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Example 2: General Linear Models with a Single Quantitative or Binary Predictor 

(complete syntax, data, and output available for STATA, R, and SAS electronically) 

 

The data for this example were selected from the 2012 General Social Survey dataset (and were also used for 

Example 1). The current example will use general linear models to predict a single quantitative outcome (annual 

income in 1000s) from a quantitative predictor (a linear slope for years of education) and from a binary predictor 

(marital status: 0=unmarried and 1=married). It will also introduce how to obtain linear combinations of fixed 

effects to create predicted outcomes using STATA LINCOM and R GLHT (and SAS ESTIMATE online). 

 

STATA Syntax for Data Import and Manipulation: 
 

// Paste in the folder address where "GSS_Example.xlsx" is saved between " " 

// Using the UIowa virtual desktop, it would look like this 

cd "\\Client\C:\Dropbox\24_PSQF6243\PSQF6243_Example2" 

 

// Import GSS_Example.xlsx data from working directory and exact file name 

// To change all variable names to lowercase, remove "case(preserve") 

clear // Clear before means close any open data 

import excel "GSS_Example.xlsx", sheet("GSS_Example") case(preserve) firstrow clear  

// Clear after means re-import if it already exists (if need to start over) 

                             

// Label variables and apply value formats for variables used below 

// label variable name "name: Descriptive Variable Label"    

label variable marry   "marry: Marital Status (1=unmarried, 2=married)" 

label variable educ    "educ: Years of Education" 

label variable income  "income: Annual Income in 1000s" 

 

 

R Syntax for Importing and Preparing Data for Analysis 

(after loading packages readxl, psych, supernova, multcomp, and TeachingDemos): 
 

# Set working directory (to import and export files to) 

# Paste in the folder address where "GSS_Example.xlsx" is saved in quotes 

setwd("C:/Dropbox/24_PSQF6243/PSQF6243_Example2") 

 

# Import GSS_Example.xlsx data from working directory -- path = file name 

Example2 = read_excel(path="GSS_Example.xlsx", sheet="GSS_Example")  

# Convert to data frame to use for analysis 

Example2 = as.data.frame(Example2) 

# Labels added only as comments in R syntax file 

 

STATA Descriptive Statistics: 
 

display "STATA Descriptive Statistics for Quantitative or Binary Variables" 

summarize income educ marry, detail  

 

               income: Annual Income in 1000s 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%         .245           .245 

 5%          .98           .245 

10%        2.695           .245       Obs                 734 

25%       6.7375           .245       Sum of Wgt.         734 

 

50%       13.475                      Mean           17.30287 

                        Largest       Std. Dev.      13.79163 

75%        22.05           58.8 

90%       40.425           68.6       Variance        190.209 

95%           49           68.6       Skewness        1.15836 

99%         58.8           68.6       Kurtosis       4.086398 

Remember, SD2 = variance 

 

13.7922 = 190.209 
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                  educ: Years of Education 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%            6              2 

 5%            9              4 

10%           11              4       Obs                 734 

25%           12              4       Sum of Wgt.         734 

 

50%           14                      Mean           13.81199 

                        Largest       Std. Dev.      2.909282 

75%           16             20 

90%           18             20       Variance       8.463922 

95%           19             20       Skewness      -.2301836 

99%           20             20       Kurtosis       3.786849 

 

       marry: Marital Status (1=unmarried, 2=married) 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%            1              1 

 5%            1              1 

10%            1              1       Obs                 734 

25%            1              1       Sum of Wgt.         734 

 

50%            1                      Mean           1.459128 

                        Largest       Std. Dev.      .4986665 

75%            2              2 

90%            2              2       Variance       .2486683 

95%            2              2       Skewness       .1640367 

99%            2              2       Kurtosis       1.026908 

 

 

R Descriptive Statistics: 
 

# describe prints sample descriptive statistics for quantitative variables 

# list variables to be included in separate quotes within c concatenate function 

# wrapped a print command around to get more than two significant digits 

print("R Descriptive Statistics for Quantitative for Quantitative or Binary Variables") 

print(describe(x=Example2[ , c("income","educ","marry")], fast=TRUE), digits=3) 

 

       vars   n   mean     sd median   min  max  range   skew kurtosis    se 

income    1 734 17.303 13.792 13.475 0.245 68.6 68.355  1.156    1.075 0.509 

educ      2 734 13.812  2.909 14.000 2.000 20.0 18.000 -0.230    0.777 0.107 

marry     3 734  1.459  0.499  1.000 1.000  2.0  1.000  0.164   -1.976 0.018 

 

# Get variances too (on diagonal of output covariance matrix) 

var(x=Example2[ , c("income","educ","marry")]) 

 

         income      educ    marry 

income 190.2090 15.436039 1.547618 

educ    15.4360  8.463922 0.074161 

marry    1.5476  0.074161 0.248668 

 

  

SD2 = variance 

 

13.7922 = 190.209 

This is called a “covariance matrix” 

(or “variance–covariance matrix”). 

Variances are on the diagonal, and 

covariances are on the off-diagonal. 
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Empty General Linear Model (no predictors):  

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝒆𝒊 
 

The empty model is our starting point—the most naïve prediction of income in which everyone is predicted to 

have the mean income: 𝒚̂𝒊 = 𝜷𝟎. Thus, the variance of the 𝒆𝒊 residuals will be ALL the 𝒚𝒊 variance. In the 

output below, MS stands for Mean Square. Mean Square Residual is the residual variance (= 190.21 here). 

The Root MSE is the square root of residual variance—the residual standard deviation describes how wrong the 

model prediction is across people on average. Stay tuned for what the rest of the first table means!       

 

In STATA: 

 

STATA’s regress is general GLM routine. The first word after regress is the outcome variable.  

Level(95) requests 95% confidence intervals (the default).  
 

display "STATA GLM Empty Model Predicting Income" 

regress income , level(95) // level gives (95)% CI for unstandardized solution 

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(0, 733)       =      0.00 

       Model |           0         0           .   Prob > F        =         . 

    Residual |  139423.232       733  190.209048   R-squared       =    0.0000 

-------------+----------------------------------   Adj R-squared   =    0.0000 

       Total |  139423.232       733  190.209048   Root MSE        =    13.792 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   17.30287   .5090583    33.99   0.000     16.30349    18.30226  beta0 

------------------------------------------------------------------------------ 

STATA refers to the fixed intercept as _cons, which stands for constant. In models with more  

than one fixed effect, STATA will always list the fixed intercept LAST (much to my dismay). 

 

In R: 
 

print("R Empty GLM Predicting Income -- save as ModelEmpty") 

ModelEmpty = lm(data=Example2, formula=income~1) # 1 represents intercept 

supernova(ModelEmpty)   # supernova prints sums of squares and residual variance 

 

Analysis of Variance Table (Type III SS) 

 Model: income ~ 1 

                                 SS  df      MS   F PRE   p 

 ----- --------------- | ---------- --- ------- --- --- --- 

 Model (error reduced) |        --- ---     --- --- --- --- 

 Error (from model)    |        --- ---     --- --- --- --- 

 ----- --------------- | ---------- --- ------- --- --- --- 

 Total (empty model)   | 139423.232 733 190.209      

 

summary(ModelEmpty)     # summary prints fixed effects solution  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   17.303      0.509      34   <2e-16  Beta0 

 

Residual standard error: 13.8 on 733 degrees of freedom 

 

confint(ModelEmpty, level=.95) # confint prints level% CI for fixed effects 

 

             2.5 % 97.5 % 

(Intercept) 16.303 18.302 
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Now let’s see if years of education can predict income by giving it a fixed linear slope! 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊) + 𝒆𝒊 
 

Interpret 𝜷𝟎 = intercept: 

Interpret 𝜷𝟏 = slope of education:  

How much income variance is leftover after considering education? 

How wrong is the model-predicted income on average? 

In STATA: 
 

display "STATA GLM Predicting Income from Original Education" 

regress income educ, level(95)  

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(1, 732)       =    127.16 

       Model |  20634.9817         1  20634.9817   Prob > F        =    0.0000 

    Residual |   118788.25       732   162.27903   R-squared       =    0.1480 

-------------+----------------------------------   Adj R-squared   =    0.1468 

       Total |  139423.232       733  190.209048   Root MSE        =    12.739 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        educ |   1.823746    .161731    11.28   0.000     1.506234    2.141258  beta1 

       _cons |  -7.886679   2.282778    -3.45   0.001    -12.36825   -3.405107  beta0 

------------------------------------------------------------------------------ 

 

In R: 
 

print("R GLM Predicting Income from Original Education -- save as ModelEduc") 

ModelEduc = lm(data=Example2, formula=income~1+educ) 

supernova(ModelEduc)   # supernova prints sums of squares and residual variance 

 

Analysis of Variance Table (Type III SS) 

                                 SS  df        MS       F   PRE     p 

 ----- --------------- | ---------- --- --------- ------- ----- ----- 

 Model (error reduced) |  20634.982   1 20634.982 127.157 .1480 .0000 

 Error (from model)    | 118788.250 732   162.279                     

 ----- --------------- | ---------- --- --------- ------- ----- ----- 

 Total (empty model)   | 139423.232 733   190.209                     

 

summary(ModelEduc)     # summary prints fixed effects solution  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   -7.887      2.283   -3.45  0.00058  Beta0 

educ           1.824      0.162   11.28  < 2e-16  Beta1 

 

Residual standard error: 12.7 on 732 degrees of freedom 

Multiple R-squared:  0.148, Adjusted R-squared:  0.147  

F-statistic:  127 on 1 and 732 DF,  p-value: <2e-16 

 

confint(ModelEduc, level=.95) # confint prints level% CI for fixed effects 

 

               2.5 %  97.5 % 

(Intercept) -12.3683 -3.4051 

educ          1.5062  2.1413 

STATA always 

lists the fixed 

intercept last! 
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Given that no one actually had education = 0 years, let’s center the education predictor so 0 now indicates 12 

years to create a more meaningful model intercept (i.e., the “you are here” sign as the model reference point). 
 

Add a linear slope of a CENTERED quantitative years of education predictor:   

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊 
 

Interpret 𝜷𝟎 = intercept: 

Interpret 𝜷𝟏 = slope of (education−12): 

In STATA: 
 

// Center education predictor so that 0 is meaningful 

gen educ12=educ-12 

label variable educ12 "educ12: Education (0=12 years)" 

 

display "STATA GLM Predicting Income from Centered Education (0=12)" 

regress income educ12, level(95)  // with 95% CI for unstandardized solution 

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(1, 732)       =    127.16 

       Model |  20634.9817         1  20634.9817   Prob > F        =    0.0000 

    Residual |   118788.25       732   162.27903   R-squared       =    0.1480 

-------------+----------------------------------   Adj R-squared   =    0.1468 

       Total |  139423.232       733  190.209048   Root MSE        =    12.739 

 

----------------------------------------------------------------------------- 

      income |      Coef.   Std. Err.      t    P>|t|    [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

      educ12 |   1.823746    .161731    11.28   0.000    1.506234    2.141258 beta1 is same 

       _cons |   13.99827   .5540485    25.27   0.000    12.91055    15.08598 beta0 differs 

----------------------------------------------------------------------------- 

 

In R: 
 

# Center education predictor so that 0 is meaningful: new = old-12 

Example2$educ12 = Example2$educ-12 

# educ12: Education (0=12 years)  # label as a comment only 

 

print("R GLM Predicting Income from Centered Education 0=12 -- save as ModelEduc12") 

ModelEduc12 = lm(data=Example2, formula=income~1+educ12) 

supernova(ModelEduc12)   # supernova prints residual variance 

 

Analysis of Variance Table (Type III SS) 

                                 SS  df        MS       F   PRE     p 

 ----- --------------- | ---------- --- --------- ------- ----- ----- 

 Model (error reduced) |  20634.982   1 20634.982 127.157 .1480 .0000 

 Error (from model)    | 118788.250 732   162.279                     

 ----- --------------- | ---------- --- --------- ------- ----- ----- 

 Total (empty model)   | 139423.232 733   190.209   

 

summary(ModelEduc12) # summary prints fixed effects solution 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   13.998      0.554    25.3   <2e-16 

educ12         1.824      0.162    11.3   <2e-16 

 

confint(ModelEduc12, level=.95) # confint prints level% CI for fixed effects 

              2.5 %  97.5 % 

(Intercept) 12.9106 15.0860 

educ12       1.5062  2.1413 
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The next set of commands in each program illustrate how to compute predicted 𝒚̂𝒊 outcomes 

given any value(s) of the predictor(s). Model:  𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊 
 

Predicted income for   8 years education: 𝒚̂𝒊 = 𝟏𝟒. 𝟎𝟎(𝟏) + 𝟏. 𝟖𝟐(−𝟒) =   𝟔. 𝟕𝟎 
Predicted income for 12 years education: 𝒚̂𝒊 = 𝟏𝟒. 𝟎𝟎(𝟏) + 𝟏. 𝟖𝟐(𝟎)    = 𝟏𝟒. 𝟎𝟎 
Predicted income for 16 years education: 𝒚̂𝒊 = 𝟏𝟒. 𝟎𝟎(𝟏) + 𝟏. 𝟖𝟐(𝟒)    = 𝟐𝟏. 𝟐𝟗 
Predicted income for 20 years education: 𝒚̂𝒊 = 𝟏𝟒. 𝟎𝟎(𝟏) + 𝟏. 𝟖𝟐(𝟖)    = 𝟐𝟖. 𝟓𝟗 
 

// In STATA LINCOMs below, _cons is the intercept, words refer to the beta fixed effect, 

// and values are the multiplier for the requested predictor value 

lincom _cons*1 + educ12*-4  // Pred Income for  8 years (educ12=-4) 

lincom _cons*1 + educ12*0   // Pred Income for 12 years (educ12= 0) 

lincom _cons*1 + educ12*4   // Pred Income for 16 years (educ12= 4) 

lincom _cons*1 + educ12*8   // Pred Income for 18 years (educ12= 8) 
 

print("R Get predicted outcomes using glht from multcomp package -- save as PredEduc12") 

print("In number lists below, the values are multipliers for each fixed effect in order") 

PredEduc12 = glht(model=ModelEduc12, linfct=rbind( 

  "Pred Income at  8 years (educ12=-4)" = c(1,-4),   

  "Pred Income at 12 years (educ12= 0)" = c(1, 0),  

  "Pred Income at 16 years (educ12= 4)" = c(1, 4),  

  "Pred Income at 20 years (educ12= 8)" = c(1, 8))) 

print("Print glht linear combination results with unadjusted p-values") 

summary(PredEduc12, test=adjusted("none"))  

confint(PredEduc12, level=.95, calpha=univariate_calpha()) 
 

These are the results from STATA LINCOMs: 
 

. lincom _cons*1 + educ12*-4  // Pred Income for  8 years (educ12=-4) 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   6.703285   1.051023     6.38   0.000     4.639907    8.766664 

------------------------------------------------------------------------------ 

 

. lincom _cons*1 + educ12*0   // Pred Income for 12 years (educ12= 0) 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   13.99827   .5540485    25.27   0.000     12.91055    15.08598 

------------------------------------------------------------------------------ 

 

. lincom _cons*1 + educ12*4   // Pred Income for 16 years (educ12= 4) 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   21.29325   .5884829    36.18   0.000     20.13793    22.44857 

------------------------------------------------------------------------------ 

 

. lincom _cons*1 + educ12*8   // Pred Income for 18 years (educ12= 8) 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   28.58823   1.105747    25.85   0.000     26.41742    30.75905 

------------------------------------------------------------------------------ 

 

These are the results from R GLHTs: 
 

Linear Hypotheses: 

                                          Estimate Std. Error t value      Pr(>|t|) 

Pred Income for  8 years (educ12=-4) == 0    6.703      1.051    6.38 0.00000000032 

Pred Income for 12 years (educ12= 0) == 0   13.998      0.554   25.27       < 2e-16 

Pred Income for 16 years (educ12= 4) == 0   21.293      0.588   36.18       < 2e-16 

Pred Income for 20 years (educ12= 8) == 0   28.588      1.106   25.85       < 2e-16 
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Simultaneous Confidence Intervals 

                                         Estimate lwr      upr      

Pred Income at  8 years (educ12=-4) == 0  6.70329  4.63991  8.76666 

Pred Income at 12 years (educ12= 0) == 0 13.99827 12.91055 15.08598 

Pred Income at 16 years (educ12= 4) == 0 21.29325 20.13793 22.44857 

Pred Income at 20 years (educ12= 8) == 0 28.58823 26.41742 30.75905 

 

Standardized Solution for Education Predicting Income: Results using standardized variables  

(z-scored income and education), in which fixed slopes are then in a correlation metric (−1 to 1)  
 

In STATA: 
 

display "STATA GLM Predicting Income from Centered Education (0=12)" 

regress income educ12, beta  // beta gives standardized solution 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|                     Beta 

-------------+---------------------------------------------------------------- 

      educ12 |   1.823746    .161731    11.28   0.000                 .3847109 beta1 

       _cons |   13.99827   .5540485    25.27   0.000                        . beta0 (=0) 

------------------------------------------------------------------------------ 

 

In R: 
 

print ("R standardized fixed effect solution using lm.beta package") 

lm.beta(ModelEduc12) 

 
Standardized Coefficients:: 

(Intercept)      educ12  

         NA     0.38471  

__________________________________________________________________________________ 

Now let’s see if binary marital status can predict income by giving it a fixed linear slope! 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑴𝒂𝒓𝒓𝒚𝟎𝟏𝒊) + 𝒆𝒊 

 

Interpret 𝜷𝟎 = intercept: 

 

Interpret 𝜷𝟏 = slope of marry01: 

 

Results will be: 

Predicted income unmarried (marry01=0): 𝒚̂𝒊 = 𝟏𝟒. 𝟒𝟓(𝟏) + 𝟔. 𝟐𝟐(𝟎) = 𝟏𝟒. 𝟒𝟓 
Predicted income unmarried (marry01=1): 𝒚̂𝒊 = 𝟏𝟒. 𝟒𝟓(𝟏) + 𝟔. 𝟐𝟐(𝟏) = 𝟐𝟎. 𝟔𝟕 
 

How much income variance is leftover after considering education? 

 

How wrong is the model-predicted income on average? 

 

In STATA: 
 

// Recode marry predictor so that 0 is meaningful 

gen marry01=. // Create new empty variable, then recode 

replace marry01=0 if marry==1 

replace marry01=1 if marry==2 

label variable marry01 "marry01: 0=unmarried, 1=married" 

 

display "STATA GLM Predict Income from Marry01 (0=Unmarried,1=Married)" 

regress income marry01, level(95) // with 95% CI for unstandardized solution  

// Save fixed effects solution in a matrix " marryresults" for use in computation below 
matrix marryresults = r(table) 
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      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(1, 732)       =     39.04 

       Model |  7060.10161         1  7060.10161   Prob > F        =    0.0000 

    Residual |   132363.13       732  180.823948   R-squared       =    0.0506 

-------------+----------------------------------   Adj R-squared   =    0.0493 

       Total |  139423.232       733  190.209048   Root MSE        =    13.447 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     marry01 |   6.223623   .9960148     6.25   0.000     4.268237     8.17901 beta1 

       _cons |   14.44543   .6748896    21.40   0.000     13.12048    15.77038 beta0 

------------------------------------------------------------------------------ 

 

lincom _cons*1 + marry01*0 // Pred Income for Unmarried=0 = Beta0   

lincom _cons*1 + marry01*1 // Pred Income for Married=1   = Beta0 + Beta1  

 
. lincom _cons*1 + marry01*0 // Pred Income for Unmarried=0 = Beta0   

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   14.44543   .6748896    21.40   0.000     13.12048    15.77038 

------------------------------------------------------------------------------ 

 

. lincom _cons*1 + marry01*1 // Pred Income for Married=1 = Beta0 + Beta1  

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |   20.66906   .7325091    28.22   0.000     19.23099    22.10713 

------------------------------------------------------------------------------ 

 

In R: 
 

# Recode marry predictor so that 0 is meaningful 

Example2$marry01=NA  # Create new empty variable 

Example2$marry01[which(Example2$marry==1)]=0  # marry01=0 if marry=1 

Example2$marry01[which(Example2$marry==2)]=1  # marry01=1 if marry=2 

# marry01: 0=unmarried, 1=married             # label as a comment only 

 

print("R GLM Predicting Income from Marry01 (0=Unmarried,1=Married) -- save ModelMarry01") 

ModelMarry01 = lm(data=Example2, formula=income~1+marry01) 

supernova(ModelMarry01)   # supernova prints residual variance 

 

Analysis of Variance Table (Type III SS) 

                                 SS  df       MS      F   PRE     p 

 ----- --------------- | ---------- --- -------- ------ ----- ----- 

 Model (error reduced) |   7060.102   1 7060.102 39.044 .0506 .0000 

 Error (from model)    | 132363.130 732  180.824                    

 ----- --------------- | ---------- --- -------- ------ ----- ----- 

 Total (empty model)   | 139423.232 733  190.209                    

 

summary(ModelMarry01)     # summary prints fixed effects solution 

 

Coefficients: 

            Estimate Std. Error t value     Pr(>|t|) 

(Intercept)   14.445      0.675   21.40      < 2e-16 

marry01        6.224      0.996    6.25 0.0000000007 

 

Residual standard error: 13.4 on 732 degrees of freedom 

Multiple R-squared:  0.0506, Adjusted R-squared:  0.0493  

F-statistic:   39 on 1 and 732 DF,  p-value: 0.000000000703 

 

confint(ModelMarry01, level=.95) # confint to print level% CI for fixed effects 

 

              2.5 % 97.5 % 

(Intercept) 13.1205 15.770 

marry01      4.2682  8.179 
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print("R Get predicted outcomes using glht from multcomp package -- save as PredMarry01") 

print("In number lists below, values are multiplier for each fixed effect in order") 

PredMarry01 = glht(model=ModelMarry01, linfct=rbind( 

  "Pred Income for Unmarried=0" = c(1,0),   

  "Pred income for Married=1"   = c(1,1))) 

print("Print glht linear combination results with unadjusted p-values") 

summary(PredMarry01, test=adjusted("none"))  

confint(PredMarry01, level=.95, calpha=univariate_calpha()) 

 

Linear Hypotheses: 

                                 Estimate Std. Error t value Pr(>|t|) 

Pred Income for Unmarried=0 == 0   14.445      0.675    21.4   <2e-16 

Pred income for Married=1 == 0     20.669      0.733    28.2   <2e-16 

 

Simultaneous Confidence Intervals 

Linear Hypotheses: 

                                 Estimate lwr      upr      

Pred Income for Unmarried=0 == 0 14.44543 13.12048 15.77038 

Pred income for Married=1 == 0   20.66906 19.23099 22.10713 

 

 

One last thing: To get a Cohen’s 𝒅 effect size for the mean income difference between unmarried 

and married persons, we can calculate 𝒅 from the 𝒕 test-statistic: 𝒅 =
𝟐𝒕

√𝑫𝑭𝒅𝒆𝒏
=

𝟐∗𝟔.𝟐𝟓

√𝟕𝟑𝟐
= 𝟎. 𝟒𝟔𝟐 → 

mean income is about 0.462 standard deviations higher for married than unmarried persons. 

 

In STATA: 
 

display "STATA Compute Cohen's d effect size from t test-statistic manually" 

display 2*6.25/sqrt(732)  // d = 2*t/SQRT(DF_den) 

.46201329 

 

display "STATA Compute Cohen's d effect size from t test-statistic using internal values" 

matrix list marryresults   // Show internally saved object of fixed effects 

 

marryresults[9,2] 

          marry01      _cons 

     b  6.2236234  14.445435 

    se  .99601482  .67488958 

     t  6.2485249  21.404145 

pvalue  7.029e-10  2.621e-79 

    ll   4.268237  13.120484 

    ul  8.1790097  15.770385 

    df        732        732 

  crit  1.9632101  1.9632101 

 eform          0          0 

 

// t test-statistic we want is in row 3 column 1 

display 2*marryresults[3,1]/ sqrt(e(df_r))   // d = 2*t/SQRT(DF_den) 

.46190425 

 

In R: 

 
print("R Compute Cohen's d effect size from t test-statistic manually") 

2*6.25/sqrt(732) 

[1] 0.46201329 
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print("Compute Cohen's d effect size from t test-statistic using internal values") 

as.matrix(summary(ModelMarry01)$coefficients[,3]) # print saved t values 

 

               [,1] 

(Intercept) 21.4041 

marry01      6.2485 

 

# t test-statistic we want is in row 2 column 1 

as.matrix(summary(ModelMarry01)$coefficients[,3])[2,1]*2 / sqrt(ModelMarry01$df.residual) 

marry01  

 0.4619  

 

Here is what the saved objects for the last model look like in the R environment: 

 
 

Example Results Section (although it’s more verbose than would be typical for the sake of completeness):  

 

The extent to which annual income in thousands of US dollars (M = 17.30, SD = 13.79) could be predicted from years of 

education (M = 13.81, SD = 2.91) and binary marital status (1 = unmarried 54.09%, 2 = married 45.91%) was examined in 

separate general linear models (i.e., simple linear regressions).  All analyses were conducted using [the regress function in 

Stata v. 18] or [the lm function in R v. 4.4.0]. Predicted outcomes were generated using [lincom in Stata] or [the glht 

function within the multicomp package v. 1.4-25 in R]. 

 

To create a meaningful model intercept, education was centered such that 0 = 12 years. Education was found to be a 

significant predictor of annual income: Relative to the reference expected income for a person with 12 years of education 

provided by the model intercept of 14.00k (SE = 0.55), for every additional year of education, annual income was expected 

to be higher by 1.82k (SE = 0.16, p < .001), resulting in a standardized coefficient = 0.38 (i.e., the Pearson correlation 

between annual income and education). For example, persons with only 8 years of education were predicted to have an 

annual income of only 6.70k (SE = 1.05), persons with 16 years of education were predicted to have an annual income of 

21.29k (SE = 0.59), and persons with 20 years of education were predicted to have an annual income of 28.59k (SE = 1.11). 

[Spoiler alert: we will test the adequacy of only a linear (constant) effect for years of education in Example 3.]  

 

We then examined prediction of annual income by binary marital status. To create a meaningful model intercept, marital 

status was dummy-coded so that 0 = unmarried persons and 1 = married persons. Marital status was also a significant 

predictor of annual income: Relative to the reference expected income for unmarried persons provided by the model 

intercept of 14.45k (SE = 0.67), married persons were expected to have significantly greater income by 6.22k (SE = 1.00, p 

< .001), resulting in a predicted income for married persons of 20.67k (SE = 0.73) and a standardized mean difference of 

Cohen’s d = 0.462. 

 

Note: because a GLM with a single binary predictor is also known as a “two-sample t-test” here is what the results would 

look like written from that angle… A two-sample t-test (i.e., assuming homogeneous variance across groups) was used to 

examine mean differences between unmarried and married persons in annual income. A significant mean difference was 

found, t(732) = 6.25, p < .001, such that annual income for married persons (M = 20.67k, SE = 0.73) was significantly 

higher than for unmarried persons (M = 14.45k, SE = 0.67). 
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Bonus: Bivariate Pearson Correlation Matrix, Significance Tests, and Confidence Intervals 
 

In STATA: 
 

display "STATA Pearson Correlations and CIs"  

pwcorr income educ marry, sig 

 

             |   income     educ    marry 

-------------+--------------------------- 

      income |   1.0000  

             | 

        educ |   0.3847   1.0000  

             |   0.0000 

       marry |   0.2250   0.0511   1.0000  

             |   0.0000   0.1665 

 

// To get CI using r-to-z, need to download and run a special module 

ssc install ci2 

ci2 income educ, corr 

ci2 income marry, corr 
 

Confidence interval for Pearson's product-moment correlation of income and educ, based on Fisher's 

transformation. Correlation = 0.385 on 734 observations (95% CI: 0.321 to 0.445) 

 

Confidence interval for Pearson's product-moment correlation of income and marry, based on Fisher's 

transformation. Correlation = 0.225 on 734 observations (95% CI: 0.155 to 0.293) 

 

In R after loading the Hmisc package: 

 
print("R Pearson Correlation Matrix with P-values using rcorr from Hmisc package") 

cor(x=cbind(Example2$income,Example2$educ,Example2$marry), method="pearson")  

 

        income educ12 marry01 

income    1.00   0.38    0.23 

educ12    0.38   1.00    0.05 

marry01   0.23   0.05    1.00 

 

P 

        income educ12 marry01 

income         0.0000 0.0000  

educ12  0.0000        0.1665  

marry01 0.0000 0.1665      

 

print("R Pearson Correlation Pairwise Significance tests and CIs") 

cor.test(x=Example2$income, y=Example2$educ,  method="pearson", conf.level=.95)  

cor.test(x=Example2$income, y=Example2$marry, method="pearson", conf.level=.95)  

 

data:  Example2$income and Example2$educ 

t = 11.2764, df = 732, p-value < 0.000000000000000222 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 0.32129033 0.44469587 

sample estimates: 

       cor  

0.38471088  

 

data:  Example2$income and Example2$marry 

t = 6.24852, df = 732, p-value = 0.00000000070292 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 0.15519069 0.29262863 

sample estimates: 

      cor  

0.2250287  

In this “correlation matrix” the top 

value is the correlation coefficient r 

and the bottom value is the p-value 

for that correlation. 

 

These same values are in separate 

tables in the R output below. 


