this for what theta really is for each person:

➢ THETA IS A RANDOM EFFECT—A DISTRIBUTION, NOT A VALUE!

➢ Although we can find the most likely value, we can’t ignore its probabilistic 

nature or how good of an estimate it is (how peaked the LL function is)

▪ SE is constant across CFA factor scores, but SE is NOT constant across IRT/IFA thetas

➢ THIS IS WHY YOU SHOULD AVOID OUTPUTTING THETAS
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Factor/Theta Estimation: 3 Methods
• ML: Maximum Likelihood Scoring

➢ Uses just the item parameters to predict the theta values

➢ Can’t estimate theta if none or all items are correct/endorsed

• MAP: Maximum a Posteriori Scoring

➢ Combine ML estimate with a continuous normal prior distribution

➢ Theta prediction is the mode of the posterior (prior+ML) distribution

➢ Theta will be shrunken towards the mean if reliability is low

➢ Is used in Mplus WLSMV (diagonally-weighted least squares, stay tuned)

• EAP: Expected A Posteriori Scoring

➢ Combine ML estimate with a “rectangle” normal prior distribution 

➢ Theta prediction is the mean of the posterior (prior+ML) distribution

➢ Is used in Mplus ML/MLR for CFA or IRT/IFA (and is best version)
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What Goes Wrong for Absolute 

(Global) Model Fit using ML…
• ML is a full-information estimator, and it is now trying to reproduce 

the observed item response pattern, not a Pearson covariance matrix!

• Model DF is based on FULL response pattern: #responses#items

➢ DF = # possible observed patterns – # parameters – 1

➢ So, for an example of 24 binary items in a 1-P IRT model: 

▪ Max DF = 224 – #𝑎𝑖 – #𝑏𝑖 – 1 = 16,777,216 – 1 – 24 – 1 = 𝟏𝟔, 𝟕𝟕𝟕, 𝟏𝟗𝟎!

▪ If some cells aren’t observed (Mplus deletes them from the 𝜒2 calculation), 
then DF may be < Max DF, and thus 𝜒2 won’t have the right distribution

• Pearson χ2 based on classic formula: (observed – expected)2 / expected

➢ Good luck finding enough people to fill up all possible patterns!

➢ Other 𝜒2 given in output is “Likelihood Ratio” 𝜒2 , calculated differently

➢ Linda Muthén suggests “if these don’t match, they should not be used”

➢ 𝝌𝟐 generally won’t work well for assessing absolute global fit in IRT
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Local Model Fit Using ML IRT
• IRT programs (but not Mplus) provide “item fit” and “person fit” statistics

➢ Item fit: Predicted vs. observed ICCs—how well do they match? 
Or via inferential tests (Bock Chi-Square Index or BILOG version)

➢ Person fit “Z” based on predicted vs. observed response patterns

➢ Many require the use of theta predictions, which makes them problematic!

• Using ML in Mplus: Local item fit available with TECH10 output

➢ Univariate item fits: How well did the model reproduce the observed 
response proportions? (Not likely to have problems here)

➢ Bivariate item fits: Contingency tables for pairs of responses → Get χ2 value for 
each pair of items for their remaining dependency after controlling for theta(s)

• Bivariate item fit is the basis of the newest absolute fit statistics (e.g., work 
by Maydeu-Olivares): M2 (analogous to χ2 test), RMSEA2, and SRMR2

➢ The 𝑀2 statistic indexes global fit by computing a 𝜒2(observed vs. expected
metric) for the fit to the marginal frequency of each item’s responses 
and two-way cross-tabulations for each pair of item responses

▪ Not currently in Mplus, but available as M2 function within the MIRT package in R

PSQF 6249: Lecture 5b 26    

https://www.academia.edu/27025719/Evaluating_fit_in_IRT_models


Summary: ML Estimation for IRT Models

• Full-information Marginal ML with numeric integration for IRT models tries 
to find the item parameters that are most likely given the observed item 
response pattern → IFA or IRT parameters using logit or probit scales

• Because of the integration (i.e., rectangling of theta) required at each step 
of estimation, it may not be feasible to use ML for IRT models in small 
samples or for many factors at once (too many rectangles simultaneously)

➢ This where MCMC (Bayesian) estimation can be a more practical strategy!

• IRT using ML does not have agreed-upon measures of absolute global fit

➢ Categorical item responses cannot be summarized by just a Pearson covariance 
matrix, but by all possible response patterns (full contingency table) instead

➢ Usually there are not enough people to fill up all possible response patterns, 
so there’s no valid basis for an absolute fit comparison using “expected”

➢ Nested models (on same items!) can still have relative fit compared via −2ΔLL

• There is another game in town for IRT/IFA estimation in Mplus, however…
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Another Alternative:  WLSMV
• WLSMV: “Weighted Least Square parameter estimates use a diagonal 

weight matrix and a Mean- and Variance-adjusted χ2 test”

➢ Called “diagonally-weighted least squares” (DWLS) by non-Mplus people

• Translation: WLSMV is a limited-information estimator that uses a 

different summary of responses instead → a “linked” covariance matrix

• Fit can then be assessed in regular CFA ways, because what is 

trying to be reproduced is again a type of covariance matrix 

➢ Instead of the full item cross-tabulation of response patterns (as in ML)

➢ We can then get the typical measures of absolute fit available in CFA

• Normally CFA uses the Pearson covariance matrix of the items…

➢ But correlations among binary items will be less than 1 any time 

𝑝 differs from .5, so the covariances will be restricted as well…

➢ What if we could fit a covariance matrix on the logit or probits instead???
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Bivariate Association of Binary Variables
• The possible Pearson’s 𝒓 for binary variables will be limited when they 

are not evenly split into 0/1 because their variance depends on their mean

➢ Remember: Mean = 𝑝𝑖 , Variance = 𝑝𝑖 1 − 𝑝𝑖 = 𝑝𝑖𝑞𝑖

• If two binary variables (𝑥𝑖 and 𝑦𝑖) differ in 𝑝𝑖, such that 𝑝𝑦 > 𝑝𝑥

➢ Maximum covariance: 𝐶𝑜𝑣(𝑥, 𝑦) = 𝑝𝑥(1 − 𝑝𝑦)

➢ This problem is known as “range restriction”

➢ Here this means the maximum Pearson’s 𝒓
will be smaller than ±𝟏 it should be:

➢ Some examples using this formula 

to predict maximum Pearson 𝑟 values →

➢ So Pearson correlations may not adequately

describe relations of categorical variables…
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Correlations for Binary or Ordinal Variables
• Pearson correlation: between two quantitative variables, 

working with the observed distributions as they actually are

• Phi correlation: between two binary variables, still working with the 

observed distributions (= Pearson with computational shortcut)

• Point-biserial correlation: between one binary and one quantitative 

variable, still working with the observed distributions (and still = Pearson)

• Tetrachoric correlation: between “underlying continuous” distributions 

of two actually binary variables (not = Pearson) → based on probit!

• Polychoric correlation: between “underlying continuous” distributions 

of two ordinal variables (not = Pearson) → based on probit!

• (Bi/Poly)serial correlation: between “underlying continuous” (but really 

binary/ordinal) and observed quantitative variables (not = Pearson)

• Bivariate statistics related to categorical variables should be provided using 

(tetra/poly)choric or (bi/poly)serial correlations instead of Pearson
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Tetrachoric and Polychoric Correlation

• Polychoric and tetrachoric correlations are similar:
➢ Both based on a bivariate normal distribution,

➢ Both try to represent the correlation that would 

have created the proportion of responses in each 

cell (unique combo of row by column)

• See this website for a more thorough 

description with this helpful example

of the extension to polychoric!
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Data y2 = 0 y2 = 1

y1 = 0 a c

y1 = 1 b d

Tetrachoric reasoning: 

Given a bivariate normal 

distribution of the 

underlying continuous 

variables (𝑦∗ version), 

what correlation would 

have created the 

observed proportion in 

each quadrant (→ cell)?

https://www.r-bloggers.com/2021/02/how-does-polychoric-correlation-work-aka-ordinal-to-ordinal-correlation/


WLSMV Estimation (Diagonally Weighted Least Squares)

Data y2 = 0 y2 = 1

y1 = 0 a c

y1 = 1 b d

• WLSMV first estimates correlation matrix of underlying item responses (probit scale)

➢ For binary responses → tetrachoric correlation matrix as new 𝐻1 saturated model

➢ For ordinal (polytomous) responses → polychoric correlation matrix as 𝐻1 saturated model

• The model then tries to find item parameters to predict this new correlation matrix

• The diagonal W “weight” part then tries to emphasize reproducing underlying variable 
correlations that are relatively well-determined more than those that aren’t

➢ The full weight matrix is of order z*z, where z is number of matrix elements to estimate

➢ The “diagonal” part means it only uses the preciseness of the estimates themselves, not the 
covariances among the “preciseness-es” (much easier, and not a whole lot of info lost)

• The “MV” corrects the 𝜒2 test for bias arising from this weighting process
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More about WLSMV Estimation
• Works much faster than ML when you have small samples or many factors 

to estimate (because no rectangling via quadrature is required)

• Does assume missing data are missing completely at random,

whereas ML assumes only missing at random (conditionally random)

• Because a saturated covariance matrix is used as the input data, we get 

absolute fit indices as in CFA, but they should be interpreted with caution

➢ Fewer people → less well-estimated “saturated” matrix to start from

➢ More skewness, fewer categories → easier to get falsely good model fit

• Model parameters must be on the probit scale instead of logit scale

➢ Unlike full-information ML, in which you can choose logit or probit instead

• Two item variance scalings in Mplus via the PARAMETERIZATION option 

on the ANALYSIS command, where a 1 is needed for identification

➢ “Delta” (default): Var(𝑦𝑖
∗) = factor + error = 1 = “marginal parameterization”

➢ “Theta”: Var(𝑒𝑖
∗) = 1 instead = “conditional parameterization”

▪ WE WILL USE THIS ONE TO HELP SIMPLIFY IRT CONVERSIONS
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Model Comparisons with WLSMV 

using DIFFTEST in Mplus
• Not the same process! Model DF is NOT calculated in usual 

way, and model fit is not compared in the usual way

➢ Absolute 𝜒2 model fit values are meaningless—they are not comparable!

➢ Difference in model 𝜒2 are not distributed as 𝜒2 anymore

• Here’s how you do nested model comparisons in WLSMV:

➢ Step 1: Estimate model with more parameters, adding this command:

▪ SAVEDATA: DIFFTEST=more.dat;  → Saves needed derivatives to file

➢ Step 2: Estimate model with fewer parameters, adding this command:

▪ ANALYSIS: DIFFTEST=fewer.dat;   → Uses those derivatives to do Δ𝜒2 test

➢ Step 2 model output will have a new 𝜒2 difference test in it that 

you can use, with DF difference to compare to a 𝜒2 distribution
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Assessing Local Model Fit
• Need to check local model fit is the same in IRT/IFA as in CFA

• Using ML: Local item fit in Mplus available with TECH10 option

➢ Univariate item fits: How well did the model reproduce the observed response 

frequencies? (Not likely to have problems here if each item has own location)

➢ Bivariate item fits: Contingency tables for pairs of responses → Get 𝜒2 value for 

each pair of items for their remaining dependency after controlling for Theta(s)

▪ Done for every pair of items, so there will be LOTS of output to wade through 

• Under WLSMV: Residual correlation matrix (i.e., model–data discrepancy) 

via the RESIDUAL option on OUTPUT statement (just like in CFA)

➢ Predicted and residual (discrepancy) item tetrachoric/polychoric correlations 

➢ Look for large (absolute value) discrepancies in correlation metric

➢ Will be MUCH easier to do for many items than all bivariate item fits in ML! 
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Error Covariances in IRT/IFA
• Additional relationships between items can be included:

➢ Via error covariances (the same as in CFA) when using WLSMV

because the model is being estimated on the tetrachoric/polychoric 

correlation matrix (so the error of the underlying probit can covary, 

even if item error or total variances =1 for identification)

➢ Error covariances are not allowed when using full-information ML

➢ Instead, you can specify “method factors” (in WLSMV or ML), also 

known as a “bifactor model” (which can also be used in CFA models)

• Here is an example using WLSMV to demonstrate both ways:
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! Primary factor/theta

Trait BY item1-item5*;

[Trait@0]; Trait@1;

! Error covariance

item2 WITH item3*;

! Primary factor/theta

Trait BY item1-item5*;

[Trait@0]; Trait@1;

! Uncorrelated factor to 

create error covariance

ErrFact BY item2@1 item3@1;

[ErrFact@0]; ErrFact*;

ErrFact WITH Trait@0;



Error Covariances in IRT/IFA
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! Primary factor/theta

Trait BY item1-item5*;

[Trait@0]; Trait@1;

! Uncorrelated factor to 

create error covariance

ErrFact BY item2@1 item3@1;

[ErrFact@0]; ErrFact*;

ErrFact WITH Trait@0;

TRAIT    BY

ITEM1    0.994      0.078     12.724      0.000

ITEM2    2.138      0.148     14.459      0.000

ITEM3    1.823      0.125     14.527      0.000

ITEM4    1.106      0.090     12.311      0.000

ITEM5    0.232      0.045      5.200      0.000

ERRFACT  BY

ITEM2    1.000      0.000    999.000    999.000

ITEM3    1.000      0.000    999.000    999.000

ERRFACT  WITH

TRAIT    0.000      0.000    999.000    999.000

Variances

TRAIT    1.000      0.000    999.000    999.000

ERRFACT  1.996      0.314      6.357      0.000

The variance of ErrFact 

then predicts a positive 

additional covariance 

for item 2 with item 3.

To create a negative 

error covariance, fix 

the ErrFact loadings 

to 1 and −1 instead.

For models with many method 
factors, add the ANALYSIS: 

option MODEL=NOCOVARIANCES 

to made all factors uncorrelated 

by default (instead of all factors 
correlated by default as usual)



IRT/IFA Model Estimation: Summary
• Full-information Marginal ML estimation with numeric integration provides:

➢ “Best guess” as to the value of each item parameter (and person theta if you ask for it)

➢ SE that conveys the uncertainty of that prediction

• The “best guesses” for the model parameters do not depend on the sample:

➢ Item estimates do not depend on the particular individuals that provided responses

➢ Person estimates do not depend on the particular items that were administered 

➢ Thus, model parameter estimates are sample-invariant

• The SEs for those model parameters DO depend on the sample 

➢ Item parameters will be estimated less precisely where there are fewer individuals

➢ Person parameters will be estimated less precisely where there are fewer items

• WLSMV (DWLS) in Mplus uses limited-information estimation for IFA or IRT models

➢ Uses an estimated tetrachoric correlation matrix as input for the factor analysis

➢ Works better for many factors than ML (but can be less trustworthy overall)

➢ But beware of missing data! ML assumes MAR, whereas WLSMV assumes MCAR instead!
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