
PSQF 6243: Lecture 2

General Linear Models

with One Predictor
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• Topics:

➢ Vocabulary and broad categories of predictive linear models

➢ Special cases of GLMs (and review of hypothesis testing): 

▪ Empty model (with no predictors)

▪ “(Simple) linear regression” (with one quantitative predictor)

▪ “Independent (or two-sample) 𝑡-test” with a binary predictor

➢ Relating effect size, Type I errors, Type II errors, and power

➢ Foreshadowing uses of the GLM
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Steps in Quantitative Data Analysis
• Quantitative data analysis: the process of applying statistical 

models to a sample of data to answer your research questions 

➢ Enter, download, or otherwise acquire quantitative data

➢ Import data into statistical software and verify its accuracy of import

➢ Ask for univariate descriptive statistics to describe variables 

(and especially min and max to double-check accuracy of data)

• Select a family of statistical models based on the characteristics 

of the variables of interest and the questions to be answered

➢ Estimate statistical models, check results for potential problems…

➢ Estimate more statistical models, check results again…

➢ Estimate even more statistical models… interpret results!

➢ Write up the results: Btw: you did not “run analyses” or “calculate 

models”; you “conducted analyses” and “estimated models”
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Roles and Labels of Study Variables

• Reason (Explainer):

➢ In my notation: 𝒙 variable

▪ Exogenous (is not explained)

➢ Predictor

▪ My preferred generic term

➢ Independent variable (IV)

▪ Used more often when variable 
is manipulated (like treatment)

➢ Covariate

▪ Used for reasons the researcher 
is not interested in (but must 
include to keep others happy); 
also used for quantitative 
predictor in ANCOVA

• What is To Be Explained:

➢ In my notation: 𝒚 variable

▪ Endogenous (is explained)

➢ Outcome

▪ My preferred generic term

➢ Dependent variable (DV)

▪ Used more often in 
experimental studies

➢ Criterion

▪ Used in observational studies 
with “regression” models

3    

When research questions are phrased as what is the role of 

𝑥 in explaining 𝑦, below are possible synonyms of 𝑥 and 𝑦:
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Roles of Variables: Some Examples
• In the following example research questions, identify which 

variables are predictors or outcomes and their likely types:

➢ To what extent does positive feedback improve performance 
speed and accuracy more than neutral feedback?

▪ Predictors:

▪ Outcomes:

➢ Is faster academic growth in elementary school related 
to more frequent reading to children when in preschool?

▪ Predictors:

▪ Outcomes: 

➢ How effective is teacher training for creating higher rates 
of positive feedback to a teacher’s students?

▪ Predictors:

▪ Outcomes:
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Types of Inferences: 2 possibilities 

in describing how 𝑥 relates to 𝑦
• 𝒙 causes 𝒚 → causal inference requires the following:

➢ 𝒙 variable had to come first (temporal precedence) 

➢ 𝒙 variable was under complete experimental control during the study 
(best: through random assignment and experimental manipulation)

➢ Study design eliminates all possible alternative explanations

• 𝒙 relates to 𝒚 (synonyms = associative, correlational) 
➢ We have observed a relationship, but we do not have the ability to infer 

cause given the design (i.e., it’s an observational study with measures only)

➢ In lieu of experimental control, we can attempt statistical control: include 
other predictors that represent alternative explanations for why 𝒙 relates to 
𝒚, and see if 𝒙 is still related to 𝒚 → many research questions try to do this 

• These 2 possibilities can only be distinguished by study design—they have 
nothing to with the type of variables collected (a common misconception)

• Because causal inference is rarely possible in studies of real people, we will 
only use associative language in describing model results in this class
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Moving On to Predictive Linear Models
• Questions concerning more than 1 variable at a time are best 

answered using predictive linear models, in which one must 
designate which variables are predictors and which are outcomes

• Models come in different flavors based on type of outcome variable

➢ Continu-ish quantitative outcome? 

▪ “General” Linear Models using the normal distribution—this semester!

➢ Literally any other kind of outcome variable?

▪ “Generalized” Linear Models using some other distribution and a 
transformed predicted outcome (called a “link function”) to address 
variable possible values and boundaries—here are some examples:

– Binary outcome? Use Bernoulli distribution and logit link

– Ordinal outcome? Use multinomial distribution and cumulative logit link

– Nominal outcome? Use multinomial distribution and baseline logit link

– Binomial outcome? Use binomial distribution and logit link

– Count outcome? Use Poisson-family distributions and log link

▪ Come back in Spring 2025 to learn these generalized linear models ☺
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What “Linear” in “Linear Models” Means
• Most predictive models have a “linear” form, which looks like this:

➢ 𝒚𝒊 = (𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ∗ 𝟏) + 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ∗ 𝒙𝟏𝒊 + (𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ∗ 𝒙𝟐𝒊)…

➢ Fortunately, this does NOT mean that we can ONLY predict linear 
relationships—we can STILL specify forms of nonlinear relationships 
with 𝑦𝑖  for quantitative predictors (the Xpred𝑖 variables) as needed

➢ Fortunately, this also means we can include categorical 𝒙𝒊 predictors

• Historically, variants of the general linear model (for continu-ish 
outcomes) get siloed into different classes and called different 
names based on what kind of 𝒙𝒊 predictor variables are included:

➢ Called “(linear) (multiple) Regression” if using quantitative predictors

➢ Called “analysis of variance” (ANOVA) if using categorical predictors

➢ Called “analysis of covariance” (ANCOVA) if using both predictor kinds

➢ We are going to cover all of these as special cases of the General Linear 
Model (“the GLM”)—separating them does way more harm than good

▪ We’ll use STATA REGRESS and R LM (or SAS GLM/REGRESS) for all of it! 
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Welcome to the GLM!
• Linear models use new notation within one equation to describe 

how all the 𝑥𝑖 predictors relate to the 𝑦𝑖 outcome(s) in your sample

➢ 1 outcome? “Univariate GLM”    2+ outcomes? “Multivariate GLM”

• Starting point for univariate GLMs is always to represent 

central tendency and dispersion of the outcome variable (𝒚𝒊)

➢ We will use mean and variance to describe the outcome because the 

GLM uses the normal distribution (in which skewness should be ~0)

• Your first GLM is the “Empty” model (=no predictors):  𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊

➢ 𝒚𝒊 = “y sub i”: outcome variable for each person in your sample

➢ 𝜷𝟎 = “beta 0” (sometimes called “beta not”—but not by me)

▪ More generally, betas (𝜷) will represent values to be estimated that will 

apply to the whole sample (i.e., betas are constants) = “fixed effects”

▪ The beta subscripts index each fixed effect (starting at 0, then 1,2,…)
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Image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution 
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The “Empty” General Linear Model
• The “Empty” model (empty = no predictors):  𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊

➢ 𝜷𝟎 = “beta 0” = “the intercept” (or “the constant”, ugh) and is defined as the 

            predicted (expected) value for the 𝑦𝑖 outcome when all 𝑥𝑖 predictors = 0 

            (so the estimated value for 𝜷𝟎 will change as the predictors are changed)

➢ We don’t have any predictors yet, so the intercept takes on the single most likely 

value for everyone—the sample (or “grand”) mean (so in this model, 𝜷𝟎 = ഥ𝒚)

• So what would 𝜷𝟎 be for: 

➢ The blue line? the red line?

➢ But why do the red and blue

lines differ????
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The “Empty” General Linear Model
• The “Empty” model (“no predictors”):  𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊 (in which 𝜷𝟎 = ഥ𝒚)

➢ 𝒆𝒊 = “e sub i” or “residual” = “error” = deviation of actual 𝒚𝒊 for each person 

from 𝒚𝒊 as predicted by the model (through the beta fixed effects)

➢ Because the empty model predicts the same ഥ𝒚 for all 𝒚𝒊 values, the 𝒆𝒊 residual 

for each person will just be the difference between 𝒚𝒊 and 𝜷𝟎:  𝒆𝒊 = 𝒚𝒊 − 𝜷𝟎

➢ Rather than focusing on each individual 𝒆𝒊 residual, we keep track of their 

variance across persons as the estimated model parameter, denoted as 𝝈𝒆
𝟐

➢ You’ve pry seen this before: 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝒔𝟐 =
σ𝑖=1

𝑁 𝑦𝑖−ഥ𝒚 2

𝑁−1
=

σ𝑖=1
𝑁 𝒆𝒊

2

𝑁−1
= now 𝝈𝒆

𝟐

▪ In other words, the two parameters for the empty model outcome give us the 

𝒚𝒊 mean (as 𝜷𝟎) and 𝒚𝒊 variance (as 𝝈𝒆
𝟐) → right now 𝝈𝒆

𝟐 = all the 𝒚𝒊 variance 

• In writing linear models, the notation refers to population parameters 

instead of sample statistics or “estimates” (i.e., we use 𝝈𝒆
𝟐 instead of 𝒔𝟐)

➢ Why? It’s understood that we only have one sample from which to estimate 

parameters used to make inferences about some (hypothetical) population 

10    



PSQF 6243: Lecture 2

Quantifying Uncertainty of Sample Estimates
• Let’s say we want to predict annual income in $1000s in 𝑁 = 734 using 

an empty model (= no predictors yet)

➢ 𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊 → 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 = 𝜷𝟎 + 𝒆𝒊

➢ Fixed intercept estimate 𝜷𝟎 = 𝟏𝟕. 𝟑𝟎 
(= sample ഥ𝒚 because no predictors)

➢ Person-specific residual 𝒆𝒊 = 𝒚𝒊 − 𝜷𝟎

➢ Variance of 𝒆𝒊 residuals → 𝝈𝒆
𝟐 = 𝟏𝟗𝟎. 𝟐𝟏

( = sample 𝒔𝟐 because no predictors)

➢ SD of 𝒆𝒊 → 𝝈𝒆 = 𝟏𝟗𝟎. 𝟐𝟏 = 𝟏𝟑. 𝟖𝟎
( = sample 𝒔 because no predictors)

• If the sample mean ഥ𝒚 = 17.30 is supposed to be our best guess for 
the (unknown) population mean 𝝁, how good of an estimate is it?

➢ Said differently: If we had another sample from the same population, 
by how much would that new sample’s mean differ from 17.30?

➢ Need to know how inconsistent the sample mean is expected to be across 
repeated samples of same kind → from the mean’s “sampling distribution”

▪ Note: This is NOT the same as a variable’s distribution across persons (above)…!
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Building Intuition about Sampling 

Distributions of Estimates (the mean for now)

• What affects how close ഥ𝒚 is to the true value of 𝝁? 

• Demo: I made my own

quantitative variable* 

𝒚𝒊 in a population of 

100,000 fake people

➢ Population mean: 𝝁 = 𝟏𝟎 

➢ Population VAR: 𝝈𝟐 = 𝟐𝟓

➢ So 𝒚𝒊 is off the mean by 

𝝈 = 𝑺𝑫 = 𝟓 on average

* Used a “normal” distribution here to generate 𝒚𝒊 (as shown earlier)
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blue line = truth, 

red line = population estimate
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1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟏𝟎
(SD 𝝈 = 𝟓)

• Histograms show 
differences across 
samples in each 
sample’s mean (ഥ𝒚𝒔)

• These depict the 𝑁-
specific “sampling 
distribution” of ഥ𝒚𝒔

• More 𝑵 in each 
sample → less 
dispersion in ഥ𝒚𝒔
across samples 
(more consistency)
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Note: These bars do not show individual people! 

They are summaries for distinct samples of people.
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1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟏𝟎

(SD 𝝈 = 𝟓)

• More 𝑵 → less SD 

in ഥ𝒚𝒔 across samples
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𝑵 Per 

Sample

Mean
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

5 9.97 2.17

10 9.98 1.60

15 10.00 1.28

20 10.03 1.08

30 10.03 0.89

50 9.97 0.69
Note: These bars do not show individual people! 

They are summaries for distinct samples of people.
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Building Intuition about Sampling 

Distributions of Estimates (the mean for now)

• As within-sample 𝑵 increases, sample mean ഥ𝒚 will be closer to 𝝁 on average

• What else affects consistency of ഥ𝒚𝒔? How persons vary from each other!
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Mean: 𝝁 = 10 
SD: 𝝈 = 𝟓 from before

Mean: 𝝁 = 10 
SD: 𝝈 = 𝟑 instead
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1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟏𝟎

(SD 𝝈 = 𝟑 now)

• More 𝑵 → less SD 

in ഥ𝒚𝒔 across samples
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𝑵 Per 

Sample

Mean
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

5 10.01 1.42

10 10.00 0.96

15 10.01 0.78

20 9.99 0.67

30 10.00 0.56

50 10.00 0.42
These bars still do not show individual people! 

They are summaries for distinct samples of people.
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Effects of 𝑁 and 𝑆𝐷 on Dispersion of ഥ𝒚𝒔 
Left to right:

• More 𝑵 in each 
sample → less 
dispersion in ഥ𝒚𝒔
across samples

Top to bottom:

• More 𝑺𝑫 in each 
sample → more 
dispersion in ഥ𝒚𝒔
across samples

• Dispersion → 
More estimate 
inconsistency 
across samples
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These bars still do not show individual people! 

They are summaries for distinct samples of people.
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Anticipating Inconsistency of Sample Mean ഥ𝒚𝒔 
• In the example from the previous slides, we had a simulated finite 

population from which multiple different samples were selected

➢ Inconsistency of ഥ𝒚𝒔 could be indexed by standard deviation (𝑆𝐷) across 
samples → more 𝑵, less variance → smaller 𝑺𝑫 of ഥ𝒚𝒔 (more consistent)

• Given only one sample, we can still anticipate the 𝑺𝑫 of ഥ𝒚𝒔:

➢ 𝑺𝑫 of ഥ𝒚𝒔 across samples  Standard Error (of Mean) = 𝑺𝑬 = 
𝝈

𝑵
=

𝝈𝟐

𝑵

▪ Note that 𝑺𝑬 includes the population SD 𝝈, which must be replaced by 
the sample-estimated SD 𝒔 when 𝝈 is unknown (i.e., most of the time)

➢ SE of the mean is the expected average deviation of any given sample 
mean ഥ𝒚 from the population mean 𝝁 (even if you do not know 𝝁)

▪ Is NOT the same as SD of 𝒚𝒊 (𝒔) which is the average deviation of any given 
observation (i.e., person) from the sample mean (that you can access)

➢ In general, the term “SE” refers to the SD of an estimate’s sampling 
distribution (e.g., how the estimate of a sample’s variance would differ 
across samples is also described by its own SE, but it’s found differently)
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Back to Our Example Empty Model
• Predict annual income in $1000s in 𝑁 = 734 using an empty model 

(= no predictors yet)

➢ 𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊 → 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 = 𝜷𝟎 + 𝒆𝒊

➢ Fixed intercept estimate 𝜷𝟎 = 𝟏𝟕. 𝟑𝟎 
(= sample ഥ𝒚 because no predictors)

➢ Person-specific residual 𝒆𝒊 = 𝒚𝒊 − 𝜷𝟎

➢ Variance of 𝒆𝒊 residuals → 𝝈𝒆
𝟐 = 𝟏𝟗𝟎. 𝟐𝟏

( = sample 𝒔𝟐 because no predictors)

• 𝑺𝑫 of 𝒆𝒊 → 𝝈𝒆 = 𝟏𝟗𝟎. 𝟐𝟏 = 𝟏𝟑. 𝟖𝟎 

( = sample 𝒔 because no predictors)

➢ 𝑺𝑫 is about the PEOPLE: This tells us that individual income is expected 
to be off from the sample mean income ഥ𝒚 by ± 𝟏𝟑. 𝟖𝟎 on average

• Fixed intercept 𝜷𝟎 standard error: 𝑺𝑬 =
𝝈𝒆

𝑵
=

𝝈𝒆
𝟐

𝑵
= 𝟎. 𝟓𝟏

➢ 𝑺𝑬 is about the SAMPLES: This tells us that sample mean income ഥ𝒚 
(as given by estimate for 𝜷𝟎 in an empty model) is expected to be off 
from the unknown population mean income 𝝁 by ± 𝟎. 𝟓𝟏 on average
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SE of Mean Approximates 𝑺𝑫 of 

Sampling Distribution for mean ഥ𝒚𝒔
Population values for 𝒚𝒊 variable: Mean 𝝁 = 𝟏𝟎, SD 𝝈 = 𝟓
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𝑵 Mean 
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

Mean SE with: 

𝝈 𝒔

5 9.97 2.17 2.24 2.13

10 9.98 1.60 1.58 1.55

15 10.00 1.28 1.29 1.28

20 10.03 1.08 1.12 1.11

30 10.03 0.89 0.91 0.91

50 9.97 0.69 0.71 0.71

The greater the sample size 𝑵, the better the estimate of each sample’s SD, 

and the less it matters that SE is formed with sample SD (𝒔) instead of the 

population SD (𝝈). But this distinction will matter more in smaller samples….
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What about Other Kinds of Variables?

• It turns out with more 𝑵 the sampling distribution of ഥ𝒚𝒔 becomes 

more normal no matter what the observed variable’s distribution is 

➢ Btw: More 𝑁 → more normal ത𝑦𝑠 distribution → “Central Limit Theorem”

• Demo: I simulated a count 

variable* 𝒚𝒊 in a population

of 100,000 new fake people

➢ Population mean: 𝝁 = 𝟐 

➢ Population 𝑉𝐴𝑅: 𝝈𝟐 = 𝟐

➢ So 𝒚𝒊 is off the mean 

by 𝑺𝑫 = 𝟐 on average

* Used a “Poisson” distribution here to generate 𝒚𝒊 (in which 𝝁 = 𝝈𝟐)
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Count variables are bounded at 

0 and typically positively skewed 

(and what I’d call “continu-ish”) 

given integer values only 
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1000 samples each for different 𝑁… it works!
• Population values: 

Mean 𝝁 = 𝟐
(VAR 𝝈𝟐 = 𝟐)

• More 𝑵 → less SD 

in ഥ𝒚𝒔 across samples; 

ഥ𝒚𝒔 is also more normal 
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𝑵 Mean
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

Mean 
SE

5 1.98 0.61 0.59

10 1.99 0.42 0.43

15 1.99 0.35 0.36

20 1.99 0.31 0.31

30 1.99 0.25 0.25

50 2.01 0.20 0.20

Note: The observed SD for the sampling distribution 

for ഥ𝒚𝒔: (a) is well-approximated by the mean SE for 

ഥ𝒚𝒔, and (b) appears normal, even for a count variable
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Beyond Empty GLMs: 2 Fixed Effects
• Purpose of predictive linear models is to customize each person’s 

expected outcome (beyond just the mean) by adding predictors

➢ Soon we will examine the unique effects of multiple predictors, but let’s 

start with just one quantitative predictor: “(simple) linear regression”

• GLM to describe how 𝒙𝒊 predicts 𝒚𝒊:   𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊

➢ Fixed intercept 𝜷𝟎 = now is expected 𝒚𝒊 specifically when 𝒙𝒊 = 𝟎 

▪ Changes from sample mean to a “conditional mean” (based on 𝒙𝒊)

▪ Purpose is to adjust for any mean difference between 𝒙𝒊 and 𝒚𝒊

➢ Fixed slope 𝜷𝟏 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝒊

▪ Purpose is to capture a linear relationship between 𝒙𝒊 and 𝒚𝒊 

▪ To create meaningful intercept when 𝒙𝒊 = 𝟎, you may need to rescale 𝒙𝒊 

by centering: subtracting a constant 𝑐 value to adjust what 0 means
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Why the Fixed Intercept 𝜷𝟎 

*Should* Be Meaningful…
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This is a very detailed map…

But what do we need to know 

to be able to use the map at all?
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Intercept =“You are Here” Sign of Data
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With original years of education: 

𝒙𝒊 =educ, 𝒚𝒊 = income

        𝒚𝒊 =  𝜷𝟎 +  𝜷𝟏 𝒙𝒊 + 𝒆𝒊

        𝒚𝒊 = −𝟕. 𝟖𝟗 + 𝟏. 𝟖𝟐 𝒙𝒊 + 𝒆𝒊     

Intercept

𝜷𝟎

With centered education (𝒄 = 𝟏𝟐): 

𝒙𝒊 =educ−𝟏𝟐, 𝒚𝒊 = income

        𝒚𝒊 =  𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊

        𝒚𝒊 = 𝟏𝟒. 𝟎𝟎 + 𝟏. 𝟖𝟐 𝒙𝒊 + 𝒆𝒊     

Intercept

𝜷𝟎

There is no wrong way to center, only 

weird. Center so 𝒙𝒊=0 is meaningful.
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Beyond Empty GLMs: Residual Variance

• GLM describes how 𝒙𝒊 predicts 𝒚𝒊:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊 

➢ Fixed intercept = 𝜷𝟎; Fixed slope of predictor 𝒙𝒊 = 𝜷𝟏

➢ Total number of fixed effects = 𝒌 = 𝟐 here (used in later formulas)

• The 𝒚𝒊 created using the predictors is called ෝ𝒚𝒊 = “y hat” 

➢ ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊    →   𝒚𝒊 = ෝ𝒚𝒊 + 𝒆𝒊 →   𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊

➢ ෝ𝒚𝒊 is also called a “conditional mean” (because ෝ𝒚𝒊 will be 

the same for anyone with the same value of predictor 𝒙𝒊)

• Now we can find the new 𝒆𝒊 residual for each person, 

and thus the variance of the 𝒆𝒊 residuals across persons 

➢ “residual variance”: 𝝈𝒆
𝟐 =

σ𝑖=1
𝑁 𝑦𝑖−ෝ𝒚𝒊

2

𝑁−2
=

σ𝑖=1
𝑁 𝒆𝒊

2

𝑁−2

➢ Once predictors are included, 𝝈𝒆
𝟐 should be smaller than 𝒔𝟐 for 𝒚𝒊
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Visualizing GLM Residuals
Empty Model for 𝑦𝑖 = income:

  𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊

  ෝ𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟕. 𝟑

  𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟕. 𝟑 + 𝟒𝟏. 𝟓

Variance: 𝝈𝒆
𝟐 =

σ𝑖=1
𝑁 𝑦𝑖−ෝ𝒚𝒊

2

𝑁−1
= 190.2

   → 190.2 = 𝑠2 is all 𝑦𝑖 variance

Add Education as Predictor:

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊

   ෝ𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟒. 𝟎 + 𝟏. 𝟖 𝟖 = 𝟐𝟖. 𝟒

   𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟐𝟖. 𝟒 + 𝟑𝟎. 𝟒

Variance: 𝝈𝒆
𝟐 =

σ𝑖=1
𝑁 𝑦𝑖−ෝ𝒚𝒊

2

𝑁−2
= 162.3

    → 162.3 = leftover 𝑦𝑖 variance
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Btw: 𝜷 formulas result from the goal of 

minimizing the squared 𝒆𝒊 residuals across 

the sample—this is called “ordinary least 

squares estimation”—let’s see what 

happens for one example person below

unexplained

explained

Empty model 

prediction

Focus: 𝑥𝑖 = 8, 𝑦𝑖 = 58.8
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Uncertainty of Sample Estimates
• Besides their estimates (i.e., answers using our sample that 

make 𝝈𝒆
𝟐 the smallest), we need to quantify inconsistency of 

both fixed effects: 𝜷𝟎 intercept and 𝜷𝟏 slope of predictor 𝒙𝒊

➢ How much would my sample intercept vary across similar samples?
( just like SE of mean, but for the mean conditional on 𝒙𝒊 = 𝟎)  

➢ How much would my sample slope vary across similar samples?
(same idea in concept, but also taking into account the scale of 𝒙𝒊) 

• Demo: I made my own (normally-distributed) quantitative 
variables 𝒙𝒊 and 𝒚𝒊 in a population of 100,000 fake people

➢ Predictor 𝒙𝒊 has mean = 0 and variance = 1 

➢ Outcome 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊 → ෝ𝒚𝒊 = 𝟏𝟎𝟎 + 𝟐 𝒙𝒊

➢ Residual variance is either 𝝈𝒆
𝟐 = 𝟗 or 𝝈𝒆

𝟐 = 𝟐𝟓 

➢ Let’s see what happens to 𝜷𝟏 over 100 samples of varying 𝑵 and 𝝈𝒆
𝟐
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Effects of 𝑁 and 𝑆𝐷 on Dispersion of 𝜷𝟏
Left to right:

• More 𝑵 in each 
sample → less 
dispersion in 𝜷𝟏
across samples

Top to bottom:

• More 𝑺𝑫 in each 
sample → more 
dispersion in 𝜷𝟏
across samples

• Dispersion → 
Estimate 
inconsistency 
across samples
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These bars still do not show individual people! 

They are summaries for distinct samples of people.
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Effects of 𝑁 and 𝑆𝐷 on Dispersion of 𝜷𝟏
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These bars still do not show individual people! 

They are summaries for distinct samples of people.

𝑵/

SD

Mean
𝜷𝟏

SD
𝜷𝟏

Mean 
SE

10/3 2.22 1.14 1.03

30/3 2.06 0.63 0.57

50/3 2.05 0.47 0.43

10/5 1.62 1.78 1.73

30/5 1.79 0.99 0.97

50/5 1.90 0.74 0.71

• Population values: 

Slope 𝜷𝟏 = 𝟐

• More 𝑵 → less SD 

in 𝜷𝟏 across samples; 

𝜷𝟏 is also more normal 
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Standard Errors in a One-Predictor GLM
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• Back to example GLM with 𝑘 = 2 fixed effects 

➢ Model: 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊 

➢ Result: ෝ𝒚𝒊 = 𝟏𝟒. 𝟎𝟎 + 𝟏. 𝟖𝟐 𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐 , 𝝈𝒆
𝟐 = 𝟏𝟔𝟐. 𝟐𝟖

• Standard Error (SE) for 

a slope estimate 𝜷𝟏 in a 

single-predictor GLM:

➢ Slope 𝜷𝟏 SE =
𝟏𝟔𝟐.𝟐𝟖

𝟖.𝟒𝟔∗ 734−2
= 0.16

• SE of any predicted outcome ෝ𝒚𝒊 (including the outcome captured 

by 𝜷𝟎 for 𝑥𝑖 = 0) depends on the value of the predictor—the SE will 

increase as you move away from the predictor’s mean (fulcrum):

➢ SE of ෝ𝒚𝒊 | 𝑥𝑖 = 𝝈𝒆
𝟐 ∗

1

𝑁
+

𝑥𝑖− ҧ𝑥 2

𝑁−1 𝑠𝑥
2 → 0.55 at 𝐸𝑑𝑢𝑐𝑖 = 12 specifically

SE𝛽1
=

residual variance of 𝑦𝑖

variance of 𝑥𝑖 ∗ 𝑁 − 𝑘
=

𝝈𝒆
𝟐

𝑠𝑥
2 ∗ 𝑁 − 𝑘

→ Sample slope is expected to be 

off from (unknown) population 

slope by ± 𝟎. 𝟏𝟔 on average
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From Descriptive to Inferential Statistics
• A standard error (SE) captures expected inconsistency of any kind 

of model estimate across repeated samples of the same kind

➢ 𝑺𝑬: Mean distance of sample (estimate) from population (true unknown)
(*cough cough*, repeated homework question alert, *cough cough*)

➢ Btw, 𝑺𝑬2 is known as “sampling variance” (but is not typically reported) 
—not to be confused with 𝑺𝑫𝟐, which is “sample variance” (ugh, I know) 

▪ Remember: 𝑺𝑬 → width across samples; 𝑺𝑫 → width across people in a sample

• Moving forward: We can use an 𝑺𝑬 to assess how far away our 
sample estimate is from a hypothesized population value

➢ By sampling only some persons, we expect some fluctuation in the sample-
specific estimates across multiple similar samples, but how different is 
“too different” for our sample to not likely be from the same population?

➢ Said differently, if the population slope really were true, how unexpected 
(what % of the time) is it to have observed this sample’s particular slope? 

➢ This process is known as “null hypothesis significance testing” and it 
requires us to make several decisions ahead of time: We need to operationally 
define “hypothesized value”, as well as “too different” (or “how unexpected”)…
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Null Hypothesis Significance Testing
• A “null hypothesis” (𝑯𝟎) is a statement about the population parameter 

being equal to some stated (expected) value 

➢ e.g., for our GLM example education slope 𝜷𝟏 = 𝟏. 𝟖𝟐,  𝑯𝟎:  𝜷𝟏 = 𝟎

➢ 𝑯𝟎 for a slope is usually 0, but it doesn’t have to be! 

➢ Btw, you can also test 𝒚 against 𝑯𝟎 about 𝝁 → “one-sample 𝑡-test”

• An “alternative hypothesis” (𝑯𝑨) is a statement that 
contradicts the null hypothesis and conveys allowed 
directionality of deviation from stated 𝐻0 value

➢ “One-tailed test” is one-directional:   𝑯𝑨:  𝜷𝟏 > 𝟎   OR  𝑯𝑨:  𝜷𝟏 < 𝟎 

➢ “Two-tailed test” is “different than”:  𝑯𝑨:  𝜷𝟏 ≠ 𝟎  (aka, 𝑯𝑨:  𝜷𝟏 = ! 𝟎)

• How far away is our sample estimate from 𝑯𝟎? We standardize this 
distance using its 𝑺𝑬 as a proxy for the 𝑺𝑫 of its sampling distribution

➢ For 𝜷𝟏 = 𝟏. 𝟖𝟐 and 𝑯𝟎: 𝜷𝟏 = 𝟎, the standardized distance of 𝜷𝟏 from 𝑯𝟎 

is given by this “test statistic” =
𝑬𝒔𝒕−𝑯𝟎

𝑺𝑬
=

𝜷𝟏−𝟎

𝑺𝑬
=

𝟏.𝟖𝟐−𝟎

𝟎.𝟏𝟔
= 𝟏𝟏. 𝟐𝟖
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Null Hypothesis Significance Testing
• So how far away is our sample estimate from 𝑯𝟎 (using 𝑆𝐸)? 

➢ For 𝜷𝟏 = 𝟏. 𝟖𝟐 and 𝑯𝟎: 𝜷𝟏 = 𝟎, the standardized distance of 𝜷𝟏 from 

𝑯𝟎 is given by this “test statistic” =
𝑬𝒔𝒕−𝑯𝟎

𝑺𝑬
=

𝜷𝟏−𝟎

𝑺𝑬
=

𝟏.𝟖𝟐−𝟎

𝟎.𝟏𝟔
= 𝟏𝟏. 𝟐𝟖

➢ So 𝜷𝟏 = 𝟏. 𝟖𝟐 is 𝟏𝟏. 𝟐𝟖 sampling standard deviations away from 𝑯𝟎

➢ Test statistic = how far off from expected value / expected offness

• And how unexpected is that result—how often would we see 
a sample slope that far away from 𝑯𝟎—if 𝑯𝟎 really were true? 

➢ Probability density functions (PDFs) to the rescue! We use PDFs 
describe expected behavior of an estimate’s sampling distribution

➢ 2 PDF choices to evaluate a slope’s test statistic (i.e., the 𝟏𝟏. 𝟐𝟖 here)

▪ “Standard Normal” distribution, which is known as “𝒛”—that’s next

▪ “Student’s 𝒕” distribution, which is known as “𝒕” (stay tuned!)
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+1.65−1.65

+1.96−1.96

+2.58−2.58

Area Under Standard Normal Curve
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Btw, y-axis created by:

 𝑓 𝑧𝑖 =
1

2𝜋
exp −

𝑧𝑖
2

2

The x-axis (called 𝒛𝒊) is 

in standard deviation 

units (where 𝑺𝑫 = 𝟏)

Boundaries defined 

by 𝒛 “critical” values:

10% outside 𝒛 = ±𝟏. 𝟔𝟓
  5% outside 𝒛 = ±𝟏. 𝟗𝟔
  1% outside 𝒛 = ±𝟐. 𝟓𝟖

“data”= samples here

https://medium.com/@harsharora0703/standard-normal-distribution-91f78a2b56e3


PSQF 6243: Lecture 2

Denoting Expected vs. Unexpected
• “How unexpected” a test statistic is (e.g., 𝟏𝟏. 𝟐𝟖 for 𝜷𝟏 = 𝟏. 𝟖𝟐, 

𝑆𝐸 = 0.16 here) requires two more decisions made ahead of time

• How often is “unexpected”? This is known as “alpha level”

➢ Common is alpha = .05 (or .01 for conservative or .10 for lenient)

• Which directions contain “unexpected” (how can you be wrong)?

➢ “One-tailed test“ allocates ALL of alpha % area to one direction (for 𝐻𝐴)

➢ “Two-tailed test“ allocates HALF of alpha % to each possible direction

• These decisions then create “critical values” for your PDF, which 
then define boundaries as to where “unexpected” begins

➢ Test statistics that fall inside boundaries = sufficiently expected  
     → retain (do not reject) 𝐻0 = “statistically nonsignificant” result

➢ Test statistics that fall outside boundaries = sufficiently unexpected  
     → reject 𝐻0 = “statistically significant” result
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• Choices: 𝑯𝟎:  𝜷𝟏 = 𝟎; probability declared “unexpected” is alpha = 
.05 (so 95% “expected”) → two possible versions of one-tailed 𝐻𝐴:

• 𝑯𝑨: 𝜷𝟏 > 𝟎 →
 𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = +𝟏. 𝟔𝟓

➢ Tests if 𝜷𝟏 is bigger or
not bigger than 𝑯𝟎

➢ If 𝜷𝟏 is actually smaller, 
conclude “not bigger”

• 𝑯𝑨: 𝜷𝟏 < 𝟎 →
 𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = −𝟏. 𝟔𝟓

➢ Tests if 𝜷𝟏 is smaller 
or not smaller than 𝑯𝟎

➢ If 𝜷𝟏 is actually bigger, 
conclude “not smaller”

Allowed Directions of “Unexpected”:

One-Tailed Tests at Work
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𝒛 for test statistic

+𝟏. 𝟔𝟓

𝒛 > +𝟏. 𝟔𝟓 

5%

−𝟏. 𝟔𝟓

𝒛 < 𝟏. 𝟔𝟓 

5%

𝒛 ≥ −𝟏. 𝟔𝟓 

95%

𝒛 ≤ +𝟏. 𝟔𝟓 

95%

𝑯𝟎

https://discovery.cs.illinois.edu/learn/Simulation-and-Distributions/Normal-Distribution/
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+1.65−1.65

+1.96−1.96

+2.58−2.58

Two-Tailed Test: ± Critical Values Instead
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beer to the rescue

Only one problem: 

these 𝒛 areas don’t 

work for small 𝑵…

beer to the rescue!
(no, really… story time!)

Boundaries defined 

by 𝒛 critical values:

10% outside 𝒛 = ±𝟏. 𝟔𝟓
  5% outside 𝒛 = ±𝟏. 𝟗𝟔
  1% outside 𝒛 = ±𝟐. 𝟓𝟖

“data”= samples here

https://medium.com/@harsharora0703/standard-normal-distribution-91f78a2b56e3
https://en.wikipedia.org/wiki/Student%27s_t-distribution


Image borrowed, but source now unknown (original link is inactive)
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Meet Student’s 𝒕 Distribution
• Both 𝒛 (standard normal) and 𝒕 distributions have the same metric: 

𝑴 = 𝟎, 𝑺𝑫 = 𝟏 (how far 𝜷𝟏 is from 𝑯𝟎 with sampling 𝑺𝑫  𝑺𝑬) 

• But 𝒕 is flatter than 𝒛, more so with fewer “denominator 

degrees of freedom”: 𝑫𝑭𝒅𝒆𝒏 = 𝑵 − 𝒌 (where 𝑘 = fixed effects) 

• Same rules: If 𝒕 test statistic is outside boundaries set by 𝒕 critical 

values for your 𝐷𝐹𝑑𝑒𝑛 → reject 𝐻0 → “significant” result
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• 𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 values for 

alpha = .05 by 

𝑫𝑭𝒅𝒆𝒏 shown here

• With smaller 𝑵, 

have to go farther 

out to get to 5%

Btw, 𝒕 with 

𝑫𝑭𝒅𝒆𝒏 = ∞ is 𝒛 

𝑯𝟎
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Critical Values for 𝒕 versus 𝒛 Distributions 

With smaller 𝑵 − 𝒌 

(fewer 𝑫𝑭𝒅𝒆𝒏), more 

extreme test-statistics 

are needed when 

using 𝒕 to say 𝜷𝟏 

is “unexpectedly 

different” from 𝑯𝟎 

(i.e., to cross the 

alpha-based boundary 

to be “significant”)

𝒛 doesn’t use 𝐷𝐹𝑑𝑒𝑛
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In the olden days, one needed to refer to tables of 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 values for a given alpha 

and DF, but now statistical software can give you the exact 𝒑-value: the probability 

of a more extreme 𝑡 test-statistic than you found if the null hypothesis 𝐻0 were true

Denominator Degrees of Freedom (𝑵 − 𝒌)
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Labeling 𝑡 test-statistics and 𝑝-values: 

Two-tailed boundaries using alpha = .05
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𝒕 = how many 𝑺𝑬 units sample estimate is from 𝑯𝟎

unexpected   

         2.5%

95% expected

𝒑 < . 𝟎𝟓 → 

significantly 

negative

𝒕 > +𝟐𝒊𝒔𝒉

𝒑 < . 𝟎𝟓 → 

significantly 

positive

𝒕 < −𝟐𝒊𝒔𝒉

𝒕 = 𝟎 at 𝑯𝟎

unexpected

  2.5%

𝒑 ≥ . 𝟎𝟓 → 

nonsignificantly 

positive

𝒑 ≥ . 𝟎𝟓 → 

nonsignificantly 

negative

http://mathcenter.oxford.emory.edu/site/math117/normalDistribution/
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From Alpha to Confidence Intervals
• Critical values from a 𝑡-distribution can also be used to compute a 

“confidence interval” (𝑪𝑰) for your estimate

• 𝑪𝑰 = interval predicted to contain the population value in
       (1−alpha)% of repeated samples (confidence = expected)

➢ Conservative:   alpha = .01 → 1% unexpected → 99% 𝐶𝐼

➢ Common:         alpha = .05 → 5% unexpected → 95% 𝐶𝐼

➢ Lenient:            alpha = .10 → 10% unexpected → 90% 𝐶𝐼

➢ If 𝑪𝑰 does not cross 𝑯𝟎, then your result is “significant” at that alpha

• Confidence Interval: 𝐶𝐼 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸

• e.g., for 𝜷𝟏 = 𝟏. 𝟖𝟐, 𝑆𝐸 = 𝟎. 𝟏𝟔, 𝐷𝐹𝑑𝑒𝑛 = 𝑁 − 𝑘 = 732 → 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

➢ 𝟗𝟎% CI for 𝜷𝟏: 𝐶𝐼 = 𝟏. 𝟖𝟐 ± 𝟏. 𝟔𝟓 ∗ 𝟎. 𝟏𝟔 = 1.56 𝑡𝑜 2.08 

➢ 𝟗𝟓% CI for 𝜷𝟏: 𝐶𝐼 = 𝟏. 𝟖𝟐 ± (𝟏. 𝟗𝟔 ∗ 𝟎. 𝟏𝟔) = 1.51 𝑡𝑜 2.13

➢ 𝟗𝟗% CI for 𝜷𝟏: 𝐶𝐼 = 𝟏. 𝟖𝟐 ± 𝟐. 𝟓𝟖 ∗ 𝟎. 𝟏𝟔 = 1.41 𝑡𝑜 2.23
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For reporting 𝐶𝐼: 

“lower bound” to 

“upper bound”
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Significance Tests:  What’s in Your Output
• Each 𝜷 fixed slope has 6 relevant characteristics (*essential to report):

➢ *Estimate = best guess for the fixed slope from our sample data 

➢ *Standard Error = 𝑺𝑬 = average distance of sample slope from population slope 

                                        → expected inconsistency of slope across samples                                      

➢ “𝒕-value” = (Estimate − 𝐻0) / 𝑆𝐸 = test-statistic for fixed slope against 𝐻0(= 0)

➢ Denominator DF = 𝑫𝑭𝒅𝒆𝒏 = 𝑁 − 𝑘 (where 𝑘 = total number of fixed effects)

➢ 𝒑-value = (two-tailed) probability of fixed slope estimate as or more extreme if 

𝐻0 is true → how unexpected our result is on a t-distribution with 0=𝐻0, SD=SE

➢ (95%) Confidence Interval = 𝑪𝑰 =  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸 = range in which 

true (population) value of estimate is expected to fall across (95%) of samples

• Compare 𝒕 test-statistic to 𝑡 critical-value at pre-chosen level of significance 

(where % unexpected = alpha level): this is a “univariate Wald test”

➢ Btw, if denominator DF are not used (or are large enough), then 𝒕 is treated as 𝒛 

instead → same test-statistic, but different distribution for defining “unexpected”
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Significance Test of Fixed Education Slope
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• Standard Error (SE) for 

a fixed slope estimate 𝜷𝟏 

in a single-predictor GLM:

• Example: 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊, 𝝈𝒆
𝟐 = 𝟏𝟔𝟐. 𝟐𝟖, 

               𝑁 = 734, 𝑥𝑖 = 𝐸𝑑𝑢𝑐𝑖 − 12: 𝑀 = 1.81, 𝑉𝑎𝑟 = 8.46

➢ Slope for education predictor:  𝐻0:  𝜷𝟏 = 0,  𝐻𝐴:  𝜷𝟏 ≠ 0

𝐸𝑠𝑡 = 𝟏. 𝟖𝟐, SE =
𝟏𝟔𝟐.𝟐𝟖

𝟖.𝟒𝟔∗ 734−2
= 𝟎. 𝟏𝟔,  𝑡 =

𝐸𝑠𝑡−0

𝑆𝐸
=

𝟏.𝟖𝟐−0

𝟎.𝟏𝟔
= 11.28, 

𝐷𝐹𝑑𝑒𝑛 = 𝑁 − 𝑘 = 734 − 2 = 732, 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1.96, so 𝑝 < .0001,
95% 𝐶𝐼 = 𝐸𝑠𝑡 ± (𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸) = 𝟏. 𝟖𝟐 ±(1.96 ∗ 𝟎. 𝟏𝟔) = 1.51 to 2.14

➢ Interpretation: Predicted income is significantly higher by 1.82k 

for each additional year of education (so reject 𝐻0 that 𝜷𝟏 = 0)

SE𝛽1
=

residual variance of 𝑦𝑖

variance of 𝑥𝑖 ∗ 𝑁 − 𝑘
=

𝝈𝒆
𝟐

𝑠𝑥
2 ∗ 𝑁 − 𝑘
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𝑆𝐸s and 𝐶𝐼s for Predicted Income
• 𝑺𝑬 of any predicted outcome ෝ𝒚𝒊 (including the outcome captured by 𝜷𝟎 

for 𝑥𝑖 = 0) depends on the value of the predictor—the SE will increase as 
you move away from the predictor’s mean:

➢ SE of ෝ𝒚𝒊 | 𝑥𝑖 = 𝝈𝒆
𝟐 ∗

1

𝑁
+

𝑥𝑖− ҧ𝑥 2

𝑁−1 𝑠𝑥
2

• 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊, 𝝈𝒆
𝟐 = 𝟏𝟔𝟐. 𝟐𝟖, 

                        𝑁 = 734, 𝐸𝑑𝑢𝑐𝑖 − 12: 𝑀 = 1.81, 𝑉𝑎𝑟 = 8.46

• 𝑆𝐸 and 𝐶𝐼 for predicted income when Education = 12?

➢ Given by 𝜷𝟎: 𝐸𝑠𝑡 = 𝟏𝟒. 𝟎𝟎, SE = 𝟏𝟔𝟐. 𝟐𝟖 ∗
1

734
+

0−1.81 2

733 8.46
= 𝟎. 𝟓𝟓, 

95% 𝐶𝐼 = 𝐸𝑠𝑡 ± (𝑡𝑐𝑟𝑖𝑡 ∗ 𝑆𝐸) = 𝟏𝟒. 𝟎𝟎 ±(1.96 ∗ 𝟎. 𝟓𝟓) = 12.91 to 15.09

• You can use any software package to get predicted outcomes for any 
value of the model predictors… and for any person in your dataset!
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SE (for 𝜷𝟎 or any ෝ𝒚𝒊) = 

average distance of 

sample predicted value 

from population value
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Two CIs for Predicted Outcomes
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• The blue shading 
shows the 95% range 
for the ෝ𝒚𝒊 outcomes 
from the fixed effects 
(i.e., regression line)

➢ They are narrowest at 
the predictor mean, and 
widen as moving away

• The blue dashed lines 
show the 95% range for 
the actual 𝒚𝒊 outcomes 
including the residual 
variance (is way bigger!) 

Intercept

𝜷𝟎

ഥ𝒙

Blue shaded line is created by 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸; 

blue dotted line also adds in error from 𝝈𝒆
𝟐
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Effect Size via Standardized Slopes
• GLM predictive equation uses the original variables as entered 

directly into the model—this is the “unstandardized” solution

• e.g., For our GLM with 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝒆𝒊 

➢ 𝒙𝒊 is 𝐸𝑑𝑢𝑐𝑖 − 12: 𝑀 = 1.81, 𝑉𝑎𝑟 = 8.46

➢ 𝒚𝒊 is 𝐼𝑛𝑐𝑜𝑚𝑒: 𝑀 = 17.30, 𝑉𝑎𝑟 = 190.21

• Unstandardized: 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝟏𝟒. 𝟎𝟎 + 𝟏. 𝟖𝟐(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊 

➢ Unstandardized fixed 
slopes (𝜷𝒖𝒏𝒔𝒕𝒅) can be 
standardized (𝜷𝒔𝒕𝒅) as:

• Standardized (Std): 𝒚𝒊 = 𝟎 + 𝟎. 𝟑𝟖(𝒙𝒊) + 𝒆𝒊

➢ “Standardized” solution refers to variables that have been 𝑧-transformed 
into 𝑀 = 0, 𝑆𝐷 = 1 → 𝑥𝑠𝑡𝑑 =  (𝑥𝑖 − ҧ𝑥)/𝑠𝑥 and 𝑦𝑠𝑡𝑑 = (𝑦𝑖 − ത𝑦)/𝑠𝑦 

➢ For one predictor, 𝜷𝒔𝒕𝒅 = Pearson correlation (range = −1 to 1) 

➢ Why do this? To get an effect size that is independent of scaling and 𝑁!
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𝛽𝑠𝑡𝑑 = 𝜷𝒖𝒏𝒔𝒕𝒅 ∗
𝑆𝐷𝑥

𝑆𝐷𝑦

𝑠𝑡𝑑 𝛽0 will 

always be 0!
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Remember Pearson’s Correlation 𝑟?
• For two quantitative variables, 𝒙𝒊 and 𝒚𝒊

➢ To graph their relationship, we can request a scatterplot, in which values 
for 𝒙𝒊 are shown on the 𝑥-axis and values for 𝒚𝒊 are shown on the 𝑦-axis

➢ Relation between 𝑥𝑖 and 𝑦𝑖 values will be captured by a general effect size called 
“correlation” (𝑟); one specific type for quantitative variables is Pearson

▪ Btw, Pearson’s 𝑟 for two binary variables is re-named “phi” 𝒓 

▪ Btw, Pearson’s 𝑟 for a binary and a quantitative variable is re-named “point-biserial” 𝒓 

➢ Correlations range continuously from −𝟏 to 𝟏 (size indicated by absolute value)

• Here are some example scatterplots and the correlations they depict, ranging 
from perfectly positive (𝑟 = 1), to none (𝑟 =  0), to perfectly negative (𝑟 = −1):
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𝑟 = 1 𝑟 = 0 𝑟 = −11 > 𝑟 > 0 0 > 𝑟 > −1

https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2CorrelationCoefficients.html
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What about Categorical Predictors?
• We just saw how a Pearson’s 𝑟 between two quantitative variables 

𝒙𝒊 and 𝒚𝒊 can be represented equivalently with a general linear 

model (GLM) of 𝒙𝒊 predicting 𝒚𝒊:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊 

➢ Fixed slope 𝜷𝟏 captures a linear effect of 𝒙𝒊 predicting 𝒚𝒊 in an 

unstandardized metric (via “centered” 𝒙𝒊 so intercept at 0 makes sense)

➢ For modeling nonlinear effects of quantitative predictors, stay tuned!

• Now we will see how to use the exact same type of GLM to predict 

a quantitative outcome from a single categorical predictor

➢ General rule: predictors with 𝑪 categories need 𝑪 fixed effects 

to distinguish the outcome means across all unique categories

▪ After including the intercept 𝜷𝟎, we still need 𝐶 − 1 predictors, whose 

𝜷𝒙 slopes then capture specific mean differences between categories

➢ Let’s start with a binary variable, which requires a single predictor slope
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A GLM with a Binary Predictor

• GLM of binary 𝒙𝒊 predicting 𝑦𝑖 :  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊

➢ Create 𝒙𝒊 so 0 = reference category, 1 = alternative category

➢ Btw, this is also called an “independent (or two-sample) 𝒕-test” (even 

though all types of predictors use a 𝑡 test-statistic to test significance)

• e.g., annual income in $1000s predicted by binary marital status

➢ 𝑚𝑎𝑟𝑟𝑦𝑔𝑟𝑜𝑢𝑝𝑖 : 0 = no, 1 = yes → 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑴𝒂𝒓𝒓𝒚𝟎𝟏𝒊 + 𝒆𝒊

➢ 𝜷𝟎 = intercept = expected income for unmarried persons 

                            (𝑀𝑎𝑟𝑟𝑦01𝑖 = 0)

➢ 𝜷𝟏 = slope for 𝑀𝑎𝑟𝑟𝑦01𝑖= expected mean difference for married 

                                            persons relative to unmarried persons 

➢ 𝒆𝒊 = residual = difference in model-predicted income (from ෝ𝒚𝒊) and 

actual income 𝒚𝒊, whose (residual) variance is estimated as 𝝈𝒆
𝟐
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A GLM with a Binary Predictor
𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑴𝒂𝒓𝒓𝒚𝟎𝟏𝒊 + 𝒆𝒊  (btw, 𝑟 = .23, 𝑝 < .0001)
 Slope result: 𝜷𝟏 = 𝟔. 𝟐𝟐, 𝑆𝐸 = 𝟎. 𝟗𝟗𝟔 →  𝑡 = 6.25, 𝑝 < .0001

• Income predicted for unmarried:
ෝ𝒚𝒊 = 𝟏𝟒. 𝟒𝟓 + 𝟔. 𝟐𝟐 𝟎 = 𝟏𝟒. 𝟒𝟓

• Income residual for unmarried:
𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊 → 𝒆𝒊 = 𝒚𝒊 − 𝟏𝟒. 𝟒𝟓

• Predicted income for married:
ෝ𝒚𝒊 = 𝟏𝟒. 𝟒𝟓 + 𝟔. 𝟐𝟐 𝟏 = 𝟐𝟎. 𝟔𝟕

• Income residual for married:
𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊 → 𝒆𝒊 = 𝒚𝒊 − 𝟐𝟎. 𝟔𝟕

• So married people (𝑥𝑖 = 1) are predicted to have significantly higher income 
by $6.22 thousand dollars on average than unmarried people (𝑥𝑖 = 0) 

• A “linear” relationship is the only kind possible for binary predictors
(there is only one possible “unit difference” in a binary 𝑥𝑖 from 0 to 1)
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Effect Size for a Mean Difference: 𝑑
• For categorical predictors, an 𝒓 effect size is less intuitive than a 

Cohen’s 𝒅 effect size, a standardized mean difference between 
two groups (labeled 0 and 1 here)

➢ Cohen’s 𝑑 =
ത𝑦0 − ത𝑦1

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
 , where  𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 =

𝑠0
2 + 𝑠1

2

2

➢ Other variants you might see: Glass’ delta (𝛿) uses SD for only 1 group; 
Hedges’ 𝑔 weights by the relative sample size in each group

• If your GLM contains only one binary predictor, then the pooled 

SD is the same as the square root of GLM residual variance, 𝝈𝒆
𝟐

➢ Otherwise, 𝝈𝒆
𝟐 will be smaller because of the other predictors 

(stay tuned for more about effect sizes given multiple predictors)

• 𝑑 or 𝑟 can be found using the 𝑡 test-statistic for a fixed effect: 

➢ 𝑑 =
2𝑡

𝐷𝐹𝑑𝑒𝑛
  , 𝑟 =

𝑡

𝑡2+𝐷𝐹𝑑𝑒𝑛
  , 𝑑 =

4𝑟2

1−𝑟2  , 𝑟 =
𝑑2

4+𝑑2
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𝐻0: 

effect = 0

Effect Size Continuum

(in Absolute Value)

Strongest 

Possible Effect

𝒑 ≥ 𝒂𝒍𝒑𝒉𝒂: 

“not significant”

𝒑 < 𝒂𝒍𝒑𝒉𝒂: 

“is significant”

• Role of test statistics (𝑡 when using denominator DF; 𝑧 if not) is 
to standardize an estimate’s deviation from the null hypothesis

➢ When compared to reference distribution, they give you a 𝑝-value: 
probability of finding an effect ≥ the obtained effect if 𝑯𝟎 is true

➢ But test statistics are a function of both effect size and sample size 𝑵!

• In other words, test statistics and alpha combine to locate the blue line 
above that divides effect sizes into “not significant” and “significant” 

• Blue line moves to the right (is harder to “find” the same effect) given:

➢ Lower alpha level (smaller % of distribution allowed for “unexpected”)

➢ Smaller 𝑵 → Fewer people = less “power” (as discussed next!)

Effect Size, Sample Size, and Test Statistics
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Decision Errors in Hypothesis Testing
• Usually, we test a null hypothesis against a two-sided alternative:

➢ Typical null 𝐻0: effect (i.e., slope) = 0; alternative 𝐻𝐴: effect ≠ 0

• 2 chances to get it right and 2 chances to get it wrong, governed by:

➢ Alpha (𝛼) = expected percentage of Type I errors for a given 𝐻0

▪ Higher alpha → less extreme boundaries for “significant” → more Type I errors

➢ Beta (𝛽) = expected percentage of Type II errors for a given effect size

▪ Usually expressed as 1 − 𝛽 = Power: Probability of finding a TRUE effect

▪ More people 𝑁 and/or greater effect size = more power (fewer Type II errors)!
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If Truth = 𝑯𝟎 If Truth = 𝑯𝑨

Decision: 

Retain 𝑯𝟎

Correct:

Really NO Effect

Miss:

Type II Error

Decision: 

Reject 𝑯𝟎

False Alarm:

Type I Error

Correct:

Really IS an Effect
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Decision Errors in Hypothesis Testing

𝑯𝑨 white area 

= 𝟏 − 𝜷
 % power

Distribution 

if truth=𝑯𝑶

Distribution 

if truth=𝑯𝑨

𝑯𝑨 red areas = 𝜷
= % Type II errors 

(misses)

𝑯𝑶 gray areas = 𝜶
= % Type I errors 

(false alarms)

Choose alpha (𝜶)=5%:

more Type I errors, 

fewer Type II errors, 

(and more power)

Choose alpha (𝜶)=1%:

fewer Type I errors, 

more Type II errors, 

(and less power)

https://images.app.goo.gl/eDuhatsiyKWjrUvcA
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Anticipating Statistical Power Tables…
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• Demo: I simulated 𝒓 =. 𝟑 

for 100,000 fake persons

• Drew 1000 samples each 

of 𝑁 = 42, 63, or 85 

• Power = % area past 𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 

(is greater with more 𝑁)

𝑵 Type II 

Error: 

% not 

significant

Statistical 

Power: 

%

significant

42 50% 50%

63 37% 66%

85 21% 79%

Smaller 𝑁 → more 

variability in sample 𝑟

→Power→Power→Power

Type 

II

Error

Type 

II

Error

Type 

II

Error

Typical desired power = 80%

(so Type II error rate = 20%)
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Cohen, 1988, p. 102

Power Analysis for 𝑟 Effect Size at 

𝛼 = .05 (from Cohen, 1988, p. 102) 

• Cells give 𝑁 for 
row’s power to 
find column’s 𝑟

• If you start with 
target 𝑟 to find 
𝑁, it’s “a priori 
power analysis”

➢ e.g., for 𝑟 = .3, 
80% power is 
predicted for 
𝑁 = 85

➢ e.g., for 𝑟 = .2, 
80% power is 
predicted for 
𝑁 = 194
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• If you start with a target 𝑁, it’s “sensitivity analysis”

to find a “minimum detectable effect size” (MDES)

➢ e.g., for 𝑁 = 30, should have power > 80% for 𝑟 ≥ .5

➢ e.g., for 𝑁 = 50, should have power > 80% for 𝑟 ≥ .4

https://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf
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Decisions and Decision Errors: Summary
• Given alpha (% unexpected), about the (𝐸𝑠𝑡 − 𝐻0)/𝑆𝐸 = 𝑡-value: 

• If 𝒕-value falls outside 𝑡-critical boundaries, then 𝒑 < alpha: 

Result is sufficiently unexpected → reject 𝐻0 → “significant”:

➢ DO have to worry about a false alarm (Type I error  your 𝑝-value)

➢ DO NOT have to worry about a Type II error (because you didn’t miss!)

➢ BUT—a significant result with low power is less likely to replicate!

• If 𝒕-value falls inside 𝑡-critical boundaries, then 𝒑 ≥ alpha: 

Result is sufficiently expected → retain 𝐻0 → “nonsignificant”:

➢ DO NOT have to worry about false alarm (Type I error not applicable)

➢ DO have to worry about a miss (Type II error) 

➢ In planning studies, the conventional level of power (= 1 – Type II error) 

to aim for is .80 (which is much harder to do for smaller effects) 
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Summary: Introduction to GLMs
• Predictive linear models (i.e., formed as outcome = constant*predictor 

+ constant*predictor…) create expected outcomes from 1+ predictors

➢ General linear models use a normal conditional (residual) distribution
(btw, Generalized linear models use some other conditional distribution)

• General linear models are called different names by type of predictor, 
but any kind of predictive model can be specified, for example:

➢ Empty Model: no predictors; is used to recreate outcome mean and 
variance as unconditional starting point (sample mean is predicted for all)

▪ 𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊 → 𝜷𝟎 = ഥ𝒚, variance of 𝒆𝒊 residuals = 𝝈𝒆
𝟐 → all the 𝒚𝒊 variance

➢ Single Predictor Model: used to customize expected outcomes using a 
single predictor → 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 − 𝒄 + 𝒆𝒊 (𝒄 is centering constant)

▪ 𝜷𝟎 = intercept = expected 𝑦𝑖 when 𝑥𝑖 = 0

▪ 𝜷𝟏 = slope of 𝑥𝑖 = difference in 𝑦𝑖 per one-unit difference in 𝑥𝑖

▪ 𝒆𝒊 = residual = deviation between actual 𝑦𝑖 and predicted 𝑦𝑖 (= ෝ𝒚𝒊)

▪ 𝒙𝒊 should have a meaningful 0 value  center by subtracting constant 𝒄
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Foreshadowing… please stay tuned!
• In a GLM with a single predictor (quantitative or binary), the effect 

size given by its standardized slope will be equal to Pearson’s 𝒓

• So what’s the point of estimating a GLM??? The real utility lies 
in expanding the model for at least one of these 3 reasons:

➢ Multiple fixed slopes for a single predictor variable (in lecture 3)

▪ To examine nominal or ordinal predictors of a quantitative outcome

▪ To examine nonlinear effects of a quantitative predictor on a 
quantitative outcome (e.g., quadratic or piecewise spline predictors)

➢ Multiple predictors (each potentially using 1+ fixed slopes)

▪ To test the unique effects of correlated predictors after controlling 
for what information they have in common (in lecture 4)

➢ Moderation of predictor effects (via interaction terms)

▪ To test if predictor slopes depend on other predictors (in lecture 5)
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