
The Finale of PSQF 6243:

Caveats and Next Steps

PSQF 6243: Lecture 6 1

• Topics:

➢ Summary of what we’ve covered as “The GLM”

➢ Using what we’ve covered:

▪ Review of steps in GLM analysis

▪ Understanding GLM assumptions

➢ What to do given untenable assumptions:

▪ Repairs within GLM framework

▪ When to eject to a new model (and what it could be)



PSQF 6243: Lecture 6

Two Reasons Why You WERE Here
1. “This class fulfills a requirement” (and I just need to pass it).

➢ I get it—it’s ok if this is the only reason you were here, 

but I (still) hope to have convinced you otherwise!

2. “I want to learn more about data analysis using 

quantitative methods” (yes, me too)!

➢ Quantitative methods = Quantitative data + application 

of statistical models to answer questions

➢ As I promised, the hard part is not the math—it’s the working 

memory load needed to link language (terminology, notation, 

syntax) to logic (matching data types, questions, and models)

➢ An important component to doing quantitative methods 

well is recognizing when the tools you have will not be 

sufficient for the data at hand… but first, let’s review…
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PSQF 6243: Lecture 6

Reviewing the Steps in a GLM Analysis

1. Understand the research questions to be answered and 

the types of variables to be used in answering them

➢ This will dictate which variables are involved, and whether 

they are to be considered predictors or outcomes

▪ Predictor → explainer: regressor, independent variable 

(that you care about specifically or that is manipulated), 

covariate (that someone else cares about or is quantitative)

▪ Outcome → to be explained: dependent variable, criterion

➢ Primary types of variables: Quantitative or categorical

▪ Quantitative → numbers are numbers (but may have boundaries)

▪ Categorical → numbers are labels (finite list of possibilities)

▪ Note that the GLM is for quantitative outcomes only!
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PSQF 6243: Lecture 6

Reviewing the Steps in a GLM Analysis
3. Determine how to include predictor variables in models

➢ Quantitative variables should be centered (by subtracting a 

constant) as needed so that 0 is a meaningful reference point

▪ Why? To create a useful fixed intercept at a minimum; also for useful 

“main effect” slopes of predictors that are part of interaction terms

▪ But predicted outcomes and model 𝑅2 do not depend on centering… 

(so there are no wrong choices for centering constants, only weird)

➢ Then consider their type of relation with the outcome

▪ Linear is default, but linear only may not always be plausible…

▪ Quadratic (by adding predictor2) allows slope to change directions

▪ Exponential (through a linear slope of log-transformed predictor) 

creates a slope that slows down (i.e., capturing diminishing returns)

▪ Piecewise (linear spline) allows slope to differ across predictor regions

▪ This is an empirical question—the data can help you decide!
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PSQF 6243: Lecture 6

Reviewing the Steps in a GLM Analysis
3. Determine how to include predictor variables in models

➢ Categorical predictors (numbers are just labels) can only 
be included as-is if they have only 2 values (binary 0 or 1)

➢ Otherwise, they need to be represented by 𝐶 − 1 new 
“dummy-coded” binary predictors for 𝐶 categories (*which 
can be done for you by using a “factor” variable, see unit 7)

➢ Btw, there is also “effect coding” (using ±1), which I don’t like 
because then 0 does not indicate any specific category
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original

group AvB AvC AvD

A 0 0 0

B 1 0 0

C 0 1 0

D 0 0 1

New Predictors original

group AvB BvC CvD

A 0 0 0

B 1 0 0

C 1 1 0

D 1 1 1

New Predictors

Indicator Coding*

(best for nominal)

Sequential Coding

(best for ordinal)
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Reviewing the Steps in a GLM Analysis

4. Get what else you need that isn’t directly given, like: 

➢ Predicted outcomes (e.g., for non-reference groups)

➢ 𝑡-tests (numerator DF=1) of new single slopes using 

linear combinations of fixed intercept and slopes

▪ e.g., other predictor category differences (such as B v D)

▪ e.g., differences between fixed slopes (such as between 

piecewise slopes or predictor slopes on same scale)

▪ e.g., conditional slopes for predictors also included in 

interaction terms at other moderator values besides 0

➢ Simultaneous 𝐹-tests (DF>1) of slopes lumped together

▪ e.g., for “omnibus” effects of categorical predictors

▪ e.g., for testing changes to the model 𝑅2 for a set of new slopes 

(avoiding hierarchical models in which order is ambiguous)
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PSQF 6243: Lecture 6

Reviewing the Steps in a GLM Analysis
5. Get effect sizes (to convey absolute relationship size 

independent of statistical significance governed by 𝑁): 

➢ Always ok: per-slope partial 𝒅 or 𝒓→ provides size 

of unique contribution relative to it + residual)

▪ Useful for predicting power when planning similar analyses

▪ Not useful in relation to model 𝑅2 (b/c not out of total variance)

▪ Can be inflated by adding predictors to reduce residual variance

➢ Can be ok: per-slope semi-partial 𝒓𝟐 (aka, eta-squared) 

→ provides amount of model 𝑅2 due to that predictor

▪ Slopes of dummy-coded predictors to represent a categorical 

variable need to be lumped together first (b/c not independent)

▪ Slopes of predictors involved in interaction terms (including 

quadratic terms) are conditional on moderators = 0
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PSQF 6243: Lecture 6

Reviewing the Steps in a GLM Analysis

6. Write it up and turn it in!

➢ Models to be reported are likely only a subset of all the 

models estimated—choose those that tell the honest 

story in answering your research questions, including:

▪ Analytic method: modeling approach, software used, how 

predictors were centered or coded (i.e., who the reference is)

– Equations are useful when done correctly—use the proper notation!

▪ What happened: in both “stat-ese” and regular language (see my 

results sections in class examples and in homework assignments)

– Per slope: Estimate, standard error, 𝑝-value, effect size

– Per model: 𝐹-value, both DF, residual variance, 𝑝-value, 𝑅2

– Always guide the reader—tell them explicitly why they should care

▪ Consider “supplemental material” for any results you don’t have 

room for, as well as equations and syntax—can help you get cited!  
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Labels for What We Covered This Semester
Intro to General Linear Models (GLMs) as a one-stop shop 
for predicting one conditionally normal outcome per person

➢ Quantitative predictors = “(linear) regression”

▪ 1 numeric predictor variable = “simple (linear) regression”

▪ 2+ numeric predictor variables = “multiple (linear) regression”

▪ Includes linear and nonlinear (e.g., quadratic, piecewise) relations

➢ Categorical predictors = “analysis of variance (ANOVA)”

▪ 1 two-group predictor variable = “independent-samples t-test”

▪ 1 three-or-more-group predictor variable = “one-way ANOVA”

▪ 2+ group predictor variables = “two-way (or factorial) ANOVA”

➢ Both kinds of predictors = “analysis of covariance (ANCOVA)”

➢ We covered moderation (via interactions) of some* kinds, too!

▪ See lecture 7 and Example 7 (posted from PSQF 6242) for interactions involving 
2+ slopes (such as among predictors with 3+ categories or piecewise slopes) 
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https://www.lesahoffman.com/PSQF6242/index.html
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The Missing Step 2: Select Model Family!
• The GLM requires several things to be plausible for the results 

to be believable—these are called “model assumptions”

• Two types of consequences of violated assumptions:

➢ On fixed effect estimates

▪ Wrong estimates → wrong depiction of variable relations

▪ Labeled “primary” by Darlington & Hayes (2017)

➢ On fixed effect standard errors

▪ Wrong conclusion about inconsistency → wrong 𝑝-value

▪ Labeled “secondary” by Darlington & Hayes (2017)

• Some problems can be fixed by modifying the GLM 
(model format or its estimation), but some can’t!

➢ There is much confusion over what is actually assumed…
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PSQF 6243: Lecture 6

Is “Linearity” an Assumption?
• In a word, NO! This is a misconception given that what are most 

commonly specified for quantitative predictors are linear slopes

• We’ve seen that GLMs can include nonlinear relations of quantitative 
predictors and outcomes, but the term “nonlinear” needs clarified:

➢ “Nonlinear in the variables” (as we’ve used) means adding predictors 
that create nonlinear outcome relations in a model of linear form 

▪ e.g., squared predictors → quadratic form of relation

➢ “Nonlinear in the parameters” means a model that does not 
use the “constant*variable + constant*variable linear form

▪ e.g., a truly exponential model: 𝑦𝑖 = 𝛽0 + 𝛽1 e
𝛽2(𝑥𝑖)

• The GLM (and any model!) assumes the functional form of the 
predictor relations has been properly specified, including the 
potential for both nonlinear relations and interaction slopes

➢ Otherwise, your characterization of variable relations may be incorrect

➢ Best tested by adding slopes to the model and seeing if they are needed
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Image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution 

PSQF 6243: Lecture 6

Is “Normality” an Assumption?
• Of the predictors? Of course not! 

➢ Otherwise, ANOVA (with categorical predictors) could not be a thing!

• Of the marginal (original) outcome? Also NO!

• Instead, the GLM assumes the 𝒆𝒊 residuals—the leftover, 
conditional outcome—have a normal distribution

➢ The normal distribution
describes symmetric, 
continuous variables

➢ Uses two parameters: mean
(conditional on predictors, 
given by ෝ𝒚𝒊) and 1 variance
(𝝈𝒆

𝟐 for the residuals)

• Stand-alone textbook chapters on “data cleaning” and “data 
transformation” and “outlier analysis” are really problematic!

➢ Because residuals are only possible in the context of a model!
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Left image borrowed from: http://www.omidrouhani.com/research/logisticregression/html/logisticregression.htm

Right image borrowed from: https://ajh1143.github.io/HomVar/

PSQF 6243: Lecture 6

Normal Distribution → Constant Variance
• Because GLM residuals should have a normal distribution, this means 

they should have constant variance—the same residual variance applies 

to all cases → “homoscedasticity” = “homogeneity of variance”
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Otherwise, “heteroscedasticity ” 

= “heterogeneity of variance” →

model predicts differentially well 

across 𝒙𝒊 (or ෝ𝒚𝒊 more generally)

“Not good” → 𝝈𝒆
𝟐 increases as the 

𝑥𝑖 predictor increases (→ fan shape) 

http://www.omidrouhani.com/research/logisticregression/html/logisticregression.htm
https://ajh1143.github.io/HomVar/


PSQF 6243: Lecture 6

Normal Distribution → Constant Variance
• In practice, both normality and constant variance of the 𝒆𝒊 residuals 

may not hold in quantitative outcomes with one or more boundaries 

➢ e.g., proportion correct outcomes are bounded by both 0 and 1,
so residual variance will shrink as ෝ𝒚𝒊 approaches these ends

➢ e.g., count outcomes are bounded at 0, so residual variance 
usually increases with the predicted ෝ𝒚𝒊 (see example below)
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Example 3 from PSQF 6270

Left: marginal count distribution

Right: residual count distribution 

(and non-constant variance by ෝ𝒚𝒊) 
Q-Q Plot

https://www.lesahoffman.com/PSQF6270/index.html


PSQF 6243: Lecture 6

What to Do about Non-Constant  Variance

• Residual non-normality is not a big problem by itself

• In contrast, non-constant residual variance can result in 
incorrect standard errors (SEs) and thus incorrect 𝒑-values

• For outcomes that are “sufficiently continuous”, the impact 
of non-constant variance can be addressed by changing 
the way the standard errors (SEs) are computed:

➢ Request heterogeneity-consistent SEs 

▪ aka, “sandwich” estimators: predictors are the “bread”; 
weighted residuals are the “meat” (many types available, 
labeled HC0-HC4; I will show HC3 next)

➢ Request jackknifed or bootstrapped SEs

▪ Jackknifing: remove one person, re-estimate model 𝑁 times, get 
empirical SD of estimates across resamples as new empirical SE

▪ Bootstrapping: sample same 𝑁 with replacement repeatedly, 
re-estimate model, get empirical SD of estimates across 
resamples as new empirical SE (more readily available)
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PSQF 6243: Lecture 6

Residuals for Last Model of Example 5
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• Chapter 2 data: cognition outcome was simulated to have 

a normally-distribution residual 𝒆𝒊 with constant variance 

➢ Plots show plausible normality, but non-constant variance 

(because a sex*dementia group interaction is still missing 

relative to the correct population model, see Example 7!)
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PSQF 6243: Lecture 6

Chapter 2 Data: Robust SEs (in SAS)
• Chapter 2 data: cognition outcome was simulated to have a 

normally-distribution residual with constant variance, so results 
don’t change much when using robust SEs (last columns)

➢ Biggest difference is for dementia slopes (which are mis-specified!)
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TITLE1 "SAS Chapter 2 Data: REG with Robust Standard Errors";

PROC REG DATA=work.Chapter2;

MODEL cognition = age85 grip9 sexMW demNF demNC age85grip9 

/ ALPHA=.05 HCCMETHOD=3 WHITE;

RUN; QUIT; TITLE1;

Parameter Estimates 

Variable Label DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Heteroscedasticity 
Consistent 

Standard 
Error t Value Pr > |t| 

Intercept Intercept 1 29.40780 0.69491 42.32 <.0001 0.70729 41.58 <.0001 

age85 age85: Age in Years (0=85) 1 -0.33396 0.12036 -2.77 0.0057 0.12009 -2.78 0.0056 

grip9 grip9: Grip Strength in Pounds (0=9) 1 0.61942 0.14874 4.16 <.0001 0.15399 4.02 <.0001 

sexMW sexMW: Sex (0=M, 1=W) 1 -3.45564 0.88727 -3.89 0.0001 0.92128 -3.75 0.0002 

demNF demNF: Dementia None=0 vs Future=1 1 -5.92254 1.01363 -5.84 <.0001 1.02380 -5.78 <.0001 

demNC demNC: Dementia None=0 vs Current=1 1 -16.30040 1.51255 -10.78 <.0001 1.16189 -14.03 <.0001 

age85grip9 age85*grip9: Age by Grip Interaction 1 0.12302 0.04054 3.03 0.0025 0.04236 2.90 0.0038 
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Fit Diagnostics for income
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Residuals for Last Model in Example 4a
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• GSS real data: income was binned (so it’s not really 

continuous) and has a natural lower boundary at 0

➢ Residual plots show both (some) non-normality and 

non-constant variance across predicted outcomes
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PSQF 6243: Lecture 6

GSS Data: New SEs Differ! (in STATA)
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display "STATA GSS Data: REGRESS with Robust Standard Errors"

regress income c.LvM c.LvU c.age18 c.age18#c.age18 ///

c.lessHS c.gradHS c.overHS, level(95) vce(hc3)   

Top left: original results

Top right: with robust SEs

Bottom: with bootstrapped SEs

vce(bootstrap, reps(500))

Btw, an R example is given here

https://www.r-econometrics.com/methods/hcrobusterrors/


Image 16.1 from Darlington & Hayes (2017)

PSQF 6243: Lecture 6

Problematic Participants
• Skewed residuals can also be due 

to extreme values (“outliers”)

• “Distance” = extreme on 𝑦𝑖 (B) 

• “Leverage” = extreme on 𝑥𝑖 (A)

• “Influence” = impact on slope (C)

➢ Measured by per-person values for: 

▪ Cook’s distance = how much ෝ𝒚𝒊 values 
would change without that person 
(is actually “influence”, not “distance”)

▪ dfBeta = how much each 𝛽 would 
change without that person

➢ The key is to look for relatively
high values (absolute cut-offs 
don’t really work in practice)

20

What to do with any high 

influence cases? There are 

no good uniform solutions… 

it depends on how much 

you believe the aberrant 

cases are representative…



PSQF 6243: Lecture 6

When to Eject to a New Model Family
• For some outcome variable formats, the assumptions of normally-

distributed residuals with constant variance will never be plausible

➢ Then you need a generalized linear model instead of 
a general linear model (where “ized” → not normal)

➢ These models swap a normal residual distribution with a more plausible 
distribution and build in a link function transformation to keep predicted 
outcomes within their possible bounds (which is necessary when 
predicting categorical, count, or skewed positive continuous outcomes)

• I created PSQF 6270: Generalized Linear Models
as a follow-up to PSQF 6242/6243 for this reason! 

➢ Btw, it also covers multivariate models for predicting multiple 
outcomes at once, as well as path analysis for testing mediation

➢ Btw, it also covers “quantile regression” in which you can predict 
the median (or any percentile) instead of the mean to avoid bias 
in results due to cases with strong potential influence
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https://www.lesahoffman.com/PSQF6270/index.html


PSQF 6243: Lecture 6

When to Eject to a New Model Family
• The most important assumption of the GLM is that the 𝒆𝒊 residuals 

are independent—that all the reasons why any pair of 𝑦𝑖 outcomes 
would be more related than others are already built into the model 
as fixed effects of predictor variables

➢ First “i” in assumption abbreviation “i.i.d”: residuals are independently 
and identically distributed (→ unrelated with constant variance)

➢ Simplest example violation—pre-test and post-test for same people

➢ More generally, correlated (“dependent”) residuals result from sampling 
over multiple dimensions simultaneously (e.g., multiple students from 
multiple schools, multiple occasions from multiple persons)

• Ignoring correlated residuals can lead to WAY-wrong fixed 
effect estimates, SEs, and 𝒑-values for several reasons!

➢ Effective sample size is lower than actual 𝑁, so SEs need 
to adjust for redundancy created by to residual correlation

➢ Each lower-level predictor is really two predictors in one
(with distinct effects across each dimension of sampling)
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PSQF 6243: Lecture 6

Ejecting to a New Model Family
• Research designs with random variation across multiple dimensions of sampling 

simultaneously need linear models that can allow residuals from the same sampling 
unit to be correlated (and have non-constant variance)

• For some cases, you can introduce correlated residuals directly
(as in multivariate models, which are covered in PSQF 6270) 

➢ e.g., pre-test and post-test for same people for a conditionally normal outcome

• Otherwise, you need “multilevel” models (MLM): here is a recent tutorial

➢ aka, “mixed-effects” models (where “mixed” means inclusion of
fixed and random effects) or “hierarchical linear models” (HLM)

➢ Introduced in PSQF 6246 Design of Experiments

➢ Repeated measures designs covered in new PSQF 6271: Longitudinal Multilevel Models

➢ Clustered/nested designs covered in new PSQF 6272: Clustered Multilevel Models

• Require likelihood estimation instead of ordinary least squares to address missing 
data and/or unbalanced designs (different possible outcomes per sampling unit)

➢ Which is why I didn’t cover “traditional” dependent samples 𝑡-tests 
or repeated measures analysis of variance in this class…

➢ Likelihood estimation is introduced in PSQF 6270 (so take that before 6271 or 6272)
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PSQF 6243: Lecture 6

What about Measurement Error?
• Any linear model using observed variables (GLM, generalized, or 

multilevel) assumes they are measured with perfect reliability

➢ Highly unlikely in social sciences examining “squishy” constructs

➢ We frequently compute reliability coefficients (e.g., alpha, which is 
useless, btw), but then we don’t address reliability in the linear models!

• But measurement error can reduce the size of the variable 
relations captured and otherwise introduce bias in slopes

➢ e.g., covariates will not be adequately “controlled for” 
if they are not measured well to begin with!

• Psychometric models use latent variables to more reliably measure 
an unobserved construct than can any single observed variable

➢ e.g., using multiple item responses to measure a latent construct

➢ Learn about these in PSQF 6262: Item Response Theory (IRT) and 
PSQF 6249: Factor Analysis and Structural Equation Models (SEM) 
as well as various special topics courses (listed as PSQF 7375 or 7476)
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PSQF 6243: Lecture 6

Wrapping Up
• General linear models are for predicting a single conditionally normally-

distributed outcome (with constant variance) in an independent sample

➢ Non-constant variance? Likely need corrected standard errors

➢ Not normal? Likely need Generalized linear model family instead 

(or maybe quantile regression, especially to address outliers)

➢ Not independent sample (so dependent)? Likely need multivariate 

models (with multilevel models as a special case)

➢ Not perfectly reliable measures (or different measures across people)? 

Likely need latent variable measurement (psychometric) models

• But good news—these options will require all the linear modeling and 

programming skills you have acquired this semester (and build on them)

➢ THANK YOU for all your efforts—I hope to see you in class again!
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