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General Linear Models (GLMs)

with Multiple Fixed Effects 

for a Single Predictor
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• Topics:

➢ Reviewing empty GLMs and single predictor GLMs

➢ GLM special cases: 2+ fixed slopes to describe a predictor’s effect

▪ “Analysis of Variance” (ANOVA) for a one categorical predictor
– e.g., income differences across 3 categories of employment class

▪ Nonlinear effects of a single quantitative predictor
– e.g., quadratic continuous effect of years of age on income

– e.g., piecewise discontinuous effect of years of education on income

▪ Testing linear effects of a single ordinal predictor 
– e.g., linear vs. nonlinear effect of 5-category happiness on income
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Where we’re headed in this unit…

• Synonyms for 𝒚𝒊 outcome: 
dependent variable, criterion, thing-to-be explained/predicted/accounted for

• Synonyms for each 𝒙𝒊 predictor: 
regressor, independent variable (if manipulated), covariate (if quantitative 
or if it must be included to show incremental contributions beyond it) 

➢ This unit will cover the use of multiple predictors to describe the effect of 
a single conceptual predictor (up next will be multiple conceptual predictors)

• Ways to describe the goal of a model: 

➢ “Examine effects of (the 𝑥𝑖 predictors) on (the 𝑦𝑖  outcome)”

➢ “Regress (outcome 𝑦𝑖) on (the 𝑥𝑖 predictors)”
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This figure is a path diagram. 

It illustrates a GLM with 3 𝑥𝑖 

predictors of 1 𝑦𝑖 outcome. The 

“1” triangle is a constant used by 

the fixed intercept. Here is the 

equation the picture generates:

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊

 + 𝜷𝟐 𝒙𝟐𝒊 + 𝜷𝟑 𝒙𝟑𝒊 + 𝒆𝒊

𝒆𝒊

𝟏
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Review: Empty Models and 

Single-Predictor Models

• Predictive linear models create a custom expected outcome for each person 
through a linear combination of fixed effects that multiply predictor variables

• Empty GLM:  Actual 𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊, Predicted  ෝ𝒚𝒊 = 𝜷𝟎

➢ 𝜷𝟎 = intercept = expected 𝒚𝒊 = here is mean ഥ𝒚 (best naïve guess if no predictors)

➢ 𝒆𝒊 = residual = is always the deviation between the actual 𝒚𝒊 and predicted ෝ𝒚𝒊

▪ Because ෝ𝒚𝒊 = ഥ𝒚 for all, the 𝒆𝒊 residual variance across persons (𝝈𝒆
𝟐) is all the 𝒚𝒊 variance 

• Add a predictor:  Actual 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊, Predicted  ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊

➢ 𝜷𝟎 = intercept = expected 𝒚𝒊 when 𝒙𝒊 = 𝟎 (so always ensure 𝑥𝑖 = 0 makes sense)

➢ 𝜷𝟏 = slope of 𝒙𝒊 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝒊

➢ 𝒆𝒊 = residual = is always the deviation between the actual 𝒚𝒊 and predicted ෝ𝒚𝒊

▪ Now ෝ𝒚𝒊 differs by 𝒙𝒊, so 𝒆𝒊 residual variance across persons (𝝈𝒆
𝟐) is leftover 𝒚𝒊 variance
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1 Fixed Effect for a Single Predictor
• 𝜷𝟏 for the slope of 𝒙𝒊 is scale-specific → is “unstandardized” 

• Unstandardized results for 𝜷𝟏 include:

➢ Estimate/Coefficient = (Est) = optimal slope value for our sample

➢ Standard Error (SE) = index of inconsistency across samples = how far 

away on average a sample 𝒙𝒊 slope is from the population 𝒙𝒊 slope

▪ With only a single slope in the model, the SE for its estimate depends on 

the model residual variance (𝝈𝒆
𝟐), variance of 𝒙𝒊 (𝜎𝑥

2), and 𝐷𝐹𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 : 

sample size minus 𝑘, the number of 𝜷 model fixed effects (N − 𝑘) 

➢ Test-statistic 𝒕 = (𝐸𝑠𝑡 − 𝐻0)/𝑆𝐸 → “Univariate Wald test” gives p-value 

for slope’s significance using 𝑡-distribution and 𝐷𝐹𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝑁 − 𝑘

• Can also request a “standardized” slope to provide an 𝒓 effect size:

➢ For a GLM with a single 

quantitative or binary predictor, 

𝛽𝑠𝑡𝑑 = 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑟 

4    

𝛽𝑠𝑡𝑑 = 𝜷𝒖𝒏𝒔𝒕𝒅 ∗
𝑆𝐷𝑥

𝑆𝐷𝒚
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GLMs with Predictors: Binary vs. 3+ Categories
• To examine a binary predictor of a quantitative outcome, we only need 

2 fixed effects to tell us 3 things: the outcome mean for Category=0, 
the outcome mean for Category=1, and the outcome mean difference

• Actual 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒚𝒊 + 𝒆𝒊, Predicted  ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒚𝒊

➢ Category 0 Mean: ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝟎 = 𝜷𝟎  fixed effect #1

➢ Difference of Category 1 from Category 0:  𝜷𝟎 + 𝜷𝟏 − 𝜷𝟎 = 𝜷𝟏  fixed effect #2

➢ Category 1 Mean: ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝟏 = 𝜷𝟎 + 𝜷𝟏  linear combination of fixed effects

➢ To get the estimate, SE, and p-value for any mean created from a linear combination 
of fixed effects, you need to ask for it via SAS ESTIMATE, STATA LINCOM, or R GLHT

➢ Btw, this type of GLM is also called a “two-sample” or “independent groups” t-test

• To examine the effect of a predictor with 3+ categories, the GLM needs as 
many fixed effects as the number of predictor variable categories = 𝑪 

➢ If 𝑪 = 𝟑, then we need the 𝜷𝟎 intercept and 2 predictor slopes: 𝜷𝟏 and 𝜷𝟐

➢ If 𝑪 = 𝟒, then we need the 𝜷𝟎 intercept and 3 predictor slopes: 𝜷𝟏, 𝜷𝟐, and 𝜷𝟑

➢ # pairwise mean differences = 
𝐶!

2! 𝐶−2 !
 → e.g., given 𝑪 = 𝟑,  # diffs = 

3∗2∗1

(2∗1)(1)
= 3 

➢ This type of GLM goes by the name “Analysis of Variance” (ANOVA) in
which the term “category” is usually replaced with “group” as a synonym
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See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford. 
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“Indicator Coding” for a 3-Category Predictor
• Comparing the means of a 

quantitative outcome across 
3 categories requires creating 
2 new binary predictors to be 
included simultaneously along 
with the intercept, for example,
as coded so Low= Intercept (ref)

Actual:       𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝑼𝒊 + 𝒆𝒊 

Predicted:             ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝑼𝒊

• Model-implied means per category (group):

➢ Lower Mean:    ෝ𝒚𝑳 = 𝜷𝟎 + 𝜷𝟏 𝟎 + 𝜷𝟐 𝟎 = 𝜷𝟎  fixed effect #1

➢ Middle Mean:  ෝ𝒚𝑴 = 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 𝟎 = 𝜷𝟎 + 𝜷𝟏  found as linear combination 

➢ Upper Mean:   ෝ𝒚𝑼 = 𝜷𝟎 + 𝜷𝟏 𝟎 + 𝜷𝟐 𝟏 = 𝜷𝟎 + 𝜷𝟐  found as linear combination 

• Model-implied differences between each pair of categories (groups):

➢ Lower vs Middle:  𝜷𝟎 + 𝜷𝟏 − 𝜷𝟎 = 𝜷𝟏  fixed effect #2

➢ Lower vs. Upper:   𝜷𝟎 + 𝜷𝟐 − 𝜷𝟎 = 𝜷𝟐  fixed effect #3

➢ Middle vs Upper:  𝜷𝟎 + 𝜷𝟐 − 𝜷𝟎 + 𝜷𝟏 = 𝜷𝟐 − 𝜷𝟏  found as linear combination 
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workclass

variable (𝑵 = 𝟕𝟑𝟒)

LvM:

Lower vs 

Middle?

LvU:

Lower vs 

Upper?

1. Lower (𝑛 = 436) 0 0

2. Middle (𝑛 = 278) 1 0

3. Upper (𝑛 = 20) 0 1
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GLM 3-Category Predictor: GSS Results
Empty Model:  𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊 

• Model parameters:

➢ Intercept 𝜷𝟎: 𝐸𝑠𝑡 = 17.30 𝑆𝐸 = 0.51

➢ Residual Variance 𝝈𝒆
𝟐: 𝐸𝑠𝑡 = 190.21

Predictor Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝑼𝒊 + 𝒆𝒊

• Model parameters:

➢ Intercept 𝜷𝟎: 𝐸𝑠𝑡 = 13.65, 𝑆𝐸 = 0.63, 𝑝 <  .001 → Mean for L (= ෝ𝒚𝑳)

➢ Slope 𝜷𝟏: 𝐸𝑠𝑡 =  8.85, 𝑆𝐸 = 1.00, 𝑝 <  .001 → Mean diff for L vs M

➢ Slope 𝜷𝟐: 𝐸𝑠𝑡 = 10.98, 𝑆𝐸 = 2.99, 𝑝 <  .001 → Mean diff for L vs U

➢ Residual Variance 𝝈𝒆
𝟐: 𝐸𝑠𝑡 = 171.01

• Linear combinations of model parameters:

➢ M Mean:  ෝ𝒚𝑴 = 13.65 + 8.85 1 + 10.98 0 = 22.50, 𝑆𝐸 = 0.78, 𝑝 <  .001 

➢ U Mean:  ෝ𝒚𝑼 = 13.65 + 8.85 0 + 10.98 1 = 24.63, 𝑆𝐸 = 2.92, 𝑝 <  .001 

➢ Mean diff of M vs U = 𝜷𝟐 − 𝜷𝟏 = 2.13, 𝑆𝐸 = 3.03, 𝑝 =  .482
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Group (𝑵 = 𝟕𝟑𝟒) LvM LvU

1. Lower (𝑛 = 436) 0 0

2. Middle (𝑛 = 278) 1 0

3. Upper (𝑛 = 20) 0 1
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GLM 3-Category Predictor: GSS Results

8    



See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford. 
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Example of a 4-Category Predictor

• Model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) + 𝒆𝒊

➢ The model gives us the predicted outcome mean for each category as follows:

➢ Model directly provides 3 mean differences (control vs. each treatment), and 
indirectly provides another 3 mean differences (differences between treatments) 
as linear combinations of the fixed effects… let’s see how this works
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Treatment 

Group

d1:

C vs 

T1?

d2:

C vs 

T2?

d3:

C vs 

T3?

1. Control 0 0 0

2. Treatment 1 1 0 0

3. Treatment 2 0 1 0

4. Treatment 3 0 0 1

Comparing outcome means across 

4 groups requires creating 3 new 

binary predictors to be included 

simultaneously along with the 

intercept—for example, using 

“indicator dummy-coded” 

predictors so Control= Reference

Control (Ref)

Mean

Treatment 1 

Mean

Treatment 2 

Mean

Treatment 3

Mean

𝜷𝟎 𝜷𝟎+𝜷𝟏(𝒅𝟏𝒊) 𝜷𝟎+𝜷𝟐(𝒅𝟐𝒊) 𝜷𝟎+𝜷𝟑(𝒅𝟑𝒊)
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Model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) + 𝒆𝒊

Given the means above, here are the pairwise category differences:

                    Alt Group     Ref Group         Difference

• C vs. T1 =   (𝛽0+𝜷𝟏) − (𝛽0)  = 𝜷𝟏 = 2

• C vs. T2 =   (𝛽0+𝜷𝟐) − (𝛽0)  = 𝜷𝟐 = 5

• C vs. T3 =   (𝛽0+𝜷𝟑) − (𝛽0)  = 𝜷𝟑 = 9

• T1 vs. T2 =  (𝛽0+𝜷𝟐)  −  (𝛽0+𝜷𝟏)  = 𝜷𝟐 − 𝜷𝟏 = 5 − 2 = 3

• T1 vs. T3 =  (𝛽0+𝜷𝟑)  −  (𝛽0+𝜷𝟏)  = 𝜷𝟑 − 𝜷𝟏 = 9 − 2 = 7

• T2 vs. T3 = (𝛽0+𝜷𝟑)  −  (𝛽0+𝜷𝟐)  = 𝜷𝟑 − 𝜷𝟐 = 9 − 5 = 4

Example with a 4-Category Predictor
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Control (Ref) 

Mean = 10

Treatment 1 

Mean =12

Treatment 2 

Mean =15

Treatment 3

Mean =19

𝜷𝟎 𝜷𝟎+𝜷𝟏(𝒅𝟏𝒊) 𝜷𝟎+𝜷𝟐(𝒅𝟐𝒊) 𝜷𝟎+𝜷𝟑(𝒅𝟑𝒊)
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Back to the 3-Category Predictor GLM
• The ANOVA-type question “Does group membership predict 𝑦𝑖?” 

translates to “Are there significant group mean differences in 𝑦𝑖”? 

➢ Can be answered specifically via pairwise group differences 
given directly by (or created from) the model fixed effects:
For example: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝑼𝒊 + 𝒆𝒊, 

▪ Is 𝜷𝟏 ≠ 0? If so, then ෝ𝒚𝑴 ≠ ෝ𝒚𝑳   (given directly because of our coding)

▪ Is 𝜷𝟐 ≠ 0? If so, then ෝ𝒚𝑼 ≠ ෝ𝒚𝑳   (given directly because of our coding)

▪ Is (𝜷𝟐 − 𝜷𝟏) ≠ 0? If so, then ෝ𝒚𝑼 ≠ ෝ𝒚𝑴  (requested as linear combination)

➢ A more general answer to “Does group matter?” requires 
testing if 𝜷𝟏 and 𝜷𝟐 differ from 0 jointly, in other words: 

▪ Is the residual variance from this model with two grouping predictors 
significantly lower than the total variance from the empty model?

▪ Does the predicted ෝ𝒚𝒊 provided by this model with two grouping 
predictors correlate significantly with the actual 𝒚𝒊? 
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Prediction Gained vs. DF spent
• To provide a more general answer to “Does group matter?” 

we need to consider the impact of our prediction relative to 
how many fixed effects we needed to generate predicted ෝ𝒚𝒊 
and how good they did (i.e., relative to what is left unknown)

➢ This is an example of a “multivariate Wald test” (stay tuned for others)

➢ “Relative” is quantified using two types of Degrees of Freedom = 𝑫𝑭 
= total number of fixed effects possible → total 𝐷𝐹 = sample size 𝑁

▪ “𝐷𝐹𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟” = 𝑘 − 1 = number of fixed slopes in the model

▪ “𝐷𝐹𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟” = number of 𝐷𝐹 left over (not yet spent): 𝑁 − 𝑘

➢ In GLMs, the amount of information captured by the model’s 
prediction and the amount of information left over are
quantified using different sources of “sums of squares” (𝑺𝑺)

▪ Basic form of 𝑺𝑺 is the numerator in computing variance: 
σ𝑖=1

𝑁 𝑦𝑖− ത𝑦 2

𝑁−1

▪ For example, “outcome (or total) 𝑺𝑺” = 𝑺𝑺𝒕𝒐𝒕𝒂𝒍 = σ𝑖=1
𝑁 𝑦𝑖 − ത𝑦 2
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Prediction Gained vs. DF spent
• How much information is provided by our model prediction is 

quantified by “model sums of squares”: 𝑺𝑺𝒎𝒐𝒅𝒆𝒍 = σ𝑖=1
𝑁 ෝ𝒚𝒊 − ഥ𝒚 2

• To quantify the relative size of that predicted info, we need 

to adjust it for 𝐷𝐹𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = number of fixed slopes = 𝑘 − 1

➢ Then get “Model Mean Square” = 𝑴𝑺𝒎𝒐𝒅𝒆𝒍 =
𝑆𝑆𝑚𝑜𝑑𝑒𝑙

𝑘−1
 

➢ 𝑴𝑺𝒎𝒐𝒅𝒆𝒍 = “how much information has been captured per point spent”

• How much information is leftover is quantified by “residual 

(or error) sums of squares”: 𝑺𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = σ𝑖=1
𝑁 𝒚𝒊 − ෝ𝒚𝒊

2

• To quantify the relative size of that leftover information, 

we need to adjust it for 𝐷𝐹𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝑁 − 𝑘

➢ “Residual (or Error) Mean Square” = 𝑴𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 =
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑁−𝑘
 

➢ 𝑴𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = “how much information left to explain per point remaining”
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−1 because intercept 

doesn’t get counted
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Prediction Gained vs. DF spent

Source of Outcome

Information

Sums of Squares 

(each summed 

from 𝑖 = 1 to 𝑵)

Degrees of 

Freedom

Mean 

Square

Model (known because 

of predictor slopes)
𝑺𝑺𝒎𝒐𝒅𝒆𝒍: ෝ𝒚𝒊 − ഥ𝒚 2 𝑫𝑭𝒏𝒖𝒎: 𝒌 − 𝟏 𝑴𝑺𝒎𝒐𝒅𝒆𝒍:

𝑺𝑺𝒎𝒐𝒅𝒆𝒍

𝒌−𝟏
 

Residual (leftover after 

predictors; still unknown)
𝑺𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍: 𝒚𝒊 − ෝ𝒚𝒊

2 𝑫𝑭𝒅𝒆𝒏: 𝑵 − 𝒌 𝑴𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍:
𝑺𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍

𝑵−𝒌
 

“Corrected” Total (all 

original information in 𝑦𝑖)
𝑺𝑺𝒕𝒐𝒕𝒂𝒍: 𝒚𝒊 − ഥ𝒚 2 𝑫𝑭𝒕𝒐𝒕𝒂𝒍: 𝑵 − 𝟏 

(not shown)

𝑴𝑺𝒕𝒐𝒕𝒂𝒍:
𝑺𝑺𝒕𝒐𝒕𝒂𝒍

𝑵−𝟏
 

(not shown)
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• This table now provides us with a way to answer the more general question 
of “Does group membership predict 𝑦𝑖?” → Is our model significant?

➢ Variance explained by model fixed slopes: 𝑹𝟐 =
𝑆𝑆𝑡𝑜𝑡𝑎𝑙−𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙

➢ 𝑹𝟐 = square of correlation between model-predicted ෝ𝒚𝒊 and actual 𝒚𝒊

➢ 𝑭 test-statistic for significance of 𝑹𝟐 > 𝟎? is given two equivalent ways: 

𝑭 𝐷𝐹𝑛𝑢𝑚, 𝐷𝐹𝑑𝑒𝑛 =
𝑀𝑆𝑚𝑜𝑑𝑒𝑙

𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
   or   𝑭 𝐷𝐹𝑛𝑢𝑚, 𝐷𝐹𝑑𝑒𝑛 =

𝑁−𝑘 𝑅2

(𝑘−1)(1−𝑅2)



Top left image borrowed from: https://www.statsdirect.com/help/distributions/f.htm

Top right image borrowed from: https://www.globalspec.com/reference/69569/203279/11-9-the-f-distribution

Bottom left image borrowed from: https://www.texasgateway.org/resource/133-facts-about-f-distribution 
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Your New Friend, the 𝐹 distribution

• The 𝐹 test-statistic (𝐹-value) is a 
ratio (in a squared metric) of “info 
explained over info unknown”, 
so 𝑭-values must be positive

• Its shape (and thus the critical 
value for the boundary of where 
“expected” starts) varies by 𝐷𝐹𝑛𝑢𝑚 
(like 𝜒2) and by 𝐷𝐹𝑑𝑒𝑛 (like 𝑡, 
which is flatter for smaller 𝑁 − k)
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Summary: Steps in Significance Testing
• Choose critical region: % alpha (“unexpected”) and possible directions

➢ Both directions or just one?

➢ Alpha (𝛼) (1 −% confidence)?

➢ Distribution for test-statistic

will be dictated as follows: 

• If the test-statistic exceeds the distribution’s critical value (goal posts), 

then the obtained 𝒑-value is less than the chosen alpha level:

➢ You “reject the null hypothesis”—it is sufficiently unexpected to get a 

test-statistic that extreme if the null hypothesis is true; result is “significant”

• If the test-statistic does NOT exceed the distribution’s critical value, 

then the 𝒑-value is greater than or equal to the chosen alpha level:

➢ You “DO NOT reject the null hypothesis”—it is sufficiently expected to get a 

test-statistic that extreme if the null hypothesis is true; result is “not significant”

* # Fixed slopes (or associations) = numerator degrees of freedom = 𝑘 − 1
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Uses Denominator 

Degrees of Freedom?

Test 1 

slope*

Test 2+ 

slopes*

No: implies infinite 𝑁 𝑧 𝜒2(= 𝑧2 if 1)

Yes: adjusts based on 𝑁 𝑡 𝑭(= 𝑡2 if 1)
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Significance of the Model Prediction
• With only 1 predictor, we don’t need a separate 𝐹 test-statistic of 

the model 𝑅2 significance; for example:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊 

➢ Significance of unstandardized 𝜷𝟏 comes from 𝒕 = (𝑬𝒔𝒕 − 𝑯𝟎)/𝑺𝑬

▪ Significance of the model prediction 𝑹𝟐 from 𝑭 = 𝒕𝟐 already

▪ So if 𝜷𝟏 is significant via |𝒕𝜷𝟏
| > 𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍, then the 𝑭 test-statistic for 

the model is significant, too → sufficiently unexpected if 𝐻0 were true

➢ Standardized 𝜷𝟏 = Pearson’s 𝒓 between predicted ෝ𝒚𝒊 and actual 𝒚𝒊

▪ So model 𝑹𝟐 =
𝑆𝑆𝑡𝑜𝑡𝑎𝑙−𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
  is the same as (Pearson’s 𝒓)2  

• With 2+ fixed slopes, we DO need to examine model 𝑭 test-statistic 

and 𝑹𝟐, for example:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝒔𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝒔𝑼𝒊 + 𝒆𝒊 

➢ 𝑭 test-statistic: Is the ෝ𝒚𝒊 predicted from 𝜷𝟏 AND 𝜷𝟐 together significantly 

correlated with actual 𝒚𝒊? The square of that correlation is the model 𝑹𝟐

➢ 𝐹 test-statistic evaluates model 𝑅2 per DF spent to get it and DF leftover
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Significance of the Model: Example
• For example in GSS data: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝒔𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝒔𝑼𝒊 + 𝒆𝒊 

• Group-specific means:  We already know that L<M, L<U, and L=M

• Significance test of the overall model (both slopes at once): 𝑅2 = .103

• Report as 𝑭 𝑫𝑭𝒏𝒖𝒎, 𝑫𝑭𝒅𝒆𝒏 = 𝑭𝒗𝒂𝒍𝒖𝒆, 𝐌𝐒𝐄 = 𝑴𝑺𝒓𝒆𝒔, 𝒑 < 𝒑𝒗𝒂𝒍𝒖𝒆
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Source of 

Outcome

Information

Sums of Squares 

(each summed 

from 𝒊 = 1 to 𝑵)

Degrees of 

Freedom

Mean 

Square

𝑭 

Value

Model 

(known)
𝑺𝑺𝒎𝒐𝒅𝒆𝒍: ෝ𝒚𝒊 − ഥ𝒚 2

= 14,414.03

𝑫𝑭𝒏𝒖𝒎: 𝒌 − 𝟏
= 2 slopes 

(−1 for int)

𝑴𝑺𝒎𝒐𝒅𝒆𝒍:
𝑺𝑺𝒎𝒐𝒅𝒆𝒍

𝒌 − 𝟏
= 7,207.01 

42.14

Residual 

(“error”)
𝑺𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍: 𝒚𝒊 − ෝ𝒚𝒊

2

= 125,009.25
𝑫𝑭𝒅𝒆𝒏: 𝑵 − 𝒌

= 731 leftover
𝑴𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍:

𝑺𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍

𝑵 − 𝒌
= 171.01 

Corrected 

Total (after ഥ𝒚) 
𝑺𝑺𝒕𝒐𝒕𝒂𝒍: 𝑦𝑖 − ത𝑦 2

  = 139,423.23

𝑵 = 𝟕𝟑𝟒 − 𝟏
 = 733 total 

corrected for int
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Another version of R2: “Adjusted R2”
• Just like we may want to adjust Pearson’s 𝑟 for bias due to 

small sample size, some feel the need to adjust the model 𝑹𝟐

➢ 𝑅2 =
𝑆𝑆𝑡𝑜𝑡𝑎𝑙−𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
  → Must be positive if computed this way

➢ 𝑹𝒂𝒅𝒋
𝟐 = 1 −

(1−𝑅2)(𝑁−1)

𝑁−𝑘−1
= 1 −

𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑀𝑆𝑡𝑜𝑡𝑎𝑙

▪ 𝑅𝑎𝑑𝑗
2  can be negative! (i.e., for a really-not-useful set of fixed slopes)

• Although adjusted 𝑅2 is considered as the only “correct” 
version by a few, I have never once been asked to report it…

➢ But just in case Reviewer 3 wants it some day, here you go…

➢ For our example: 𝑅𝑎𝑑𝑗
2 = 1 −

1−.103 734−1

734−3
= .101 (𝑅𝑢𝑛𝑎𝑑𝑗

2 = .103)

➢ Btw, we need to use SAS PROC REG instead of SAS PROC GLM to get 
𝑅𝑎𝑑𝑗

2  (both 𝑅2 versions are given by STATA REGRESS and R LM)
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→ Change in residual variance 

relative to empty model
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Effect Size per Fixed Slope
• The model 𝑹𝟐 value (the square of the correlation between 

predicted ෝ𝒚𝒊 and actual 𝒚𝒊) provides a general effect size, 
but you may also want an effect size for each fixed slope

➢ Why? To standardize the effect magnitude and/or to estimate power

➢ For models with one slope only, the standardized slope (found 
using z-scored variables with 𝑀 = 0 and 𝑆𝐷 = 1) is the same 
as Pearson’s correlation → unambiguous “bivariate” effect size

➢ For models with 2+ slopes, there are multiple potential measures 
of slope-specific effect size that you can choose from…

• Although standardized slopes are often used to index effect size 
in multiple-slope models, they have problems in some cases:

➢ Ambiguous results for quadratic or multiplicative terms (z-scored 
product of 2 variables is not equal to product of 2 z-scored variables)

➢ Differences in sample size across groups create different standardized 
slopes for categorical predictors given the same unstandardized mean 
difference (see Darlington & Hayes, 2016 ch. 8 for more)
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Effect Size per Fixed Slope from 𝑡
• We can use 𝑡 test-statistics to compute 2 different metrics of 

partial effect sizes (for slopes or their linear combinations)

➢ Here “partial” refers to a slope’s unique effect in models with 
multiple fixed slopes (stay tuned for “semi-partial” alternatives)

➢ Why 𝑡-value? Effect sizes for fixed effect linear combinations, too

➢ Partial correlation 𝒓 (range is ±1): partial 𝑟 = 
𝑡

𝑡2+𝐷𝐹𝑑𝑒𝑛

▪ Useful for quantitative predictors to convey 
strength of unique association for that slope

▪ Can also get partial 𝑟 from SAS PROC CORR, 
STATA PCORR, and pcor.test in R package ppcor

➢ (Partial) Cohen’s 𝒅 (range is ±∞): 𝑑 =
2𝑡

𝐷𝐹𝑑𝑒𝑛

▪ Conveys difference between two groups in standard deviation units 

▪ (Partial) is not used in describing Cohen’s 𝑑, because there is not 
another kind possible (i.e., as in “semi-partial” 𝑟, stay tuned)
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From 𝒓 to 𝒅: 

𝑑 ≈
2𝑟

1 + 𝑟2

𝑟 ≈
𝑑

4 + 𝑑2
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Effect Sizes for Our GSS Results and 

Sample Sizes Needed for Power = .80

• LvM Diff as 𝜷𝟏: 𝐸𝑠𝑡 = 8.85, 𝑆𝐸 = 1.00, 𝑡(731) = 8.82, 𝑝 <  .001

➢ 𝑟 =
8.82

8.822+731
= 0.31, 𝑑 =

2∗8.82

731
= 0.65 → ~per-group 𝒏 > 𝟒𝟓 

• LvU Diff as 𝜷𝟐: 𝐸𝑠𝑡 = 10.98, 𝑆𝐸 = 2.99, 𝑡(731) = 3.67, 𝑝 <  .001

➢ 𝑟 =
3.67

3.672+731
= 0.13, 𝑑 =

2∗3.67

731
= 0.27 → ~ per-group 𝒏 > 𝟏𝟕𝟓 

• MvU Diff as: 𝜷𝟐 − 𝜷𝟏: 𝐸𝑠𝑡 = 2.13, 𝑆𝐸 = 3.03, 𝑡(731) = 0.70, 𝑝 =  .482

• 𝑟 =
0.70

0.702+731
= 0.03, 𝑑 =

2∗0.70

731
= 0.05  → ~ per-group 𝒏 > 𝟐, 𝟏𝟎𝟐 

• Model 𝑹𝟐 = .103, 𝑟 = .322 → ~overall 𝑵 > 𝟖𝟓 
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Intermediate Summary
• For GLMs with one fixed slope, the significance test for that 

fixed slope is the same as the significance test for the model

➢ Slope 𝜷𝑢𝑛𝑠𝑡𝑑:  𝑡 =
𝐸𝑠𝑡−𝐻0

𝑆𝐸
, 𝜷𝑠𝑡𝑑 = Pearson 𝑟

➢ Model: 𝐹 = 𝑡2, 𝑅2 = 𝑟2 because predicted ෝ𝒚𝒊 only uses 𝜷𝑢𝑛𝑠𝑡𝑑

• For GLMs with 2+ fixed slopes, the significance tests for those 

fixed slopes (or any linear combinations thereof) are NOT the 

same as the significance test for the overall model

➢ Single test of one fixed slope via 𝒕 (or 𝑧) → “Univariate Wald Test”

➢ Joint test of 2+ fixed slopes via 𝑭 (or 𝜒2) → “Multivariate Wald Test”

▪ 𝐹 test-statistic is used to test the significance of the model 𝑹𝟐 (the 

square of the 𝒓 between model-predicted ෝ𝒚𝒊 and actual 𝒚𝒊, which is 

necessary whenever the predicted ෝ𝒚𝒊 uses multiple 𝜷𝑢𝑛𝑠𝑡𝑑 slopes)

▪ 𝐹 test-statistic evaluates model 𝑅2 per DF spent to get it and DF leftover
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Nonlinear Trends of Quantitative Predictors
• Besides predictors with 3+ categories, another situation in which 

a single predictor variable may require more than one fixed slope 
to create its model prediction (its “effect” or “trend”) is when a 
quantitative predictor has a nonlinear relation with the outcome

• We will examine three types of examples of this scenario:

➢ Curvilinear effect of a quantitative predictor

▪ Combine linear and quadratic slopes to create U-shape curve

▪ Use natural-log transformed predictor to create an exponential curve

➢ Piecewise effects for “sections” of a quantitative predictor

▪ Also known as “linear splines” (but each slope could be nonlinear, too)

➢ Testing the assumption of linearity: that equal differences 
between predictor values create equal outcome differences

▪ Relevant for ordinal variables in which numbers are really just labels

▪ Relevant for count predictors in which “more” may mean different 
things at different predictor values (e.g., “if and how much” predictors)
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Curvilinear Trends of Quantitative Predictors

• The effect of a quantitative predictor does NOT have to be linear—

curvilinear effects may be more theoretically reasonable or fit better

• There are many kinds of nonlinear trends—here are two examples:

➢ Quadratic (i.e., U-shaped): created by combining two predictors

▪ “Linear”: what it means when you enter the predictor by itself

▪ “Quadratic”: from also entering the predictor2 (multiplied by itself)

▪ Good to create relationships that change directions

▪ Example for quadratic trend of 𝒙𝒊:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝜷𝟐 𝒙𝒊
𝟐 + 𝒆𝒊

➢ Exponential(ish): created from one nonlinearly-transformed predictor

▪ Predictor = natural-log transform of predictor (for positive values only)

▪ Good to create relationships that look like diminishing returns

▪ Example for exponential(ish) trend of 𝒙𝒊: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒐𝒈 𝒙𝒊 + 𝒆𝒊
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How to Interpret Quadratic Slopes
• A quadratic slope makes the effect of 𝑥𝑖 change across itself!

➢ Related to the ideas of position, velocity, and acceleration in physics

• Quadratic slope = HALF the rate of acceleration/deceleration

➢ So to describe how the linear slope for 𝑥𝑖  changes per unit difference 

in 𝑥𝑖 , you must multiply the quadratic slope for 𝒙𝒊 by 2

• If fixed linear slope = 4 at 𝑥𝑖 = 0, with quadratic slope = 0.3?

➢ “Instantaneous” linear rate of change is 4.0 at 𝑥𝑖 = 0, is 4.6 at 𝑥𝑖 = 1… 

➢ Btw: The “twice” 

rule comes from 

the derivatives 

of the function 

for 𝑦𝑖 with 

respect to 𝑥𝑖 :
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Intercept (position) at 𝒙𝒊 = 𝒙:  𝑦𝑥 = 50 + 4 𝑥𝑖 + 0.3(𝑥𝑖
2)

First derivative (velocity) at 𝒙: 
𝑑𝑦𝑥

𝑑(𝑥)
= 4 + 2 ∗ 0.3 (𝑥𝑖)

Second derivative (acceleration) at 𝒙: 
𝑑2𝑦𝑥

𝑑(𝑥)
= 2 ∗ 0.3



PSQF 6243: Lecture 3

Quadratic Trends: Example of 𝑥𝑖 = Time
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Quadratic Trend for Age: GSS Example
• Black line = mean 

for each year of 

age; red lines = 

±1 SE of mean

• Although noisy, 

this plot shows a 

clear quadratic 

function of age 

in predicting 

annual income 

(yay middle age!)
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• Let’s see what happens when we fit a quadratic effect of age 

(centered at 18, the minimum age) predicting annual income…



PSQF 6243: Lecture 3

Quadratic Trend for Age: GSS Example
• 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑨𝒈𝒆𝒊 − 𝟏𝟖 + 𝜷𝟐 𝑨𝒈𝒆𝒊 − 𝟏𝟖 𝟐 + 𝒆𝒊 

➢ Intercept:  𝜷𝟎 = expected income at age 18 → 𝐸𝑠𝑡 = 2.677, 𝑆𝐸 = 1.584, 𝑝 < .001

➢ Linear Age Slope: 𝜷𝟏 = instantaneous rate of change (or difference, actually) 
in income per year of age at age = 18 → 𝐸𝑠𝑡 = 1.223, 𝑆𝐸 = 0.135, 𝑝 <  .001

➢ Quadratic Age Slope: 𝜷𝟐 = half the rate of acceleration (or deceleration 
here) per year of age at any age → 𝐸𝑠𝑡 = −0.020, 𝑆𝐸 = 0.003, 𝑝 <  .001

• Predicted income at other ages via linear combinations of fixed effects:

➢ Age 30: ෝ𝒚𝒙=𝟑𝟎 = 𝟐. 𝟔𝟕𝟕 + 𝟏. 𝟐𝟐𝟑 𝟏𝟐 − 𝟎. 𝟎𝟐𝟎 𝟏𝟐 𝟐 = 14.540, 𝑆𝐸 = 0.647

➢ Age 50: ෝ𝒚𝒙=𝟓𝟎 = 𝟐. 𝟔𝟕𝟕 + 𝟏. 𝟐𝟐𝟑 𝟑𝟐 − 𝟎. 𝟎𝟐𝟎 𝟑𝟐 𝟐 = 21.809, 𝑆𝐸 = 0.668

➢ Age 70: ෝ𝒚𝒙=𝟕𝟎 = 𝟐. 𝟔𝟕𝟕 + 𝟏. 𝟐𝟐𝟑 𝟓𝟐 − 𝟎. 𝟎𝟐𝟎 𝟓𝟐 𝟐 = 13.448, 𝑆𝐸 = 1.659

• Predicted linear age slope at other ages via linear combinations:

➢ Age 30: 𝜷𝟏𝒙=𝟑𝟎 = 𝟏. 𝟐𝟐𝟑 − 𝟎. 𝟎𝟐𝟎 𝟐 ∗ 𝟏𝟐 =  0.754, 𝑆𝐸 = 0.079

➢ Age 50: 𝜷𝟏𝒙=𝟓𝟎
= 𝟏. 𝟐𝟐𝟑 − 𝟎. 𝟎𝟐𝟎 𝟐 ∗ 𝟑𝟐 = −0.027, 𝑆𝐸 = 0.047

➢ Age 70: 𝜷𝟏𝒙=𝟕𝟎 = 𝟏. 𝟐𝟐𝟑 − 𝟎. 𝟎𝟐𝟎 𝟐 ∗ 𝟓𝟐 = −0.809, 𝑆𝐸 = 0.135

• Predicted age at max income (where linear age slope = 0): 
−𝛽1

2∗𝛽2
+ 18 = 48.575
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Quadratic Trend for Age: GSS Example

30    

• Left: predicted regression line over individual scatterplot

➢ From: 𝟐. 𝟔𝟕𝟕 + 𝟏. 𝟐𝟐𝟑 𝑨𝒈𝒆𝒊 − 𝟏𝟖 − 𝟎. 𝟎𝟐𝟎 𝑨𝒈𝒆𝒊 − 𝟏𝟖 𝟐

• Right: predicted regression line over mean per age

➢ 𝐹 2, 731 = 47.00, 𝑀𝑆𝐸 = 169.00, 𝑝 < .001, 𝑅2 = .114 (𝑟 = .338)

▪ Since age and age2 work together, I’d use model 𝑟 as effect size
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Exponential Trends: Example of 𝑥𝑖 = Time
• A linear slope of log 𝑥𝑖 (black lines) mimics an exponential trend 

across original 𝑥𝑖 ; adding a quadratic slope of log 𝑥𝑖 (red or blue 
lines) can speed up or slow down the exponential(ish) trend
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There is a 

linear effect 

of log 𝒙𝒊 on 

the outcome

There is an 

exponential 

effect of 

original 𝒙𝒊 on 

the outcome
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• What if the effect of “more education” varies across education? 

For example, I hypothesize for predicted annual income:

➢ Less than HS degree? 

No effect of educ

➢ Get HS degree? 

Acute “bump” relative 

to less than HS degree

➢ More than HS degree? 

Positive effect of more

educ (likely nonlinear)

• Plot: black line shows

mean per year of educ, 

red lines show ± 1 SE

Piecewise Slopes: GSS Example
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Piecewise Slopes Coding: GSS Example
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Years 

Educ

(x)

lessHS:

Slope if 

x <12

gradHS:

HS Grad?

(0=no, 

1=yes)

overHS:

Slope if 

x >12

9 -2 0 0

10 -1 0 0

11 (int) 0 0 0

12 0 1 0

13 0 1 1

14 0 1 2

15 0 1 3

16 0 1 4

17 0 1 5

18 0 1 6

• Intercept = grade 11 
(when all slopes = 0)

• 3 predictors for educ:

➢ lessHS: from grade 2 to 11

➢ gradHS: acute bump for 12+

➢ overHS: after grade 12 (to 20)

lessHS

gradHS

overHS
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Piecewise Slopes: GSS Results
• After putting all three slopes in the model at the same time:

𝑦𝑖 = 𝜷𝟎 + 𝜷𝟏 𝑙𝑒𝑠𝑠𝐻𝑆𝑖 + 𝜷𝟐 𝑔𝑟𝑎𝑑𝐻𝑆𝑖 + 𝜷𝟑 𝑜𝑣𝑒𝑟𝐻𝑆𝑖 + 𝒆𝒊

• Model: 𝐹 3, 730 = 47.84, 𝑀𝑆𝐸 = 159.61, 𝑝 < .001, 𝑅2 = .164 (𝑟 = .404)

➢ 𝑟 = .404 is effect size for overall prediction by education (three slopes)

• 𝜷𝟎 = expected income when all predictors = 0 → 11 years of ed here

➢ 𝐸𝑠𝑡 = 8.53, 𝑆𝐸 = 1.73 (significance and effect size not relevant)

• 𝜷𝟏 = slope for difference in income per year education from 2 to 11 years

➢ 𝐸𝑠𝑡 = −0.27, 𝑆𝐸 = 0.60, 𝑡(730) = 0.65, 𝑝 = .654, 𝑝𝑟 = −.017

• 𝜷𝟐 = acute difference (jump) in income between educ=11 and educ=12

➢ 𝐸𝑠𝑡 = 4.68, 𝑆𝐸 = 1.88, 𝑡(730) = 2.05, 𝑝 = .013, 𝑝𝑟 = .092 

• 𝜷𝟑 = slope for difference in income per year education from 12 to 20 years

➢ 𝐸𝑠𝑡 = 2.12, 𝑆𝐸 = 0.214, 𝑡(730) = 9.94, 𝑝 < .001, 𝑝𝑟 = .345
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Piecewise Slopes: Linear Past 12 Years Ed?

• The model (dashed 

lines) appears to 

capture the mean 

trend (solid lines) 

pretty well until 12 

years of education…

• I think we need 

even more piecewise 

slopes after ed=12!

➢ From 12 to 15

➢ From 15 to 17–18

➢ From 17–18 to 20
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𝑅2 =  .164

𝛽1 = −0.27

𝛽2 = 4.68

𝛽3 = 2.12
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A Linear Slope for an Ordinal Predictor???
• Ordinal predictors 

with 5+ categories 
are often treated as 
interval by fitting a 
single linear slope for 
their overall effect 

• We can test this 
interval assumption 
by comparing the 
outcome differences 
between adjacent 
predictor values

➢ Here: need 4 slopes, 
1 for each transition 
between categories

➢ Use “sequential 
dummy coding” to 
treat the predictor 
as “categorical” 
→ 5 fixed effects 
used to distinguish 
each of 5 categories
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𝜷𝟎 = 15.42, 𝑆𝐸 = 1.54
𝜷𝟏 = 0.74, 𝑆𝐸 = 0.57, 𝑝 = .195

𝑦𝑖 = 𝜷𝟎 + 𝜷𝟏 𝐻𝑎𝑝𝑝𝑦𝑖 − 1 + 𝒆𝒊

𝐹 1, 732 = 1.69, 𝑀𝑆𝐸 = 190.03, 

𝑝 = .195, 𝑅2 = .002



See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford. 
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Sequential Slopes for an Ordinal Predictor
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• Happy = 1 is where all slopes are 0, so it is 

the reference category (→ model intercept)

• The 4 slopes capture each adjacent category 

difference because each stays at 1 when done

➢ Right: In indicator coding, the LvM slope 

went back to 0, so the second slope is NOT 

successive (i.e., it reflects LvU, not MvU)

Happy

(x)

h1v2:

Dif from 

1 to 2

h2v3:

Dif from 

2 to 3

h3v4:

Dif from 

3 to 4

h4v5:

Dif from 

4 to 5

1 (int) 0 0 0 0

2 1 0 0 0

3 1 1 0 0

4 1 1 1 0

5 1 1 1 1

Group

LvM:

Diff for 

Low vs 

Mid

LvU:

Diff for 

Low vs 

Upp

Low 0 0

Mid 1 0

Upp 0 1



PSQF 6243: Lecture 3

GSS Results for Slopes and Slope Differences
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𝐹 4, 729 = 1.25, 𝑀𝑆𝐸 = 189.95, 𝑝 = .290, 𝑅2 = .007

𝜷𝟎 = 15.13, 
𝑆𝐸 = 2.70

𝑦𝑖 = 𝜷𝟎 + 𝜷𝟏 ℎ1𝑣2𝑖 + 𝜷𝟐 ℎ2𝑣3𝑖

         + 𝜷𝟑 ℎ3𝑣4𝑖 + 𝜷𝟒 ℎ4𝑣5𝑖 + 𝒆𝒊

𝜷𝟏 = 1.69, 
𝑆𝐸 = 3.49, 
𝑝 =  .629

𝜷𝟐 = −0.58, 
𝑆𝐸 = 2.37, 
𝑝 =  .805

𝜷𝟑 = 2.30, 
𝑆𝐸 = 1.15, 
𝑝 =  .046

𝜷𝟒 = −1.80, 
𝑆𝐸 = 1.67, 
𝑝 =  .282

𝜷𝟐 − 𝜷𝟏 = −2.27, 
            𝑆𝐸 = 5.25, 
               𝑝 =  .665

𝜷𝟑 − 𝜷𝟐 = 2.89, 
            𝑆𝐸 = 2.90, 
               𝑝 =  .320

𝜷𝟒 − 𝜷𝟑 = −4.10, 
            𝑆𝐸 = 2.30, 
               𝑝 =  .075



PSQF 6243: Lecture 3

Summary: Predictors with Multiple Fixed Slopes
• There are many scenarios in which a single predictor 𝒙𝒊 needs 

multiple fixed slopes to describe its prediction of outcome 𝒚𝒊:

➢ Predictor variables with 𝑪 categories needs 𝑪 − 1 fixed 
slopes to distinguish its 𝑪 possible different outcome means

▪ “Indicator dummy coding” is useful for nominal or ordinal predictors

▪ “Sequential dummy coding” can be more useful for ordinal predictors

➢ Should report significance and effect size for each mean difference 
of theoretical interest (not necessarily all possible differences, though)

➢ Nonlinear effects of quantitative predictor variables (via quadratic or 
exponential curves; piecewise slopes or curves) may require 2+ slopes

▪ Predictors work together to summarize overall “trend” of 𝒙𝒊 (so effect 
size for each fixed slope may be less important than overall model 𝑅2)

• We want to know the significance of each fixed slope (via univariate 
Wald test of (𝐸𝑠𝑡 − 𝐻0)/𝑆𝐸 via 𝑡 test-statistic) as well as significance 
of the model 𝑹𝟐 (as multivariate Wald test via 𝐹 test-statistic)

➢ Model 𝑅2 = squared Pearson 𝒓 between predicted ෝ𝒚𝒊 and actual 𝒚𝒊
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