
PSQF 6243: Lecture 4

General Linear Models

with More than One 

Conceptual Predictor

1    

• Topics:

➢ Review: specific and general model results

➢ Unique effect sizes: standardized slopes; semi-partial (part) 

and partial versions of correlation and squared versions

➢ Special cases of GLM (and corresponding effect sizes): 

▪ “Multiple (Linear) Regression” with 2+ quantitative predictors

▪ “Analysis of Covariance” (ANCOVA) with both categorical and 

quantitative predictors—requires joint significance tests and effect sizes

➢ Some examples of unexpected results
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Review: Specific Info for Fixed Effects
• The role of each predictor variable 𝒙𝒊 in creating a custom 

expected outcome 𝒚𝒊 is described using one or more fixed slopes:

➢ One slope is sufficient to capture the mean difference between 
two categories for a binary 𝒙𝒊 or to capture a linear effect of a 
quantitative 𝒙𝒊 (or an exponential-ish curve if 𝒙𝒊 is log-transformed)

➢ More than one slope is needed to capture other nonlinear effects 
of a quantitative 𝒙𝒊 (e.g., quadratic curves or piecewise spline slopes)

➢ 𝑪 − 𝟏 slopes are needed to capture the mean differences in 
the outcome across a categorical predictor with 𝐶 categories

▪ # pairwise mean differences = 
𝐶!

2! 𝐶−2 !
 , but only 𝐶 − 1 are given directly

• For each fixed slope, we obtain an unstandardized solution:

➢ Estimate, SE, 𝒕-value, 𝒑-value (in which [Est−0]/SE = 𝑡, in which 
𝐷𝐹𝑛𝑢𝑚 = 1 and 𝐷𝐹𝑑𝑒𝑛 = 𝑁 − 𝑘 are used to find the 𝑝-value; this is 
a “Univariate Wald Test” (or a “modified” test given use of 𝑡, not 𝑧)

➢ Effect size can be given by converting 𝒕-value into partial 𝒓 or 𝒅
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GLMs with Single Predictors: 

Review of Fixed Effects
• Predictor 𝒙𝟏𝒊 alone:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝒆𝒊

➢ 𝜷𝟎 = intercept = expected 𝒚𝒊 when 𝒙𝟏𝒊 = 𝟎

➢ 𝜷𝟏 = slope of 𝒙𝟏𝒊 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝟏𝒊

▪ Standardized slope for 𝜷𝟏 = Pearson’s 𝑟 for 𝑦𝑖 with 𝑥1𝑖 (𝛽1𝑠𝑡𝑑 = 𝑟𝑦,𝑥1)

➢ 𝒆𝒊 = discrepancy from 𝑦𝑖 − ො𝑦𝑖 where ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊

• Predictor 𝒙𝟐𝒊 alone : 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊

➢ 𝜷𝟎 = intercept = expected 𝒚𝒊 when 𝒙𝟐𝒊 = 𝟎

➢ 𝜷𝟐 = slope of 𝒙𝟐𝒊 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝟐𝒊

▪ Standardized slope for 𝜷𝟐 = Pearson’s 𝑟 for 𝑦𝑖 with 𝑥2𝑖 (𝛽2𝑠𝑡𝑑 = 𝑟𝑦,𝑥2)

➢ 𝒆𝒊 = discrepancy from 𝑦𝑖 − ො𝑦𝑖 where ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟐 𝒙𝟐𝒊
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Review: General Test of Fixed Effects
• Whether the set of fixed slopes describing the relation of 𝒙𝒊 with 𝒚𝒊 

significantly explains 𝑦𝑖 variance (i.e., if 𝑅2 > 0) is tested via a “Multivariate 
Wald Test” (usually with 𝐹 using denominator DF, or 𝜒2 otherwise)

➢ 𝐹 𝐷𝐹𝑛𝑢𝑚, 𝐷𝐹𝑑𝑒𝑛 =
𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑘−1)

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/(𝑁−𝑘)
=

𝑁−𝑘 𝑅2

(𝑘−1)(1−𝑅2)
=

𝑘𝑛𝑜𝑤𝑛

𝑢𝑛𝑘𝑛𝑜𝑤𝑛

➢ 𝑭 test-statistic (“𝐹-test”) evaluates model 𝑅2 per slope spent to get to it 
AND per slope leftover (is weighted ratio of info known to info unknown)

➢ 𝑹𝟐 = 
𝑆𝑆𝑡𝑜𝑡𝑎𝑙−𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
= square of 𝒓 of predicted ෝ𝒚𝒊 with 𝒚𝒊; also the 

proportion reduction in residual variance relative to empty model

➢ 𝑹𝒂𝒅𝒋
𝟐 = 1 −

1−𝑅2 𝑁−1

𝑁−𝑘−1
= 1 −

𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑀𝑆𝑡𝑜𝑡𝑎𝑙
= correction used for small 𝑁

• For GLMs with only one fixed slope, the Univariate Wald (𝑡) test for that 
slope is the same as the Multivariate Wald (𝐹) Test for the model 𝑅2

➢ Slope 𝜷𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 :  𝑡 =
𝐸𝑠𝑡(−𝐻0)

𝑆𝐸
, 𝜷𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 = Pearson 𝑟

➢ Model: 𝐹 = 𝑡2, 𝑅2 = 𝑟2 because predicted ෝ𝒚𝒊 only uses 𝜷𝑢𝑛𝑠𝑡𝑑
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Moving On: GLMs with Multiple Predictors

• So far each set of fixed slopes within a separate model have 

worked together to describe the effect of a single variable

➢ Thus, the 𝐹-test of the model 𝑅2 has reflected the contribution 

of one predictor variable conceptually in forming ෝ𝒚𝒊, albeit 

with one or more fixed slopes to capture its relationship to 𝑦𝑖

• Now we will see what happens to the fixed slopes for each 

variable when combined into a single model that includes 

multiple predictor variables, each with its own fixed slope(s)

➢ Short answer: fixed slopes go from representing “bivariate” to 

“unique” relationships (i.e., controlling for the other predictors), 

and ෝ𝒚𝒊 is created from all predictors’ fixed slopes simultaneously

▪ Standardized slopes are no longer equal to bivariate Pearson’s 𝑟

▪ Multiple possible metrics by which to quantify “unique” effect size
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A Real-World Analog of “Unique” Effects

• House-cleaning with the Pearsons—the cast from “This is Us”
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Jack

Rebecca

Randall

Kate

Kevin
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A Real-World Example of “Unique” Effects

• Scenario: Rebecca Has. Had. It. with 3 messy tween-agers and 

decides to provide an incentive for them to clean the house

➢ Let’s say the Pearson house has 10 cleanable rooms: 4 bedrooms, 

2 bathrooms, 1 living area, 1 kitchen area, 1 dining area, 1 garage

• Incentive system for each cleaner (3 children and spouse Jack): 

➢ Individual: one Nintendo game per room cleaned by yourself

➢ Family Bonus: if ≥ 8 rooms are clean, the family gets a new TV! 

                       (8 = average of 2 rooms per person)

• Rebecca decides to let the family decide what rooms they will 

each be responsible for while she is shopping for necessities

➢ She returns home to a cleaner house, and asks who did what…
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Pearson House: Who Cleaned What?

• 9/10 rooms are cleaned, so the family gets a new TV—hooray!

• But what should each person get for their individual effort?
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Room Jack Kevin Kate Randall

Master bedroom x

Kevin bedroom x

Kate bedroom x

Randall bedroom x

Bathroom 1 x

Bathroom 2 x

Living area x x x

Kitchen area x x

Dining area x x

Garage (didn’t get cleaned)
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Room Jack Kevin Kate Randall

Master bedroom x

Kevin bedroom x

Kate bedroom x

Randall bedroom x

Bathroom 1 x

Bathroom 2 x

Living area x x x

Kitchen area x x

Dining area x x

Garage (didn’t get cleaned)

Pearson House: Who Cleaned What?

• Jack, Kevin, and Kate: only one Nintendo game each for cleaning 
one unique room (can’t assign rewards for overlapping rooms)

• Randall: three Nintendo games for three unique rooms

• No one gets credit for overlapping rooms (but the family gets a TV)
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From Cleaning to Modeling: 2 Goals
1. General Utility: Do the model predictors 
    explain a significant amount of variance? 

➢ Is the model 𝑅2 (the 𝒓𝟐 of ෝ𝒚𝒊 with 𝒚𝒊) 
significantly > 0 (is 𝐹-test significant)?

➢ Model 𝑹𝟐 is includes shared AND 
unique effects of predictor variables: 

for diagram on right, 𝑹𝟐 =
𝒂+𝒃+𝒄

𝒂+𝒃+𝒄+𝒆

2. Specific Utility: What is each predictor’s 
    unique contribution to the model 𝑅2 
    after discounting (i.e., controlling for) its  
    redundancy with the other predictors? 

➢ No predictors get credit for what 
they have in common (area 𝒄 on the 
right) in predicting 𝒚𝒊, even though that 
shared variance still increases the 𝑅2
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Areas below describe 

partitions of 𝒚𝒊 variance:

a = 𝒚𝒊 unique to 𝒙𝟏𝒊

b = 𝒚𝒊 unique to 𝒙𝟐𝒊

c = 𝒚𝒊 shared by 𝒙𝟏𝒊 and 𝒙𝟐𝒊 

e = 𝒚𝒊 leftover (residual) 

𝒚𝒊

𝒙𝟏𝒊 𝒙𝟐𝒊

e

a

c

b
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GLMs with Multiple Predictors: 

New Interpretation of Fixed Effects
• GLM with 2 predictor variables: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊

➢ 𝜷𝟎 = intercept = expected 𝒚𝒊 when 𝒙𝟏𝒊 = 𝟎 AND when 𝒙𝟐𝒊 = 𝟎

➢ 𝜷𝟏 = slope of 𝒙𝟏𝒊 = unique difference in 𝒚𝒊 per one-unit difference 

in 𝒙𝟏𝒊 “controlling for” or “partialling out” or “holding constant” 𝒙𝟐𝒊 

(so 𝛽1𝑠𝑡𝑑  ≠ Pearson’s bivariate 𝑟𝑦,𝑥1 whenever 𝑟𝑥1,𝑥2 ≠ 0)

▪ But 𝜷𝟏 is still assumed to be constant over all values of 𝒙𝟐𝒊 (and 𝒙𝟏𝒊)

➢ 𝜷𝟐 = slope of 𝒙𝟐𝒊 = unique difference in 𝒚𝒊 per one-unit difference 

in 𝒙𝟐𝒊 “controlling for” or “partialling out” or “holding constant” 𝒙𝟏𝒊 

(so 𝛽2𝑠𝑡𝑑  ≠ Pearson’s bivariate 𝑟𝑦,𝑥2 whenever 𝑟𝑥1,𝑥2 ≠ 0)

▪ But 𝜷𝟐 is still assumed to be constant over all values of 𝒙𝟏𝒊 (and 𝒙𝟐𝒊)

➢ Here 𝑥1𝑖 and 𝑥2𝑖 have “additive effects” (effect = slope in this context)… 

stay tuned for “multiplicative effects” via interaction terms in unit 5!
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Btw: From Pearson Correlations and 

Covariances to Standardized Slopes

• For a one-predictor model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝒆𝒊

➢ Unstandardized: 𝜷𝟎 = 𝑴𝒚 − (𝜷𝟏𝑴𝒙𝟏), 𝜷𝟏 = 𝒓𝒚,𝒙𝟏
𝑺𝑫𝒚

𝑺𝑫𝒙𝟏
, 𝜷𝟏 =

𝑪𝒐𝒗𝒙𝟏,𝒚 

𝑺𝑫𝒙𝟏
𝟐

➢ Standardized: 𝜷𝟎 = 𝟎, 𝜷𝟏𝒔𝒕𝒅 = 𝜷𝟏
𝑺𝑫𝒙𝟏

𝑺𝑫𝒚
 (so 𝜷𝟏𝒔𝒕𝒅 = 𝒓𝒚,𝒙𝟏 here)

➢ Btw, you reported standardized slopes in HW 2 with one predictor

• For a two-predictor model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊

➢ Unstandardized: 𝜷𝟎 = 𝑴𝒚 −  (𝜷𝟏𝑴𝒙𝟏) − (𝜷𝟐𝑴𝒙𝟐)

➢ Standardized: 𝜷𝟏𝒔𝒕𝒅 =
𝒓𝒚,𝒙𝟏−(𝒓𝒚,𝒙𝟐∗𝒓𝒙𝟏,𝒙𝟐)

𝟏−𝑹𝒙𝟏,𝒙𝟐
𝟐 , 𝜷𝟐𝒔𝒕𝒅 =

𝒓𝒚,𝒙𝟐−(𝒓𝒚,𝒙𝟏∗𝒓𝒙𝟏,𝒙𝟐)

𝟏−𝑹𝒙𝟏,𝒙𝟐
𝟐

➢ Standardized to unstandardized: 𝜷𝟏 = 𝜷𝟏𝒔𝒕𝒅
𝑺𝑫𝒚

𝑺𝑫𝒙𝟏
, 𝜷𝟐 = 𝜷𝟐𝒔𝒕𝒅

𝑺𝑫𝒚

𝑺𝑫𝒙𝟐
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Where the “Common” Area 𝑐 Goes
• Model 𝑅2 can be understood in many ways—here, for two slopes:

➢ Old: 𝑅2 is the square of the 𝑟 between predicted ෝ𝒚𝒊 and 𝒚𝒊 

➢ Old 𝑅2 said differently: 𝑅2 =
𝑉𝑎𝑟ෝ𝒚𝒊

𝑉𝑎𝑟𝒚𝒊

=
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

➢ New: 𝑅2 =
𝑟𝑦,𝑥1

2 +𝑟𝑦,𝑥2
2 − 2∗𝑟𝑦,𝑥1∗𝑟𝑦,𝑥2∗𝑟𝑥1,𝑥2

1−𝑅𝑥1,𝑥2
2

➢ New: 𝑅2 = 𝛽1𝑠𝑡𝑑
2 + 𝛽2𝑠𝑡𝑑

2 + 2 ∗ 𝛽1𝑠𝑡𝑑 ∗ 𝛽2𝑠𝑡𝑑 ∗ 𝑟𝑥1,𝑥2

• In general: 𝑹𝟐= unique effects + function of common effects

➢ General effect size for magnitude of prediction by the model

• The standard errors of each “unique” slope also must be adjusted 
to reflect the unique variance of its predictor variable relative to 
other predictor variables…
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Standard Errors of Each Fixed Slope
• Standard Error (SE) for fixed effect estimate 𝛽𝑥 in a one-predictor 

model (SE is like the SD of the estimated slope across samples):

              SE𝛽𝑥
=

residual variance of 𝑦𝑖

Var 𝑥𝑖 ∗ 𝑁−𝑘

• When more than one predictor is included, SE turns into:

            SE𝛽𝑥
=

residual variance of 𝑦𝑖

Var 𝑥𝑖 ∗ 𝟏−𝑹𝒙
𝟐 ∗ 𝑁−𝑘

• So all things being equal, SE (index of inconsistency) is smaller when:

➢ More of the 𝑦𝑖 variance has been reduced (so a better predictive model)

▪ So fixed slopes can become significant if added later (if 𝑅2 is higher than before)

➢ The predictor has less correlation with other predictors

▪ Best case scenario: each 𝑥𝑖 is uncorrelated with all other predictors

• If SE is smaller → 𝑡-value (or 𝑧-value) is bigger→ 𝑝-value is smaller 

𝑅𝑥
2 = 𝑥𝑖 variance accounted 

for by other predictors, so 

1−𝑹𝒙
𝟐 = unique 𝒙𝒊 variance
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𝑁 = sample size

𝑘 = number of fixed effects
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Recommended Model-Building Strategies
• Step 0: Create new variables out of each conceptual predictor

➢ Quantitative: center (subtract a constant) so that 0 is meaningful

➢ Categorical: represent differences using binary (0/1) predictors

• Step 1: Examine bivariate relations of each conceptual predictor with 𝑦𝑖

➢ “Bivariate” = “zero-order” relation for two variables (𝑥𝑖 and 𝑦𝑖)

➢ For a quantitative or binary predictor that has a linear relation with 𝑦𝑖 , 
its bivariate relation is given by Pearson correlation 𝑟 (use matrix for many)

▪ Square of Pearson 𝑟 = “shared variance” for 𝑥𝑖 and 𝑦𝑖

➢ Otherwise, you need a GLM for each conceptual predictor in order to 
include multiple fixed slopes (e.g., 3+ categories; linear+quadratic slopes)

▪ Model 𝑅2 = “shared variance” for 𝑥𝑖 and 𝑦𝑖

• Step 2: Examine bivariate relations of each conceptual predictor with 
the other predictors—useful to get a sense of how they will compete 
with each other when combined into the same model predicting 𝑦𝑖

➢ Via correlation matrices when possible, using models otherwise

➢ Quantify shared variance using same process as in step 1
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Recommended Model-Building Strategies
• Step 3: Combine conceptual predictors into the same model in whatever 

way corresponds to your research questions… here are two examples:

• Simultaneous: How does 𝑦𝑖 relate to 𝑥1𝑖 , 𝑥2𝑖 , and 𝑥3𝑖?

➢ Put all slopes into same model—report model test (𝐹 for 𝑅2), as well as direction, 
significance, and effect size per predictor (stay tuned for effect size options)

• Stepwise using 𝑹𝟐 change: (a) After controlling for 𝑥1𝑖 , how does 𝑥2𝑖 predict 
𝑦𝑖? (b) After controlling for 𝑥1𝑖 AND 𝑥2𝑖 , how does 𝑥3𝑖 predict 𝑦𝑖?

➢ (a) Put 𝒙𝟏𝒊 into model and report its direction, significance, and effect size. Add 𝒙𝟐𝒊 
into model—report model test (𝐹 for 𝑅2), change in model test (𝐹 for 𝑅2 change), as 
well as 𝑥2𝑖 direction (also significance and effect size per slope if not redundant with 
change in model test). Comment on how the slope(s) for 𝑥1𝑖 changed after 𝑥2𝑖.

➢ (b) Add 𝒙𝟑𝒊 into model—report model test (𝐹 for 𝑅2), change in model test (𝐹 for 𝑅2 
change), as well as 𝑥3𝑖 direction (also significance and effect size if not redundant 
with change in model test). Comment on how 𝑥1𝑖 and 𝑥2𝑖 slopes changed after 𝑥3𝑖.

• A stepwise strategy is useful if there is a clear hierarchy for the inclusion of 
predictors, but if not, a simultaneous strategy is likely more defensible!

➢ I will show you how to get unique contributions for a set of slopes from same model!

➢ Btw, atheoretical automated routines can also find optimal combos of predictors…
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What about “Multicolinearity”? Meh.
• A frequently worried-about problem is “multicolinearity” 

(see also “multicollinearity” or just “colinearity” or “collinearity”)

• The SE for a predictor’s slope will be greater to the extent that 
the predictor has in common (more correlation) with the other 
predictors—that makes it harder to determine its unique effect

• Diagnostics for this overhyped danger are given in many forms 

➢ “tolerance” = unique predictor variance = 1 − 𝑅𝑥
2 (<.10 = “bad”)

➢ “variance inflation factor” (VIF) = 1/tolerance (> 10 = “bad”)

➢ Computers used to have numerical stability problems with high 
collinearity, but these problems are largely nonexistent nowadays

• Only when you have “singularity” is it truly a problem—when a 
predictor is a perfect linear combination of the others (redundant)

➢ e.g., when including two subscale scores AND their total as predictors

➢ e.g., when including intercept + 3 binary predictors for 3 groups

➢ You will get a row of dots instead of results for redundant predictors
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Addressing (Multi)Collinearity
• Use the bivariate relationships among your to-be-considered 

predictors to guide the possibility of “equivalent” models

➢ e.g., invasive biological measure vs. highly related but non-invasive 
alternative measure—can one sufficiently replace the other?

• Such questions require comparing non-nested models

➢ Nested = one model is a subset of other (model A vs. model A+B+C)

▪ Btw, I will show you how to test nested models using just one model

➢ Non-nested = models are not subsets (model A+B vs. model A+C)

▪ “Hotelling’s 𝑡” can be used for significance test of 𝑅 from each model 
(must save ෝ𝒚𝒊 for each model and compute their correlation first)

➢ See also “dominance analysis” (see Darlington & Hayes 2016, sec. 8.3)

• Or just try to reduce the slope SEs by adding predictors that are 
related to 𝑦𝑖 but that are (mostly) unrelated to other predictors

➢ Less residual variance → smaller SE for each predictor → more power
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Metrics of Effect Size per Fixed Slope
• Unstandardized fixed slopes cannot be used to ascertain 

the relative importance of each predictor because they 
are scale-dependent (so differences in “one unit” matter)

• So we also need to report some kind of “unique” effect size

➢ Could be relevant per fixed slope (for predictors whose effect on 𝑦𝑖 
is described by a single slope) or per conceptual predictor (for 
predictors whose effect on 𝑦𝑖 require multiple slopes to describe)

➢ Why? Beyond putting the slope magnitudes on same scale, specific 
effect sizes are also used in meta-analyses and to predict power

➢ Choices in 𝒓 metric: standardized slopes (which are not really correlations, 
see next slide), semi-partial 𝑟, or partial 𝑟 → 𝑟 gets called 𝜼 (“eta” when 
using 𝑅2) or 𝝎 (“omega” when adjusted by 𝑁, to be used with adjusted 𝑅2)

▪ Btw, also Cohen’s 𝑑 in standardized mean difference metric—is “partial” version

➢ Fewer useful in 𝑹𝟐 metric: semi-partial 𝜼𝟐 or 𝝎𝟐; see also Cohen’s 𝒇𝟐

• Let’s examine more closely how these differ from each other…
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For a helpful blog post on this topic, see: http://www.daviddisabato.com/blog/2016/4/8/on-effect-sizes-in-multiple-regression 
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Standardized Slopes: Confusing and Limited
• Standardized slopes (solution using 𝑧-scored variables, each with 𝑀 = 0 

and 𝑆𝐷 = 1) are supposed to describe the change in 𝒚𝒊 per “SD” of 𝒙𝒊

➢ Provided in SAS REG, STATA REGRESS with BETA option, or R lm.beta

➢ Can also get by z-scoring all variables, then doing usual GLM (i.e., as 
implemented in R’s lm function by putting scale( ) around each variable)

• Although standardized slopes (𝛽𝑠𝑡𝑑) are often used to index effect size 
in GLMs and path models, they are confusing and limited in scope:

➢ They range from ±∞, not ±1 (so they are not correlations), because 
the SD of original 𝑥𝑖 is larger than the SD for “unique” 𝑥𝑖 variance

▪ Btw, multiplying 𝛽𝑠𝑡𝑑 by unique SD of 𝑥𝑖 (as 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) = semi-partial 𝑟

➢ Yield ambiguous results for quadratic or multiplicative terms (z-scored 
product of 2 variables is not equal to product of 2 z-scored variables)

➢ Differences in sample size across subgroups create different standardized 
slopes for categorical predictors given the same unstandardized mean 
difference (see Darlington & Hayes, 2016, sec. 5.1.5 and ch. 8)

➢ Do not readily extend to more complex types of prediction models 
(e.g., generalized linear models, multilevel or “mixed-effects” models)
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Semi-partial (aka, “Part”) Eta-Squared
• Given this GLM: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊

• For 𝒙𝟏𝒊, semi-partial 𝜼𝟐 = 𝒔𝒓𝟐 =
𝑺𝑺𝒙𝟏

𝑺𝑺𝒕𝒐𝒕𝒂𝒍
=

𝒂

𝒂+𝒃+𝒄+𝒆

➢ “Unique” sums of squares / total sums of squares: amount 

 of model 𝑅2 that is due to 𝑥1𝑖 → directly intuitive ☺

➢ Will NOT be influenced by adding extra predictors to the model 

to explain residual variance → comparability across studies ☺

➢ Btw, 𝜼 version can also be found from 𝒕-value:

▪ 𝒔𝒓 = 𝒕𝒙𝟏
𝟏−𝑹𝟐

𝑫𝑭𝒅𝒆𝒏

▪ Btw, there is no analog to Cohen’s 𝑑
(b/c group is needed in the model)
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𝒂+𝒃+𝒄

𝒂+𝒃+𝒄+𝒆

SQRT part → prop. 

unexplained variance
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Partial Eta and Eta-Squared
• Given this GLM: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊

• For 𝒙𝟏𝒊, partial 𝜼𝟐 = 𝒑𝒓𝟐 =
𝑺𝑺𝒙𝟏

𝑺𝑺𝒙𝟏+𝑺𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍
=

𝒂

𝒂+𝒆

➢ Unique SS / (unique SS + residual SS) → 𝑹𝟐 for what’s left

➢ WILL BE influenced by adding extra predictors to explain residual 
variance → lack of comparability across models/studies 

➢ More useful 𝜼 version can also be found from 𝒕-value:

▪ Partial 𝜼 = 𝑝𝑟 = 
𝑡

𝑡2+𝐷𝐹𝑑𝑒𝑛

▪ Btw, Partial Cohen’s 𝒅 for mean 

differences in SD units: 𝑝𝑑 =
2𝑡

𝐷𝐹𝑑𝑒𝑛

➢ The word “partial” is used as a 
synonym for “unique” effects
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Summarizing Effect Sizes (for 𝑥1𝑖 here)
• Semi-partial 𝜼𝟐 = 𝒔𝒓𝟐 =

𝒂

𝒂+𝒃+𝒄+𝒆

➢ Unique / total: amount of model

𝑅2 due to 𝑥1𝑖 (directly useful)

• Partial 𝜼𝟐 = 𝒑𝒓𝟐 =
𝒂

𝒂+𝒆

➢ Unique / (unique+residual): 

𝑥1𝑖  contribution setting aside 𝑥2𝑖

➢ Given that it describes a subset of 

model 𝑅2, 𝜂 (or 𝑑) version can be 

less prone to misinterpretation 

• Cohen’s 𝒇𝟐 =
𝒂

𝒆
= ? ? ? ? ? 

➢ But is often used in power analysis!
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Areas below describe 

partitions of 𝒚𝒊 variance:

a = 𝒚𝒊 unique to 𝒙𝟏𝒊

b = 𝒚𝒊 unique to 𝒙𝟐𝒊

c = 𝒚𝒊 shared by 𝒙𝟏𝒊 and 𝒙𝟐𝒊 

e = 𝒚𝒊 leftover (residual) 

𝒚𝒊

𝒙𝟏𝒊 𝒙𝟐𝒊

e

a

c

b

Model 𝑹𝟐 =
𝒂+𝒃+𝒄

𝒂+𝒃+𝒄+𝒆
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Interpreting Effect Sizes with the Pearsons
• Effect sizes for 𝑥1𝑖

➢ Semi-partial 𝜂2 = 𝑠𝑟2 =
𝑎

𝑎+𝑏+𝑐+𝑒
=

𝑢𝑛𝑖𝑞𝑢𝑒

𝑡𝑜𝑡𝑎𝑙

➢ Partial 𝜂2 = 𝑝𝑟2 =
𝑎

𝑎+𝑒
=

𝑢𝑛𝑖𝑞𝑢𝑒

𝑢𝑛𝑖𝑞𝑢𝑒+𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

▪ Should not be compared across studies whose 
models differ in predictor content—here’s why:

• Using the Pearsons—of 10 rooms, Randall cleaned 4 rooms, Kevin 
cleaned 1 room, and Randall and Kevin cleaned 2 common rooms 

➢ Randall: a = 4, Kevin: b =1, common: c = 2, residual: e = 3 (for this)

➢ Randall: 𝑠𝑟2 =
4

4+1+2+3
= .40, 𝑝𝑟2 =

4

4+3
= .57 

▪ Randall cleaned 40% of the house, and 57% of the house that Kevin didn’t

➢ Kevin: 𝑠𝑟2 =
1

4+1+2+3
= .10, 𝑝𝑟2 =

1

1+3
= .25 

▪ Kevin cleaned 10% of the house, and 25% of the house that Randall didn’t
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Example of “Multiple Linear Regression”
• Models from Example 2 (here, 𝑅2 = 𝑠𝑟2 = 𝑝𝑟2)

➢ Empty:     𝒊𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 , 𝑅2 = 0

➢ Education:       𝒊𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒆𝒅𝒖𝒄𝒊 − 𝟏𝟐 + 𝒆𝒊 , 𝑅
2 = .1480 

➢ Marital Status: 𝒊𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟐 𝒎𝒂𝒓𝒓𝒚𝟎𝟏𝒊 + 𝒆𝒊 ,  𝑅
2 = .0506 

• Combined:  𝒊𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒆𝒅𝒖𝒄𝒊 − 𝟏𝟐 + 𝜷𝟐 𝒎𝒂𝒓𝒓𝒚𝟎𝟏𝒊 + 𝒆𝒊 

➢ 𝑅2 = .1903 for both < sum of separate 𝑅2 = .1986 b/c of common

➢ Education 𝜷𝟏: semi-partial 𝑠𝑟2 = .1396, partial 𝑝𝑟2 = .1471 (𝑡 → sig*)

▪ Explained 13.96% of income variance (14.71% of unexplained by marital)

➢ Marital 𝜷𝟐: semi-partial 𝑠𝑟2 = .0423, partial 𝑝𝑟2 = .0496 (𝑡 → sig*)

▪ Explained 4.23% of income variance (4.96% of unexplained by educ)

• Significance of effect sizes given directly per conceptual predictor 

(linear education and binary marital status require 1 slope each)
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More Complex “Multiple Linear Regression”

• Separate models from Example 3 (here, 𝑅2 = 𝑠𝑟2 = 𝑝𝑟2)

➢ 3-Category Workclass (2 slopes): 𝑅2 = .1034

➢ Linear +Quadratic Age (2 slopes): 𝑅2 = .1139 

➢ Piecewise Education (3 slopes): 𝑅2 = .1643 

• Combined:  𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝒔𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝒔𝑼𝒊
                          + 𝜷𝟑 𝑨𝒈𝒆𝒊 − 𝟏𝟖 + 𝜷𝟒 𝑨𝒈𝒆𝒊 − 𝟏𝟖 𝟐                                
                       + 𝜷𝟓 𝑳𝒆𝒔𝒔𝑯𝑺𝒊 + 𝜷𝟔 𝑮𝒓𝒂𝒅𝑯𝑺𝒊 + 𝜷𝟕 𝑶𝒗𝒆𝒓𝑯𝑺𝒊 + 𝒆𝒊

➢ 𝑅2 = .2887 for all < sum of separate 𝑅2 = .3816 b/c of common

➢ Workclass 𝜷𝟏, 𝜷𝟐: semi-partial 𝑠𝑟2 = .0428, partial 𝑝𝑟2 = .0567

▪ Explained 4.28% of income variance (5.67% of unexplained by others)

➢ Age 𝜷𝟑, 𝜷𝟒: semi-partial 𝑠𝑟2 = .0805, partial 𝜂2: = .1017

▪ Explained 8.05% of income variance (10.17% of unexplained by others)

➢ Education 𝜷𝟓, 𝜷𝟔, 𝜷𝟕: semi-partial 𝑠𝑟2 = .0807, partial 𝜂2: = .1019

▪ Explained 8.07% of income variance (10.19% of unexplained by others)
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More Complex “Multiple Linear Regression”

• Combined:  𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝒔𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝒔𝑼𝒊
                          + 𝜷𝟑 𝑨𝒈𝒆𝒊 − 𝟏𝟖 + 𝜷𝟒 𝑨𝒈𝒆𝒊 − 𝟏𝟖 𝟐                                
                       + 𝜷𝟓 𝑳𝒆𝒔𝒔𝑯𝑺𝒊 + 𝜷𝟔 𝑮𝒓𝒂𝒅𝑯𝑺𝒊 + 𝜷𝟕 𝑶𝒗𝒆𝒓𝑯𝑺𝒊 + 𝒆𝒊

▪ Btw, this model might also be called “Analysis of Covariance” (or ANCOVA)

• Effect size per slope is problematic for two conceptual predictors:

➢ Working Class: slopes 𝜷𝟏 and 𝜷𝟐 share a common reference (low group) 
and imply 3 pairwise group differences (2 in model; 1 given as linear 
combination; other types of differences could be requested as needed)

▪ So the unique 𝒔𝒓𝟐 values across three possible group differences will
sum to more than they should (given a single 3-category predictor)

➢ Age: Linear age slope 𝜷𝟑 is specific to centered age = 0, so its unique 𝒔𝒓𝟐 
would change if age were centered differently; also, the unique 𝒔𝒓𝟐 values 
for linear and quadratic age cannot be summed directly to create total 
𝒔𝒓𝟐 for age because of the correlation among the two predictors

➢ Education: although the unique 𝒔𝒓𝟐 values for 𝜷𝟓, 𝜷𝟔, and 𝜷𝟕 are ok to 
use in this case, they also cannot be summed directly to create total 𝒔𝒓𝟐

for education because of the correlation among the three predictors
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How to Get Significance Tests and Effect 

Sizes for a Set of Slopes in Software
• In SAS GLM, semi-partial and partial 𝜂2 (or 𝜔2 to use with adjusted 𝑅2 instead) 

given by adding EFFECTSIZE to MODEL statement options

➢ Then effect sizes provided directly for each fixed slope by default

➢ Effect size and 𝐹-test also provided for a set of slopes via CONTRAST statements 
(e.g., for “omnibus” group effects, for linear+quadratic slopes)

• In STATA, PCORR provides semi-partial and partial 𝜂 and 𝜂2 

➢ Only works for single slopes—for a set of slopes, you have to compute semi-partial 
and partial 𝜂2 using sums of squares relative to a model without them

➢ TEST after REGRESS (or NESTREG) will provide 𝐹-tests for a set of slopes, though

• R package ppcor has pcor.test for partial 𝜂 and spcor.test for semi-partial 𝜂

➢ Only works for single slopes—for a set of slopes, you have to compute semi-partial 
and partial 𝜂2 using sums of squares relative to a model without them

➢ glht (or anova) after lm will provide 𝐹-tests for a set of slopes, though 
(see also hierarchical_lm from the lmhelprs package, used in my functions)
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Effect Sizes for a Set of Slopes
• How to compute effect sizes for a set of slopes manually using 

unique sums of squares (SS)—see Example 4a for illustration

➢ Step 1: From the full model, get model SS for the model: 𝑆𝑆𝐹𝑢𝑙𝑙
               From the full model, get residual SS for the model: 𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
            From the full model, get total SS (as empty model): 𝑆𝑆𝑇𝑜𝑡𝑎𝑙

➢ Step 2: Get the model SS from a reduced model without 
            the slopes for which you want a joint test: 𝑆𝑆𝑅𝑒𝑑𝑢𝑐𝑒𝑑

➢ Step 3: Compute SS difference b/t models: 𝑆𝑆𝐸𝑓𝑓𝑒𝑐𝑡 = 𝑆𝑆𝐹𝑢𝑙𝑙 − 𝑆𝑆𝑅𝑒𝑑𝑢𝑐𝑒𝑑

➢ Step 4: Compute effect sizes: 𝑠𝑟2 =
𝑆𝑆𝐸𝑓𝑓𝑒𝑐𝑡

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
 , 𝑝𝑟2 =

𝑆𝑆𝐸𝑓𝑓𝑒𝑐𝑡

𝑆𝑆𝐸𝑓𝑓𝑒𝑐𝑡+𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

➢ Step 5: Repeat steps 1–4 per set of slopes to be tested

• But sequential models are more common, so HW5 will use those

➢ Then the change in the model 𝑅2 after adding new slopes will directly 
provide 𝑠𝑟2 for the new slopes (at each step, so these contributions will 
differ from what they would be in a full simultaneous model)
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Example:  Testing 𝑅2 vs. Change in 𝑅2

30    

• 𝐹-tests assess the significance of a set of multiple slopes 

➢ 𝐹-test for model 𝑹𝟐 is given by default (for all slopes in model)

• To assess the change in the 𝑹𝟐 after adding new slopes:

➢ 1 slope? Its 𝒑-value tests 𝑅2 change directly (e.g., model 2 to 3)

➢ 2+ slopes? Must request a separate 𝑭-test for new slopes added

▪ e.g., for 𝑅2 change from model 3 to 4—list slopes C and D only in 

SAS CONTRAST, STATA TEST or NESTREG, or R glht or hierarchical_lm 

(see Example 4a and 4b)

Example Model Fixed Effects

MSE residual 

variance 

(leftover)

Model R2 

(relative to 

empty model)

Change in R2 from 

new slopes = 

Semipartial r2

1. intercept 200 0.00

2. intercept + A 180 0.10 0.10

3. intercept + A + B 140 0.30 0.20

4. intercept + A + B + C + D 80 0.60 0.30



Example taken from Cohen, Cohen, Aiken, & West (2002) 
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Unexpected Results: Suppression
• In general, the semi-partial 𝑟 for each predictor (and its unique 

standardized slope) will be smaller in magnitude than the 
bivariate 𝑟 (and its standardized slope when by itself) with 𝑦𝑖 

• However, this will not always be the case given suppression: 
when the relationship between the predictors is hiding 
(suppressing) their “real” relationship with the outcome

➢ Occurs given 𝑟𝑦,𝑥1 > 0 and 𝑟𝑦,𝑥2 > 0 in three conditions: 
(a) 𝑟𝑦,𝑥1 < 𝑟𝑦,𝑥2 ∗ 𝑟𝑥1,𝑥2, (b) 𝑟𝑦,𝑥2 < 𝑟𝑦,𝑥1 ∗ 𝑟𝑥1,𝑥2, or (c) 𝒓𝒙𝟏,𝒙𝟐 < 𝟎

➢ For example: Consider 𝑦𝑖 = sales success as predicted by 
𝑥1𝑖= assertiveness and 𝑥2𝑖= record-keeping diligence

▪ 𝑟𝑦,𝑥1 = .403, 𝑟𝑦,𝑥2 = .127, and 𝑟𝑥1,𝑥2 = −.305 (so is condition c)

▪ Standardized: ො𝑦𝑖 = 0 + 0.487 𝑥1𝑖 + 0.275(𝑥2𝑖) 

▪ So these standardized slopes (for the predictors’ unique effects) 
are greater than their bivariate correlations with the outcome!

• This is one of the reasons why you cannot anticipate just from bivariate 
correlations what will happen in a model with multiple predictors…
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Example borrowed from: https://psych.unl.edu/psycrs/statpage/mr_rem.pdf 
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Unexpected Results: Multivariate Power
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Even though none of 

these five predictors has 

a significant bivariate 

correlation with 𝑦𝑖 , they 

still combined to create 

a significant model 𝑅2 

𝐹 5,62 = 2.77, 
𝑀𝑆𝐸 = 272631.57, 
𝑝 =  .025, 𝑅2 = .183

This is most likely when 

the predictors have little 

correlation amongst 

themselves (and thus 

can contribute uniquely)

https://psych.unl.edu/psycrs/statpage/mr_rem.pdf


https://psych.unl.edu/psycrs/statpage/mr_rem.pdf 
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Unexpected Results: Null Washout
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Even though P1 has a 

significant bivariate 

correlation with 𝑦𝑖 and 

a significant unique effect, 

the model 𝑅2 is not 

significant—because it 

measures the average 

predictor contribution

𝐹 9,167 = 1.49, 
𝑀𝑆𝐸 = 93.76, 
𝑝 =  .155, 𝑅2 = .074

https://psych.unl.edu/psycrs/statpage/mr_rem.pdf


https://psych.unl.edu/psycrs/statpage/mr_rem.pdf 
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Unexpected Results: A Significant Model 𝑅2

with No Significant Predictors???
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This model 𝑅2 is 

definitely significant:

𝐹 5,171 = 3.455, 
𝑀𝑆𝐸 = 89.85, 
𝑝 =  .005, 𝑅2 = .190

Yet no predictor has a 

significant unique 

effect—this is because 

of their strong(ish) 

correlations with each 

other (and “common” 

still contributes to 𝑅2)

https://psych.unl.edu/psycrs/statpage/mr_rem.pdf
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GLM with Multiple Predictors: Summary
• For any GLM with multiple fixed slopes, we want to know:

➢ Do the slopes join to create a model 𝑅2 > 0? Check 𝑝-value for model 𝐹

➢ What is the model’s effect size? Check 𝑅2 = (𝑟 of ෝ𝒚𝒊 with 𝒚𝒊)
2

➢ Is each slope significantly ≠ 0? Check 𝑝-value for 𝑡 = (𝐸𝑠𝑡 − 𝐻0)/𝑆𝐸

➢ What is each slope’s effect size? Compute partial 𝑟 or (Cohen) 𝑑 from 𝑡

• When combining the fixed slopes from different conceptual 
predictor variables into the same model, we also want to know:

➢  Is each slope *still* significantly ≠ 0? If yes, has a “unique” effect

▪ Unique effect is usually smaller than bivariate effect (but not necessarily)

▪ 1 slope: check 𝑝-value for 𝑡 = (𝐸𝑠𝑡 − 𝐻0)/𝑆𝐸

▪ >1 slopes: check 𝑝-value for 𝐹-test of joint effect (requested separately)

➢ What is the effect size for each conceptual predictor’s unique effect? 

▪ 1 slope: check s𝑟2 (or 𝛽𝑠𝑡𝑑) or find partial 𝑟 or (Cohen) 𝑑 or from 𝑡

▪ >1 slopes: check joint s𝑟2 for predictor’s overall contribution to 𝑅2
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