General Linear Models
with More than One
Conceptual Predictor

- Topics:
> Review: specific and general model results

> Unique effect sizes: standardized slopes; semi-partial (part)
and partial versions of correlation and squared versions

> Special cases of GLM (and corresponding effect sizes):

« “Multiple (Linear) Regression” with 2+ quantitative predictors

= “Analysis of Covariance” (ANCOVA) with both categorical and
quantitative predictors—requires joint significance tests and effect sizes

> Some examples of unexpected results
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Review: Specific Info for Fixed Effects

- The role of each predictor variable x; in creating a custom
expected outcome y; is described using one or more fixed slopes:

> One slope is sufficient to capture the mean difference between
two categories for a binary x; or to capture a linear effect of a
quantitative x; (or an exponential-ish curve if x; is log-transformed)

> More than one slope is needed to capture other nonlinear effects
of a quantitative x; (e.g., quadratic curves or piecewise spline slopes)

> € — 1 slopes are needed to capture the mean differences in
the outcome across a categorical predictor with C categories

21(c=-2)!"'

= # pairwise mean differences = but only C — 1 are given directly

- For each fixed slope, we obtain an unstandardized solution:

> Estimate, SE, t-value, p-value (in which [Est—0]/SE = t, in which
DE,,, =1and DF,4,, = N — k are used to find the p-value; this is
a "Univariate Wald Test” (or a “modified” test given use of ¢, not 2)

> Effect size can be given by converting t-value into partial r or d
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GLMs with Single Predictors:
Review of Fixed Effects

- Predictor x1; alone: y; = Bo + B1(x1;) + €;
> Bo = intercept = expected y; when x1; = 0
> 1 = slope of x1; = difference in y; per one-unit difference in x1;
- Standardized slope for 8, = Pearson’s r for y; with x1; (B15¢q = 7y x1)

> e; = discrepancy from y; — y; where y; = Bo + 1(x1;)

- Predictor x2; alone : y; = Bo + B2(x2;) + €;
> Bo = intercept = expected y; when x2; = 0
> [, = slope of x2; = difference in y; per one-unit difference in x2;
- Standardized slope for B, = Pearson’s r for y; with x2; (Bs¢q = 7y x2)

> e; = discrepancy from y; — y; where y; = Bo + £2(x2;)
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Review: General Test of Fixed Effects

- Whether the set of fixed slopes describing the relation of x; with y;
significantly explains y; variance (i.e., if R? > 0) is tested via a "Multivariate
Wald Test” (usually with F using denominator DF, or y? otherwise)

SSmodet/(k=1) _ (N-kK)R®> _ known
SSresidual/(N—Kk) N (k—1)(1—R?) "~ unknown

> F(DFnum»DFden) =

> F test-statistic ("F-test”) evaluates model R? per slope spent to get to it
AND per slope leftover (is weighted ratio of info known to info unknown)

. R? = Ltetal=SSresidual — ¢ are of r of predicted 9; with y;; also the

SStotal
proportion reduction in residual variance relative to empty model

RZ =1 (1_R2)(N_1) =1 MSyesidual
> adj — + — 1=
J N-k-1 MStotal

= correction used for small N

- For GLMs with only one fixed slope, the Univariate Wald (t) test for that
slope is the same as the Multivariate Wald (F) Test for the model R?

. _ ESt(—Ho) .
> Slope ﬂunstandardized- t = T; ﬂstandardized = Pearson r

> Model: F = t?, R? = r* because predicted y; only uses B, stq
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Moving On: GLMs with Multiple Predictors

- So far each set of fixed slopes within a separate model have
worked together to describe the effect of a single variable

> Thus, the F-test of the model R? has reflected the contribution
of one predictor variable conceptually in forming y;, albeit
with one or more fixed slopes to capture its relationship to y;

- Now we will see what happens to the fixed slopes for each
variable when combined into a single model that includes
multiple predictor variables, each with its own fixed slope(s)

> Short answer: fixed slopes go from representing “bivariate” to
“unique” relationships (i.e., controlling for the other predictors),
and y; is created from all predictors’ fixed slopes simultaneously

= Standardized slopes are no longer equal to bivariate Pearson’s r
= Multiple possible metrics by which to quantify “unique” effect size
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A Real-World Analog of “Unique” Effects

- House-cleaning with the Pearsons—the cast from “This is Us”

Rebecca

Randall
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A Real-World Example of “Unique” Effects

- Scenario: Rebecca Has. Had. It. with 3 messy tween-agers and
decides to provide an incentive for them to clean the house

> Let's say the Pearson house has 10 cleanable rooms: 4 bedrooms,
2 bathrooms, 1 living area, 1 kitchen area, 1 dining area, 1 garage

- Incentive system for each cleaner (3 children and spouse Jack):
> Individual: one Nintendo game per room cleaned by yourself

> Family Bonus: if > 8 rooms are clean, the family gets a new TV!
(8 = average of 2 rooms per person)

- Rebecca decides to let the family decide what rooms they will

each be responsible for while she is shopping for necessities

> She returns home to a cleaner house, and asks who did what...
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Pearson House:YWho Cleaned VWhat!
_mmm

Master bedroom

Kevin bedroom X

Kate bedroom X
Randall bedroom

Bathroom 1

Bathroom 2

Living area X X

Kitchen area X

X X X X X X

Dining area X

Garage (didn’t get cleaned)

- 9/10 rooms are cleaned, so the family gets a new TV—hooray!
- But what should each person get for their individual effort?
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Pearson House:YWho Cleaned VWhat!
_mmm

Master bedroom

Kevin bedroom X

Kate bedroom X

Randall bedroom
Bathroom 1

Bathroom 2

Living area X X

Kitchen area X

X X [ XX X X

Dining area X

Garage (didn’t get cleaned)

» Jack, Kevin, and Kate: only one Nintendo game each for cleaning
one unique room (can't assign rewards for overlapping rooms)

- Randall: three Nintendo games for three unique rooms
- No one gets credit for overlapping rooms (but the family gets a TV)
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From Cleaning to Modeling: 2 Goals

1. General Utility: Do the model predictors |Areas below describe
explain a significant amount of variance? partitions of y; variance:

> |s the model R? (the r? of y; with y;) a = y; unique to x1;
significantly > 0O (is F-test significant)? |p = y; unique to x2;

> Model R? is includes shared AND c = y; shared by x1; and x2;
unique effects of predictor variables: |, - y; leftover (residual)

. . a+b+c
for diagram on right, R? =
a+b+c+e

2. Specific Utility: What is each predictor’s
unique contribution to the model R?
after discounting (i.e., controlling for) its
redundancy with the other predictors?

> No predictors get credit for what
they have in common (area c on the
right) in predicting y;, even though that
shared variance still increases the R?
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GLMs with Multiple Predictors:
New Interpretation of Fixed Effects

- GLM with 2 predictor variables: y; = B¢ + B1(x1;) + B2 (x2;) + e;
> Bo = intercept = expected y; when x1; = 0 AND when x2; = 0

> [31 = slope of y.cl,- = unique differgnce in y; per one-unit difference
in x1; “controlling for” or “partialling out” or "holding constant” x2;
(SO Bi1sta # Pearson’s bivariate 1, ,; whenever ryq ,, # 0)

But B, is still assumed to be constant over all values of x2; (and x1,)

> FZ = slope of 3.c2,- = unigue differgnce in y; per one-unit difference
in x2; “controlling for” or “partialling out” or "holding constant” x1;
(SO B2stq # Pearson’s bivariate 7, ,, whenever 1y 5, # 0)

But B, is still assumed to be constant over all values of x1; (and x2;)

> Here x1; and x2; have "additive effects” (effect = slope in this context)...
stay tuned for “multiplicative effects” via interaction terms in unit 5!
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Btw: From Pearson Correlations and
Covariances to Standardized Slopes

- For a one-predictor model: y; = By + B1(x1;) + €;

SD2,

. SD
> Unstandardized: g = M), — (B1M,1), 1 = ry'xlsn_xyl'ﬁl =

SD1
sD,

> Standardized: By = 0, B15ta = P1 (s0 Bista = Ty x1 here)

> Btw, you reported standardized slopes in HW 2 with one predictor

- Fora tWO-pl‘EdiCtOr model: Vi = ﬁ() + ﬁl(xli) + ﬁz(xZi) + e;
> Unstandardized: Bg = My, — (B1My1) — (B2M,2)

. Ty x1— (Ty x2*Tx1x2) Ty x2—(Ty x1*Tx1.x2)
> Standardized: Bigq = 5, Bostg = ——g—
1_Rxl,xz 1_Rxl,xz

. . SD SD
~ Standardized to unstandardized: B1 = Bysta sy B2 = Basta sy
x1 x2
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Where the ” Area ¢ Goes

- Model R? can be understood in many ways—here, for two slopes:

> Old: R? is the square of the r between predicted y; and y;

vary,  explained variance

> Old R? said differently: R* = =

Varyl. total variance

2 2
Ty x1+7T ,xz_(z*r ,xl*ry,xz*rxl,xz)
> New: R* = 22— 2
1_Rxl,xz

> New: R? = ,Blzstd + ,Bzzstd + (2 * ,Blstd * IBZStd * TX1,X2)

- In general: R%= unique effects + function of common effects
> General effect size for magnitude of prediction by the model

- The standard errors of each “unique” slope also must be adjusted
to reflect the unique variance of its predictor variable relative to
other predictor variables...
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Standard Errors of Each Fixed Slope

Standard Error (SE) for fixed effect estimate S, in a one-predictor
model (SE is like the SD of the estimated slope across samples):

SE, — residual variance of y; | N =sample size.
Bx — Var(x;)*(N—k) k = number of fixed effects

When more than one predictor is included, SE turns into:

SE, — \/residual variance of y; | RZ = x; variance accounted
Bx —

Var(x)*(1-R%)*(N—k) for by other predictors, so
1-R2 = unique x; variance

So all things being equal, SE (index of inconsistency) is smaller when:

> More of the y; variance has been reduced (so a better predictive model)

So fixed slopes can become significant if added later (if R? is higher than before)
> The predictor has less correlation with other predictors

Best case scenario: each x; is uncorrelated with all other predictors

If SE is smaller - t-value (or z-value) is bigger—> p-value is smaller
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Recommended Model-Building Strategies

- Step 0: Create new variables out of each conceptual predictor
> Quantitative: center (subtract a constant) so that 0 is meaningful
> Categorical: represent differences using binary (0/1) predictors

- Step 1: Examine bivariate relations of each conceptual predictor with y;
> "Bivariate” = “zero-order” relation for two variables (x; and y;)

> For a quantitative or binary predictor that has a linear relation with y;,
its bivariate relation is given by Pearson correlation r (use matrix for many)

Square of Pearson r = “shared variance” for x; and y;

> Otherwise, ?/ou need a GLM for each conceptual predictor in order to
include multiple fixed slopes (e.g., 3+ categories; linear+quadratic slopes)

Model R? = “shared variance” for x; and y;

- Step 2: Examine bivariate relations of each conceptual predictor with
the other predictors—useful todg_et a sense of how they will compete
with each other when combined into the same model predicting y;

> Via correlation matrices when possible, using models otherwise
> Quantify shared variance using same process as in step 1
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Recommended Model-Building Strategies

- Step 3: Combine conceptual predictors into the same model in whatever
way corresponds to your research questions... here are two examples:

- Simultaneous: How does y; relate to x1;, x2;, and x3;?

> Put all slopes into same model—report model test (F for R?), as well as direction,
significance, and effect size per predictor (stay tuned for effect size options)

- Stepwise using R? change: (a) After controlling for x1;, how does x2; predict
y;? (b) After controlling for x1; AND x2;, how does x3; predict y;?

> (a) Put x1; into model and report its direction, significance, and effect size. Add x2;
into model—report model test (F for R?), change in model test (F for R? change), as
well as x2; direction (also significance and effect size per slope if not redundant with
change in model test). Comment on how the slope(s) for x1; changed after x2;.

> (b) Add x3; into model—report model test (F for R?), change in model test (F for R?
change), as well as x3; direction (also significance and effect size if not redundant
with change in model test). Comment on how x1; and x2; slopes changed after x3;.

- A stepwise strategy is useful if there is a clear hierarchy for the inclusion of
predictors, but if not, a simultaneous strategy is likely more defensible!

> | will show you how to get unique contributions for a set of slopes from same model!
> Btw, atheoretical automated routines can also find optimal combos of predictors...
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What about “Multicolinearity”? Meh.

- A frequently worried-about problem is “multicolinearity”
(see also "multicollinearity” or just “colinearity” or “collinearity”)

- The SE for a predictor’s slope will be greater to the extent that
the predictor has in common (more correlation) with the other
predictors—that makes it harder to determine its unique effect

- Diagnostics for this overhyped danger are given in many forms
> “tolerance” = unique predictor variance = 1 — RZ (<.10 = "bad")
> "variance inflation factor” (VIF) = 1/tolerance (> 10 = "bad")

» Computers used to have numerical stability problems with high
collinearity, but these problems are largely nonexistent nowadays

- Only when you have “singularity” is it truly a problem—when a
predictor is a perfect linear combination of the others (redundant)

> e.g., when including two subscale scores AND their total as predictors
> e.g., when including intercept + 3 binary predictors for 3 groups
> You will get a row of dots instead of results for redundant predictors
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Addressing (Multi)Collinearity

- Use the bivariate relationships among your to-be-considered
predictors to guide the possibility of “equivalent” models

> e.g., Invasive biological measure vs. highly related but non-invasive
alternative measure—can one sufficiently replace the other?

- Such questions require comparing non-nested models
> Nested = one model is a subset of other (model A vs. model A+B+C)

Btw, | will show you how to test nested models using just one model
> Non-nested = models are not subsets (model A+B vs. model A+C)

= "Hotelling’s t” can be used for significance test of R from each model
(must save y; for each model and compute their correlation first)

> See also “dominance analysis” (see Darlington & Hayes 2016, sec. 8.3)

- Orjust try to reduce the slope SEs by adding predictors that are
related to y; but that are (mostly) unrelated to other predictors

> Less residual variance - smaller SE for each predictor > more power
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Metrics of Effect Size per Fixed Slope

- Unstandardized fixed slopes cannot be used to ascertain
the relative importance of each predictor because they
are scale-dependent (so differences in “one unit” matter)

- So we also need to report some kind of “unique” effect size

> Could be relevant per fixed slope (for predictors whose effect on y;
is described by a single slope) or per conceptual predictor (for
predictors whose effect on y; require multiple slopes to describe)

> Why? Beyond putting the slope magnitudes on same scale, specific
effect sizes are also used in meta-analyses and to predict power

> Choices in r metric: standardized slopes (which are not really correlations,
see next slide), semi-partial r, or partial r 2 r gets called n ("eta” when
using R%) or w ("omega” when adjusted by N, to be used with adjusted R?)

Btw, also Cohen’s d in standardized mean difference metric—is “partial” version
> Fewer useful in R* metric: semi-partial n% or w?; see also Cohen’s f>

- Let's examine more closely how these differ from each other...
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Standardized Slopes: Confusing and Limited

- Standardized slopes (solution using z-scored variables, each with M = 0
and SD = 1) are supposed to describe the change in y; per “SD” of x;

> Provided in SAS REG, STATA REGRESS with BETA option, or R Im.beta
> Can also get by z-scoring all variables, then doing usual GLM (i.e., as

implemented in R’s Im function by putting scale() around each variable)

- Although standardized sIOﬁes (Bs¢q) are often used to index effect size

in GLMs and path models, t

>

ey are confusing and limited in scope:

They ran?e from too, not +1 (so they are not correlations), because
the SD of original x; is larger than the SD for “unique” x; variance

Btw, multiplying B4 by unique SD of x; (as VTolerance) = semi-partial r
Yield ambiguous results for quadratic or multiplicative terms (z-scored
product of 2 variables is not equal to product of 2 z-scored variables)

Differences in sample size across subgroups create different standardized
sIo]Pes for categorical predictors given the same unstandardized mean
difference (see Darlington & Hayes, 2016, sec. 5.1.5 and ch. 8)

Do not readily extend to more com||ol.ex types of prediction models
(e.g., generalized linear models, multilevel or “mixed-effects” models)

For a helpful blog post on this topic, see:
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http://www.daviddisabato.com/blog/2016/4/8/on-effect-sizes-in-multiple-regression

Semi-partial (aka,“Part”) Eta-Squared
- Given this GLM: Yi = BO + ﬁl(xli) + ﬁz(xZ,-) + e;

SStotal a+b+c+e

- For x1;, semi-partial n* = sr

> "Unique” sums of squares / total sums of squares: amount
of model R? that is due to x1; = directly intuitive ©

> Will NOT be influenced by adding extra predictors to the model
to explain residual variance - comparability across studies ©

1-RZ2 SQRT part = prop.
DF gen unexplained variance

= Btw, there is no analog to Cohen’s d
(b/c group is needed in the model)

a+b+c
a+b+c+e

Overall model R? =
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Partial Eta and Eta-Squared

- Given this GLM: Yi = BO + ﬁl(xli) + ﬁz(xZ,-) + e;
$S.1 a

. For x1;, partial n? = pr? = =
ir P n P S$Sx1+SSresidual ate

> Unique SS / (unique SS + residual SS) > R? for what's left

> WILL BE influenced by adding extra predictors to explain residual
variance - lack of comparability across models/studies ®

> More useful n version can also be found from t-value:
. t
« Partialn = pr =
m=pr Jt2+DF gen

= Btw, Partial Cohen'’s d for meaZn
t

differences in SD units: pd = Nr T

> The word “partial” is used as a
synonym for “unique” effects

a+b+c
a+b+c+e

Overall model R? =
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Summarizing Effect Sizes (for x1; here)

2 a
"~ a+b+c+e
> Unique / total: amount of model
R? due to x1; (directly useful)

- Semi-partial n% = sr

Areas below describe
partitions of y; variance:

a = y; unique to x1;

b = y; unique to x2;

a ¢ = y; shared by x1; and x2;

. Partial n* = pr? = P e = y; leftover (residual)

> Unique / (unique+residual):
x1; contribution setting aside x2;

> Given that it describes a subset of
model R?, n (or d) version can be
less prone to misinterpretation

: . : 2 _
> But is often used in power analysis! Model R* =
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Interpreting Effect Sizes with the Pearsons
- Effect sizes for x1;

y,-
] . 5 2 a . unique
> Semi-partial n° = sr a+b+c+e  total qg
\/

. a unique
> Partial n? = pr? = = —1°
a+e unique+residual
Should not be compared across studies whose
models differ in predictor content—here’s why: x1;

xZi

- Using the Pearsons—of 10 rooms, Randall cleaned 4 rooms, Kevin
cleaned 1 room, and Randall and Kevin cleaned 2 common rooms
> Randall: a = 4, Kevin: b =1, common: ¢ = 2, residual: e = 3 (for this)

> Randall: sr?¢ =

= 40, pr? = — = 57
4414243 443

Randall cleaned 40% of the house, and 57% of the house that Kevin didn't

1 1
=.10, pr? = — = .25
4+1+2+3 1+3

Kevin cleaned 10% of the house, and 25% of the house that Randall didn't

> Kevin: sr? =
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Example of “Multiple Linear Regression”

- Models from Example 2 (here, R* = sr* = pr?) |Sum of separate
> Empty: income; = B,,R* =0 R* =.1986
> Education:  income; = B, + B1(educ; — 12) + e; , R* = .1480
> Marital Status: income; = By + B,(marry01;) + e;, R* =.0506

- Combined: income; = By + B1(educ; — 12) + B,(marry01;) + e;
> R? =.1903 for both < sum of separate R? = .1986 b/c of common
> Education B: semi-partial sr? = .1396, partial pr? = .1471 (t - sig®)
Explained 13.96% of income variance (14.71% of unexplained by marital)
> Marital B,: semi-partial sr? = .0423, partial pr? = .0496 (t > sig*)
Explained 4.23% of income variance (4.96% of unexplained by educ)

- Significance of effect sizes given directly per conceptual predictor
(linear education and binary marital status require 1 slope each)
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More Complex “Multiple Linear Regression”™

- Separate models from Example 3 (here, R? = sr? = pr?)
2 _
> 3-Category Workclass (2 slopes): R“ =.1034 Sum of separate
> Linear +Quadratic Age (2 slopes): R* = .1139 R2 = 3816

> Piecewise Education (3 slopes): R? = .1643

- Combined: Income; = By + 1 (LvsM;) + B,(LvsU;)

+ B3(Age; — 18) + B,(Age; — 18)?
+ B:(LessHS;) + Bs(GradHS;) + f-(0verHS;) + e;

> R? =.2887 for all < sum of separate R? = .3816 b/c of common
> Workclass 8, B,: semi-partial sr? = .0428, partial pr? = .0567
Explained 4.28% of income variance (5.67% of unexplained by others)
> Age B3, B4: semi-partial sr? = .0805, partial n: =.1017
Explained 8.05% of income variance (10.17% of unexplained by others)
> Education s, B, B7: semi-partial sr? = .0807, partial n%: =.1019
Explained 8.07% of income variance (10.19% of unexplained by others)
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More Complex “Multiple Linear Regression”™

- Combined: Income; = By + 1 (LvsM;) + B,(LvsU;)

+ B3(Age; — 18) + B,(Age; — 18)*
+ B:(LessHS;) + Bs(GradHS;) + f-(0verHS;) + e;

= Btw, this model might also be called ‘Analysis of Covariance” (or ANCOVA)

. Effect size per slope is problematic for two conceptual predictors:

> Working Class: slopes 1 and 8, share a common reference (low group)
and imply 3 pairwise group differences (2 in model; 1 given as linear
combination; other types of differences could be requested as needed)

So the unique sr? values across three possible group differences will
sum to more than they should (given a single 3-category predictor)

> Age: Linear age slope B3 is specific to centered age = 0, so its unique sr?
would change if age were centered differently; also, the unique sr? values
for linear and quadratic age cannot be summed directly to create total
sr? for age because of the correlation among the two predictors

> Education: although the unique sr? values for s, B¢, and 85 are ok to
use in this case, they also cannot be summed directly to create total sr?
for education because of the correlation among the three predictors
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How to Get Significance Tests and Effect

Sizes for a Set of Slopes in Software

- In SAS GLM, semi-partial and partial n? (or w? to use with adjusted R? instead)

given by adding EFFECTSIZE to MODEL statement options
> Then effect sizes provided directly for each fixed slope by default

> Effect size and F-test also provided for a set of slopes via CONTRAST statements
(e.g., for “omnibus” group effects, for linear+quadratic slopes)

- In STATA, PCORR provides semi-partial and partial n and n?

> Only works for single slopes—for a set of slopes, you have to compute semi-partial
and partial n? using sums of squares relative to a model without them

> TEST after REGRESS (or NESTREG) will provide F-tests for a set of slopes, though

- R package ppcor has pcor.test for partial n and spcor.test for semi-partial

> Only works for single slopes—for a set of slopes, you have to compute semi-partial
and partial n% using sums of squares relative to a model without them

> glht (or anova) after Im will provide F-tests for a set of slopes, though
(see also hierarchical_Im from the Imhelprs package, used in my functions)
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Effect Sizes for a Set of Slopes

- How to compute effect sizes for a set of slopes manually using
unique sums of squares (SS)—see Example 4a for illustration

> Step 1: From the full model, get model SS for the model: SSg,;;
From the full model, get residual SS for the model: SSgresiduar
From the full model, get total SS (as empty model): SS7ota

> Step 2: Get the model SS from a reduced model without
the slopes for which you want a joint test: SSgeguced

> Step 3: Compute SS difference b/t models: SSgffrece = SSrun — SSreduced

SSEffect 7"2 _ SSEffect
’ SSEffect"'SSResidual

> Step 4: Compute effect sizes: sr? =
SSTotal

> Step 5: Repeat steps 1-4 per set of slopes to be tested

- But sequential models are more common, so HW5 will use those

> Then the change in the model R? after adding new slopes will directly
provide sr? for the new slopes (at each step, so these contributions will
differ from what they would be in a full simultaneous model)
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Example: Testing R“ vs. Change in R*

MSE residual Model R2 Change in R2 from
Example Model Fixed Effects variance (relative to new slopes =
(leftover) empty model) Semipartial r2
1. intercept 200 0.00
2. intercept + A 180 0.10 0.10
3. intercept+ A+ B 140 0.30 0.20
4. intercept+ A+B+C+D 80 0.60 0.30

- F-tests assess the significance of a set of multiple slopes

> F-test for model R? is given by default (for all slopes in model)
. To assess the change in the R? after adding new slopes:

> 1 slope? Its p-value tests R? change directly (e.g., model 2 to 3)

> 2+ slopes? Must request a separate F-test for new slopes added

e.g., for R change from model 3 to 4—list slopes C and D only in
SAS CONTRAST, STATA TEST or NESTREG, or R glht or hierarchical_Im
(see Example 4a and 4b)

PSQF 6243: Lecture 4 30



Unexpected Results: Suppression

- In general, the semi-partial r for each predictor (and its unique
standardized slope) will be smaller in magnitude than the
bivariate r (and its standardized slope when by itself) with y;

- However, this will not always be the case given suppression:
when the relationship between the predictors is hiding
(suppressing) their “real” relationship with the outcome

» Occurs given 1y, > 0 and ry,,, > 0 in three conditions:
(@) Ty 1 <Tyx2 *Terxz2 (0) Ty a2 <Tyx1 * Tep 02, OF (C) Tyg 2 < 0

> For example: Consider y; = sales success as predicted by
x1;= assertiveness and x2;= record-keeping diligence

= Tyx1 = 403,74, =.127, and 14 x, = —.305 (so is condition ¢)
« Standardized: y; = 0 + 0.487(x1;) + 0.275(x2;)

= So these standardized slopes (for the predictors’ unique effects)
are greater than their bivariate correlations with the outcome!

- This is one of the reasons why you cannot anticipate just from bivariate
correlations what will happen in a model with multiple predictors...

Example taken from Cohen, Cohen, Aiken, & West (2002)

PSQF 6243: Lecture 4 31



Unexpected Results: Multivariate Power

Correlations

Y ¥ »2 ®3 L X5
Y Pearson Comelafion 1 A9 582 237 74 110
Sig. (2-tailed) : 119 T 081 155 371
M 68 63 63 68 68 68
X1 Pearson Comelation 191 1 - 250 - 77 -079 -110
Sig. (2-tailed) 119 ) 029 535 521 amn
N 68 63 63 68 68 68
X2 Pearson Comelation 182 =250 1 -077 36T 013
Sig. (2-tailed) 17 039 . 532 003 917
68 68 G 68 68 68
X3 Pearson Comelation 237 -077 | -077 1 203 219
Sig. (2-tailed) 031 h35 hR32 . 098 073
N 68 68 | 63 68 68 68
X4 Pearson Comelation A74 - 079 361 203 1 162
Sig. (2-tailed) 155 521 003 oag : 187
N 68 ity 68 68 68 68
X5 Pearson Comelation 10 - 110 013 219 62 1
Sig. (2-tailed) A a7 o7 073 8T )
M 58 63 63 68 68 68
*. Comelation is significant at the 0.05 level (2-tailed).
Coefficients?
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -350.742 195472 -1.794 078
X1 3.327 1.376 290 2418 019
K2 2485 1.185 271 2.098 040
X3 3125 1.479 257 2112 039
X4 366 1.342 035 273 786
X5 844 1.309 077 644 922

Example borrowed from:
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Even though none of
these five predictors has
a significant bivariate
correlation with y;, they
still combined to create
a significant model R?

F(5,62) = 2.77,
MSE = 272631.57,
p = .025,R? =.183

This is most likely when
the predictors have little
correlation amongst
themselves (and thus
can contribute uniquely)
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Unexpected Results: Null Washout

Correlations

PSQF 6243: Lecture 4

F(9,167) = 1.49,
MSE = 93.76,
p = .155,R? = .074

P P2 P3 P4 P5 PG P7 Pg P9
Y FPearson Correlation 230 059 004 079 -.100 - 028 -.040 -.007 013
Sig. (2-tailed) 002 432 953 294 186 709 595 927 863
N 177 177 177 177 177 177 177 177 177
Coefficients?
Unstandardized Standardized
Coefficients Coefficients Even though P1 has a
Model B Std. Error Beta t Sig. 1 i 1 1
7 [Constant) | 100454 17.866 5623 000 Slgmﬁca.nt b'Ya”ate
[Fi 115 038 233 3047 003 | correlation with y; and
P2 4.511E-02 077 044 583 561 . g .
P3 1.93E.02 076 _019 _254 800 | @ significant Umque effect,
P4 7.511E-02 076 075 988 325 | the model R? is not
P5 -0.22F-02 070 -.099 1320 189 . . fi b i
P6 6.555E-04 077 001 009 993 | SIgNI Icant—Dbecause It
P7 4 86E-02 076 _048 _640 523 | measures the average
P8 413E-02 073 _044 _ 568 571 di buti
P9 6.502E-03 076 007 087 a1 | predictor contribution
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Unexpected Results: A Significant Model R?
with No Significant Predictors???

Y Pi p2 P3 P4 P5
¥ Pearson Correlation 1 .298% 198* 2214 221 251*
Sig. (2-tailed) ) .000 008 003 003 001
N 177 177 177 177 177 177
P1 Pearson Correlation 298 1 GBI J12+ 42 728"
Sig. (2-tailed) .000 . .000 000 000 000
N 177 177 177 177 177 177
P2 Pearson Correlation 198 GBO* 1 A9+ 500* 520
Sig. (2-tailed) .0oa .000 ) 000 000 000
N 177 177 177 177 177 177
P3 Pearson Correlation 221 12 A495* 1 AT 494
Sig. (2-tailed) 003 .000 .000 . 000 000
N 177 177 177 177 177 177
P4 Pearson Correlation 221 427 500 AT 1 593"
Sig. (2-tailed) 003 000 000 000 ) 000
N 177 177 177 177 177 177
P5 Pearson Correlation 251" 728 520 Agq* 593+ 1
Sig. (2-tailed) 0o .000 .000 000 000 .
N 177 177 177 177 177 177
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 93.378 1.899 49.184 .000
P1 115 080 244 1.441 151
P2 -1.23E-02 073 -017 -.169 .866
P3 1.555E-02 076 .022 206 837
P4 -4 .41E-03 077 -.006 -.057 .954
P5 5211E-02 074 .076 J07 481
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This model R? is
definitely significant:
F(5,171) = 3.455,
MSE = 89.85,
p = .005 R2 =.190

Yet no predictor has a
significant unique
effect—this is because
of their strong(ish)
correlations with each
other (and “common”
still contributes to R?)
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GLM with Multiple Predictors: Summary

- For any GLM with multiple fixed slopes, we want to know:
> Do the slopes join to create a model R? > 0? Check p-value for model F
> What is the model’s effect size? Check R? = (r of J; with y;)?
> |s each slope significantly # 0? Check p-value for t = (Est — Hy)/SE
> What is each slope’s effect size? Compute partial » or (Cohen) d from t

- When combining the fixed slopes from different conceptual
predictor variables into the same model, we also want to know:

> |s each slope *still* significantly # 07 If yes, has a “unique” effect
Unique effect is usually smaller than bivariate effect (but not necessarily)

1 slope: check p-value for t = (Est — Hy)/SE
>1 slopes: check p-value for F-test of joint effect (requested separately)

> What is the effect size for each conceptual predictor’s unique effect?

1 slope: check sr? (or Bg:4) or find partial r or (Cohen) d or from ¢
>1 slopes: check joint sr? for predictor’s overall contribution to R?
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