
PSQF 6243: Lecture 5

General Linear Models with 

Interactions: Testing Moderation!
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• Topics:

➢ Slopes of predictors within interactions: from unique main 
(marginal) effects to unique simple (conditional) effects

▪ The 4 possible kinds of interactions

▪ Model-implied slopes as linear combinations of model slopes

▪ Regions of significance for when simple slopes “turn on or off”

▪ Interactions with categorical predictors 

▪ Interactions with quantitative predictors with nonlinear effects

➢ Special uses of interaction terms to create nested effects

▪ “ANOVA with a hole in it”

▪ Missing (or impossible) predictor data
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𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊) + 𝜷𝟑(𝒙𝒊)(𝒛𝒊) + 𝒆𝒊

• Interaction slopes (𝜷𝟑 here) test “Moderation”: whether a 
predictor’s slope depends on the value of an interacting predictor

➢ Either predictor can be “the moderator” (is interpretive distinction only) 

• Interactions can always be evaluated for any combination of 
categorical and quantitative predictors, although traditionally…

➢ In “ANOVA”: By default, all possible interactions are estimated

▪ Oddly, nonsignificant interactions are usually kept in the model 
(even if only significant interactions are interpreted)

➢ In “ANCOVA”: Quantitative predictors (“covariates”) are not included in 
interaction terms → this is the “homogeneity of regression assumption”

▪ But you don’t have to assume this—it is always a testable hypothesis!

➢ In “Regression”: No default—effects of predictors are as you specify

▪ Requires most thought, but gets annoying in regression-specific 
programs when you have to manually create the interaction variable: 

▪ e.g.,  XZinteraction = X * Z;
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Interaction variables are made on the fly in GLM! ☺

GLM with an 

Interaction:
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Main Effects of Predictors within Interactions
• “Main effect” slopes of predictors that are included in interaction terms 

should always remain in the model regardless of their significance

➢ e.g., given 𝜷𝟑(𝒙𝒊)(𝒛𝒊), you must keep 𝜷𝟏(𝒙𝒊) and 𝜷𝟐(𝒛𝒊) in the model, too

➢ Why? Because an interaction term creates an over-additive (enhancing) 
or under-additive (dampening) effect, so what it is additive to must be 
included for the interaction to correctly represent an “interaction”

• Role of a two-way interaction is to adjust the “main effect” slopes 
of the two predictors involved… (in one of four possible ways)

➢ But the idea of a “marginal” main effect slope (that holds for everyone) 
no longer applies: the main effect slopes become simple main effect 
slopes that are conditional each interacting predictor = 0

• Note that this is a different type of conditionality than just “holding 
the other predictors constant” (which means constant at any value)

➢ Simple main effect slopes are held constant (conditional on) the 0 value 
of the interacting predictor(s)—these slopes would be different if 0 were 
defined differently by centering the interacting predictor elsewhere

➢ This language can be confusing, so next is a taxonomy that may help…
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A Taxonomy of Fixed Effect Interpretations
• In the most common statistical models, fixed effects will be either:

➢ an intercept that provides an expected (conditional) 𝒚𝒊 outcome, 

➢ or a slope for the difference in 𝒚𝒊 per unit difference in 𝒙𝒊 predictor

• All slopes can be described as falling within one of three categories: 

bivariate marginal, unique marginal, or unique conditional

➢ In models with only one fixed slope, that slope’s main effect is 

bivariate marginal (is uncontrolled and applies across all persons)

➢ In models with more than one fixed slope, each slope’s main effect is 

unique (it controls for the overlap in contribution with each other slope) 

▪ If a predictor is not part of an interaction term, its unique effect is marginal 

(it controls for the other slopes, but its effect still applies across all persons)

▪ If a predictor is part of one or more interaction terms, its unique effect is 

conditional, which means it is specific to each interacting predictor = 0

– Unique conditional effects are also called “simple main effects” (simple slopes) 
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NEW
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Practice Labeling Fixed Slopes—Choices:
bivariate marginal, unique marginal, or unique conditional

Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝒆𝒊

• Label for 𝜷𝟏 slope of 𝒘𝒊 = bivariate marginal (unconditional)

Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

• Label for 𝜷𝟏 slope of 𝒘𝒊 = unique marginal (unconditional)

• Label for 𝜷𝟐 slope of 𝒙𝒊 = unique conditional (on z=0)

• Label for 𝜷𝟑 slope of 𝒛𝒊 = unique conditional (on x=0)

• Label for 𝜷𝟒 slope of 𝒙𝒊𝒛𝒊 interaction term= unique marginal
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The 4 Possible Kinds of Interactions
• There are only 4 kinds of interactions: they make each 

of their main effect slopes more/less positive/negative 

➢ More positive or more negative → effect becomes stronger, 
                                                         known as “over-additive” interaction

➢ Less positive or less negative → effect becomes weaker,
                                                    known as “under-additive” interaction

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊
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Slope of 𝒙𝒊 

is 𝜷𝟐=

Interaction 

Slope is 𝜷𝟒=

So 𝜷𝟒 makes effect of 𝒙𝒊 

??? per unit higher 𝒛𝒊

10 2 More positive

10 -2 Less positive

-10 -2 More negative

-10 2 Less negative
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Fixed Effects: Why Centering Matters
• 𝒚𝒊 = Student achievement (GPA as percentage out of 100)

𝒙𝒊 = Parent attitudes about education (measured on 1–5 scale) 

𝒛𝒊 = Parent education level (measured in years of education)

𝑮𝑷𝑨𝒊 =  𝜷𝟎 + 𝜷𝟏 𝑨𝒕𝒕𝒊 + 𝜷𝟐 𝑬𝒅𝒊 + 𝜷𝟑 𝑨𝒕𝒕𝒊 𝑬𝒅𝒊 + 𝒆𝒊

𝑮𝑷𝑨𝒊 = 𝟑𝟎 + 𝟏 𝑨𝒕𝒕𝒊 + 𝟐 𝑬𝒅𝒊 + 𝟎. 𝟓(𝑨𝒕𝒕𝒊)(𝑬𝒅𝒊) + 𝒆𝒊

• Interpret 𝜷𝟎: GPA for att=0 and ed=0

• Interpret 𝜷𝟏: change in Y per unit att for ed=0

• Interpret 𝜷𝟐: change in Y per unit ed for att=0

• Interpret 𝜷𝟑: Attitude as Moderator: change in beta2 per unit att

           Education as Moderator: change in beta1 per unit ed

• Predicted GPA for attitude = 3 and Ed = 12?

 75 = 30  + 1*(3)  +  2*(12)  +  0.5*(3)*(12) 
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How Centering Changes Fixed Effects
• 𝒚𝒊 = Student achievement (GPA as percentage out of 100)

𝒙𝒊 = Parent attitudes about education (now centered at 3) 

𝒛𝒊 = Parent years of education (now centered at 12) 

𝑮𝑷𝑨𝒊 =  𝜷𝟎 + 𝜷𝟏 𝑨𝒕𝒕𝒊 − 𝟑 + 𝜷𝟐 𝑬𝒅𝒊 − 𝟏𝟐 + 𝜷𝟑 𝑨𝒕𝒕𝒊 − 𝟑 𝑬𝒅𝒊 − 𝟏𝟐 + 𝒆𝒊

𝑮𝑷𝑨𝒊 = 𝟕𝟓 + 𝟕 𝑨𝒕𝒕𝒊 − 𝟑 + 𝟑. 𝟓 𝑬𝒅𝒊 − 𝟏𝟐 +  𝟎. 𝟓(𝑨𝒕𝒕𝒊 − 𝟑)(𝑬𝒅𝒊 − 𝟏𝟐) + 𝒆𝒊

• Interpret 𝜷𝟎: expected GPA for att=3 and ed=12

• Interpret 𝜷𝟏: change in Y per unit att for ed=12

• Interpret 𝜷𝟐: change in Y per unit ed for att=3

• Interpret 𝜷𝟑: Attitude as Moderator: change in beta2 per unit att

           Education as Moderator: change in beta1 per unit ed

• But how did I know what the new fixed effects would be??? 
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Model-Implied Predicted Outcomes
• Predicted outcomes = expected outcomes = conditional means

➢ ALL model effects must be included (or else are assumed = 0)

෣𝑮𝑷𝑨𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒕𝒕𝒊 − 𝟑) + 𝜷𝟐(𝑬𝒅𝒊 − 𝟏𝟐) + 𝜷𝟑(𝑨𝒕𝒕𝒊 − 𝟑)(𝑬𝒅𝒊 − 𝟏𝟐)

STATA: Each line starts with lincom, labels given in comments after // 

lincom _cons*1 + att*_2_ + ed*_4_ + att#ed*_8_ // Yhat: Att=5 Ed=16 
lincom _cons*1 + att*-2_ + ed*-3_ + att#ed*_6_ // Yhat: Att=1 Ed=9 
lincom _cons*1 + att*_0_ + ed*_8_ + att#ed*_0_ // Yhat: Att=3 Ed=20

R: Values are multipliers in GLHT in order of the fixed effects output:

glhtName = glht(model=ModelName, linfct=rbind(

"Yhat: Att=5 Ed=16" c(1,_2_,_4_,_8_),

"Yhat: Att=1 Ed=9"  c(1,-2_,-3_,_6_),

"Yhat: Att=3 Ed=20" c(1,_0_,_8_,_0_)))

summary(glhtName, test=adjusted("none"))

9    



PSQF 6243: Lecture 5

Model-Implied Predictor Simple Slopes
• Example equation for predicted GPA using centered predictors:

෣𝑮𝑷𝑨𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒕𝒕𝒊 − 𝟑) + 𝜷𝟐(𝑬𝒅𝒊 − 𝟏𝟐) + 𝜷𝟑(𝑨𝒕𝒕𝒊 − 𝟑)(𝑬𝒅𝒊 − 𝟏𝟐)

• This model equation provides predictions for:

➢ Expected outcome given any combination of predictor values

➢ Any conditional (simple) main effect slopes implied by interaction term

➢ Any slope can be found as:  what it is + what modifies it

• Three steps to get any model-implied simple main effect slope:

1. Identify all terms in model involving the predictor of interest

2. Factor out common predictor variable to find slope linear combination

3. Calculate estimate and SE for slope linear combination

➢ By “calculate” of course I mean “ask the program to do this for you”
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Model-Implied Predictor Simple Slopes

• Example equation for predicted GPA using centered predictors:
෣𝑮𝑷𝑨𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒕𝒕𝒊 − 𝟑) + 𝜷𝟐(𝑬𝒅𝒊 − 𝟏𝟐) + 𝜷𝟑(𝑨𝒕𝒕𝒊 − 𝟑)(𝑬𝒅𝒊 − 𝟏𝟐)

1. Identify all slopes in model involving the predictor of interest

  To get attitudes slope:   𝑬𝒔𝒕 =  𝜷𝟏(𝑨𝒕𝒕𝒊 − 𝟑) + 𝜷𝟑(𝑨𝒕𝒕𝒊 − 𝟑)(𝑬𝒅𝒊 − 𝟏𝟐)

  To get education slope: 𝑬𝒔𝒕 =  𝜷𝟐(𝑬𝒅𝒊 − 𝟏𝟐) + 𝜷𝟑(𝑨𝒕𝒕𝒊 − 𝟑)(𝑬𝒅𝒊 − 𝟏𝟐)

2. Factor out predictor of interest to find slope linear combination

   To get attitudes slope:   𝑬𝒔𝒕 = 𝜷𝟏 + 𝜷𝟑 (𝑬𝒅𝒊 − 𝟏𝟐) that will multiply (𝑨𝒕𝒕𝒊 − 𝟑)

   To get education slope: 𝑬𝒔𝒕 = 𝜷𝟐 +  𝜷𝟑(𝑨𝒕𝒕𝒊 − 𝟑)  that will multiply (𝑬𝒅𝒊 − 𝟏𝟐)

 

• Btw, the SEs for the new slopes provided by the program come from:

➢ 𝑆𝐸2 = sampling variance of slope estimate → e.g., 𝑉𝑎𝑟(𝛽1)  =  𝑆𝐸𝛽1

2

  attitudes slope:   𝑺𝑬𝟐 = 𝑽𝒂𝒓(𝜷𝟏) + 𝑽𝒂𝒓(𝜷𝟑)(𝑬𝒅𝒊 − 𝟏𝟐) + 𝟐𝑪𝒐𝒗(𝜷𝟏, 𝜷𝟑)(𝑬𝒅𝒊 − 𝟏𝟐)

  education slope: 𝑺𝑬𝟐 = 𝑽𝒂𝒓(𝜷𝟐) +  𝑽𝒂𝒓(𝜷𝟑)(𝑨𝒕𝒕𝒊 − 𝟑)  + 𝟐𝑪𝒐𝒗(𝜷𝟐, 𝜷𝟑)(𝑨𝒕𝒕𝒊 − 𝟑)
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Model-Implied Predictor Simple Slopes
• To request predicted simple slopes (= simple main effects):

➢ Include ONLY the fixed effects that contain the predictor of interest

෣𝑮𝑷𝑨𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒕𝒕𝒊 − 𝟑) + 𝜷𝟐(𝑬𝒅𝒊 − 𝟏𝟐) + 𝜷𝟑(𝑨𝒕𝒕𝒊 − 𝟑)(𝑬𝒅𝒊 − 𝟏𝟐)

→ attitudes slope:   𝑬𝒔𝒕 = 𝜷𝟏 + 𝜷𝟑(𝑬𝒅𝒊 − 𝟏𝟐)  that multiplies (𝑨𝒕𝒕𝒊 − 𝟑) 
→ education slope: 𝑬𝒔𝒕 = 𝜷𝟐 +  𝜷𝟑(𝑨𝒕𝒕𝒊 − 𝟑)   that multiplies (𝑬𝒅𝒊 − 𝟏𝟐)

STATA: Each line starts with lincom, title in comments after //

lincom _cons*0 + att*1 + ed*0 + att#ed*-2 // Att Slope if Ed=10 

lincom _cons*0 + att*1 + ed*0 + att#ed*6  // Att Slope if Ed=18 

lincom _cons*0 + att*0 + ed*1 + att#ed*-1 // Ed Slope  if Att=2 

lincom _cons*0 + att*0 + ed*1 + att#ed*2 // Ed Slope  if Att=5

R: Values are multipliers in GLHT in order of fixed effects:
glhtName = glht(model=ModelName, linfct=rbind(

"Att Slope if Ed=10" c(0,1,0,-2),

"Att Slope if Ed=18" c(0,1,0, 6),

"Ed Slope  if Att=2" c(0,0,1,-1),

"Ed Slope  if Att=5" c(0,0,1, 2)))
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Regions of Significance for Simple Slopes
• For quantitative predictors, there may not be specific values of the 

moderator at which you want to know the slope’s significance…

• For example, with age*woman (in which 0=man, 1=woman here): 

ෝ𝒚𝒊 =  𝜷𝟎 + 𝜷𝟏(𝑨𝒈𝒆𝒊 − 𝟖𝟓) + 𝜷𝟐(𝑾𝒐𝒎𝒂𝒏𝒊) + 𝜷𝟑(𝑨𝒈𝒆𝒊 − 𝟖𝟓)(𝑾𝒐𝒎𝒂𝒏𝒊)

→ age slope:       𝑬𝒔𝒕 = 𝜷𝟏 + 𝜷𝟑(𝑾𝒐𝒎𝒂𝒏𝒊) that multiplies 𝑨𝒈𝒆𝒊 − 𝟖𝟓

→ gender slope: 𝑬𝒔𝒕 = 𝜷𝟐 + 𝜷𝟑 𝑨𝒈𝒆𝒊 − 𝟖𝟓  that multiplies 𝑾𝒐𝒎𝒂𝒏𝒊

• Age slopes are only relevant for two specific values of woman:

lincom age85*1 woman*0 age85*woman*0  // Age Slope for Men

lincom age85*1 woman*0 age85*woman*1  // Age Slope for Women

• But there are many ages to request gender differences for...

lincom age85*0 woman*1 age85*woman*-5  // Gender Diff at Age=80 

lincom age85*0 woman*1 age85*woman*5 // Gender Diff at Age=90
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Regions of Significance for Simple Slopes
• An alternative approach for continuous moderators is known as regions 

of significance (see Hoffman 2015; chapter 2; Finsaas & Goldstein, 2021)

• Rather than asking if the simple main effect of gender is still significant 

at an arbitrary age, we can find the boundary ages at which the gender 

slope becomes non-significant

• We know that: EST / SE = t-value → if |t| > |1.96|, then p < .05

• So we work backwards to find the EST and SE such that:

• Need to request “asymptotic covariance matrix” (COVB)

➢ Covariance matrix of fixed effect estimates (SE2 is on the diagonal)
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( )

( ) ( )( ) ( )( )

2 3

2

2 2 3 3

Slope Estimate
± t = ±1.96 = , where:

Variance of Slope Estimate

Gender Slope (Gender Difference) Estimate = Age 85

Variance of Slope Estimate = Var 2Cov Age 85 Var Age 85

 + −

 +   − +  −

https://psycnet.apa.org/record/2015-01073-000
https://psycnet.apa.org/doi/10.1037/met0000266
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Regions of Significance for Simple Slopes
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• For example, age*woman (0=man, 1=woman), age = moderator: 
ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒈𝒆𝒊 − 𝟖𝟓) + 𝜷𝟐(𝑾𝒐𝒎𝒂𝒏𝒊) + 𝜷𝟑(𝑨𝒈𝒆𝒊 − 𝟖𝟓)(𝑾𝒐𝒎𝒂𝒏𝒊)

• 𝜷𝟐 =  −𝟎. 𝟓𝟑𝟎𝟔* at age=85,         𝑽𝒂𝒓(𝜷𝟐) → 𝑺𝑬𝟐 for 𝜷𝟐 was 𝟎. 𝟎𝟔𝟎𝟎𝟖

• 𝜷𝟑 =  −𝟎. 𝟏𝟏𝟎𝟒* unconditionally, 𝑽𝒂𝒓(𝜷𝟑) → 𝑺𝑬𝟐 for 𝜷𝟑 was 𝟎. 𝟎𝟎𝟏𝟕𝟖

• Covariance of 𝜷𝟐 𝑺𝑬 and 𝜷𝟑 𝑺𝑬 was 𝟎. 𝟎𝟎𝟏𝟏𝟏

• Regions of Significance for Moderator of Age = 60.16 to 79.52

➢ The gender effect 𝛽2 is predicted to be significantly negative above age 

79.52, non-significant from ages 79.52 to 60.16, and significantly positive 

below age 60.16 (because non-parallel lines will cross eventually).

( )

( ) ( )( ) ( )( )
2 3

2

2 2 3 3

Slope Estimate
± t = ±1.96 = , where:

Variance of Slope Estimate

Gender Slope (Gender Difference) Estimate = Age 85

Variance of Slope Estimate = Var 2Cov Age 85 Var Age 85

 + −

 +   − +  −
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When There’s More than One Interaction
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

                                + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝒆𝒊

• Now all main effect slopes are “unique conditional” (simple):

➢ 𝜷𝟏 = diff in 𝒚𝒊 per one-unit 𝒘𝒊 specifically when 𝒛𝒊 = 𝟎

➢ 𝜷𝟐 = diff in 𝒚𝒊 per one-unit 𝒙𝒊 specifically when 𝒛𝒊 = 𝟎

➢ 𝜷𝟑 = diff in 𝒚𝒊 per one-unit 𝒛𝒊 specifically when 𝒘𝒊 = 𝟎 and 𝒙𝒊 = 𝟎 

• Interaction slopes (𝜷𝟒 and 𝜷𝟓) are “unique marginal”

➢ 𝜷𝟒 is now controlling for 𝜷𝟓, but interpretation of 𝜷𝟒 is unchanged:

     How slope of 𝒙𝒊 is moderated by 𝒛𝒊: 𝜷𝟒 = diff in 𝜷𝟐 per one-unit 𝒛𝒊

     How slope of 𝒛𝒊 is moderated by 𝒙𝒊: 𝜷𝟒 = diff in 𝜷𝟑 per one-unit 𝒙𝒊

➢ New 𝜷𝟓 has two equally correct interpretations:

     How slope of 𝒘𝒊 is moderated by 𝒛𝒊: 𝜷5 = diff in 𝜷𝟏 per one-unit 𝒛𝒊

     How slope of 𝒛𝒊 is moderated by 𝒘𝒊: 𝜷5 = diff in 𝜷𝟑 per one-unit 𝒘𝒊
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When There’s More than One Interaction
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

                                + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝒆𝒊

• Model-implied slopes of 𝒘𝒊, 𝒙𝒊 and 𝒛𝒊 are linear combinations: (1) find 
common terms, (2) factor out the predictor the slope is for, and (3) then the 
term in brackets is model-implied predictor slope

➢ Slope of 𝒘𝒊:  𝜷𝟏 𝒘𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊  → 𝜷𝟏 + 𝜷𝟓 𝒛𝒊 𝒘𝒊

➢ Slope of 𝒙𝒊:   𝜷𝟐 𝒙𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊  → 𝜷𝟐 + 𝜷𝟒 𝒛𝒊 𝒙𝒊

➢ Slope of 𝒛𝒊:  𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊  → 𝜷𝟑 + 𝜷𝟒 𝒙𝒊 + 𝜷𝟓 𝒘𝒊 𝒛𝒊

• More than one interaction will be necessary for categorical predictors 
(i.e., ordinal or nominal predictors with 3+ groups)

➢ I will continue to show you the longer but more transparent way using binary-
coded contrasts to represent group differences → matches model equation

➢ An alternative is to let the program create the contrast for you using by listing it 
on CLASS in SAS (or BY in SPSS), or using i. in STATA or factor variables in R

▪ Can be more convenient but more prone to misinterpretation (so I’m not doing it here)
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See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford. 
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Reviewing Categorical Predictors

• Model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) + 𝒆𝒊

➢ The model gives us the predicted outcome mean for each category as follows:

➢ Model directly provides 3 mean differences (control vs. each treatment), and 
indirectly provides another 3 mean differences (differences between treatments) 
as linear combinations of the fixed effects… let’s see how this works
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Treatment 

Group

d1:

C vs 

T1?

d2:

C vs 

T2?

d3:

C vs 

T3?

1. Control 0 0 0

2. Treatment 1 1 0 0

3. Treatment 2 0 1 0

4. Treatment 3 0 0 1

Comparing outcome means across 

4 groups requires creating 3 new 

binary predictors to be included 

simultaneously along with the 

intercept—for example, using 

“indicator dummy-coded” 

predictors so Control= Reference

Control (Ref)

Mean

Treatment 1 

Mean

Treatment 2 

Mean

Treatment 3

Mean

𝜷𝟎 𝜷𝟎+𝜷𝟏(𝒅𝟏𝒊) 𝜷𝟎+𝜷𝟐(𝒅𝟐𝒊) 𝜷𝟎+𝜷𝟑(𝒅𝟑𝒊)
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Model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) + 𝒆𝒊

Given the means above, here are the pairwise category differences:

                    Alt Group     Ref Group         Difference

• C vs. T1 =   (𝛽0+𝜷𝟏) − (𝛽0)  = 𝜷𝟏 = 2

• C vs. T2 =   (𝛽0+𝜷𝟐) − (𝛽0)  = 𝜷𝟐 = 5

• C vs. T3 =   (𝛽0+𝜷𝟑) − (𝛽0)  = 𝜷𝟑 = 9

• T1 vs. T2 =  (𝛽0+𝜷𝟐)  −  (𝛽0+𝜷𝟏)  = 𝜷𝟐 − 𝜷𝟏 = 5 − 2 = 3

• T1 vs. T3 =  (𝛽0+𝜷𝟑)  −  (𝛽0+𝜷𝟏)  = 𝜷𝟑 − 𝜷𝟏 = 9 − 2 = 7

• T2 vs. T3 = (𝛽0+𝜷𝟑)  −  (𝛽0+𝜷𝟐)  = 𝜷𝟑 − 𝜷𝟐 = 9 − 5 = 4

Reviewing Categorical Predictors
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Control (Ref) 

Mean = 10

Treatment 1 

Mean =12

Treatment 2 

Mean =15

Treatment 3

Mean =19

𝜷𝟎 𝜷𝟎+𝜷𝟏(𝒅𝟏𝒊) 𝜷𝟎+𝜷𝟐(𝒅𝟐𝒊) 𝜷𝟎+𝜷𝟑(𝒅𝟑𝒊)
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Interactions Involving Categorical Predictors
• When using manual contrasts for predictors with 3 or more categories, 

interactions must be specified with ALL dummy-coded predictors

• If the program creates the dummy-coded predictors for you, all needed 
interaction predictors will be automatically included (but be careful!)

• e.g., Adding an interaction of 4-category “group” with age (0=85):

➢ New predictors d1= 0, 1, 0, 0  → difference between Control and Treat1 
we must create d2= 0, 0, 1, 0  → difference between Control and Treat2
for the model: d3= 0, 0, 0, 1  → difference between Control and Treat3

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) +𝜷𝟒 𝑨𝒈𝒆𝒊 − 𝟖𝟓               
          + 𝜷𝟓(𝒅𝟏𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓  + 𝜷𝟔(𝒅𝟐𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝜷𝟕(𝒅𝟑𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝒆𝒊

• Multivariate Wald test would be needed to lump together the interaction 
contrasts (𝜷𝟓, 𝜷𝟔, and 𝜷𝟕) to test the “omnibus” group*age interaction

• Group difference slopes (𝜷𝟏, 𝜷𝟐, and 𝜷𝟑) are each conditional on age = 85

• Age slope (𝜷𝟒) is specific to the control group (when interactions = 0)

• But the model provides age slopes for each group, as well as group 
differences at any age as linear combinations of the fixed effects…
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Interactions Involving Categorical Predictors
• Adding an interaction of 4-category “group” with age (0=85):

➢ New predictors d1= 0, 1, 0, 0  → difference between Control and Treat1 
we must create d2= 0, 0, 1, 0  → difference between Control and Treat2
for the model: d3= 0, 0, 0, 1  → difference between Control and Treat3

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) +𝜷𝟒 𝑨𝒈𝒆𝒊 − 𝟖𝟓               
          + 𝜷𝟓(𝒅𝟏𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓  + 𝜷𝟔(𝒅𝟐𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝜷𝟕(𝒅𝟑𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝒆𝒊

• Equations for model-implied effects: [slope] (predictor)

➢ Effect of Age in Control group:  𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 0 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of Age in Treat1 group:    𝜷𝟒 + 𝜷𝟓 𝟏 + 𝜷𝟔 0 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of Age in Treat2 group:    𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 𝟏 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of Age in Treat3 group:    𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 0 + 𝜷𝟕 𝟏 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Control vs. Treat1 for any age: 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ Control vs. Treat2 for any age: 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊

➢ Control vs. Treat3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊

➢ T1 vs T2 for any age: 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊 − 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ T1 vs T3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊 − 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ T2 vs T3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊 − 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊
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Multiple-DF Interactions More Generally
• Interactions can be tested between any predictors, including 

quantitative predictors that require more than one slope…

• Do piecewise education slopes differ between men and women? 

(inspired by Example 4 models predicting annual income)

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒍𝒆𝒔𝒔𝑯𝑺𝒊 + 𝜷𝟐 𝒈𝒓𝒂𝒅𝑯𝑺𝒊 + 𝜷𝟑 𝒐𝒗𝒆𝒓𝑯𝑺𝒊 + 𝜷𝟒 𝑴𝒗𝑾𝒊

                       +𝜷𝟓 𝑴𝒗𝑾𝒊 𝒍𝒆𝒔𝒔𝑯𝑺𝒊 + 𝜷𝟔 𝑴𝒗𝑾𝒊 𝒈𝒓𝒂𝒅𝑯𝑺𝒊 + 𝜷𝟕 𝑴𝒗𝑾𝒊 𝒐𝒗𝒆𝒓𝑯𝑺𝒊 + 𝒆𝒊

➢ Use SAS CONTRAST, STATA TEST/NESTREG, or R GLHT/hierarchical_lm to 

lump together 𝜷𝟓, 𝜷𝟔, and 𝜷𝟕 for DF=3 𝐹-test of interaction term

➢ Simple slopes 𝜷𝟏, 𝜷𝟐, and 𝜷𝟑 give education effect for 𝑀𝑣𝑊𝑖 = 0

➢ Interactions 𝜷𝟓, 𝜷𝟔, and 𝜷𝟕 give DIFF in education effect for 𝑀𝑣𝑊𝑖 = 1

➢ So simple slopes for each subsample of education for 𝑀𝑣𝑊𝑖 = 1 are given 

by: 𝜷𝟏+𝜷𝟓 for 𝑙𝑒𝑠𝑠𝐻𝑆𝑖 , 𝜷𝟐+𝜷𝟔 for 𝑔𝑟𝑎𝑑𝐻𝑆𝑖 , and 𝜷𝟑+𝜷𝟕 for 𝑜𝑣𝑒𝑟𝐻𝑆𝑖

• Btw, how many new fixed effects would be needed 

if we add a third sex category (e.g., nonbinary)?
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What about 3-way interactions???
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

                                + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝜷𝟔 𝒙𝒊)(𝒘𝒊
                                + 𝜷𝟕 𝒘𝒊 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

• Simple main effects make the predicted outcome higher or lower

➢ 1 possible interpretation for each simple main effect slope

➢ Each simple main effect is conditional on other interacting predictors = 0

• Each 2-way interaction (3 of them in a 3-way model) makes 
its simple main effect slopes (more/less) (positive/negative)

➢ So there are 2 possible interpretations for each 2-way interaction

➢ Each “simple” 2-way interaction is conditional on third predictor = 0

• The 3-way interaction makes each of its 2-way simple 
interaction slopes (more/less) (positive/negative)

➢ So there are 3 possible interpretations of a 3-way interaction!

➢ Is highest-order term in model, so is unconditional (marginal)
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3-Way Interactions Follow the Same Rules

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

                                + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝜷𝟔 𝒙𝒊)(𝒘𝒊

                                + 𝜷𝟕 𝒘𝒊 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

• Model-implied simple (conditional) main effect slopes:

➢ Effect of 𝒘𝒊: 𝜷𝟏 + 𝜷𝟓 𝒛𝒊 + 𝜷𝟔 𝒙𝒊 + 𝜷𝟕 𝒙𝒊)(𝒛𝒊 𝒘𝒊

➢ Effect of 𝒙𝒊:  𝜷𝟐 + 𝜷𝟒 𝒛𝒊 + 𝜷𝟔 𝒘𝒊 + 𝜷𝟕 𝒘𝒊)(𝒛𝒊 𝒙𝒊

➢ Effect of 𝒛𝒊:  𝜷𝟑 + 𝜷𝟒 𝒙𝒊 + 𝜷𝟓 𝒘𝒊 + 𝜷𝟕 𝒘𝒊)(𝒙𝒊 𝒛𝒊

• Model-implied simple (conditional) 2-way interactions:

➢ Effect of 𝒙𝒊 by 𝒛𝒊:  𝜷𝟒 + 𝜷𝟕 𝒘𝒊 𝒙𝒊 𝒛𝒊

➢ Effect of 𝒘𝒊 by 𝒛𝒊:  𝜷𝟓 + 𝜷𝟕 𝒙𝒊 𝒘𝒊 𝒛𝒊

➢ Effect of 𝒙𝒊 by 𝒘𝒊:  𝜷𝟔 + 𝜷𝟕 𝒛𝒊 𝒙𝒊 𝒘𝒊
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Intermediate Summary
• Interactions create “moderation”: the idea that the effect (slope) 

of one predictor depends upon the value of another predictor

• Predictors’ main effect slopes will change once they are included 
in an interaction term, because they now mean different things:

➢ Former “marginal main effect slopes” become “conditional (or simple) 
effect slopes” specifically when the interacting predictor = 0

➢ Need to have 0 as a meaningful value for each predictor for that reason

• Rules for interpreting conditional (or simple) fixed slopes:

➢ Predicted outcomes are conditional on (get adjusted by) main effect slopes

▪ Positive slopes create higher outcomes; negative slopes create lower outcomes

➢ Main effect slopes are conditional (get adjusted by) on two-way interactions

▪ Interactions make main effect slopes more/less positive or more/less negative

▪ Btw, three-way interactions do the same thing to two-way interactions 

➢ Highest-order interaction slope is unconditional—it will stay the same 
regardless of centering (i.e., extent of moderation is unconditional)
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Categorical Predictors with Issues

• Experimental designs with fully crossed conditions lend 

themselves to analysis of variance-type models

• What happens when things go wrong? Two examples:

➢ ANOVA with a hole in it

➢ Predictors that don’t apply or weren’t measured for everyone

• These designs can be analyzed using nested effects

➢ Different programs specify these differently, so I’ll show them 

using a common language of pseudo-interaction terms

➢ In specifying nested effects, what look like “interactions” 

actually act as switches instead to turn effects on/off…
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A Traditional View of ANOVA

27    

Means ഥ𝟏 ഥ𝟐 ഥ𝟑

ത𝐚 𝐚𝟏 𝐚𝟐 𝐚𝟑

ҧ𝐛 𝐛𝟏 𝐛𝟐 𝐛𝟑

F(df=1) → 𝐚 𝒗. 𝐛

F(df=2) → 𝟏 𝒗. 𝟐. 𝒗. 𝟑

F(df=2) → 𝐚 𝒗. 𝐛 * 𝟏 𝒗. 𝟐. 𝒗. 𝟑

ANOVAs 
usually provide 

𝐹-tests for 
marginal mean 

differences...

Is this really what 
you want to know?
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ANOVA as a General Linear Model

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒂𝟏 𝒗. 𝒃𝟏𝒊

      + 𝜷𝟐 𝒂𝟏 𝒗. 𝒂𝟐𝒊 + 𝜷𝟑 𝒂𝟏 𝒗. 𝒂𝟑𝒊

      + 𝜷𝟒 𝒂𝟏 𝒗. 𝒃𝟏𝒊 (𝒂𝟏 𝒗. 𝒂𝟐𝒊)  

      + 𝜷𝟓 𝒂𝟏 𝒗. 𝒃𝟏𝒊 𝒂𝟏 𝒗. 𝒂𝟑𝒊 + 𝒆𝒊 
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Means ഥ𝟏 ഥ𝟐 ഥ𝟑

ത𝐚 𝐚𝟏 𝐚𝟐 𝐚𝟑

ҧ𝐛 𝐛𝟏 𝐛𝟐 𝐛𝟑

The focus is now on 

differences between 

specific conditions 

as created by the 

𝜷 fixed effects.
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• Software will find any simple slopes (differences) you ask for

➢ TEST in SPSS MIXED (not GLM); ESTIMATE in SAS (GLM or MIXED)

➢ LINCOM or MARGINS in STATA; NEW in Mplus

• Seeing research questions through linear models saves 
nontraditional research designs

➢ Not fully crossed on purpose or by accident… “ANOVA with a hole in it”

ANOVA as a General Linear Model
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Means ഥ𝟏 ഥ𝟐 ഥ𝟑

ത𝐚 𝜷𝟎 𝜷𝟎 + 𝜷𝟐 𝜷𝟎 + 𝜷𝟑

ҧ𝐛
𝜷𝟎 + 𝜷𝟏 𝜷𝟎 + 𝜷𝟏

+ 𝜷𝟐 + 𝜷𝟒

𝜷𝟎 + 𝜷𝟏

+ 𝜷𝟑 + 𝜷𝟓
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A Nontraditional ANOVA Design

𝑦𝑖 = 𝛽0 + 𝛽1 𝑡3 𝑣. 𝑡1𝑖 +  𝛽2 𝑡2 𝑣. 𝑡1𝑖

 +𝛽3 𝑡1𝑖 (𝑡 𝑣. 𝑐𝑖) + 𝛽4 𝑡2𝑖 (𝑡 𝑣. 𝑐𝑖) + 𝑒𝑖
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Means Cohort 1 Cohort 2 Cohort 3

Control 𝛽0 + 𝛽1 + 𝛽3 𝛽0 + 𝛽2 + 𝛽4

Treatment 𝛽0 + 𝛽1  𝛽0 + 𝛽2 𝛽0

You are allowed to use any 𝐶 effects you want to 

represent the 𝐶 means, even in fully crossed designs! 

𝛽3 and 𝛽4are not 

interaction terms. 

Instead, they are 

nested effects.
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A Nested-Effects General Linear Model

• Example: predicting outcomes by dementia type and 

dementia timing in persons with OR without dementia

➢ Type and timing do not apply to persons without dementia

➢ So this requires the following new variables, created as follows:

➢ demYES keeps track of diagnosis at all

➢ demAorV distinguishes different diagnoses

➢ demtime is years since diagnosis (centered at 5 when applicable)
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DemType demYes demAorV demtime5

None 0 0 0

AD (Alzheimer's) 1 −0.5 demtime−5

VA (Vascular) 1 0.5 demtime−5
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A Nested-Effects General Linear Model
𝑦𝑖 = 𝛽0 + 𝛽1 𝑑𝑒𝑚𝑌𝑒𝑠𝑖 + 𝛽2 𝑑𝑒𝑚𝐴𝑜𝑟𝑉𝑖

            +𝛽3 𝑑𝑒𝑚𝑌𝑒𝑠𝑖 𝑑𝑒𝑚𝑡𝑖𝑚𝑒𝑖 − 5  +𝛽4 𝑑𝑒𝑚𝐴𝑜𝑟𝑉𝑖 𝑑𝑒𝑚𝑡𝑖𝑚𝑒𝑖 − 5 + 𝑒𝑖
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Fixed Effect Interpretation

𝛽0: Intercept Expected outcome for persons without dementia

𝛽1: demYes Simple slope for difference between persons without 

dementia or with dementia at 5 years (averaged across 

AD and VA dementia types)

𝛽2: demAorV Simple slope for outcome difference between persons 

with VA instead of AD type dementia (at 5 years)

𝛽3: demYes*

     demtime5

Because the main effect of demtime5 is not the model, 

𝛽3 is NOT an interaction term: Slope for outcome 

difference per year of dementia only in persons with 

dementia (averaged across AD and VA dementia types)

𝛽4: demAorV*

     demtime5

Because the main effect of demAorV IS in the model, 

𝛽4 IS an interaction term: Difference in slope for effect 

of years between persons with AD or VA type
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Other Uses for GLM Nested Effects
• Nested effects are main effects specified to apply selectively 

to subsamples of the possible cases contributing to the model 

• They have lots of potential—but relatively unknown—uses 

➢ “If and how much” effects of semi-continuous predictors

▪ Difference between groups of  “younger” and “older” adults; + slope 
for years of age within “older” adults (see Hoffman 2015 ch. 12)

▪ Presence and severity of abuse: difference between groups of 
“not abused” and “abused” persons; + slope for severity 
of abuse within “abused” group (for which severity > 0)

➢ Missing, refused to answer, or other incomplete predictor data: 

▪ Difference between groups of “incomplete” versus “complete” 
predictor values; + slope for predictor values in “complete” group

➢ Predictor effects that only apply to one outcome in a multivariate 
GLM predicting multiple outcomes simultaneously…

▪ Come back to my Generalized Linear Models class to see this usage!
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