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Example 3: General Linear Models with Multiple Fixed Effects of a Single Conceptual Predictor 

(complete syntax, data, and output available for STATA, R, and SAS electronically) 

 
The data for this example were selected from the 2012 General Social Survey dataset (and were also used for 

examples 1 and 2). The current example will use general linear models to predict a single quantitative outcome 

(annual income) in which multiple fixed effects are needed to describe a predictor’s relationship to the outcome: 

for categorical predictors with more than two categories (3-category working class), for quantitative predictors 

with nonlinear effects (quadratic years of age or piecewise years of education), or for testing the assumption of a 

single linear slope for ordinal predictors (5-category happiness). 
 

STATA Syntax for Importing and Preparing Data for Analysis: 

// Paste in the folder address where "GSS_Example.xlsx" is saved between " " 

cd "\\Client\C:\Dropbox\24_PSQF6243\PSQF6243_Example3" 

 

// IMPORT GSS_Example.xlsx data from working directory using exact file name 

// To change all variable names to lowercase, remove "case(preserve") 

clear // Clear before means close any open data 

import excel "GSS_Example.xlsx", case(preserve) firstrow clear  

// Clear after means re-import if it already exists (if need to start over) 

                             

// Label variables and apply value formats for variables used below 

// label variable name   "name: Descriptive Variable Label" 

label variable workclass "workclass: 1=Lower, 2=Middle, 3=Upper"   

label variable age       "age: Years of Age" 

label variable educ      "educ: Years of Education" 

label variable happy     "happy: 5-Category Happy Rating" 

label variable income    "income: Annual Income in 1000s" 

 

R Syntax for Importing and Preparing Data for Analysis 

(after loading packages readxl, psych, supernova, multcomp, ppcor, and TeachingDemos): 
# Set working directory (to import and export files to) 

# Paste in the folder address where "GSS_Example.xlsx" is saved in quotes 

setwd("C:/Dropbox/24_PSQF6243/PSQF6243_Example3") 

 

# Import GSS_Example.xlsx data from working directory -- path = file name 

Example3 = read_excel(path="GSS_Example.xlsx", sheet="GSS_Example")  

# Convert to data frame to use for analysis 

Example3 = as.data.frame(Example3) 

# Label variables used below (add descriptive titles) using comments instead 

 

Syntax and Output for Data Description: 
 

display "STATA Descriptive Statistics for Quantitative and Ordinal Variables" 

summarize income age educ happy 

 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

      income |        734    17.30287    13.79163       .245       68.6 

         age |        734    42.06267    13.37838         18         75 

        educ |        734    13.81199    2.909282          2         20 

       happy |        734    3.555858    .8950446          1          5 

 

print("R Descriptive Statistics for Quantitative or Ordinal Variables") 

describe(x=Example3[ , c("income","age","educ","happy")]) 

 

       vars   n   mean     sd median    min  max  range   skew kurtosis    se 

income    1 734 17.303 13.792 13.475  0.245 68.6 68.355  1.156    1.075 0.509 

age       2 734 42.063 13.378 41.000 18.000 75.0 57.000  0.293   -0.769 0.494 

educ      3 734 13.812  2.909 14.000  2.000 20.0 18.000 -0.230    0.777 0.107 

happy     4 734  3.556  0.895  4.000  1.000  5.0  4.000 -0.641    0.713 0.033 
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display "SAS Descriptive Statistics for Categorical Variables" 

tabulate workclass 

  workclass |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |        436       59.40       59.40 

          2 |        278       37.87       97.28 

          3 |         20        2.72      100.00 

------------+----------------------------------- 

      Total |        734      100.00 

 

tabulate happy 

     happy  |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |         26        3.54        3.54 

          2 |         39        5.31        8.86 

          3 |        256       34.88       43.73 

          4 |        327       44.55       88.28 

          5 |         86       11.72      100.00 

------------+----------------------------------- 

      Total |        734      100.00 

 

print("R Descriptive Statistics for Categorical Variables") 

prop.table(table(x=Example3$workclass,useNA="ifany")) 

 

       1        2        3  

0.594005 0.378747 0.027248 

 

prop.table(table(x=Example3$happy,useNA="ifany")) 

 

       1        2        3        4        5  

0.035422 0.053134 0.348774 0.445504 0.117166 

__________________________________________________________________________________ 

Syntax to Create Indicator-Dummy-Coded Predictors—2 needed for 3 categories of workclass: 

Categorical variables with 3+ categories cannot be included directly as predictors in the model, or else a 

single linear slope will be estimated to differentiate the total 𝐶 categories—this doesn’t make any sense, 

especially for nominal predictor variables. Instead, we need to create 𝑪 − 𝟏 new predictors to distinguish the 

predicted outcome for each of the 𝑪 categories. The coding scheme we are using is “indicator-dummy-

coding” where each category has a 1 for only a single predictor (that “activates” the predictor for that category). 
 

// STATA code to create 2 new indicator-dummy-coded binary predictors 

gen LvM=. // Make two new empty variables 

gen LvU=. 

replace LvM=0 if workclass==1 // Replace each for lower 

replace LvU=0 if workclass==1 

replace LvM=1 if workclass==2 // Replace each for middle 

replace LvU=0 if workclass==2 

replace LvM=0 if workclass==3 // Replace each for upper 

replace LvU=1 if workclass==3 

label variable LvM "LvM: Lower=0 v Middle=1 Class" 

label variable LvU "LvU: Lower=0 v Upper=1 Class" 

 

# R code to create indicator-dummy-coded binary predictors 

Example3$LvM=NA; Example3$LvU=NA  # Make 2 new empty variables  

Example3$LvM[which(Example3$workclass==1)]=0  # Replace each for lower 

Example3$LvU[which(Example3$workclass==1)]=0 

Example3$LvM[which(Example3$workclass==2)]=1  # Replace each for middle 

Example3$LvU[which(Example3$workclass==2)]=0 

Example3$LvM[which(Example3$workclass==3)]=0  # Replace each for upper 

Example3$LvU[which(Example3$workclass==3)]=1 

# LvM: Lower=0 vs Middle=1 Class 

# LvU: Lower=0 vs Upper=1 Class 

 

We will need 2 slopes to represent the 

differences across these 3 categories.  

We will need 4 slopes to represent the 

differences across these 5 categories.  
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Syntax and Output for 3-Category Working Class Predicting Income: 

Model including workclass via two indicator-dummy-coded predictors:     

   𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑳𝒗𝑴𝒊) + 𝜷𝟐(𝑳𝒗𝑼𝒊) + 𝒆𝒊 
 

Interpret 𝜷𝟎 = Intercept:  

Interpret 𝜷𝟏 = Lower vs Middle slope:  

Interpret 𝜷𝟐 = Lower vs Upper slope:  

display "STATA GLM Predicting Income from 2 New Binary Variables for workclass" 

regress income c.LvM c.LvU, level(95) 

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(2, 731)       =     42.14 

       Model |  14414.0265         2  7207.01325   Prob > F        =    0.0000 

    Residual |  125009.205       731  171.011225   R-squared       =    0.1034 

-------------+----------------------------------   Adj R-squared   =    0.1009 

       Total |  139423.232       733  190.209048   Root MSE        =    13.077 

 

Mean Square Error/Residual, the residual variance, is 171.01 after including 2 fixed slopes for workclass  

as a predictor (which accounted for 10.34% of the variance in income, as given by the model R2 = .1034.).  

The F-test tells us this R2 is significantly > 0, written as: F(2, 731) = 42.14, MSE = 171.01, p < .001. 
 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         LvM |   8.854267   1.003681     8.82   0.000     6.883826    10.82471  beta1 

         LvU |   10.98471    2.99045     3.67   0.000     5.113816     16.8556  beta2 

       _cons |   13.65004   .6262808    21.80   0.000     12.42052    14.87956  beta0 

------------------------------------------------------------------------------ 

 

print("R GLM Predicting Income from 2 New Binary Variables for workclass") 

ModelClass = lm(data=Example3, formula=income~1+LvM+LvU) 

supernova(ModelClass)  # supernova prints sums of squares and residual variance 

 

Analysis of Variance Table (Type III SS) 

                                 SS  df        MS      F   PRE     p 

 ----- --------------- | ---------- --- --------- ------ ----- ----- 

 Model (error reduced) |  14414.026   2  7207.013 42.144 .1034 .0000 

   LvM                 |  13308.783   1 13308.783 77.824 .0962 .0000 

   LvU                 |   2307.432   1  2307.432 13.493 .0181 .0003 

 Error (from model)    | 125009.205 731   171.011                    

 ----- --------------- | ---------- --- --------- ------ ----- ----- 

 Total (empty model)   | 139423.232 733   190.209    

 

In the table above, PRE for the model is R
2
; PRE for each slope is its squared partial correlation (stay tuned).  

However, you can safely ignore the slope-specific rows and refer only to the Model and Error rows.   
 

summary(ModelClass)    # summary prints fixed effects solution 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   13.650      0.626   21.80  < 2e-16  beta0 

LvM            8.854      1.004    8.82  < 2e-16  beta1 

LvU           10.985      2.990    3.67  0.00026  beta2 

 

Residual standard error: 13.1 on 731 degrees of freedom 

Multiple R-squared:  0.103, Adjusted R-squared:  0.101  

F-statistic: 42.1 on 2 and 731 DF,  p-value: <2e-16 

LM prints this summary of the sums of squares table only (which is why I requested the table using supernova). 



PSQF 6243 Example 3 page 4  

 
 

confint(ModelClass, level=.95) # confint for level% CI for fixed effects 

 

             2.5 % 97.5 % 

(Intercept) 12.4205 14.880 

LvM          6.8838 10.825 

LvU          5.1138 16.856 

 

Syntax and R Output to Compute Predicted Means per Category and Mean Differences: 
 

Predicted Income: 𝒚̂𝒊 = 𝜷𝟎(𝟏) + 𝜷𝟏(𝑳𝒗𝑴𝒊) + 𝜷𝟐(𝑳𝒗𝑼𝒊) 
 

Lower Mean:    𝒚̂𝑳 = 𝜷𝟎(𝟏) + 𝜷𝟏(𝟎) + 𝜷𝟐(𝟎) = 𝜷𝟎   fixed effect #1 

Middle Mean:  𝒚̂𝑴 = 𝜷𝟎(𝟏) + 𝜷𝟏(𝟏) + 𝜷𝟐(𝟎) = 𝜷𝟎 + 𝜷𝟏  linear combination 

Upper Mean:    𝒚̂𝑼 = 𝜷𝟎(𝟏) + 𝜷𝟏(𝟎) + 𝜷𝟐(𝟏) = 𝜷𝟎 + 𝜷𝟐  linear combination 
 

Difference for Lower vs Middle:   (𝜷𝟎 + 𝜷𝟏) − (𝜷𝟎) = 𝜷𝟏  fixed effect #2 

Difference for Lower vs. Upper:   (𝜷𝟎 + 𝜷𝟐) − (𝜷𝟎) = 𝜷𝟐  fixed effect #3 

Difference for Middle vs Upper:   (𝜷𝟎 + 𝜷𝟐) − (𝜷𝟎 + 𝜷𝟏) = 𝜷𝟐 − 𝜷𝟏 linear combination 
 

// STATA code to ask for predicted income per category and category differences 

   lincom _cons*1 + c.LvM*0  + c.LvU*0  // Pred Income: Lower (already in model) 

   lincom _cons*1 + c.LvM*1  + c.LvU*0  // Pred Income: Middle   

   lincom _cons*1 + c.LvM*0  + c.LvU*1  // Pred Income: Upper   

   lincom           c.LvM*1  + c.LvU*0  // Lower vs Middle Diff (already in model) 

   lincom           c.LvM*0  + c.LvU*1  // Lower vs Upper Diff  (already in model) 

   lincom           c.LvM*-1 + c.LvU*1  // Middle vs Upper Diff  

 

print("R code to ask for predicted income per category and category differences") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredClass = glht(model=ModelClass, linfct=rbind( 

  "Pred Income: Lower"   = c(1, 0, 0),  # already in model 

  "Pred Income: Middle"  = c(1, 1, 0),  

  "Pred Income: Upper"   = c(1, 0, 1),   

  "Lower vs Middle Diff" = c(0, 1, 0),  # already in model 

  "Lower vs Upper Diff"  = c(0, 0, 1),  # already in model 

  "Middle vs Upper Diff" = c(0,-1, 1))) 

print("Save glht linear combination results with unadjusted p-values and 95% CIs") 

SavePredClass = summary(PredClass, test=adjusted("none")); SavePredClass  

confint(PredClass, level=.95, calpha=univariate_calpha()) 

 

Linear Hypotheses: 

                          Estimate Std. Error t value Pr(>|t|) 

Pred Income: Lower == 0     13.650      0.626   21.80  < 2e-16  beta0 

Pred Income: Middle == 0    22.504      0.784   28.69  < 2e-16  beta0 + beta1 

Pred Income: Upper == 0     24.635      2.924    8.42  2.2e-16  beta0 + beta2 

Lower vs Middle Diff == 0    8.854      1.004    8.82  < 2e-16  beta1 

Lower vs Upper Diff == 0    10.985      2.990    3.67  0.00026  beta2 

Middle vs Upper Diff == 0    2.130      3.027    0.70  0.48184  beta2 - beta1 

(Adjusted p values reported -- none method) 

 

Quantile = 1.963 

95% confidence level 

  

Linear Hypotheses: 

                          Estimate lwr    upr    

Pred Income: Lower == 0   13.650   12.421 14.880 

Pred Income: Middle == 0  22.504   20.965 24.044 

Pred Income: Upper == 0   24.635   18.894 30.375 

Lower vs Middle Diff == 0  8.854    6.884 10.825 

Lower vs Upper Diff == 0  10.985    5.114 16.856 

Middle vs Upper Diff == 0  2.130   -3.813  8.074 
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Syntax and R Output to Compute Cohen’s 𝒅 and Partial 𝒓 Effect Sizes for Mean Differences: 

𝒅 =
𝟐𝒕

√𝑫𝑭𝒅𝒆𝒏
 ,  𝐩𝐚𝐫𝐭𝐢𝐚𝐥 𝒓 = 

𝒕

√𝒕𝟐+𝑫𝑭𝒅𝒆𝒏
 

 

// STATA code to compute effect sizes from stored results per lincom 

lincom c.LvM*1 + c.LvU*0  // Low vs Mid Diff    

   display "PartialD= " (2*(r(estimate)/r(se)))/sqrt(r(df)) 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.LvM*0 + c.LvU*1  // Low vs Upp Diff  

   display "PartialD= " (2*(r(estimate)/r(se)))/sqrt(r(df)) 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.LvM*-1 + c.LvU*1 // Mid vs Upp Diff  

   display "PartialD= " (2*(r(estimate)/r(se)))/sqrt(r(df)) 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

 

# R code to compute effect sizes from stored model and GLHT results 

PredClassPartialD=(2*SavePredClass$test$tstat)/sqrt(ModelClass$df.residual) 

PredClassPartialR=SavePredClass$test$tstat/ 

             sqrt(SavePredClass$test$tstat^2+ModelClass$df.residual) 

# Concatenate effect sizes to results table for mean differences 

data.frame(Estimate=SavePredClass$test$coefficients,  

           SE=SavePredClass$test$sigma, 

           pvalue=SavePredClass$test$pvalues,  

           PartialD=PredlassPartialD, PartialR=PredClassPartialR) 

 

                     Estimate      SE     pvalue PartialD PartialR 

Pred Income: Lower    13.6500 0.62628 0.0000e+00 1.612264 0.627602 

Pred Income: Middle   22.5043 0.78431 0.0000e+00 2.122497 0.727797 

Pred Income: Upper    24.6348 2.92413 2.2204e-16 0.623192 0.297489 

Lower vs Middle Diff   8.8543 1.00368 0.0000e+00 0.652572 0.310191 

Lower vs Upper Diff   10.9847 2.99045 2.5695e-04 0.271721 0.134624 

Middle vs Upper Diff   2.1304 3.02749 4.8184e-01 0.052054 0.026018 

 

 
 

Example Results Section for Income Mean Differences by Working Class:  

We used a general linear model (i.e., analysis of variance) to examine the extent to which annual income in 

thousands of dollars (M = 17.30, SD = 13.79) could be predicted from three categories of self-reported working 

class membership (lower = 59.40%, middle = 37.87%, and upper = 2.72%). We created two contrasts to 

distinguish the three classes, in which lower-class respondents served as the reference group to be compared 

separately to middle-class and upper-class respondents. Cohen’s d standardized means differences were then 

computed from the t test-statistics to index effect size per slope. We found that class membership significantly 

predicted annual income, F(2, 731) = 42.14, MSE = 171.01, p < .001, R2 = .10. Relative to lower-class 

respondents, annual income was significantly higher for both middle-class respondents (difference = 8.85, SE = 

1.00, d = 0.65) and upper-class respondents (difference = 10.98, SE = 2.99, d = 0.27). However, upper-class 

respondents did not differ significantly from middle-class respondents (difference = 2.13, SE = 3.03, d = 0.05). 

Btw, effect sizes for 

predicted outcomes 

are not meaningful 
(but the first 3 rows 

were already included 

in the dataset of saved 

estimates). 

In your results sections, 

make sure to state what 

software and function 

you used (and which 

version), along with any 

extra functions (i.e., in 

separate R packages). 
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Syntax to Center Age at 18 years (minimum of sample): 

// STATA code to create 1 new age variable centered at 18 (minimum in sample) 

gen age18=age-18 

label variable age18 "age18: Age (0=18 years)" 

 

# R code to make new age variable centered at 18 (minimum in sample) 

Example3$age18=Example3$age-18 # age18: Age (0=18 years)  

 

Syntax and STATA Output for Linear Age (Centered at 18 Years) Predicting Income: 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒈𝒆𝒊 − 𝟏𝟖) + 𝒆𝒊 

Interpret 𝜷𝟎 = Intercept:  

Interpret 𝜷𝟏 = Linear age slope:  

The syntax shown next will also request the predicted income for example ages 30, 50, and 70. 
 

display "STATA GLM Predicting Income from Linear Centered Age (0=18)" 

regress income c.age18, level(95) 

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(1, 732)       =     30.52 

       Model |  5580.74243         1  5580.74243   Prob > F        =    0.0000 

    Residual |  133842.489       732  182.844931   R-squared       =    0.0400 

-------------+----------------------------------   Adj R-squared   =    0.0387 

       Total |  139423.232       733  190.209048   Root MSE        =    13.522 

 

Mean Square Error/Residual, the residual variance, is 182.84 after including a fixed linear slope of age  

(which accounted for 4.00% of the variance in income, as given by the model R2 = .0400).  

The F-test tells us this R2 is significantly > 0, written as: F(1, 732) = 30.52, MSE = 182.84, p < .001. 
 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       age18 |   .2062483   .0373324     5.52   0.000      .132957    .2795397  beta1 

       _cons |   12.33999   1.027658    12.01   0.000     10.32248     14.3575  beta0 

------------------------------------------------------------------------------ 

 

If you square the 𝑡 test-statistic for the age18 slope, 𝑡2 = 𝐹 = 30.52. So given only one fixed slope in a model,  

the 𝐹-test of the model is equivalent to the 𝑡-test of that slope (which is why we ignored 𝐹 in Example 2).  
 

// Ask for predicted income for example ages 

   lincom _cons*1 + c.age18*12  // Pred Income: Age 30 (age18=12) 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   14.81497   .6722375    22.04   0.000     13.49523    16.13471  

------------------------------------------------------------------------------ 

 

   lincom _cons*1 + c.age18*32  // Pred Income: Age 50 (age18=32) 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   18.93994   .5804419    32.63   0.000     17.80041    20.07947 

------------------------------------------------------------------------------ 

 

   lincom _cons*1 + c.age18*52  // Pred Income: Age 70 (age18=52) 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |    23.0649   1.156239    19.95   0.000     20.79496    25.33484 

------------------------------------------------------------------------------ 
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print("R GLM Predicting Income from Linear Centered Age") 

ModelLinAge = lm(data=Example3, formula=income~1+age18) 

supernova(ModelLinAge)  # supernova prints sums of squares and residual variance 

summary(ModelLinAge)    # summary prints fixed effects solution  

confint(ModelLinAge, level=.95) # confint to print level% CI for fixed effects 

 

print("R Ask for predicted income for example ages") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredLinAge = glht(model=ModelLinAge, linfct=rbind( 

  "Pred Income: Age 30 (age18=12)" = c(1,12),   

  "Pred Income: Age 50 (age18=32)" = c(1,32),  

  "Pred Income: Age 70 (age18=52)" = c(1,52))) 

print("Print glht linear combination results with unadjusted p-values and 95% CIs") 

summary(PredLinAge, test=adjusted("none"))  

confint(PredLinAge, level=.95, calpha=univariate_calpha()) 

__________________________________________________________________________________ 

Syntax and R Output Adding Quadratic Age (Centered at 18 Years) Predicting Income: 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒈𝒆𝒊 − 𝟏𝟖) + 𝜷𝟐(𝑨𝒈𝒆𝒊 − 𝟏𝟖)𝟐 + 𝒆𝒊 
 

Interpret 𝜷𝟎 = Intercept: 

Interpret 𝜷𝟏 = Linear age slope: 

Interpret 𝜷𝟐 = Quadratic age slope: 

Interpret 𝑹𝟐 two different ways: 

 

The 𝑹𝟐 went from .040 to .114, an increase of .074. Do we know  

if the 𝑹𝟐 increased significantly relative to the linear age model? 
 

 

display "STATA GLM Predicting Income from Linear+Quadratic Centered Age (0=18)" 

regress income c.age18 c.age18#c.age18, level(95) // Hashtag multiplies predictors 

 

print("R GLM Predicting Income from Linear+Quadratic Centered Age") 

ModelQuadAge = lm(data=Example3, formula=income~1+age18+I(age18^2)) # I(x^2) squares x 

supernova(ModelQuadAge)  # supernova prints sums of squares and residual variance 

 

Analysis of Variance Table (Type III SS) 

                                      SS  df        MS      F   PRE     p 

 ---------- --------------- | ---------- --- --------- ------ ----- ----- 

      Model (error reduced) |  15885.462   2  7942.731 46.999 .1139 .0000 

      age18                 |  13856.343   1 13856.343 81.991 .1009 .0000 

 I(age18^2)                 |  10304.719   1 10304.719 60.975 .0770 .0000 

      Error (from model)    | 123537.770 731   168.998                    

 ---------- --------------- | ---------- --- --------- ------ ----- ----- 

      Total (empty model)   | 139423.232 733   190.209      

 

Mean Square Error/Residual, the residual variance, is now 169.00 from the two effects of age (which 

accounted for 11.39% of the variance in income, as given by the model R2 = .1139).  
The F-test says this R2 is significantly > 0, written as: F(2, 731) = 47.00, MSE = 169.00, p < .001. 
 

summary(ModelQuadAge)    # summary prints fixed effects solution  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   2.6766     1.5835    1.69    0.091  beta0 

age18         1.2231     0.1351    9.05   <2e-16  beta1 

I(age18^2)   -0.0195     0.0025   -7.81    2e-14  beta2 
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Residual standard error: 13 on 731 degrees of freedom 

Multiple R-squared:  0.114, Adjusted R-squared:  0.112  

F-statistic:   47 on 2 and 731 DF,  p-value: <2e-16 

 

confint(ModelQuadAge, level=.95) # confint to print level% CI for fixed effects 

 

                2.5 %    97.5 % 

(Intercept) -0.432210  5.785405 

age18        0.957901  1.488260 

I(age18^2)  -0.024449 -0.014625 

 

The syntax shown next will also request not only the predicted outcome for example ages  

30, 50, and 70, but also the predicted instantaneous linear slopes at those ages too:  
 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊
̂ = 𝜷𝟎 + 𝜷𝟏(𝑨𝒈𝒆𝒊 − 𝟏𝟖) + 𝜷𝟐(𝑨𝒈𝒆𝒊 − 𝟏𝟖)𝟐

 

𝑳𝒊𝒏𝒆𝒂𝒓 𝑨𝒈𝒆 𝑺𝒍𝒐𝒑𝒆 = 𝜷𝟏 + 𝟐𝜷𝟐(𝑨𝒈𝒆𝒊 − 𝟏𝟖) 

 

// STATA Ask for predicted income for example ages 

   lincom _cons*1 + c.age18*12 + c.age18#c.age18*144  // Pred Income: Age 30 (age18=12) 

   lincom _cons*1 + c.age18*32 + c.age18#c.age18*1024 // Pred Income: Age 50 (age18=32)    

   lincom _cons*1 + c.age18*52 + c.age18#c.age18*2704 // Pred Income: Age 70 (age18=52) 

 

// STATA Linear age slope changes by 2*quadratic coefficient, so multiply age*2 

   lincom  c.age18*1 + c.age18#c.age18*24  // Pred Linear Age Slope: Age 30 (age18=12) 

   lincom  c.age18*1 + c.age18#c.age18*64  // Pred Linear Age Slope: Age 50 (age18=32) 

   lincom  c.age18*1 + c.age18#c.age18*104 // Pred Linear Age Slope: Age 70 (age18=52) 

 

print("R Ask for predicted income and predicted linear age slopes for example ages") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredQuadAge = glht(model=ModelQuadAge, linfct=rbind( 

  "Pred Income: Age 30 (age18=12)" = c(1,12, 144),   

  "Pred Income: Age 50 (age18=32)" = c(1,32,1024),  

  "Pred Income: Age 70 (age18=52)" = c(1,52,2704), 

  "Pred Linear Age Slope: Age 30 (age18=12)" = c(0,1, 24), 

  "Pred Linear Age Slope: Age 50 (age18=32)" = c(0,1, 64), 

  "Pred Linear Age Slope: Age 70 (age18=52)" = c(0,1,104))) 

print("Print glht linear combination results with unadjusted p-values and 95% CIs") 

summary(PredQuadAge, test=adjusted("none"))  

confint(PredQuadAge, level=.95, calpha=univariate_calpha()) 

 

Linear Hypotheses: 

                                              Estimate Std. Error t value Pr(>|t|) 

Pred Income: Age 30 (age18=12) == 0            14.5402     0.6472   22.46  < 2e-16 

Pred Income: Age 50 (age18=32) == 0            21.8091     0.6681   32.64  < 2e-16 

Pred Income: Age 70 (age18=52) == 0            13.4482     1.6590    8.11  2.2e-15 

Pred Linear Age Slope: Age 30 (age18=12) == 0   0.7542     0.0788    9.57  < 2e-16 

Pred Linear Age Slope: Age 50 (age18=32) == 0  -0.0273     0.0467   -0.58     0.56 

Pred Linear Age Slope: Age 70 (age18=52) == 0  -0.8088     0.1349   -6.00  3.1e-09 

(Adjusted p values reported -- none method) 

 

Quantile = 1.963 

95% confidence level 

 

Linear Hypotheses: 

                                              Estimate lwr     upr     

Pred Income: Age 30 (age18=12) == 0           14.5402  13.2695 15.8109 

Pred Income: Age 50 (age18=32) == 0           21.8091  20.4974 23.1208 

Pred Income: Age 70 (age18=52) == 0           13.4482  10.1912 16.7052 

Pred Linear Age Slope: Age 30 (age18=12) == 0  0.7542   0.5995  0.9089 

Pred Linear Age Slope: Age 50 (age18=32) == 0 -0.0273  -0.1190  0.0644 

Pred Linear Age Slope: Age 70 (age18=52) == 0 -0.8088  -1.0735 -0.5440 
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// STATA Get predicted values using margins more efficiently and plotting them 

// quietly means don't print that output, predictor=(from(by)to)  

   quietly margins, at(c.age18=(0(1)57)) // Real ages 18 to 75 (min and max) 

   marginsplot, xdimension(age18) name(predicted_age, replace) 

   graph export "STATA Predicted Income by Age Plot.png", replace 

 

// STATA Get instantaneous linear age slopes to show effect of quadratic age slope 

// dydx in margins provides linear age slopes at each value of age 

   quietly margins, at(c.age18=(0(1)57)) dydx(c.age18) 

   marginsplot, xdimension(age18) name(predicted_linear, replace) 

   graph export "STATA Predicted Linear Slopes by Age Plot.png", replace 

 

Left: model-predicted regression line with 95% CI (version generated in STATA here) 

Right: model-predicted linear slope of age by age (version generated in STATA here) 

  
 

# R Generating predicted values using predict more efficiently and plotting them 

PredAge = data.frame(age18=seq(from=0, to=57, by=1)) # Real ages 18 to 75 (min and max) 

PredAge = predict(object=ModelQuadAge, newdata=PredAge, se.fit=TRUE, interval="confidence")  

PredAge = as.data.frame(PredAge) # Need to put x variable back in next 

PredAge = cbind(PredAge, data.frame(age18=seq(from=0, to=57, by=1))) 

 

png(file "R Predicted Income by Quadratic Age Plot.png")  # open file 

plot(y=PredAge$fit.fit, x=PredAge$age18, ylim=c(0,25), xlim=c(0,57), 

     lty=1, type="l", ylab="Predicted Income", xlab="Age (0 = 18 years)") 

lines(y=PredAge$fit.upr, x=PredAge$age18, lty=2, col="blue1") # Upper CI 

lines(y=PredAge$fit.lwr, x=PredAge$age18, lty=2, col="blue1") # Lower CI 

legend(x=20, y=5, legend=c("Predicted Income", "95% CI"), lty=1:2); dev.off()  # close file 

 

Left: model-predicted regression line through scatterplot (version generated in R here) 

Right: model-predicted regression line through means for age (using SAS code given online only) 
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We forgo requesting standardized slopes for this model given the ambiguity of how to interpret them for models 

with interactions… R2 is a sufficiently useful effect size to describe the overall effect (trend) of age here. 

 

Example Results Section for the Linear and Quadratic Age Slopes:  

We used a general linear model (i.e., linear regression) to examine the extent to which annual income in 

thousands of dollars (M = 17.30, SD = 13.79) could be predicted from years of age (M = 42.06, SD = 13.38, 

range = 18 to 75). We first examined the means of income by age to identify plausible types of nonlinear 

associations. Given the apparent curvilinear trend (in which age appeared positively associated with income 

until middle age, after which it appeared negatively associated instead), we fit a model including fixed linear 

and quadratic slopes for age (in which age was centered such that 0 = 18 years, the minimum age in the sample). 

The quadratic age model captured a significant amount of variance in annual income, F(2, 731) = 47.00, MSE = 

169.00, p < .001, R2 = .114. The quadratic age model was also a significant improvement over a linear age 

model, as indicated by the significant fixed slope for the quadratic effect of age. The model fixed effects can be 

interpreted as follows. The fixed intercept indicated that at age 18, annual income was predicted to be 2.676 

thousand dollars (SE = 1.584) and was expected to be significantly greater by 1.223 thousand dollars per year of 

age (i.e., the instantaneous linear slope for age at age 18; SE = 0.135, p < .001). The linear age slope at age 18 

was predicted to become significantly more negative per year of age by twice the quadratic coefficient of −0.020 

(SE = 0.002, p < .001). As given by the quantity (−1*linear slope) / (2*quadratic slope) + 18, the age of 

maximum predicted personal income was 48.575 (i.e., the age at which the linear age slope is predicted to be 0). 

For example, the linear effect of age as evaluated at age 30 was significantly positive (Est = 0.754, SE = 0.079), 

the linear effect of age as evaluated at age 50 was nonsignificantly negative (Est = −0.027, SE = 0.047), and the 

linear effect of age as evaluated at age 70 was significantly negative (Est = −0.809, SE = 0.135). 

__________________________________________________________________________________ 

Syntax to Create 3 Predictors for Piecewise Linear Slopes for Education: 

The idea is to represent the 

3 different sections of 

education using 3 different 

predictors, that way the 

slope for each section is 

captured separately. 

 

 
 

 

 

 

 

 

// STATA code to create 3 new predictor variables for sections of education 

gen lessHS=. // Make 3 new empty variables 

gen gradHS=. 

gen overHS=. 

// Replace each for educ less than 12 

replace lessHS=educ-11 if educ <  12 

replace gradHS=0       if educ <  12 

replace overHS=0       if educ <  12 

// Replace each for educ greater or equal to 12 

replace lessHS=0       if educ >= 12  

replace gradHS=1       if educ >= 12 

replace overHS=educ-12 if educ >= 12 

// Label variables 

label variable lessHS "lessHS: Slope for Years Ed Less Than High School" 

label variable gradHS "gradHS: Acute Bump for Graduating High School" 

label variable overHS "overHS: Slope for Years Ed After High School" 
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# R code to make to make 3 new variables for sections of education 

# Make 3 new empty variables  

Example3$lessHS=NA; Example3$gradHS=NA; Example3$overHS=NA  

# Replace each for educ less than 12 

Example3$lessHS[which(Example3$educ<12)]=Example3$educ[which(Example3$educ<12)]-11   

Example3$gradHS[which(Example3$educ<12)]=0 

Example3$overHS[which(Example3$educ<12)]=0   

# Replace each for educ greater or equal to 12 

Example3$lessHS[which(Example3$educ>=12)]=0  

Example3$gradHS[which(Example3$educ>=12)]=1   

Example3$overHS[which(Example3$educ>=12)]=Example3$educ[which(Example3$educ>=12)]-12 

 

Syntax and STATA Output for Piecewise Linear Slopes of Education Predicting Income: 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑳𝒆𝒔𝒔𝑯𝑺𝒊) + 𝜷𝟐(𝑮𝒓𝒂𝒅𝑯𝑺𝒊) + 𝜷𝟑(𝑶𝒗𝒆𝒓𝑯𝑺𝒊) + 𝒆𝒊 
 

Interpret 𝜷𝟎 = Intercept: 

Interpret 𝜷𝟏 = LessHS slope: 

Interpret 𝜷𝟐 = GradHS slope: 

Interpret 𝜷𝟑 = OverHS slope: 

 

display "STATA GLM Predicting Income from 3 Piecewise Linear Slopes for Education" 

regress income c.lessHS c.gradHS c.overHS, level(95)  

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(3, 730)       =     47.84 

       Model |  22906.5605         3  7635.52017   Prob > F        =    0.0000 

    Residual |  116516.671       730  159.611879   R-squared       =    0.1643 

-------------+----------------------------------   Adj R-squared   =    0.1609 

       Total |  139423.232       733  190.209048   Root MSE        =    12.634 

 

Mean Square Error/Residual, the residual variance, is 159.61 given the piecewise education slopes  

(which accounted for 16.43% of the variance in income, as given by the model R2 = .1643).  

The F-test says this R2 is significantly > 0, written as: F(3, 730) = 47.84, MSE = 159.61, p < .001. 
 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      lessHS |  -.2687845   .5988015    -0.45   0.654    -1.444363     .906794  beta1 

      gradHS |   4.684746   1.875684     2.50   0.013     1.002368    8.367124  beta2 

      overHS |   2.124529   .2137244     9.94   0.000     1.704941    2.544117  beta3 

       _cons |   8.534867   1.729351     4.94   0.000     5.139773    11.92996  beta0 

------------------------------------------------------------------------------ 

 

// STATA Example of how to test differences between slopes 

   lincom c.lessHS*-1 + c.gradHS*1 // Diff in ed slope:  2-11 vs 11-12 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   4.953531   2.282227     2.17   0.030     .4730194    9.434042 

------------------------------------------------------------------------------ 

 

   lincom c.gradHS*-1 + c.overHS*1 // Diff in ed slope: 11-12 vs 12-20 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -2.560217   1.946734    -1.32   0.189    -6.382082    1.261648 

------------------------------------------------------------------------------ 
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Comparisons of Slopes Above: The GradHS slope = 4.68 is significantly more positive than the LessHS slope 

= −0.27 by 4.95 per year (indicating that they should not be constrained to be the same). The OverHS slope = 

2.12 is nonsignificantly less positive than the GradHS slope = 4.68 by −2.56 per year, indicating that they 

*could* be constrained to be the same. However, the OverHS slope—implying a linear effect of each additional 

year of education past 12 years—does not appear to fit the means well, as shown in the overlaid plot below.  

So efforts to refine the model should focus on solving this problem first! 

 

Left: model-predicted regression line through 

means for education (see SAS code online) 
 

As shown by the misfit of the data to the model 

(dashed line), it looks like the effect of 

education after 12 years should have additional 

piecewise slopes (i.e., 12–15, 15–17, 17–18, 18–

20)… if you are feeling brave, give it a try and 

let me know what happens! 

 

print("R GLM Predicting Income from 3 Piecewise Linear Slopes for Education ") 

ModelEd3 = lm(data=Example3, formula=income~1+lessHS+gradHS+overHS) 

supernova(ModelEd3) # supernova prints sums of squares and residual variance 

SaveModelEd3 = summary(ModelEd3) # saving summary that prints fixed effects solution 

SaveModelEd3; confint(ModelEd3, level=.95) # confint for level% CI for fixed effects 

 

print("R Example of how to test differences between slopes") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredEd3 = glht(model=ModelEd3, linfct=rbind( 

  "Diff in ed slope:  2-11 vs 11-12" = c(0,-1, 1, 0),   

  "Diff in ed slope: 11-12 vs 12-20" = c(0, 0,-1, 1))) 

print("Print glht linear combination results with unadjusted p-values and 95% CIs") 

SavePredEd3 = summary(PredEd3, test=adjusted("none"))  

Print(SavePredEd3); confint(PredEd3, level=.95, calpha=univariate_calpha()) 

 

Syntax and R Output to Compute Partial Effect Sizes for Piecewise Slopes and Differences: 
 

// STATA code to compute partial correlations from fixed slopes 

display "STATA Partial Correlations of Income with Education Slopes" 

pcorr income lessHS gradHS overHS 

 

STATA pcorr above only works for directly estimated fixed slopes, whereas the code below  

creating effect sizes out of stored results can be used for linear combinations as well (as shown). 
 

// STATA code to compute effect sizes from stored results per lincom 

lincom c.lessHS*-1 + c.gradHS*1 // Diff in ed slope:  2-11 vs 11-12 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.gradHS*-1 + c.overHS*1 // Diff in ed slope: 11-12 vs 12-20 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

    

# R code to compute effect sizes from stored model fixed effects 

ModelEd3PartialR=SaveModelEd3$coefficients[,"t value"]/ 

            sqrt(SaveModelEd3$coefficients[,"t value"]^2+ModelEd3$df.residual) 

# Concatenate effect sizes to results table for fixed effects 

data.frame(SaveModelEd3$coefficients, PartialR=ModelEd3PartialR) 
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            Estimate Std..Error  t.value   Pr...t..  PartialR 

(Intercept)  8.53487    1.72935  4.93530 9.9215e-07  0.179691 

lessHS      -0.26878    0.59880 -0.44887 6.5366e-01 -0.016611 

gradHS       4.68475    1.87568  2.49762 1.2722e-02  0.092049 

overHS       2.12453    0.21372  9.94051 6.3642e-22  0.345287 

 

# R code to compute effect sizes from stored glht results 

PredEd3PartialR=SavePredEd3$test$tstat/sqrt(SavePredEd3$test$tstat^2+ModelEd3$df.residual) 

# Concatenate effect sizes to results table for mean differences 

data.frame(Estimate=SavePredEd3$test$coefficients, SE=SavePredEd3$test$sigma, 

           pvalue=SavePredEd3$test$pvalues, PartialR=PredEd3PartialR) 

 

                                 Estimate     SE   pvalue  PartialR 

Diff in ed slope:  2-11 vs 11-12   4.9535 2.2822 0.030292  0.080075 

Diff in ed slope: 11-12 vs 12-20  -2.5602 1.9467 0.188878 -0.048618 

 

R pcor.test (from R package ppcor) below only works for directly estimated fixed slopes, whereas  
the code above creating effect sizes out of stored results can be used for linear combinations as well. 
 

# R alternative method to compute partial correlations for fixed slopes 

print("R Partial Correlation of income with lessHS") 

pcor.test(Example3$income,Example3$lessHS, Example3[,c("gradHS","overHS")]) 

 

   estimate p.value statistic   n gp  Method 

1 -0.016611 0.65366  -0.44887 734  2 pearson 

 

print("R Partial Correlation of income with gradHS") 

pcor.test(Example3$income,Example3$gradHS, Example3[,c("lessHS","overHS")]) 

 

  estimate  p.value statistic   n gp  Method 

1 0.092049 0.012722    2.4976 734  2 pearson 

 

print("R Partial Correlation of income with overHS") 

pcor.test(Example3$income,Example3$overHS, Example3[,c("lessHS","gradHS")]) 

 

  estimate    p.value statistic   n gp  Method 

1  0.34529 6.3642e-22    9.9405 734  2 pearson 

 

Example Results Section for 3 Piecewise Linear Slopes for the Effect of Education:  

We used a general linear model (i.e., linear regression) to examine the extent to which annual income in 

thousands of dollars (M = 17.30, SD = 13.79) could be predicted from years of education (M = 13.81, SD = 

2.91). We first examined the means of income by each level of education to identify plausible types of nonlinear 

associations. The effect of education predicting annual income appeared to differ across regions of education, 

suggesting a piecewise trend with the distinct region slopes to be captured by linear splines. Specifically, we fit 

one linear slope for the effect of education from 2 to 11 years, a second linear slope of education from 11 to 12 

years, and a third linear slope of education from 12 to 20 years. Partial correlations were then computed from 

the t test-statistics to index effect size per slope. The model including these three education slopes captured a 

significant amount of variance in annual income, F(3, 730) = 47.84, MSE = 159.61, p < .001, R2 = .164. The 

model fixed slopes can be interpreted as follows. Annual income was expected to be nonsignificantly lower by 

0.27 thousand dollars per year of education from 2 to 11 years (SE = 0.60, p = .654, r = −.017), resulting in 

predicted annual income of 8.53 thousand dollars (SE = 1.73) at 11 years of education (i.e., as given by the fixed 

intercept). Annual income was then expected to be significantly higher by 4.68 thousand dollars (SE =1.88, p = 

.013, r = .092) for those achieving a high school degree (i.e., a significant difference between 11 and 12 years of 

education). Annual income was expected to be significantly higher by 2.12 thousand dollars (SE = 0.21, p < 

.001, r = .345) per year of additional education past 12 years. However, examining a plot of the observed versus 

predicted means for annual income at each year of education suggested a linear slope was not sufficient in 

capturing the observed differences in income from 12 to 20 years of education. We recommend considering in 

future research the use of additional piecewise slopes corresponding to distinct levels of higher education (e.g., 

bachelors, masters, or doctoral college degrees). 
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Syntax to Center 5-Category Ordinal Happiness at 1 (minimum): 

// STATA code to create 1 new happy variable centered at lowest value 

   gen happy1=happy-1 

   label variable happy1 "happy1: Happy Category (0=1)" 

 

# R code to make a single happy variable centered at lowest value 

Example3$happy1=Example3$happy-1 # happy1: Happy Category (0=1)  

 

Syntax and STATA Output for 5-Category Ordinal Happiness Predicting Income: 

First Testing a Linear Effect of Happy (0=1): 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑯𝒂𝒑𝒑𝒚𝒊 − 𝟏) + 𝒆𝒊 

Interpret 𝜷𝟎 = Intercept:  

Interpret 𝜷𝟏 = Happy1 slope: 

 

display "STATA GLM Predicting Income from Linear Happy Centered at 1" 

regress income c.happyc1, level(95)  

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(1, 732)       =      1.69 

       Model |  320.398119         1  320.398119   Prob > F        =    0.1945 

    Residual |  139102.834       732  190.031194   R-squared       =    0.0023 

-------------+----------------------------------   Adj R-squared   =    0.0009 

       Total |  139423.232       733  190.209048   Root MSE        =    13.785 

 

Mean Square Error/Residual, the residual variance, is 190.03 after a linear slope of happy (which  

accounted for 0.23% of the variance in income, as given by the model R2 = .1945). The F-test tells us  

this R2 is not significantly > 0, written as: F(1, 732) = 1.69, MSE = 190.03, p = .195. The same result 

 is given by the 𝑡-test of the linear slope below (𝑡2 = 𝐹 for model when testing only one fixed slope). 
 
------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      happy1 |   .7386664   .5688736     1.30   0.195    -.3781521    1.855485  beta1 

       _cons |   15.41495   1.540422    10.01   0.000     12.39078    18.43912  beta0 

------------------------------------------------------------------------------ 

 

print("R GLM Predicting Income        

from Linear Happy Centered at 1") 

ModelHappy1 =  

lm(data=Example3,      

   formula=income~1+happy1) 

supernova(ModelHappy1)    

summary(ModelHappy1)       

confint(ModelHappy1, level=.95)   
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Syntax to Create Sequential-Dummy-Coded Predictors—4 needed for 5 happy categories: 

In addition to not really making sense (i.e., these values are ordinal, so they aren’t really numbers),  

a single linear slope predicting the same difference between each pair of happiness categories doesn’t  

seem to fit the pattern of means. So let’s fit a model with piecewise linear slopes created through  

sequential-dummy-coding, in which the slopes capture each shift between adjacent categories. 
 

// STATA code to make 4 new sequential-dummy-coded variables for happy 

// Make 4 new empty variables 

   gen h1v2=.  

   gen h2v3=.  

   gen h3v4=. 

   gen h4v5=. 

// Replace each with 0 values 

   replace h1v2=0 if happy < 2 

   replace h2v3=0 if happy < 3 

   replace h3v4=0 if happy < 4 

   replace h4v5=0 if happy < 5 

// Replace each with 1 values 

   replace h1v2=1 if happy >= 2 

   replace h2v3=1 if happy >= 3 

   replace h3v4=1 if happy >= 4 

   replace h4v5=1 if happy == 5 

// Label variables 

   label variable h1v2 "Slope from Happy 1 to 2" 

   label variable h2v3 "Slope from Happy 2 to 3" 

   label variable h3v4 "Slope from Happy 3 to 4" 

   label variable h4v5 "Slope from Happy 4 to 5" 

 

# R code to create 4 new sequential-dummy-coded predictors for happy 

# Make 4 new empty variables  

Example3$h1v2=NA; Example3$h2v3=NA; Example3$h3v4=NA; Example3$h4v5=NA;  

# Replace each with 0 values 

Example3$h1v2[which(Example3$happy<2)]=0   

Example3$h2v3[which(Example3$happy<3)]=0 

Example3$h3v4[which(Example3$happy<4)]=0  

Example3$h4v5[which(Example3$happy<5)]=0 

# Replace each with 1 values 

Example3$h1v2[which(Example3$happy>=2)]=1   

Example3$h2v3[which(Example3$happy>=3)]=1 

Example3$h3v4[which(Example3$happy>=4)]=1  

Example3$h4v5[which(Example3$happy>=5)]=1 

 

Syntax and R Output for 4 Sequential Slopes for 5-Category Happiness Predicting Income: 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒉𝟏𝒗𝟐𝒊) + 𝜷𝟐(𝒉𝟐𝒗𝟑𝒊) + 𝜷𝟑(𝒉𝟑𝒗𝟒𝒊) + 𝜷𝟑(𝒉𝟒𝒗𝟓𝒊) + 𝒆𝒊 
 

display "STATA GLM Predicting Income from 4 Sequential Slopes for Happy" 

regress income c.h1v2 c.h2v3 c.h3v4 c.h4v5, level(95) 

 

print("R GLM Predicting Income from 4 Sequential Slopes for Happy") 

ModelHappy5 = lm(data=Example3, formula=income~1+h1v2+h2v3+h3v4+h4v5) 

supernova(ModelHappy5) # supernova prints sums of squares and residual variance 

 

                                 SS  df      MS     F   PRE     p 

 ----- --------------- | ---------- --- ------- ----- ----- ----- 

 Model (error reduced) |    946.335   4 236.584 1.245 .0068 .2902 

  h1v2                 |     44.300   1  44.300 0.233 .0003 .6293 

  h2v3                 |     11.641   1  11.641 0.061 .0001 .8045 

  h3v4                 |    759.119   1 759.119 3.996 .0055 .0460 

  h4v5                 |    219.865   1 219.865 1.157 .0016 .2823 

 Error (from model)    | 138476.897 729 189.955                   

 ----- --------------- | ---------- --- ------- ----- ----- ----- 

 Total (empty model)   | 139423.232 733 190.209    
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Mean Square Error/Residual, the residual variance, is 189.95 after adding the 4 sequential happy slopes  

(which accounted for 0.68% of the variance in income, as given by the model R2 = .0068).  
The F-test tells us this R2 is not significantly > 0, written as: F(4, 729) = 1.25, MSE = 189.95, p = .290. 
 

SaveModelHappy5 = summary(ModelHappy5) # saving summary that prints fixed effects solution 

SaveModelHappy5; confint(ModelHappy5, level=.95) # confint for level% CI for fixed effects 

 

Coefficients: 

            Estimate Std. Error t value    Pr(>|t|) 

(Intercept)   15.129      2.703    5.60 0.000000031  beta0 

h1v2           1.685      3.489    0.48       0.629  beta1 

h2v3          -0.586      2.369   -0.25       0.805  beta2 

h3v4           2.299      1.150    2.00       0.046  beta3 

h4v5          -1.797      1.670   -1.08       0.282  beta4 

 

The fixed intercept gives the mean for happy=1, and each slope gives the difference to the next category. 
 

Residual standard error: 13.8 on 729 degrees of freedom 

Multiple R-squared:  0.00679, Adjusted R-squared:  0.00134  

F-statistic: 1.25 on 4 and 729 DF,  p-value: 0.29 

 

                2.5 %  97.5 % 

(Intercept)  9.822253 20.4352 

h1v2        -5.165498  8.5358 

h2v3        -5.237563  4.0646 

h3v4         0.041241  4.5574 

h4v5        -5.075962  1.4821 

 

print("R Example of how to test differences between slopes") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredHappy5 = glht(model=ModelHappy5, linfct=rbind( 

        "Diff in Slope 1-2 vs Slope 2-3" = c(0,-1, 1, 0, 0),   

        "Diff in Slope 2-3 vs Slope 3-4" = c(0, 0,-1, 1, 0), 

        "Diff in Slope 3-4 vs Slope 4-5" = c(0, 0, 0,-1, 1))) 

print("Print glht linear combination results with unadjusted p-values and 95% CIs") 

SavePredHappy5 = summary(PredHappy5, test=adjusted("none"))  

print(SavePredHappy5); confint(PredHappy5, level=.95, calpha=univariate_calpha()) 

 

Linear Hypotheses: 

                                    Estimate Std. Error t value Pr(>|t|) 

Diff in Slope 1-2 vs Slope 2-3 == 0    -2.27       5.25   -0.43    0.665 

Diff in Slope 2-3 vs Slope 3-4 == 0     2.89       2.90    0.99    0.320 

Diff in Slope 3-4 vs Slope 4-5 == 0    -4.10       2.30   -1.78    0.075 

(Adjusted p values reported -- none method) 

 

Comparisons of Slopes Above: No pairwise differences between slopes are significant, which means  
we would not lose anything predictive informative by constraining the slopes to be equal in these data.  
 

Quantile = 1.963 

95% confidence level 

  

Linear Hypotheses: 

                                    Estimate lwr     upr     

Diff in Slope 1-2 vs Slope 2-3 == 0  -2.272  -12.573   8.029 

Diff in Slope 2-3 vs Slope 3-4 == 0   2.886   -2.811   8.582 

Diff in Slope 3-4 vs Slope 4-5 == 0  -4.096   -8.605   0.413 

 

Syntax and R Output to Compute Partial Effect Sizes from Requested Piecewise Slopes: 
 

// STATA code to compute partial correlations for fixed slopes 

display "STATA Partial Correlations of Income with Happy Slopes" 

pcorr income h1v2 h2v3 h3v4 h4v5 
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// STATA code to compute effect sizes from stored results per lincom 

lincom c.h1v2*-1 + c.h2v3*1 // Diff in Slope 1-2 vs Slope 2-3 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.h2v3*-1 + c.h3v4*1 // Diff in Slope 2-3 vs Slope 3-4 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.h3v4*-1 + c.h4v5*1 // Diff in Slope 3-4 vs Slope 4-5 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

 

# R code to compute effect sizes from stored model fixed effects 

ModelHappy5PartialR=SaveModelHappy5$coefficients[,"t value"]/ 

               sqrt(SaveModelHappy5$coefficients[,"t value"]^2+ModelHappy5$df.residual) 

# Concatenate effect sizes to results table for fixed effects 

data.frame(SaveModelHappy5$coefficients, PartialR=ModelHappy5PartialR) 

 

            Estimate Std..Error  t.value       Pr...t..   PartialR 

(Intercept) 15.12875     2.7030  5.59712 0.000000030865  0.2029852 

h1v2         1.68516     3.4895  0.48292 0.629294831709  0.0178832 

h2v3        -0.58649     2.3691 -0.24756 0.804546633997 -0.0091684 

h3v4         2.29930     1.1502  1.99908 0.045970569657  0.0738379 

h4v5        -1.79692     1.6702 -1.07585 0.282349065906 -0.0398148 

 

# R code to compute effect sizes from stored glht results 

PredHappy5PartialR=SavePredHappy5$test$tstat/ 

              sqrt(SavePredHappy5$test$tstat^2+ModelHappy5$df.residual) 

# Concatenate effect sizes to results table for mean differences 

data.frame(Estimate=SavePredHappy5$test$coefficients, pvalue=SavePredHappy5$test$pvalues,  

           PartialR=PredHappy5PartialR) 

 

                               Estimate   pvalue  PartialR 

Diff in Slope 1-2 vs Slope 2-3  -2.2716 0.665182 -0.016033 

Diff in Slope 2-3 vs Slope 3-4   2.8858 0.320293  0.036810 

Diff in Slope 3-4 vs Slope 4-5  -4.0962 0.074905 -0.065916 

 

Example Results Section for the Linear and Piecewise Sequential Slopes for Happy:  

We used a general linear model (i.e., linear regression) to examine the extent to which annual income in 

thousands of dollars (M = 17.30, SD = 13.79) could be predicted from five-category ordinal happiness (unhappy 

= 3.54%, neither happy nor unhappy = 5.31%, fairly happy = 34.88%, very happy = 44.55%, completely happy 

= 11.72%). In first examining a linear effect of happiness (centered at unhappy = 0), the model fixed effects 

indicated that annual income was predicted to be 15.42 thousand dollars (SE = 1.54) for unhappy respondents 

(i.e., as given by the fixed intercept), and that annual income was predicted to be nonsignificantly greater by 

0.74 thousand dollars (SE = 0.57, p = .195, R2 = .002) per additional ordinal level of happiness.  

 

However, given that a linear slope for happiness assumes interval differences with respect to predicted income, 

we tested this assumption by specifying a piecewise slopes model by which to estimate all sequential differences 

in predicted annual income by ordinal level of happiness. Partial correlations were then computed from the t 

test-statistics to index effect size per slope and slope difference. The revised model—predicting four sequential 

differences across the five levels of happiness—did not capture a significant amount of variance in annual 

income, F(4, 729) = 1.25, MSE = 189.95, p = .290, R2 = .007. The model fixed effects indicated that annual 

income was 15.13 thousand dollars (SE = 2.70) for unhappy respondents (i.e., as given by the fixed intercept). 

Annual income was nonsignificantly higher by 1.69 thousand dollars (SE = 3.49, p = .629, r = .018) for neither 

than unhappy respondents, nonsignificantly lower by 0.59 thousand dollars (SE = 2.37, p = .804, r = −.009) for 

fairly happy than neither respondents, significantly higher by 2.30 thousand dollars (SE = 1.15, p = .046, r = 

.073) for very happy than fairly happy respondents, and nonsignificantly lower by 1.80 thousand dollars (SE = 

1.67, p = .282, r = −.040) for completely happy than very happy respondents. None of the differences between 

these adjacent differences were significant (as given by linear combinations of the model fixed effects, requested 

separately). Thus, there is little evidence that annual income can be predicted by self-rated happiness, whether 

treated as interval (through a linear slope) or treated as ordinal (through piecewise slopes). 


