General Linear Models (GLMs) with Multiple Fixed Effects for a Single Predictor

- Topics:
 - Reviewing empty GLMs and single predictor GLMs
 - > GLM special cases: 2+ fixed slopes to describe a predictor's effect
 - "Analysis of Variance" (ANOVA) for a one categorical predictor
 - e.g., income differences across 3 categories of employment class
 - Nonlinear effects of a single quantitative predictor
 - e.g., quadratic continuous effect of years of age on income
 - e.g., piecewise discontinuous effect of years of education on income
 - Testing linear effects of a single ordinal predictor
 - e.g., linear vs. nonlinear effect of 5-category happiness on income

Where we're headed in this unit...

This figure is a **path diagram**. It illustrates a GLM with 3 x_i predictors of 1 y_i outcome. The "1" triangle is a constant used by the fixed intercept. Here is the equation the picture generates: $y_i = \beta_0 + \beta_1(x1_i)$ $+ \beta_2(x2_i) + \beta_3(x3_i) + e_i$

• Synonyms for y_i outcome: dependent variable, criterion, thing-to-be explained/predicted/accounted for

- Synonyms for each x_i predictor: regressor, independent variable (if manipulated), covariate (if quantitative or if it must be included to show incremental contributions beyond it)
 - This unit will cover the use of multiple predictors to describe the effect of a single conceptual predictor (up next will be multiple conceptual predictors)
- Ways to describe the **goal of a model**:
 - > "Examine effects of (the x_i predictors) on (the y_i outcome)"
 - "Regress (outcome y_i) on (the x_i predictors)"

Review: Empty Models and Single-Predictor Models

- Predictive linear models create a custom expected outcome for each person through a linear combination of fixed effects that multiply predictor variables
- Empty GLM: Actual $y_i = \beta_0 + e_i$, Predicted $\hat{y}_i = \beta_0$
 - > β_0 = **intercept** = expected y_i = here is mean \overline{y} (best naïve guess if no predictors)
 - $e_i = residual = is$ always the deviation between the actual y_i and predicted \hat{y}_i
 - Because $\hat{y}_i = \bar{y}$ for all, the e_i residual variance across persons (σ_e^2) is all the y_i variance
- Add a predictor: Actual $y_i = \beta_0 + \beta_1(x_i) + e_i$, Predicted $\hat{y}_i = \beta_0 + \beta_1(x_i)$
 - > β_0 = intercept = expected y_i when $x_i = 0$ (so always ensure $x_i = 0$ makes sense)
 - > β_1 = slope of x_i = difference in y_i per one-unit difference in x_i
 - $e_i = residual = is always the deviation between the actual <math>y_i$ and predicted \hat{y}_i
 - Now \hat{y}_i differs by x_i , so e_i residual variance across persons (σ_e^2) is **leftover** y_i variance

1 Fixed Effect for a Single Predictor

- β_1 for the **slope of** x_i is scale-specific \rightarrow is "unstandardized"
- <u>Unstandardized</u> results for β_1 include:
 - > Estimate/Coefficient = (Est) = optimal slope value for our sample
 - > **Standard Error** (SE) = index of inconsistency across samples = how far away on average a sample x_i slope is from the population x_i slope
 - With only a single slope in the model, the SE for its estimate depends on the model residual variance (σ_e^2) , variance of x_i (σ_x^2) , and $DF_{denominator}$: sample size minus k, the number of β model fixed effects (N k)
 - ▶ **Test-statistic** $t = (Est H_0)/SE \rightarrow$ "**Univariate Wald test**" gives *p*-value for slope's significance using *t*-distribution and $DF_{denominator} = N k$
- Can also request a "<u>standardized</u>" slope to provide an *r* effect size:
 - For a GLM with a **single** quantitative or binary predictor, $\beta_{std} = Pearson r$

$$\beta_{std} = \beta_{unstd} * \frac{SD_x}{SD_y}$$

GLMs with Predictors: Binary vs. 3+ Categories

- To examine a binary predictor of a quantitative outcome, we only need 2 fixed effects to tell us 3 things: the outcome mean for Category=0, the outcome mean for Category=1, and the outcome mean difference
- Actual $y_i = \beta_0 + \beta_1(Category_i) + e_i$, Predicted $\hat{y}_i = \beta_0 + \beta_1(Category_i)$
 - > Category 0 Mean: $\hat{y}_i = \beta_0 + \beta_1(0) = \beta_0 \leftarrow$ fixed effect #1
 - > Difference of Category 1 from Category 0: $(\beta_0 + \beta_1) (\beta_0) = \beta_1 \leftarrow$ fixed effect #2
 - > Category 1 Mean: $\hat{y}_i = \beta_0 + \beta_1(1) = \beta_0 + \beta_1 \leftarrow$ linear combination of fixed effects
 - To get the estimate, SE, and p-value for any mean created from a linear combination of fixed effects, you need to ask for it via SAS ESTIMATE, STATA LINCOM, or R GLHT
 - > Btw, this type of GLM is also called a "two-sample" or "independent groups" *t*-test
- To examine the effect of a predictor with 3+ categories, the GLM needs as many fixed effects as the number of predictor variable categories = C
 - > If C = 3, then we need the β_0 intercept and 2 predictor slopes: β_1 and β_2
 - > If C = 4, then we need the β_0 intercept and 3 predictor slopes: β_1 , β_2 , and β_3
 - ▶ # pairwise mean differences = $\frac{C!}{2!(C-2)!}$ → e.g., given C = 3, # diffs = $\frac{3*2*1}{(2*1)(1)} = 3$
 - > This type of GLM goes by the name "Analysis of Variance" (ANOVA) in which the term "category" is usually replaced with "group" as a synonym

"Indicator Coding" for a 3-Category Predictor

Comparing the means of a quantitative outcome across
 3 categories requires creating
 2 new binary predictors to be included <u>simultaneously</u> along with the intercept, for example, as coded so Low= Intercept (ref)

workclass variable (<i>N</i> = 734)	LvM: Lower vs Middle?	LvU: Lower vs Upper?
1. Lower ($n = 436$)	0	0
2. Middle ($n = 278$)	1	0
3. Upper ($n = 20$)	0	1

Actual: $Income_i = \beta_0 + \beta_1(LvM_i) + \beta_2(LvU_i) + e_i$ Predicted: $\hat{y}_i = \beta_0 + \beta_1(LvM_i) + \beta_2(LvU_i)$

- Model-implied means per category (group):
 - > Lower Mean: $\hat{y}_L = \beta_0 + \beta_1(0) + \beta_2(0) = \beta_0 \leftarrow \text{fixed effect #1}$
 - > Middle Mean: $\hat{y}_M = \beta_0 + \beta_1(1) + \beta_2(0) = \beta_0 + \beta_1 \leftarrow$ found as linear combination
 - > Upper Mean: $\hat{y}_U = \beta_0 + \beta_1(0) + \beta_2(1) = \beta_0 + \beta_2 \leftarrow$ found as linear combination
- Model-implied differences between each pair of categories (groups):
 - > Lower vs Middle: $(\beta_0 + \beta_1) (\beta_0) = \beta_1 \leftarrow$ fixed effect #2
 - > Lower vs. Upper: $(\beta_0 + \beta_2) (\beta_0) = \beta_2 \leftarrow$ fixed effect #3
 - → Middle vs Upper: $(\beta_0 + \beta_2) (\beta_0 + \beta_1) = \beta_2 \beta_1 \leftarrow$ found as linear combination

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.

PSQF 6243: Lecture 3

GLM 3-Category Predictor: GSS Results

Empty Model: $y_i = \beta_0$ -	+ e _i	Group (<i>N</i> = 734)	LvM	LvU
 Model parameters: 		1. Lower ($n = 436$)	0	0
> Intercept β_0 : $Est = 1$	7.30 SE = 0.51	2. Middle ($n = 278$)	1	0
> Residual Variance σ_e^2 :	Est = 190.21	3. Upper ($n = 20$)	0	1

Predictor Model: $y_i = \beta_0 + \beta_1 (LvM_i) + \beta_2 (LvU_i) + e_i$

- Model parameters:
 - > Intercept β_0 : Est = 13.65, SE = 0.63, $p < .001 \rightarrow$ Mean for L (= \hat{y}_L)
 - > Slope β_1 : *Est* = 8.85, *SE* = 1.00, *p* < .001 \rightarrow Mean diff for L vs M
 - > Slope β_2 : Est = 10.98, SE = 2.99, p < .001 → Mean diff for L vs U
 - > Residual Variance σ_e^2 : Est = 171.01
- Linear combinations of model parameters:

> M Mean: $\hat{y}_M = 13.65 + 8.85(1) + 10.98(0) = 22.50, SE = 0.78, p < .001$

- > U Mean: $\hat{y}_{U} = 13.65 + 8.85(0) + 10.98(1) = 24.63, SE = 2.92, p < .001$
- > Mean diff of M vs U = $\beta_2 \beta_1 = 2.13$, SE = 3.03, p = .482

GLM 3-Category Predictor: GSS Results

Fixed Effects			Predictors			Category	Pred
Beta0	Beta1	Beta2	Intercept	LvM	LvU	workclass	Y Hat
13.650	8.854	10.985	1	0	0	Lower	13.650
13.650	8.854	10.985	1	1	0	Middle	22.504
13.650	8.854	10.985	1	0	1	Upper	24.635

Example of a 4-Category Predictor

Comparing outcome means across 4 groups requires creating 3 new binary predictors to be included <u>simultaneously</u> along with the intercept—for example, using "indicator dummy-coded" predictors so Control= Reference

Treatment Group	d1: C vs T1?	d2: C vs T2?	d3: C vs T3?
1. Control	0	0	0
2. Treatment 1	1	0	0
3. Treatment 2	0	1	0
4. Treatment 3	0	0	1

• Model: $y_i = \beta_0 + \beta_1(d1_i) + \beta_2(d2_i) + \beta_3(d3_i) + e_i$

> The model gives us **the predicted outcome mean for each category** as follows:

Control (Ref)	Treatment 1	Treatment 2	Treatment 3
Mean	Mean	Mean	Mean
β ₀	$\beta_0 + \beta_1(d1_i)$	$\beta_0 + \beta_2(d2_i)$	$\beta_0 + \beta_3 (d3_i)$

Model directly provides 3 mean differences (control vs. each treatment), and indirectly provides another 3 mean differences (differences between treatments) as **linear combinations of the fixed effects**... let's see how this works

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.

Example with a 4-Category Predictor

Control (Ref)	Treatment 1	Treatment 2	Treatment 3
Mean = 10	Mean =12	Mean =15	Mean =19
β ₀	$\beta_0 + \beta_1(d1_i)$	$\beta_0 + \beta_2(d2_i)$	$\beta_0 + \beta_3 (d3_i)$

Model: $y_i = \beta_0 + \beta_1(d1_i) + \beta_2(d2_i) + \beta_3(d3_i) + e_i$

Given the means above, here are the pairwise category differences:

	Alt Group Ref Group	<u>Difference</u>
• C vs. T1 =	$(\beta_0 + \boldsymbol{\beta_1}) - (\beta_0)$	$= \beta_1 = 2$
• C vs. T2 =	$(\beta_0 + \boldsymbol{\beta_2}) - (\beta_0)$	$= \beta_2 = 5$
• C vs. T3 =	$(\beta_0 + \boldsymbol{\beta_3}) - (\beta_0)$	$= \beta_3 = 9$
• T1 vs. T2 =	$(\beta_0 + \boldsymbol{\beta}_2) - (\beta_0 + \boldsymbol{\beta}_1)$	$= \beta_2 - \beta_1 = 5 - 2 = 3$
• T1 vs. T3 =	$(\beta_0+\boldsymbol{\beta}_3) - (\beta_0+\boldsymbol{\beta}_1)$	$= \beta_3 - \beta_1 = 9 - 2 = 7$
• T2 vs. T3 =	$(\beta_0 + \boldsymbol{\beta_3}) - (\beta_0 + \boldsymbol{\beta_2})$	$= \beta_3 - \beta_2 = 9 - 5 = 4$

Back to the 3-Category Predictor GLM

- The ANOVA-type question "Does group membership predict y_i ?" translates to "Are there significant group mean differences in y_i "?
 - > Can be answered <u>specifically</u> via <u>pairwise</u> group differences given directly by (or created from) the model fixed effects: For example: $y_i = \beta_0 + \beta_1 (LvM_i) + \beta_2 (LvU_i) + e_i$,
 - Is $\beta_1 \neq 0$? If so, then $\hat{y}_M \neq \hat{y}_L$ (given directly because of our coding)
 - Is $\beta_2 \neq 0$? If so, then $\hat{y}_U \neq \hat{y}_L$ (given directly because of our coding)
 - Is $(\beta_2 \beta_1) \neq 0$? If so, then $\hat{y}_U \neq \hat{y}_M$ (requested as linear combination)
 - > A more <u>general</u> answer to "Does group matter?" requires testing if β_1 and β_2 differ from 0 jointly, in other words:
 - Is the residual variance from this model with two grouping predictors significantly lower than the total variance from the empty model?
 - Does the **predicted** \hat{y}_i provided by this model with two grouping predictors **correlate significantly with the actual** y_i ?

Prediction Gained vs. DF spent

- To provide a **more general answer** to "**Does group matter**?" we need to consider the impact of our prediction <u>relative to</u> how many fixed effects we needed to generate predicted \hat{y}_i and how good they did (i.e., relative to what is left unknown)
 - > This is an example of a "**multivariate Wald test**" (stay tuned for others)
 - ✓ "Relative" is quantified using two types of **Degrees of Freedom** = **DF** = total number of fixed effects possible → total DF = sample size N
 - " $DF_{numerator}$ " = k 1 = number of fixed <u>slopes</u> in the model
 - " $DF_{denominator}$ " = number of DF left over (not yet spent): N k
 - In GLMs, the amount of information captured by the model's prediction and the amount of information left over are quantified using different sources of "sums of squares" (SS)
 - Basic form of *SS* is the **numerator** in computing variance: $\frac{\sum_{i=1}^{N} (y_i \bar{y})^2}{N-1}$
 - For example, "outcome (or total) $SS'' = SS_{total} = \sum_{i=1}^{N} (y_i \bar{y})^2$

Prediction Gained vs. DF spent

- How much information is provided by our **model prediction** is quantified by "**model sums of squares**": $SS_{model} = \sum_{i=1}^{N} (\hat{y}_i \overline{y})^2$
- To quantify the **relative** size of that predicted info, we need to adjust it for $DF_{numerator}$ = number of fixed <u>slopes</u> = k - 1
 - > Then get "**Model Mean Square**" = $MS_{model} = \frac{SS_{model}}{k-1} \begin{vmatrix} -1 & \text{because intercept} \\ \text{doesn't get counted} \end{vmatrix}$
 - > *MS_{model}* = "how much information has been captured per point spent"
- How much information is **leftover** is quantified by "**residual** (or **error**) **sums of squares**": $SS_{residual} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$
- To quantify the relative size of that leftover information, we need to adjust it for $DF_{denominator} = N k$
 - > "Residual (or Error) Mean Square" = $MS_{residual} = \frac{SS_{residual}}{N-k}$
 - > $MS_{residual}$ = "how much information left to explain per point remaining"

Prediction Gained vs. DF spent

Source of Outcome Information	Sums of Squares (each summed from $i = 1$ to N)	Degrees of Freedom	Mean Square
Model (known because of predictor slopes)	$SS_{model}: (\hat{y}_i - \overline{y})^2$	$DF_{num}: k-1$	$MS_{model}: \frac{SS_{model}}{k-1}$
Residual (leftover after predictors; still unknown)	$SS_{residual}: (y_i - \hat{y}_i)^2$	$DF_{den}: N-k$	$MS_{residual}$: $\frac{SS_{residual}}{N-k}$
"Corrected" Total (all original information in <i>y</i> _{<i>i</i>})	$SS_{total}: (y_i - \overline{y})^2$	DF _{total} : N — 1 (not shown)	MS _{total} : $rac{SS_{total}}{N-1}$ (not shown)

- This table now provides us with a way to answer the more general question of "Does group membership predict y_i ?" \rightarrow Is our <u>model</u> significant?
 - > Variance explained by model fixed slopes: $R^2 = \frac{SS_{total} SS_{residual}}{SS_{total}}$
 - > R^2 = square of correlation between model-predicted \hat{y}_i and actual y_i
 - > *F* **test-statistic** for significance of $\mathbb{R}^2 > 0$? is given two equivalent ways: $F(DF_{num}, DF_{den}) = \frac{MS_{model}}{MS_{residual}}$ or $F(DF_{num}, DF_{den}) = \frac{(N-k)R^2}{(k-1)(1-R^2)}$

Your New Friend, the F distribution

- The F test-statistic (F-value) is a ratio (in a squared metric) of "info explained over info unknown", so F-values must be positive
- Its shape (and thus the critical value for the boundary of where "expected" starts) varies by DF_{num} (like χ^2) and by DF_{den} (like t, which is flatter for smaller N k)

Top left image borrowed from: <u>https://www.statsdirect.com/help/distributions/f.htm</u> Top right image borrowed from: <u>https://www.globalspec.com/reference/69569/203279/11-9-the-f-distribution</u> Bottom left image borrowed from: <u>https://www.texasgateway.org/resource/133-facts-about-f-distribution</u> PSOF 6243: Lecture 3

Summary: Steps in Significance Testing

Choose critical region: % alpha ("unexpected") and possible directions

 Both directions or just one? Alpha (α) (1 -% confidence)? 	Uses Denominator Degrees of Freedom?	Test 1 slope*	Test 2+ slopes*
 Distribution for test-statistic 	No: implies infinite N	Ζ	$\chi^2 (= z^2 \text{ if } 1)$
will be dictated as follows:	Yes: adjusts based on N	t	$F(=t^2 \text{ if } 1)$

- If the test-statistic exceeds the distribution's critical value (goal posts), then the obtained *p*-value is less than the chosen alpha level:
 - You "reject the null hypothesis"—it is sufficiently unexpected to get a test-statistic that extreme if the null hypothesis is true; result is "significant"
- If the test-statistic does NOT exceed the distribution's critical value, then the *p*-value is greater than or equal to the chosen alpha level:
 - You "DO NOT reject the null hypothesis"—it is sufficiently expected to get a test-statistic that extreme if the null hypothesis is true; result is "not significant"
- * # Fixed slopes (or associations) = **numerator degrees of freedom** = k 1

Significance of the Model Prediction

- With <u>only 1 predictor</u>, we don't need a separate F test-statistic of the model R^2 significance; for example: $y_i = \beta_0 + \beta_1(x_i) + e_i$
 - > Significance of unstandardized β_1 comes from $t = (Est H_0)/SE$
 - Significance of the model prediction R^2 from $F = t^2$ already
 - So if β_1 is significant via $|t_{\beta_1}| > t_{critical}$, then the *F* test-statistic for the model is significant, too \rightarrow sufficiently unexpected if H_0 were true
 - > Standardized β_1 = Pearson's r between predicted \hat{y}_i and actual y_i

• So model
$$R^2 = \frac{SS_{total} - SS_{residual}}{SS_{total}}$$
 is the same as **(Pearson's r)**²

- With <u>2+ fixed slopes</u>, we DO need to examine model *F* test-statistic and R^2 , for example: $y_i = \beta_0 + \beta_1 (LvsM_i) + \beta_2 (LvsU_i) + e_i$
 - > F test-statistic: Is the \hat{y}_i predicted from β_1 AND β_2 together significantly correlated with actual y_i ? The square of that correlation is the **model** R^2
 - > F test-statistic evaluates model R^2 per DF spent to get it and DF leftover

Significance of the Model: Example

- For example in GSS data: $y_i = \beta_0 + \beta_1 (LvsM_i) + \beta_2 (LvsU_i) + e_i$
- Group-specific means: We already know that L<M, L<U, and L=M
- Significance test of the overall model (both slopes at once): $R^2 = .103$
- **Report as** $F(DF_{num}, DF_{den}) = Fvalue$, MSE = MS_{res} , p < pvalue

Source of Outcome Information	Sums of Squares (each summed from <i>i</i> = 1 to <i>N</i>)	Degrees of Freedom	Mean Square	<i>F</i> Value
Model (known)	$SS_{model}: (\hat{y}_i - \bar{y})^2 = 14,414.03$	<i>DF_{num}: k − 1</i> = 2 slopes (−1 for int)	$MS_{model}: \frac{SS_{model}}{k-1} = 7,207.01$	42.14
Residual ("error")	$SS_{residual}: (y_i - \hat{y}_i)^2$ = 125,009.25	$DF_{den}: N - k$ = 731 leftover	$MS_{residual}:\frac{SS_{residual}}{N-k} = 171.01$	
Corrected Total (after \overline{y})	$SS_{total}: (y_i - \bar{y})^2 = 139,423.23$	N = 734 - 1 = 733 total corrected for int		

Another version of R²: "Adjusted R²"

 Just like we may want to adjust Pearson's r for bias due to small sample size, some feel the need to adjust the model R²

≻ $R^2 = \frac{SS_{total} - SS_{residual}}{SS_{total}}$ → Must be positive if computed this way

 $\succ R_{adj}^2 = 1 - \frac{(1 - R^2)(N - 1)}{N - k - 1} = 1 - \frac{MS_{residual}}{MS_{total}} \xrightarrow{\rightarrow} Change in residual variance relative to empty model}$

- R_{adj}^2 can be negative! (i.e., for a really-not-useful set of fixed slopes)
- Although adjusted *R*² is considered as the only "correct" version by a few, I have never once been asked to report it...
 - > But just in case Reviewer 3 wants it some day, here you go...

> For our example:
$$R_{adj}^2 = 1 - \frac{(1-.103)(734-1)}{734-3} = .101 (R_{unadj}^2 = .103)$$

> Btw, we need to use SAS PROC REG instead of SAS PROC GLM to get R_{adj}^2 (both R^2 versions are given by STATA REGRESS and R LM)

Effect Size per Fixed Slope

- The **model** R^2 **value** (the square of the correlation between predicted \hat{y}_i and actual y_i) provides a **general effect size**, but you may also want an **effect size for each fixed slope**
 - > Why? To standardize the effect magnitude and/or to estimate power
 - > For models with one slope only, the **standardized slope** (found using z-scored variables with M = 0 and SD = 1) is the same as Pearson's correlation \rightarrow unambiguous "bivariate" effect size
 - For models with 2+ slopes, there are multiple potential measures of slope-specific effect size that you can choose from...
- Although standardized slopes are often used to index effect size in multiple-slope models, they have problems in some cases:
 - Ambiguous results for quadratic or multiplicative terms (z-scored product of 2 variables is not equal to product of 2 z-scored variables)
 - Differences in sample size across groups create different standardized slopes for categorical predictors given the same unstandardized mean difference (see Darlington & Hayes, 2016 ch. 8 for more)

Effect Size per Fixed Slope from t

- We can use t test-statistics to compute 2 different metrics of partial effect sizes (for slopes or their linear combinations)
 - Here "partial" refers to a slope's unique effect in models with multiple fixed slopes (stay tuned for "semi-partial" alternatives)
 - > Why *t*-value? Effect sizes for fixed effect linear combinations, too
 - > **Partial correlation** r (range is ± 1): partial $r = \frac{t}{\sqrt{t^2 + DF_{der}}}$
 - Useful for quantitative predictors to convey strength of unique association for that slope
 - Can also get partial r from SAS PROC CORR, STATA PCORR, and pcor.test in R package ppcor
 - > (Partial) Cohen's d (range is $\pm \infty$): $d = \frac{2t}{\sqrt{DF_{den}}}$
 - Conveys difference between two groups in standard deviation units
 - (Partial) is not used in describing Cohen's d, because there is not another kind possible (i.e., as in "semi-partial" r, stay tuned)

From
$$r$$
 to d :
 $d \approx \frac{2r}{\sqrt{1+r^2}}$
 $r \approx \frac{d}{\sqrt{4+d^2}}$

Effect Sizes for Our GSS Results and Sample Sizes Needed for Power = .80

• LvM Diff as β_1 : Est = 8.85, SE = 1.00, t(731) = 8.82, p < .001

> $r = \frac{8.82}{\sqrt{8.82^2 + 731}} = 0.31, d = \frac{2 \times 8.82}{\sqrt{731}} = 0.65 \rightarrow \text{~per-group } n > 45$

- LvU Diff as β_2 : Est = 10.98, SE = 2.99, t(731) = 3.67, p < .001> $r = \frac{3.67}{\sqrt{3.67^2 + 731}} = 0.13, d = \frac{2 \times 3.67}{\sqrt{731}} = 0.27 \rightarrow \text{ oper-group } n > 175$
- MvU Diff as: $\beta_2 \beta_1$: Est = 2.13, SE = 3.03, t(731) = 0.70, p = .482

•
$$r = \frac{0.70}{\sqrt{0.70^2 + 731}} = 0.03, d = \frac{2*0.70}{\sqrt{731}} = 0.05 \rightarrow \sim \text{per-group } n > 2, 102$$

• Model
$$R^2 = .103, r = .322 \rightarrow \sim \text{overall } N > 85$$

Intermediate Summary

• For GLMs with **one fixed slope**, the significance test for that fixed slope is the same as the significance test for the model

> Slope
$$\beta_{unstd}$$
: $t = \frac{Est - H_0}{SE}$, β_{std} = Pearson r

- > Model: $F = t^2$, $R^2 = r^2$ because predicted \hat{y}_i only uses β_{unstd}
- For GLMs with <u>2+ fixed slopes</u>, the significance tests for those fixed slopes (or any linear combinations thereof) are NOT the same as the significance test for the overall model
 - > Single test of <u>one fixed slope</u> via t (or z) \rightarrow "Univariate Wald Test"
 - > Joint test of <u>2+ fixed slopes</u> via F (or χ^2) \rightarrow "Multivariate Wald Test"
 - *F* test-statistic is used to test the significance of the model R^2 (the square of the *r* between model-predicted \hat{y}_i and actual y_i , which is necessary whenever the predicted \hat{y}_i uses multiple β_{unstd} slopes)
 - *F* test-statistic evaluates model *R*² *per DF spent to get it and DF leftover*

Nonlinear Trends of Quantitative Predictors

- Besides predictors with 3+ categories, another situation in which a single predictor variable may require more than one fixed slope to create its model prediction (its "effect" or "trend") is when a quantitative predictor has a nonlinear relation with the outcome
- We will examine <u>three types of examples</u> of this scenario:
 - Curvilinear effect of a quantitative predictor
 - Combine linear and quadratic slopes to create U-shape curve
 - Use natural-log transformed predictor to create an exponential curve
 - > Piecewise effects for "sections" of a quantitative predictor
 - Also known as "linear splines" (but each slope could be nonlinear, too)
 - Festing the assumption of <u>linearity</u>: that equal differences between predictor values create equal outcome differences
 - Relevant for ordinal variables in which numbers are really just labels
 - Relevant for count predictors in which "more" may mean different things at different predictor values (e.g., "if and how much" predictors)

Curvilinear Trends of Quantitative Predictors

- The effect of a quantitative predictor does NOT have to be linear curvilinear effects may be more theoretically reasonable or fit better
- There are many kinds of nonlinear trends—here are two examples:
 - > **Quadratic (i.e., U-shaped)**: created by combining two predictors
 - "Linear": what it means when you enter the predictor by itself
 - "Quadratic": from also entering the predictor² (multiplied by itself)
 - Good to create relationships that change directions
 - Example for quadratic trend of x_i : $y_i = \beta_0 + \beta_1(x_i) + \beta_2(x_i)^2 + e_i$
 - > **Exponential(ish)**: created from one nonlinearly-transformed predictor
 - Predictor = natural-log transform of predictor (for positive values only)
 - Good to create relationships that look like **diminishing returns**
 - Example for exponential(ish) trend of x_i : $y_i = \beta_0 + \beta_1 (Log[x_i]) + e_i$

How to Interpret Quadratic Slopes

- A quadratic slope makes the effect of x_i change across itself!
 - > Related to the ideas of position, velocity, and acceleration in physics
- Quadratic slope = HALF the rate of acceleration/deceleration
 - So to describe how the linear slope for x_i changes per unit difference in x_i, you must **multiply the quadratic slope for x_i by 2**
- If fixed linear slope = 4 at $x_i = 0$, with quadratic slope = 0.3?
 - > "Instantaneous" linear rate of change is 4.0 at $x_i = 0$, is 4.6 at $x_i = 1$...
 - Btw: The "twice" rule comes from the derivatives of the function for y_i with respect to x_i:

Intercept (position) at $x_i = x$: $y_x = 50 + 4(x_i) + 0.3(x_i^2)$ First derivative (velocity) at $x: \frac{dy_x}{d(x)} = 4 + (2 * 0.3)(x_i)$ Second derivative (acceleration) at $x: \frac{d^2y_x}{d(x)} = (2 * 0.3)$

Quadratic Trends: Example of x_i = Time

Quadratic Trend for Age: GSS Example

- Black line = mean for each year of age; red lines = ±1 SE of mean
- Although noisy, this plot shows a clear quadratic function of age in predicting annual income (yay middle age!)

• Let's see what happens when we fit **a quadratic effect of age** (centered at 18, the minimum age) predicting annual income...

Quadratic Trend for Age: GSS Example

- $Income_i = \beta_0 + \beta_1 (Age_i 18) + \beta_2 (Age_i 18)^2 + e_i$
 - ▶ Intercept: β_0 = expected income at age 18 → *Est* = 2.677, *SE* = 1.584, *p* < .001
 - ► **Linear Age Slope:** β_1 = instantaneous rate of change (or difference, actually) in income per year of age **at age = 18** \rightarrow *Est* = 1.223, *SE* = 0.135, *p* < .001
 - > **Quadratic Age Slope:** $\beta_2 = \underline{half}$ the rate of acceleration (or deceleration here) per year of age **at any age** $\rightarrow Est = -0.020$, SE = 0.003, p < .001
- <u>Predicted income</u> at other ages via linear combinations of fixed effects:
 - > Age 30: $\hat{y}_{x=30} = 2.677 + 1.223(12) 0.020(12)^2 = 14.540, SE = 0.647$
 - > Age 50: $\hat{y}_{x=50} = 2.677 + 1.223(32) 0.020(32)^2 = 21.809, SE = 0.668$
 - > Age 70: $\hat{y}_{x=70} = 2.677 + 1.223(52) 0.020(52)^2 = 13.448, SE = 1.659$
- <u>Predicted linear age slope</u> at other ages via linear combinations:
 - > Age 30: $\widehat{\beta}_{1_{x=30}} = 1.223 0.020(2 * 12) = 0.754, SE = 0.079$
 - > Age 50: $\widehat{\beta}_{1_{x=50}} = 1.223 0.020(2 * 32) = -0.027, SE = 0.047$
 - > Age 70: $\beta_{1_{x=70}} = 1.223 0.020(2 * 52) = -0.809, SE = 0.135$
- Predicted age at max income (where linear age slope = 0): $\frac{-\beta_1}{2*\beta_2} + 18 = 48.575$

Quadratic Trend for Age: GSS Example

- Left: predicted regression line over individual scatterplot
 - > From: 2.677 + 1.223($Age_i 18$) 0.020($Age_i 18$)²
- Right: predicted regression line over mean per age

> $F(2, 731) = 47.00, MSE = 169.00, p < .001, R^2 = .114 (r = .338)$

• Since age and age² work together, I'd use model r as effect size

Exponential Trends: Example of x_i = Time

• A <u>linear</u> slope of log x_i (black lines) mimics an <u>exponential</u> trend across *original* x_i ; adding a quadratic slope of log x_i (red or blue lines) can speed up or slow down the exponential(ish) trend

Piecewise Slopes: GSS Example

- What if the effect of "more education" varies across education?
 For example, I hypothesize for predicted annual income:
 - Less than HS degree? No effect of educ
 - Get HS degree?
 Acute "bump" relative to less than HS degree
 - More than HS degree?
 Positive effect of more educ (likely nonlinear)
- Plot: black line shows mean per year of educ, red lines show ± 1 SE

Piecewise Slopes Coding: GSS Example

Years Educ (x)	lessHS: Slope if x <12		g HS (1	gradHS: HS Grad? (0=no, 1=yes)		overHS: Slope if x >12			
9		-2			0			0	
10		-1			0			0	
11 (int)		0			0			0	
12		0			1			0	
13		0 1				1			
14		0			1			2	
15		0			1			3	
16		0			1			4	
17		0			1			5	
18		0			1			6	

- Intercept = grade 11 (when all slopes = 0)
- **3 predictors** for educ:
 - JessHS: from grade 2 to 11
 - **gradHS**: acute bump for 12+
 - **overHS**: after grade 12 (to 20)

Piecewise Slopes: GSS Results

- After putting all three slopes in the model at the same time: $y_i = \beta_0 + \beta_1(lessHS_i) + \beta_2(gradHS_i) + \beta_3(overHS_i) + e_i$
- Model: F(3, 730) = 47.84, MSE = 159.61, p < .001, $R^2 = .164$ (r = .404)
 - > r = .404 is effect size for overall prediction by education (three slopes)
- β₀ = expected income when all predictors = 0 → 11 years of ed here
 Est = 8.53, SE = 1.73 (significance and effect size not relevant)
- β₁ = slope for difference in income <u>per year education</u> from 2 to 11 years
 Est = −0.27, SE = 0.60, t(730) = 0.65, p = .654, pr = −.017
- β_2 = acute difference (jump) in income between educ=11 and educ=12
 - > Est = 4.68, SE = 1.88, t(730) = 2.05, p = .013, pr = .092
- β_3 = slope for difference in income per year education from 12 to 20 years
 - > Est = 2.12, SE = 0.214, t(730) = 9.94, p < .001, pr = .345

Piecewise Slopes: Linear Past 12 Years Ed?

- The model (dashed lines) appears to capture the mean trend (solid lines) pretty well until 12 years of education...
- I think we need even more piecewise slopes after ed=12!
 - From 12 to 15
 - From 15 to 17–18
 - From 17–18 to 20

A Linear Slope for an Ordinal Predictor???

- Ordinal predictors with 5+ categories are often treated as interval by fitting a single linear slope for their overall effect (3)
- We can test this interval assumption by comparing the outcome differences between adjacent predictor values
 - Here: need 4 slopes, 1 for each transition between categories
 - > Use "sequential dummy coding" to treat the predictor as "categorical"
 → 5 fixed effects used to distinguish each of 5 categories

Sequential Slopes for an Ordinal Predictor

- Happy = 1 is where all slopes are 0, so it is the reference category (→ model intercept)
- The 4 slopes capture each <u>adjacent category</u> <u>difference</u> because each stays at **1** when done
 - Right: In indicator coding, the LvM slope went back to 0, so the second slope is NOT successive (i.e., it reflects LvU, not MvU)

Group	LvM: Diff for Low vs Mid	LvU: Diff for Low vs Upp
Low	0	0
Mid	1	0
Upp	0	1

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.

GSS Results for Slopes and Slope Differences

Summary: Predictors with Multiple Fixed Slopes

- There are many scenarios in which a single predictor x_i needs multiple fixed slopes to describe its prediction of outcome y_i:
 - > <u>Predictor variables</u> with C categories needs C 1 fixed slopes to distinguish its C possible different outcome means
 - "Indicator dummy coding" is useful for nominal or ordinal predictors
 - "Sequential dummy coding" can be more useful for ordinal predictors
 - Should report significance and effect size for each mean difference of theoretical interest (not necessarily all possible differences, though)
 - <u>Nonlinear effects of quantitative predictor variables</u> (via quadratic or exponential curves; piecewise slopes or curves) may require 2+ slopes
 - Predictors work together to summarize overall "trend" of x_i (so effect size for each fixed slope may be less important than overall model R^2)
- We want to know the significance of **each** fixed slope (via univariate Wald test of $(Est H_0)/SE$ via *t* test-statistic) as well as significance of the **model** \mathbb{R}^2 (as multivariate Wald test via *F* test-statistic)
 - > Model R^2 = squared Pearson r between predicted \hat{y}_i and actual y_i