General Linear Models (GLMs)
with Multiple Fixed Effects
for a Single Predictor

- Topics:
> Reviewing empty GLMs and single predictor GLMs

> GLM special cases: 2+ fixed slopes to describe a predictor’s effect
= "Analysis of Variance” (ANOVA) for a one categorical predictor
— e.g., income differences across 3 categories of employment class

= Nonlinear effects of a single quantitative predictor
— e.g., quadratic continuous effect of years of age on income

— e.g., piecewise discontinuous effect of years of education on income

= Testing linear effects of a single ordinal predictor
— e.g., linear vs. nonlinear effect of 5-category happiness on income
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Where we’re headed in this unit...

This figure is a path diagram.
It illustrates a GLM with 3 x;
predictors of 1 y; outcome. The
“1" triangle is a constant used by
the fixed intercept. Here is the
equation the picture generates:

Yi = Bo + B1(x1;)
+ B2(x2;) + B3(x3;) + e;

xli

xZi

x3i

- Synonyms for y; outcome:
dependent variable, criterion, thing-to-be explained/predicted/accounted for

- Synonyms for each x; predictor: . . . o
regressor, independent variable (if manipulated), covariate (if quantitative
or If it must be included to show incremental contributions beyond it)

> This unit will cover the use of multiple predictors to describe the effect of
a single conceptual predictor (up next will be multiple conceptual predictors)

- Ways to describe the goal of a modael:
> "Examine effects of (the x; predictors) on (the y; outcome)”
> "Regress (outcome y;) on (the x; predictors)”
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Review: Empty Models and
Single-Predictor Models

- Predictive linear models create a custom expected outcome for each person
through a linear combination of fixed effects that multiply predictor variables

- Empty GLM: Actual y; = 8, + e;, Predicted y; = £
> PBo = intercept = expected y; = here is mean y (best naive guess if no predictors)
> e; = residual = is always the deviation between the actual y; and predicted y;
Because y; = y for all, the e; residual variance across persons (a2) is all the y; variance

- Add a predictor: Actual y; = B, + B1(x;) + e;, Predicted y; = o + B1(x;)
> Bo = intercept = expected y; when x; = 0 (so always ensure x; = 0 makes sense)
> B4 = slope of x; = difference in y; per one-unit difference in x;
> e; = residual = is always the deviation between the actual y; and predicted y;
Now y; differs by x;, so e; residual variance across persons (¢2) is leftover y; variance
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1 Fixed Effect for a Single Predictor

- B4 for the slope of x; is scale-specific 2 is “unstandardized”

- Unstandardized results for 84 include:
> Estimate/Coefficient = (Est) = optimal slope value for our sample

> Standard Error (SE) = index of inconsistency across samples = how far
away on average a sample x; slope is from the population x; slope

= With only a single slope in the model, the SE for its estimate depends on
the model residual variance (62), variance of x; (62), and DFjonominator:
sample size minus k, the number of f# model fixed effects (N — k)
> Test-statistic t = (Est — Hy)/SE - "Univariate Wald test” gives p-value
for slope’s significance using t-distribution and DF ;. ominator = N — k

- Can also request a "standardized” slope to provide an r effect size:

> For a GLM with a single B SD,
quantitative or binary predictor, Bsta = Bunsta * )
Bsiq = Pearsonr y
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GLMs with Predictors: Binary vs. 3+ Categories

- To examine a binary predictor of a quantitative outcome, we only need
2 fixed effects to tell us 3 things: the outcome mean for Category=0,
the outcome mean for Category=1, and the outcome mean difference

- Actual y; = B, + B1(Category;) + e;, Predicted y; = B, + B1(Category;)

>

»

>

»

>

Category 0 Mean: y; = Bo + f1(0) = B, € fixed effect #1
Difference of Category 1 from Category 0: (B¢ + 1) — (Bo) = B1 € fixed effect #2
Category 1 Mean: y; = By + f1(1) = By + B1 < linear combination of fixed effects

Tofc_;et the estimate, SE, and p-value for any mean created from a linear combination
of fixed effects, you need to ask for it via SAS ESTIMATE, STATA LINCOM, or R GLHT

Btw, this type of GLM is also called a “two-sample” or “independent groups” t-test

- To examine the effect of a predictor with 3+ categories, the GLM needs as
many fixed effects as the number of predictor variable categories = C

>

>

>

>
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If C = 3, then we need the B intercept and 2 predictor slopes: 84 and 8,

If C = 4, then we need the B, intercept and 3 predictor slopes: 81, B2, and 33
C! . . . o 3%2x1
T - e.qg., given € = 3, #diffs = 2D 3

This type of GLM goes by the name “Analysis of Variance” (ANOVA) in
which the term “category” is usually replaced with “group” as a synonym

# pairwise mean differences =



“Indicator Coding” for a 3-Category Predictor

- Comparing the means of a

quantitative outcome across workclass

3 categories requires creating variable (N = 734)

2 new binary rredictors to be

included simultaneously along 1, Lower (n = 436) 0 0

with the intercept, for example, , 1 0

as coded so Low= Intercept (ref) 2. Middle (n = 278)

3. Upper (n = 20) 0 1

Actual: Income; = By + B1(LvM;) + B,(LvU;) + e;
Predicted: y’i = ﬁo + ﬁl(L'VMi) + ﬁz (L'UU,)

- Model-implied means per category (group):

> Lower Mean: y; =By + 1(0)+ B,(0) = B, € fixed effect #1

> Middle Mean: yu = Bo + B1(1) + B,(0) = By + B1 € found as linear combination

> Upper Mean: yy = Bo + B1(0) + B,(1) = Bo + B, € found as linear combination
- Model-implied differences between each pair of categories (groups):

> Lower vs Middle: (Bo + B1) — (By) = B1 € fixed effect #2

> Lowervs. Upper: (Bo + B2) — (Bo) = B2 < fixed effect #3

> Middle vs Upper: (Bo + B2) — (Bo + B1) = B2 — B1 € found as linear combination

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.
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GLM 3-Category Predictor: GSS Results
Empty Model: y; = B, + e Group (N =734) | LM | LvU_

- Model parameters: 1. Lower (n = 436) 0 0
> Intercept By: Est = 17.30 SE = 0.51 2. Middle (n = 278) 1 0
> Residual Variance o2: Est = 190.21 3. Upper (n = 20) 0 1

Predictor Model: y; = o + f1(LvM;) + B,(LvU;) + ¢;

- Model parameters:
> Intercept By: Est = 13.65,SE = 0.63, p < .001 - Mean for L (= y;)
> Slope B4: Est = 8.85,SE = 1.00,p < .001 - Mean diff for Lvs M
> Slope f,: Est = 10.98,SE = 2.99,p < .001 - Mean diff for L vs U
> Residual Variance a2: Est = 171.01

- Linear combinations of model parameters:
> M Mean: y,; = 13.65 + 8.85(1) + 10.98(0) = 22.50,SE = 0.78, p < .001
> U Mean: y; = 13.65+ 8.85(0) + 10.98(1) = 24.63,SE = 2.92, p < .001
> Mean diff of Mvs U = 8, — B, = 2.13,SE = 3.03,p = .482
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GLM 3-Category Predictor: GSS Results

Fixed Effects Predictors Category Pred
Betal Betal Beta2 Intercept Lvii LvU workclass Y Hat
13.650 8.854 10.985 1 0 0 Lower 13.650
13.650 8.854 10.985 1 1 0 Middle 22.504
13.650 8.854 10.985 1 0 1 Upper 24,635
30 -
BetaO + Betal = 22.504 Beta0 + Beta2 = 24.635
Beta2 =
25 - 10.985 [Fom—TTTTTmsssssmeesssssssmsmm =@ 24,635
’ il 22.50{1__,,..--"""
20 1" Betal = -
15 - 8.854
5 -
0 1 1 1
Lower Middle Upper
LvM: 0 1
LvU: 0 1
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Example of a 4-Category Predictor

Comparing outcome means across
4 groups requires creating 3 new
binary predictors to be included
simultaneously along with the
intercept—for example, using
“indicator dummy-coded”
predictors so Control= Reference

Treatment

Group

1. Control
2. Treatment 1

1 0 0
3. Treatment 2 0 1 0
4. Treatment 3 0 0 1

+ Model: y; = By + B1(d1;) + B2(d2;) + B3(d3;) + e;

> The model gives us the predicted outcome mean for each category as follows:

Control (Ref)
Mean

Treatment 1
Mean

Treatment 2
Mean

Treatment 3
Mean

Bo

Po+B1(d1;)

Po+B2(d2;)

Po+B3(d3;)

> Model directly provides 3 mean differences (control vs. each treatment), and

indirectly provides another 3 mean differences (differences between treatments)

as linear combinations of the fixed effects... let's see how this works

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.
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Example with a 4-Category Predictor

Control (Ref)
Mean = 10

Treatment 1
Mean =12

Treatment 2
Mean =15

Treatment 3
Mean =19

Bo

Po+B1(d1;)

Po+B2(d2;)

Po+P3(d3;)

Model: y; = By + B1(d1;) + B2(d2;) + B3(d3;) + e;

Given the means above, here are the pairwise category differences:
Alt Group

Ref Group

+ Cvs. T1 = (Bo+B1) — (Bo)
+ Cvs. T2 = (Bo+B2) — (Bo)
+ Cvs. T3 = (Bo+B3) — (Bo)

+ T1vs. T2 = (Bo+B2) — (Bot+B1)
+ T1vs. T3 = (Bo+B3) — (Bo+B1)
+ T2vs. T3 = (Bot+B3) — (Bo+B2)
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Difference
=pf1=2
=p2=5
=pf3=9

=p2—PF1=5-2=3
=f3—P1=9-2=7
=P3—P2=9-5=4



Back to the 3-Category Predictor GLM

- The ANOVA-type question “Does group membership predict y;?”
translates to "Are there significant group mean differences in y;"?

> Can be answered specifically via pairwise group differences
given directly by (or created from) the model fixed effects:
For example: y; = Bo + B1(LvM;) + B,(LvU;) + e,
Is B1 # 07 If so, then y,; # ¥, (given directly because of our coding)
Is B, # 07 If so, then y; # y; (given directly because of our coding)
Is (B2 — B1) # 0? If so, then Y, += Yy (requested as linear combination)

> A more general answer to “Does group matter?” requires
testing if B4 and B, differ from O jointly, in other words:

Is the residual variance from this model with two grouping predictors
significantly lower than the total variance from the empty model?

Does the predicted y; provided by this model with two grouping
predictors correlate significantly with the actual y;?
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Prediction Gained vs. DF spent

- To provide a more general answer to “Does group matter?”
we need to consider the impact of our prediction relative to
how many fixed effects we needed to generate predicted y;
and how good they did (i.e., relative to what is left unknown)

> This is an example of a "“multivariate Wald test” (stay tuned for others)

> "Relative” is quantified using two types of Degrees of Freedom = DF
= total number of fixed effects possible = total DF = sample size N

"DFpumerator = k —1 = number of fixed slopes in the model
"DFjenominator = Number of DF left over (not yet spent): N — k

> In GLMs, the amount of information captured by the model’s
prediction and the amount of information left over are
quantified using different sources of “sums of squares” (SS)

Tie, i=9)?
N—-1

For example, "outcome (or total) SS" = $S;oea1 = 2iv1(y;i — 7)?

Basic form of $§ is the numerator in computing variance:
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Prediction Gained vs. DF spent

- How much information is provided by our model prediction is
quantified by “model sums of squares”: $S,,,4¢c: = X1 (¥ — y)?

- To quantify the relative size of that predicted info, we need
to adjust it for DF, . merator = NUMber of fixed slopes = k — 1

“ wo_ __ SSmodel | —1 because intercept
» Then get "Model Mean Square” = MSy401 = =2 docen't get Countez

> MS,0der = "how much information has been captured per point spent”

- How much information is leftover is quantified by “residual
(or error) sums of squares”: SS,.siduar = 21 (yi — ¥:)?

- To quantify the relative size of that leftover information,
we need to adjust it for DF .nominator = N — k

_ SSresidual

» "Residual (or Error) Mean Square” = MSc5iquat = —,

> MS, esiauar = "how much information left to explain per point remaining”
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Prediction Gained vs. DF spent

Sums of Squares
(each summed
fromi=1to N)

Degrees of
Freedom

Source of Outcome

Information

Model (known because
of predictor slopes)

SSmodel: (yl - 7)2 DFnum: k-1 MSmodel:

Residual (leftover after
predictors; still unknown)

. SSyesi
SSresiaual: Vi —Vi)*> | DFgen: N — k | MS egidual: — Aels_ltli(ual

7 n SS ota
Corrected” Total Gll | DN =1 | MSgpr
original information in y;) total: Vi =Y (not shown) (not shown)

- This table now provides us with a way to answer the more general question
of "Does group membership predict y;?” > Is our model significant?

SStotal_SSresidual
SStotal

> Variance explained by model fixed slopes: R* =

> R?* = square of correlation between model-predicted y; and actual y;

> F test-statistic for significance of R? > 0? is given two equivalent ways:

MS (N—k)R?
F(DEyym, DFgen) = ﬁ(i)::;l or F(DFyym, DFgen) = (k—1)(1-R?)

PSQF 6243: Lecture 3 14



Your New Friend, the F distribution

The F Distribution

- F(4,12)
= S of the distribution 6
o = is greater than T.2&
E 5 \\mﬁ o
o df=(8,40)
0 1 R 4 5 4 viil
F p dt=(8.4)
In the expression df{i,j), the
2 index i is the df of the
= the numerator, and j is the
E -g' Fi10,1000 1 df of the denominator
In
a5 5% of the distribution
e iz greater than 1.93 0 ; 2
y 0 1 2 3 4 5 6
Fl,b g 1 =E=E=E'- ...... - L . . .

F - The F test-statistic (F-value) is a
ratio (in a squared metric) of “info
explained over info unknown”,

F100,100 so F-values must be positive
- Its shape (and thus the critical
value for the boundary of where
S T e ”expecz’ced" starts) varies by DF,,,,
: | ; e . : —x  (like x°) and by DF,, (like t,
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Wh|Ch IS ﬂatter for Sma”er N — k)

Top left image borrowed from:
Top right image borrowed from:
Bottom left image borrowed from:
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https://www.statsdirect.com/help/distributions/f.htm
https://www.globalspec.com/reference/69569/203279/11-9-the-f-distribution
https://www.texasgateway.org/resource/133-facts-about-f-distribution

Summary: Steps in Significance Testing

- Choose critical region: % alpha (“unexpected”) and possible directions

- Both directions or just one? RV, T Test 1 Test 2+
> Alpha (a) (1 =% confidence)? [l of Freedom? | slope* slopes*

. Distribution for test-statistic No: implies infinite N z x*(=z*if 1)
will be dictated as follows: Yes: adjusts based on N t F(=t%if 1)

- If the test-statistic exceeds the distribution’s critical value (goal posts),
then the obtained p-value is less than the chosen alpha level:

> You “reject the null hypothesis"—it is sufficiently unexpected to get a
test-statistic that extreme if the null hypothesis is true; result is “significant”

- If the test-statistic does NOT exceed the distribution’s critical value,
then the p-value is greater than or equal to the chosen alpha level:

> You "DO NOT reject the null hypothesis"—it is sufficiently expected to get a
test-statistic that extreme if the null hypothesis is true; result is “not significant”

* # Fixed slopes (or associations) = numerator degrees of freedom =k — 1
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Significance of the Model Prediction

- With only 1 predictor, we don’t need a separate F test-statistic of
the model R? significance; for example: y; = Bo + B1(x;) + e;

> Significance of unstandardized f#; comes from t = (Est — H)/SE

- Significance of the model prediction R? from F = t* already

= So if B is significant via [tg, | > tcriticar, then the F test-statistic for
the model is significant, too = sufficiently unexpected if H, were true

> Standardized B4 = Pearson’s r between predicted y; and actual y;

SS —SS,0ci . ’
- So model R? = t"“‘;g residual s the same as (Pearson'’s 1)?2
total

- With 2+ fixed slopes, we DO need to examine model F test-statistic
and R?, for example: y; = Bo + B1(LvsM;) + B,(LvsU;) + e;

> F test-statistic: Is the y; predicted from ;1 AND S, together significantly
correlated with actual y;? The square of that correlation is the model R?

> F test-statistic evaluates model R? per DF spent to get it and DF leftover
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Significance of the Model: Example

For example in GSS data: y; = Bo + B1(LvsM;) + B, (LvsU;) + e;
Group-specific means: We already know that L<M, L<U, and L=M
Significance test of the overall model (both slopes at once): R? = .103
Report as F(DF,,,;;,, DF 40,,) = Fvalue, MSE = MS,..;, p < pvalue

Source of  Sums of Squares Dearees of Mean

Outcome (each summed FrZe dom Square
Information fromi=1to N) 9
MOdEl ~ —\2 DFnum: k - 1 Ssmodel
(known) SS";"‘ﬁ' 4?' A 0_3y ) = 2 slopes MSmoder k—1 |4214

T (—1 for int) = 7,207.01
Residual N SSesidual
(uerror") SSresidual: (yl - yl)z DFden: N - k MSresidual: &ef lzla
= 125,009.25 = 731 leftover — 17101
Corrected SS, 1t (e — ) N=734-1
Total (after y) :t;’ég 311‘23 Zyg = 733 total
o corrected for int
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Another version of R%“Adjusted R%”

- Just like we may want to adjust Pearson’s r for bias due to
small sample size, some feel the need to adjust the model R

> R? = SStOt“SlSSSTeS‘d”“l > Must be positive if computed this way
total

(1-R*))(N-1) _ MSyesidual | = Change in residual variance
> Rad] 1 — — 1 - .
N—k—1 MS¢otal relative to empty model

- R4 can be negative! (i.e., for a really-not-useful set of fixed slopes)

- Although adjusted R? is considered as the only “correct”
version by a few, | have never once been asked to report it...

> But just in case Reviewer 3 wants it some day, here you go...
(1-.103)(734- 1) .
Gy = 1 === =101 (R} .103)

> Btw we need to use SAS PROC REG instead of SAS PROC GLM to get
(both R? versions are given by STATA REGRESS and R LM)

> For our example: R2 unadj =

ad]
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Effect Size per Fixed Slope

- The model R? value (the square of the correlation between
predicted y; and actual y;) provides a general effect size,
but you may also want an effect size for each fixed slope

> Why? To standardize the effect magnitude and/or to estimate power

> For models with one slope only, the standardized slope (found
using z-scored variables with M = 0 and SD = 1) is the same
as Pearson’s correlation - unambiguous “bivariate” effect size

> For models with 2+ slopes, there are multiple potential measures
of slope-specific effect size that you can choose from...

- Although standardized slopes are often used to index effect size
in multiple-slope models, they have problems in some cases:

> Ambiguous results for quadratic or multiplicative terms (z-scored
product of 2 variables is not equal to product of 2 z-scored variables)

> Differences in sample size across groups create different standardized
slopes for categorical predictors given the same unstandardized mean
difference (see Darlington & Hayes, 2016 ch. 8 for more)
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Effect Size per Fixed Slope from ¢

- We can use t test-statistics to compute 2 different metrics of

partial effect sizes (for slopes or their linear combinations)

> Here "partial” refers to a slope’s unique effect in models with
multiple fixed slopes (stay tuned for “semi-partial” alternatives)

> Why t-value? Effect sizes for fixed effect linear combinations, too

> Partial correlation r (range is +1): partial r =

= Useful for quantitative predictors to convey
strength of unique association for that slope

= Can also get partial r from SAS PROC CORR,
STATA PCORR, and pcor.test in R package ppcor

> (Partial) Cohen’s d (range is +): d =

= Conveys difference between two groups in standard deviation units

Jt2+DF gen

vV DFgen

Fromr to d:

2r
d =~
1+ 72
d
r ~
V4 + d?

« (Partial) is not used in describing Cohen’s d, because there is not
another kind possible (i.e., as in “semi-partial” r, stay tuned)
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Effect Sizes for Our GSS Results and
Sample Sizes Needed for Power = .80

. LvM Diff as B,: Est = 8.85,SE = 1.00,t(731) = 8.82,p < .001

8.82 2x8.82
TS = 0.31,d = T3 = 0.65 - ~per-group n > 45

. LvU Diff as 8,: Est = 10.98,SE = 2.99,t(731) = 3.67,p < .001

3.67 2x3.67
v 0.13,d = T3 = 0.27 - ~ per-group n > 175

. MvU Diff as: B, — B1: Est = 2.13,SE = 3.03,¢(731) = 0.70,p = .482

0.70
T= 07021731 0.03,d =

2x0.70

V731

= 0.05 = ~ per-groupn > 2,102

- Model R? = .103,r =.322 > ~overall N > 85
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Intermediate Summary

- For GLMs with one fixed slope, the significance test for that
fixed slope is the same as the significance test for the model

Est—Hy
SE

> Slope Bnsta: t = , Bs:q = Pearson r

> Model: F = t%, R? = r? because predicted y; only uses B,std

- For GLMs with 2+ fixed slopes, the significance tests for those
fixed slopes (or any linear combinations thereof) are NOT the
same as the significance test for the overall model

> Single test of one fixed slope via t (or z) 2 “Univariate Wald Test"

> Joint test of 2+ fixed slopes via F (or y?) = “Multivariate Wald Test”

- F test-statistic is used to test the significance of the model R? (the
square of the r between model-predicted y; and actual y;, which is
necessary whenever the predicted y; uses multiple B,,.s¢:a slopes)

= F test-statistic evaluates model R? per DF spent to get it and DF leftover
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Nonlinear Trends of Quantitative Predictors

- Besides predictors with 3+ categories, another situation in which
a single predictor variable may require more than one fixed slope
to create its model prediction (its “effect” or “trend”) is when a
quantitative predictor has a nonlinear relation with the outcome

- We will examine three types of examples of this scenario:

> Curvilinear effect of a quantitative predictor

= Combine linear and quadratic slopes to create U-shape curve

= Use natural-log transformed predictor to create an exponential curve
> Piecewise effects for “sections” of a quantitative predictor

« Also known as “linear splines” (but each slope could be nonlinear, too)

> Testing the assumption of linearity: that equal differences
between predictor values create equal outcome differences

= Relevant for ordinal variables in which numbers are really just labels

« Relevant for count predictors in which “more” may mean different
things at different predictor values (e.g., “if and how much” predictors)
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Curvilinear Trends of Quantitative Predictors

- The effect of a quantitative predictor does NOT have to be linear—
curvilinear effects may be more theoretically reasonable or fit better

- There are many kinds of nonlinear trends—here are two examples:

> Quadratic (i.e., U-shaped): created by combining two predictors

« “Linear”: what it means when you enter the predictor by itself
= "Quadratic”: from also entering the predictor? (multiplied by itself)
« Good to create relationships that change directions

Example for quadratic trend of x;: y; = Bo + B1(x;) + B2 (x)? + e;

> Exponential(ish): created from one nonlinearly-transformed predictor

Predictor = natural-log transform of predictor (for positive values only)
= Good to create relationships that look like diminishing returns
Example for exponential(ish) trend of x;: y; = Bo + B1(Log|x;]) + e;

PSQF 6243: Lecture 3

25



How to Interpret Quadratic Slopes

- A quadratic slope makes the effect of x; change across itself!
> Related to the ideas of position, velocity, and acceleration in physics
- Quadratic slope = HALF the rate of acceleration/deceleration

> So to describe how the linear slope for x; changes per unit difference
in x;, you must multiply the quadratic slope for x; by 2

- If fixed linear slope = 4 at x; = 0, with quadratic slope = 0.37?

> "Instantaneous” linear rate of changeis4.0atx; =0,is4.6 atx; = 1...

> Btw: The “twice”
rule comes from
the derivatives
of the function
for y; with
respect to x;:
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Intercept (position) at x; = x: y, = 50 + 4(x;) + 0.3(x?)

: d(y;) =44+ (2%0.3)(x;)

Eyx _ (24 03)

Second derivative (acceleration) at x: 200
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Q . .
° I
uadratic Trends Xample o1 X; Ime
° l
Accelerating Positive Function Decelerating Positive Function
—&-Linear Slope = +4, Quadratic Slope =+0.3 === Linear Slope=+4, Quadratic Slope=-03
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45
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Quadratic Trend for Age: GSS Example

SAS Line Plot for Income Means Per Year of Age

- Black line = mean
for each year of
age; red lines =
+1 SE of mean

55
50
45
40

35

- Although noisy,
this plot shows a
clear quadratic
function of age

30

25

10005 of Income

20

in predicting 18
annual income 10
(yay middle age!) 5

18 20 22 24 26 28 30 32 34 36 35 40 42 44 46 45 50 52 54 56 58 G0 G2 64 GE 6B TO 72 74 76
Years of Age

lowersEincome

income: Annual Income in 10005 UppersEincome

- Let's see what happens when we fit a quadratic effect of age
(centered at 18, the minimum age) predicting annual income...
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Quadratic Trend for Age: GSS Example

Income; = 8, + f,(Age; — 18) + B,(Age; — 18)? + ¢;
> Intercept: B, = expected income at age 18 > Est = 2.677,SE = 1.584,p < .001

> Linear Age Slope: $; = instantaneous rate of change (or difference, actually)
in income per year of age at age = 18 &> Est = 1.223,SE = 0.135,p < .001

> Quadratic Age Slope: 3, = half the rate of acceleration (or deceleration
here) per year of age at any age > Est = —0.020,SE = 0.003,p < .001

Predicted income at other ages via linear combinations of fixed effects:
> Age 30: J,_30 = 2.677 + 1.223(12) — 0.020(12)2 = 14.540,SE = 0.647

> Age 50: ¥,_50 = 2.677 + 1.223(32) — 0.020(32)2 = 21.809, SE = 0.668

> Age 70: ¥,_70 = 2.677 + 1.223(52) — 0.020(52)2 = 13.448,SE = 1.659
Predicted linear age slope at other ages via linear combinations:

> Age 30: [/3\1,(:30 =1.223-0.020(2+12) = 0.754,SE = 0.079

- Age 50: By _., = 1.223 — 0.020(2 = 32) = —0.027,SE = 0.047

> Age 70: By _,, = 1.223 — 0.020(2  52) = —0.809,SE = 0.135

Predicted age at max income (where linear age slope = 0): f; + 18 = 48.575
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Quadratic Trend for Age: GSS Example

Fit Plot for income SAS Line Plot for Income Means Per Year of Age
o o o 60
60 o o o oo o o o o000 0O 50
00 O 00000 OO0 000 oo © oo
A 40
=
S 40 0O .0 000 O 000 OODOO 000 0000 O 00 O
= T 30
2 000 00O 000000 00000000 00000 000 O E
2 © 00000000000 000 QOO0000 O OO0 0000 O 000 = .
2 i
5 000000000000 0000880686000 0 00000 © O -
£ 0 0 0O 00000CQEB~COTO000 O 0O o000 © oe—ap =1
= 900 000 Q& 000 0000 00 00 000 o O 09 0 = =] 10
< §=-, a8 8 g§§o§88§§§§og 88§8§oo§go oo o B - B
S SEooB30 EO o8 So 08850 8 08,50 oo Onpy ©
= =1=]= g o%8o,.00 oBofog o 00 oo .8%0 “8o
8 00088@800888 o%o o” 88 g9° e 80§ ogoo o
2 o - B988Ze8EE, o 8% © 88 <o oo @
-10
-20 -20
18 22 26 30 34 a8 42 46 50 54 58 62 66 70 74
0 10 20 30 40 50 60 Years of Age
agel1d: Age (0=18 years)
income: Annual Income in 1000s lowersEincome upperSEincome
Fit O 95% Confidence Limits 95% Prediction Limits — — — ‘YhatAge — — — lowerSEage — — — upperskage

Left: predicted regression line over individual scatterplot
> From: 2.677 + 1.223(Age; — 18) — 0.020(Age; — 18)*
Right: predicted regression line over mean per age

> F(2, 731) = 47.00,MSE = 169.00,p < .001,R? = .114 (r = .338)
= Since age and age? work together, I'd use model r as effect size

PSQF 6243: Lecture 3 30



Exponential Trends: Example of x; = Time

- A linear slope of log x; (black lines) mimics an exponential trend
across original x;; adding a quadratic slope of log x; (red or blue
lines) can speed up or slow down the exponentlal(lsh) trend

Positive Linear Slopes of Log Time Negative Linear Slopes of Log Time
— Positive Quadratic = 0 Quadratic Negative Quadratic — Positive Quadratic = 0 Quadratic Negative Quadratic
90 There is an
85 o
80 exponential
75
i effect of
65 - original x; on
60
55 the outcome
50
45 -
40 T T T T T T T T 1 5 T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 T 8 9 10
Original Time Original Time
Positive Linear Slopes of Log Time Negative Linear Slopes of Log Time
— Positive Quadratic = 0 Quadratic ——Negative Quadratic o — Positive Quadratic =—— 0 Quadratic ——Negative Quadratic
90 J -

” // . ¥ incar

70 /7—/— 35 = linear effect
60 25 \\ of IOg X; on
50 15

the outcome

40 T T 1 5 53

0.0 0.5 1.0 L5 2.0 2.5 0.0 05 1.0 15 20 25
Natural-Log-Transfomed Time

Natural-Log-Transformed Time
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Piecewise Slopes: GSS Example

- What if the effect of “more education” varies across education?
For example, | hypothesize for predicted annual income:

> Less than HS degree?
No effect of educ

> Get HS degree?
Acute "bump” relative
to less than HS degree

> More than HS degree?
Positive effect of more
educ (likely nonlinear)

. Plot: black line shows
mean per year of educ,
red lines show =+ 1 SE

PSQF 6243: Lecture 3

1000s of Income

40

35

30

SAS Line Plot for Income Means Per Year of Education

a G 7 g 9 10 11 12 13 14 15 16 17 18 19 20
Years of Education

income: Annual Income in 1000s lowerSEincome uppersEincome
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Piecewise Slopes Coding: GSS Example

_ | gradHS:
lessHS: HS Grad?

PSQF 6243: Lecture 3

OO O O O O O oo

overHS:

O U A W N - O O O

- Intercept = grade 11
(when all slopes = 0)

- 3 predictors for educ:
> lessHS: from grade 2 to 11
> gradHS: acute bump for 12+
> overHS: after grade 12 (to 20)

SAS Line Plot for Income Means Per Year of Education

gradHS

1000s of Income

= overHS

aaaaaaaaaaaaaaaa
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Piecewise Slopes: GSS Results

- After putting all three slopes in the model at the same time:
y; = Bo + B1(lessHS;) + B,(gradHS;) + B3(overHS;) + e;

- Model: F(3, 730) = 47.84, MSE = 159.61,p < .001, R? = .164 (r = .404)
> r =.404 is effect size for overall prediction by education (three slopes)

- Bo = expected income when all predictors = 0 & 11 years of ed here
> Est = 8.53,SE = 1.73 (significance and effect size not relevant)

- B4 = slope for difference in income per year education from 2 to 11 years
> Est =—0.27,SE = 0.60,t(730) = 0.65,p = .654,pr = —.017

- B, = acute difference (jJump) in income between educ=11 and educ=12
> Est = 4.68,SE = 1.88,t(730) = 2.05,p = .013, pr = .092

- B3 = slope for difference in income per year education from 12 to 20 years
> Est =2.12,SE = 0.214,t(730) = 9.94,p < .001, pr = .345
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Piecewise Slopes: Linear Past |2 Years Ed!?

SAS Predicted Income By Year of Education: Linear OverHS
. The model (dashed .0
lines) appears to R?2 = 164
35
capture the mean

trend (solid lines) 30
pretty well until 12
years of education...

1000s of Income
g

. | think we need

even more piecewise "
slopes after ed=12! 5
> From 12 to 15 0
2 3 4 4] i i 8 9 10 11 12 13 14 15 16 17 18 19 20
> From 15to 17-18 Years of Education
., From 17-18 o 20 T e ——— s
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A Linear Slope for an Ordinal Predictor???

- Ordinal predictors

Wlth 5 + Categorles SAS Line Plot for Income Means Per Level of Happy: Linear Slope
are often treated as 28

interval by fitting a F(1,732) = 1.69, MSE = 190.03,
single linear slope for p =.195,R% = .002

their overall effect ®

- We can test this
interval assumption
by comparing the

15

1000s of Income

outcome differences __— _ N _
between adjacent N Yi = ﬁO + ﬁl(Happyl 1) + €i
predictor values — 1542 SE — 154
0 — . ) — 1.

> Here: need 4 slopes,

1 for each transition 5 p1=0.74,SE = 0.57,p = .195

between Categorles 1.Unhappy 2. Meither 3.Fairly Happy 4 Nery Happy 5.Completely Happy
> Use "sequential Ordinal Happiness

dummy COding" tO income: Annual Income in 1000s lowersEincome
treat the predictor upperSEincome — — — ‘YhatiHappy
as “categorical” — — — lowerSE1Happy — — — upperSE1Happy
- 5 fixed effects

used to distinguish

each of 5 categories
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Sequential Slopes for an Ordinal Predictor

Haney !‘1‘,2: h 2v3: h 3va: h 4v5: T —r——
(x) Dif from| Dif from | Dif from | Dif from
2to3 | 3to4 | 4to5 e
1 (int) 0 0 0 E T
5 0 0 i
3 1 1 0 0
A 1 1 1 0 e s
5 1 1 1 1

- Happy = 1is where all slopes are O, so it is
the reference category (- model intercept)

- The 4 slopes capture each adjacent category
difference because each stays at 1 when done | 0 0

> Right: In indicator coding, the LvM slope Mid 1 0
went back to 0, so the second slope is NOT U 0 1
successive (i.e., it reflects LvU, not MvU) PP

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.
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GSS Results for Slopes and Slope Differences

SAS Line Plot for Income Means Per Level of Happy
30

F(4,729) = 1.25, MSE = 189.95,p = .290,R* = .007

” Vi = Bo + B1(h1vZ;) + B2 (h2v3;)
+ ﬁg (h3U4l) + p4(h4175l) + €;

20 0 — 1513,

SE = 2.70 /

/
h 1/'= 1.69, 32/= —0.58, B3 =2.30, B = —1.80,

SE =3.49, SE =237, SE = 1.15, SE = 1.67,
""1p = .629 p = .805 p= .046 p = .282

B2 —B1=—-227, B3— B2 =289, B4—p3=—-410,
2 SE = 5.25, SE = 2.90, SE = 2.30,

p = .665 p = .320 p = .075

1000= of Income

]
1.Unhappy 2. Meither A.Fairly Happy 4 Wery Happy a.Completely Happy

Crdinal Happiness
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Summary: Predictors with Multiple Fixed Slopes
- There are many scenarios in which a single predictor x; needs
multiple fixed slopes to describe its prediction of outcome y;:

> Predictor variables with C categories needs € — 1 fixed
slopes to distinguish its € possible different outcome means

= “Indicator dummy coding” is useful for nominal or ordinal predictors

« “Sequential dummy coding” can be more useful for ordinal predictors
> Should report significance and effect size for each mean difference

of theoretical interest (not necessarily all possible differences, though)

> Nonlinear effects of quantitative predictor variables (via quadratic or
exponential curves; piecewise slopes or curves) may require 2+ slopes

Predictors work together to summarize overall “trend” of x; (so effect
size for each fixed slope may be less important than overall model R?)

- We want to know the significance of each fixed slope (via univariate
Wald test of (Est — H,)/SE via t test-statistic) as well as significance
of the model R? (as multivariate Wald test via F test-statistic)

> Model R? = squared Pearson r between predicted y; and actual y;
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