General Linear Models
with One Predictor

- Topics:
> Vocabulary and broad categories of predictive linear models

> Special cases of GLMs (and review of hypothesis testing):

« Empty model (with no predictors)
= “(Simple) linear regression” (with one quantitative predictor)
= “Independent (or two-sample) t-test” with a binary predictor

> Relating effect size, Type | errors, Type Il errors, and power

> Foreshadowing uses of the GLM
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Steps in Quantitative Data Analysis

- Quantitative data analysis: the process of applying statistical
models to a sample of data to answer your research questions

> Enter, download, or otherwise acquire quantitative data
> Import data into statistical software and verify its accuracy of import

> Ask for univariate descriptive statistics to describe variables
(and especially min and max to double-check accuracy of data)

- Select a family of statistical models based on the characteristics
of the variables of interest and the questions to be answered

> Estimate statistical models, check results for potential problems...
> Estimate more statistical models, check results again...
> Estimate even more statistical models... interpret results!

> Write up the results: Btw: you did not “run analyses” or “calculate
models”; you “conducted analyses” and “estimated models”
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Roles and Labels of Study Variables

When research questions are phrased as what is the role of
x (n explaining y, below are possible synonyms of x and y:

- Reason (Explainer): - What is To Be Explained:
> In my notation: x variable > In my notation: y variable
Exogenous (is not explained) = Endogenous (is explained)
> Predictor > Outcome
My preferred generic term = My preferred generic term
> Independent variable (IV) > Dependent variable (DV)
« Used more often when variable « Used more often in
is manipulated (like treatment) experimental studies
> Covariate > Criterion
« Used for reasons the researcher » Used in observational studies
Is not interested in (but must with “regression” models

include to keep others happy);
also used for quantitative
predictor in ANCOVA
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Roles of Variables: Some Examples

- In the following example research questions, identify which
variables are predictors or outcomes and their likely types:

> To what extent does positive feedback improve performance
speed and accuracy more than neutral feedback?
= Predictors:
= Qutcomes:
> |s faster academic growth in elementary school related
to more frequent reading to children when in preschool?
= Predictors:
= Qutcomes:
> How effective is teacher training for creating higher rates
of positive feedback to a teacher’s students?
= Predictors:
= Qutcomes:
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Types of Inferences: 2 possibilities
in describing how x relates to y

- x causes y - causal inference requires the following:
> x variable had to come first (temporal precedence)

> x variable was under complete experimental control during the study
(best: through random assignment and experimental manipulation)

> Study design eliminates all possible alternative explanations

- x relates to y (synonyms = associative, correlational)

> We have observed a relationship, but we do not have the ability to infer
cause given the design (i.e., it's an observational study with measures only)

> In lieu of experimental control, we can attempt statistical control: include
other predictors that represent alternative explanations for why x relates to
y, and see if x is still related to y - many research questions try to do this

- These 2 possibilities can only be distinguished by study design—they have
nothing to with the type of variables collected (a common misconception)

- Because causal inference is rarely possible in studies of real people, we will
only use associative language in describing model results in this class
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Moving On to Predictive Linear Models

- Questions concerning more than 1 variable at a time are best
answered using predictive linear models, in which one must
designate which variables are predictors and which are outcomes

- Models come in different flavors based on type of outcome variable

> Continu-ish quantitative outcome?
- “General” Linear Models using the normal distribution—this semester!
> Literally any other kind of outcome variable?

- "Generalized” Linear Models using some other distribution and a
transformed predicted outcome (called a “link function”) to address
variable possible values and boundaries—here are some examples:
— Binary outcome? Use Bernoulli distribution and logit link
— Ordinal outcome? Use multinomial distribution and cumulative logit link
— Nominal outcome? Use multinomial distribution and baseline logit link
— Binomial outcome? Use binomial distribution and logit link
— Count outcome? Use Poisson-family distributions and log link

= Come back in Spring 2025 to learn these generalized linear models ©
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What “Linear’ in “Linear Models’’ Means

- Most predictive models have a “linear” form, which looks like this:
> y; = (constant * 1) + (constant = x1; ) + (constant * x2;)...

> Fortunately, this does NOT mean that we can ONLY predict linear
relationships—we can STILL specify forms of nonlinear relationships
with y; for quantitative predictors (the Xpred; variables) as needed

> Fortunately, this also means we can include categorical x; predictors

- Historically, variants of the general linear model (for continu-ish
outcomes) get siloed into different classes and called different
names based on what kind of x; predictor variables are included.:

> Called “(linear) (multiple) Regression” if using quantitative predictors
> Called "analysis of variance” (ANOVA) if using categorical predictors
> Called "analysis of covariance” (ANCOVA) if using both predictor kinds

> We are going to cover all of these as special cases of the General Linear
Model (“the GLM")—separating them does way more harm than good

= We'll use STATA REGRESS and R LM (or SAS GLM/REGRESS) for all of it!
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Welcome to the GLM!

- Linear models use new notation within one equation to describe
how all the x; predictors relate to the y; outcome(s) in your sample

> 1 outcome? “Univariate GLM" 2+ outcomes? “Multivariate GLM"

- Starting point for univariate GLMs is always to represent
central tendency and dispersion of the outcome variable (y;)

> We will use mean and variance to describe the outcome because the
GLM uses the normal distribution (in which skewness should be ~0)

- Your first GLM is the "Empty” model (=no predictors): y; = B, + e;
> y; = "y sub i": outcome variable for each person in your sample

> Bo = "beta 0" (sometimes called “"beta not"—but not by me)

More generally, betas (B) will represent values to be estimated that will
apply to the whole sample (i.e., betas are constants) = “fixed effects”

« The beta subscripts index each fixed effect (starting at 0, then 1,2,...)
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The “Empty” General Linear Model

- The "Empty” model (empty = no predictors): y; = o + e;

> Bo = "beta 0" = “"the intercept” (or “the constant”, ugh) and is defined as the
predicted (expected) value for the y; outcome when all x; predictors = 0
(so the estimated value for B will change as the predictors are changed)

> We don't have any predictors yet, so the intercept takes on the single most likely
value for everyone—the sample (or “grand”) mean (so in this model, o = y)

- So what would ¢ be for: vof M Inl1e'a‘rlml AR R R A
= — =0, 02=02, =—— ]
ine? ine? ' . H=0, 0?=10, = 1
> The blue line? the red line? = 52 =Variange P
> Butwhy dothered and blue = | H="2, 07205, ==\
lines differ???? S L 1
o

Univariate Normal PDF = "
w B -

(Probability Density Function): = o2

f(yi)=#*exp >
\/27562 2 G

Image borrowed from:

1*(y|l’l‘)2] 0'0—.1..I..I.Jl.\I.\I..I..I..IJ.IJ
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The “Empty” General Linear Model

- The "Empty” model ("no predictors”): y; = By + e; (in which By =)

> e; = "esubi” or "residual” = "error” = deviation of actual y; for each person
from y; as predicted by the model (through the beta fixed effects)

> Because the empty model predicts the same y for all y; values, the e; residual
for each person will just be the difference between y; and By: e; = y; — Bo

> Rather than focusing on each individual e; residual, we keep track of their
variance across persons as the estimated model parameter, denoted as o2
2 _ Zisa0m3)? _ ity (en)’ 2

» You've pry seen this before: Variance = s = ==_— —— — = how 0,

In other words, the two parameters for the empty model outcome give us the
y; mean (as f8,) and y; variance (as o2) = right now ¢ = all the y; variance

- In writing linear models, the notation refers to population parameters
instead of sample statistics or “estimates” (i.e., we use o2 instead of s%)

> Why? It's understood that we only have one sample from which to estimate
parameters used to make inferences about some (hypothetical) population
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Quantifying Uncertainty of Sample Estimates

- Let's say we want to predict annual income in $1000s in N = 734 using
an empty model (= no predictors yet)

> Vi = o+ e; 2 income; = By + €;

Distribution of income

> Fixed interceEt estimate 8, = 17.30
(= sample y because no predictors) ~~—_

> Person-specific residual e; = y; — Bo T~

> Variance of e; residuals = o2 = 190.21 : |
( = sample s% because no predictors) | ‘

> SDofe; 2 0, =v190.21 =13.80 LT T T e A e s
( = sample s because no predictors)

- If the sample meany = 17.30 is supposed to be our best guess for
the (unknown) population mean u, how good of an estimate is it?

> Said differently: If we had another sample from the same population,
by how much would that new sample’s mean differ from 17.307?

> Need to know how inconsistent the sample mean is expected to be across
repeated samples of same kind - from the mean’s “sampling distribution”

Note: This is NOT the same as a variable's distribution across persons (above)...!
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Building Intuition about Sampling
Distributions of Estimates (the mean for now)

- What affects how close y is to the true value of u?

- Demo: | made my own .
guantitative variable*

y; in a population of
100,000 fake people 2

—
=

40

> Population mean: u =10 :
> Population VAR: 62 = 25

> So y; is off the mean by
o =SD = 5 o0n average :

20

10

blue line = truth,
red line = population estimate

]

—

-14 11 -8 -5 -2

1

4 7 10 13 16 18 22

Individual Values for ¥ with M=10 and SD=5

Curves

Mormal(Mu=10 Sigma=5)

25 28 AN

Mormal(Mu=58.9782 Sigma=5.0122)

* Used a “normal” distribution here to generate y; (as shown earlier)
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1000 samples each for different N..

N Per Sample =5 N Per Sample =10 N Per Sample =15

40

a0

il | il

N Per Sample =20 N Per Sample =30 N Per Sample = 50

Fercent

40

30

-l A |

] 7 g 13 15 5 7 13 15 5 7 11 13 15
MEAN of Each Sample

- Population values:

Note: These bars do not show individual people!
They are summaries for distinct samples of people.
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Mean u = 10
(SD o = 5)

Histograms show
differences across
samples in each
sample’'s mean (y)

These depict the N-
specific “sampling
distribution” of y,

More N in each
sample - less
dispersion in y
across samples
(more consistency)



000 samples each for different N...

N Per Sample =5 N Per Sample =10 N Per Sample=15 | ° Populatlon values:

40 Mean u =10
a0 (SD o =5)
20 « More N - less SD

10 Hﬂ”m Jﬂm I{mmﬁl in y, across samples

N Per Sample =20 N Per Sample =30 N Per Sample = 50 N Per Mean SD

Fercent

40

Sample Y5 Ys
ﬁ | I . 5 997 217
10 998 1.60
L 15 10.00 1.28
g ) 9 13 15 & ) 13 15 & ) 11 13 15 20 10.03 1.08
MEAN of Each Sample
30 10.03 0.89

30

Note: These bars do not show individual people!

They are summaries for distinct samples of people. >0 9.97° 0.69
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Building Intuition about Sampling
Distributions of Estimates (the mean for now)

- As within-sample N increases, sample mean y will be closer to u on average

- What else affects consistency of y;? How persons vary from each other!

50

40

a0

Mean: u = 10
SD: o = 5 from before

—

1 4 7 10 13 16 19 22 26 28 3

Individual Walues for ¥ with M=10 and SD=5

MNormal{Mu=10 Sigma=5)

MNormal(Mu=9.8782 Sigma=5.0122)

50

40

30

-5 4 7 10 13 16 18 22 25
Individual Values for ¥ with M=10 and SD=3
Curves Mormal{Mu=10 Sigma=23) Mormal{Mu=9.9991 Sigma=3.0022)
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000 samples each for different N...

N Per Sample=5 N Per Sample =10 N Per Sample =15

40

a0

1

[ ]

Percent
()

40

a0

i

7 g 11 13 15 &

MEAMN of Each Sample

7

g

il |l |l

N Per Sample =20 N Per Sample = 30 N Per Sample = 50

j

|

11 13 15

These bars still do not show individual people!
They are summaries for distinct samples of people.
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- Population values:

Mean u =10

(SD o = 3 now)

- More N - less SD

in y, across samples

N Per
Sample

5
10
15
20
30
50

Vs
10.01
10.00
10.01

9.99
10.00
10.00

Mean SD

Vs
1.42
0.96
0.78
0.67
0.56
0.42



Effects of N and SD on Dispersion of y

SD=3

Percent
()

SD=5

SD=3 SD=3

N Per Sample =5 N Per Sample =10 N Per Sample =15

il | b |

SD=5 SD=35

N Per Sample =5 N Per Sample =10 N Per Sample =15

i mmﬂm mm
1]
) 7 4 11 13 158 & 7 4 11 13 158 & 7 4 11 13 15

MEAM of Each Sample

These bars still do not show individual people!
They are summaries for distinct samples of people.
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Left to right:

- More N in each
sample = less
dispersion in y,
across samples

Top to bottom:

- More SD in each
sample = more
dispersion in y;
across samples

- Dispersion 2>
More estimate
inconsistency
across samples



Anticipating Inconsistency of Sample Mean Yy

- In the example from the previous slides, we had a simulated finite
population from which multiple different samples were selected

> Inconsistency of y, could be indexed by standard deviation (SD) across
samples - more N, less variance = smaller SD of y, (more consistent)

- Given only one sample, we can still anticipate the SD of y;:

o

2
> SD of y, across samples < Standard Error (of Mean) = SE = N \/%

Note that SE includes the population SD a, which must be replaced by
the sample-estimated SD s when @ is unknown (i.e., most of the time)

> SE of the mean is the expected average deviation of any given sample
mean y from the population mean u (even if you do not know p)

Is NOT the same as SD of y; (s) which is the average deviation of any given
observation (i.e., person) from the sample mean (that you can access)

> In general, the term “SE” refers to the SD of an estimate’s sampling
distribution (e.g., how the estimate of a sample’s variance would differ
across samples is also described by its own SE, but it's found differently)
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Back to Our Example Empty Model

+ Predict annual income in $1000s in N = 734 using an empty model

(= no predictors yet)
> yi = Bo+ e; 2 income; = By + €;

> Fixed interceEt estimate 8, = 17.30
(= sample y

> Person-specific residual e; = y; — Bo

> Variance of e; residuals = o2 = 190.21
( = sample s because no predictors)

. SDofe; > 0, =v190.21 = 13.80 —

( = sample s because no predictors)

ecause no predictors)

Distribution of income

15 20 25 a0 a5 60 65 70

nnnnnnn + Annual Income in 1000s

> SD is about the PEOPLE: This tells us that individual income is expected
to be off from the sample mean income y by + 13.80 on average

- Fixed intercept B, standard error: SE = %

2
/2=0.51
N

> SE is about the SAMPLES: This tells us that sample mean income y
(as given by estimate for B in an empty model) is expected to be off
from the unknown population mean income u by + 0.51 on average
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SE of Mean Approximates SD of
Sampling Distribution for mean Yy,

Population values for y; variable: Mean u =10, SD o =5

N Per Sample =5 N Per Sample =10 N Per Sample =15

¥ N Mean SD Mean SE with:
Vs Vs o S

. hh 5 997 217 224 213
MW}MJ{WWI{W 10 998 1.60 158 155

2 N Per Sample =20 N Per Sample =30 N Per Sample = 50

15 10.00 1.28 1.29 1.28

20 20 10.03 1.08 1.12 1.11
10 j'H_h_’i J—( 30 10.03 0.89 0.91 0.91
’ 7 8 11 13 155 7 9 11 13 155 7 8§ 11 13 15 50 997 0.69 071 071

MEAN of Each San

The greater the sample size N, the better the estimate of each sample’s SD,
and the less it matters that SE is formed with sample SD (s) instead of the
population SD (). But this distinction will matter more in smaller samples....
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What about Other Kinds of Variables?

- It turns out with more N the sampling distribution of y; becomes
more normal no matter what the observed variable’s distribution s

> Btw: More N - more normal y; distribution - “Central Limit Theorem”

: . Count variables are bounded at

+ Demo: | simulated a count 0 and typically positively skewed

variable* y; in a population| . | (and what I'd call “continu-ish")
of 100,000 new fake people given integer values only

> Population mean: u = 2
> Population VAR: 6% = 2

> S0 y; is off the mean 1
by D = /2 on average S

0 1 2 3 4 [} i} 7 8 ] 10
Individual Values for ¥ with M=2

* Used a "Poisson” distribution here to generate y; (in which u = 6?)
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1000 samples each for different N... it works!

N Per Sample =5 N Per Sample =10 N Per Sample =15 |+ Population values:
Mean u = 2
¥ (VAR ¢? = 2)

- More N - less SD

il ol | b | B
) e Y Is also more normal

N Per Sample =20 N Per Sample = 30 N Per Sample = 50

40

1

[}

Fercent
[ )

40

N Mean SD Mean

30

i Vs ys SE
5 198 0.61 0.59
’ j’n th h 10 1.99 042 043

o2+ 15 199 035 0.36

: — 20 199 0.31 0.31

Note: The observed SD for the sampling distribution
for y,: (a) is well-approximated by the mean SE for 30 199 0.25 0.25
¥, and (b) appears normal, even for a count variable| 50 2.01 0.20 0.20

MEAMN of Each Sample

PSQF 6243: Lecture 2 22



Beyond Empty GLMs: 2 Fixed Effects

. Purpose of predictive linear models is to customize each person’s
expected outcome (beyond just the mean) by adding predictors

> Soon we will examine the unique effects of multiple predictors, but let's
start with just one quantitative predictor: “(simple) linear regression”

« GLM to describe how x; predicts y;: y; = Bo + B1(x;) + e;

> Fixed intercept S, = now is expected y; specifically when x; = 0

« Changes from sample mean to a “conditional mean” (based on x;)
Purpose is to adjust for any mean difference between x; and y;

> Fixed slope f3; = difference in y; per one-unit difference in x;

Purpose is to capture a linear relationship between x; and y;

= To create meaningful intercept when x; = 0, you may need to rescale x;
by centering: subtracting a constant c value to adjust what 0 means
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Why the Fixed Intercept £,
*Should™ Be Meaningful.

Concourse B Directory

m

i
€) AuBon Pain i © caté intermezzo {7 ® starbucks Coffee @D Brookstone @ The Beauty Lounge Lancome/Kiehl's 00 ATm @ Deta Sky Club
€) Ben&Jerry'siceCream () Mandarin Express (D) Proo of the Pudding €D savannah's Candy Kitchen @ southern Living News P ) Minute Suites/Currency Exchange (@ Delta Air Lines Ticket Service Center
&7]€) charley's Steakery (D Nathan's Hot Dogs (D Sweet Water Draft House and Grill €D CNN News 2477 Newsweek |2 ) shoeshine @ Delta Self Service Center
© Checkers (P) Bakery ATL Bread Co, (&7 €D 76! Friday's €D BlackBerry from Wireless Giant () Taxco Sterling Co. [€I8]¢*] ) Telephones, TTY, Volume Control Telephones @) Delta Recharge Station
©) Nature's Best Market Kiosk () Wall Street Deli Quick Fares  £3) Coaches Comner @ LACOSTE Q Airport Wireless [€]¢*] ) Telephones, Volume Control Telephone ‘_'] (@ smoking Lounge
© CatéTazza () Popeye’s Chicken [ €2) Vending Machines § Luxe International D z-market [©] Automated Emergency Defibrillator (AED)
€ TGI Friday'sTo Go (D Pizza Deli €5) Wolfgang Puck Gourmet Express Sean John 8 Atlanta Daily World T Elevator
) Freshens [ seattie’s Best Coffee Panda Veranda Bijoux Terner A Escalator
Sunglass con @ Firecz m Restrooms
8 Inmotion Entertainment
Escalator/Elevator
Train
Concourses C,D,EF,
International Terminal, International Baggage Claim
GATES
833 B31 823 B21

Lmﬁlt—mll—l;h: EIIE ﬂim‘ @

o J o o J

B36 B34 B32 B28 B26 B24

B22 B20 B18 B16 B14 B12 B10 B6 B4 B2

Escalator/Elevator

Train

Concourses AT and

Domestic Terminal, Domestic Baggage Claim

This is a very detailed map...
But what do we need to know
to be able to use the map at all?
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Intercept ="You are Here” Sign of Data

With original years of education: | |With centered education (c = 12):

x; =educ, y; = income x; =educ—12, y; = income
yi= Bot+ PBilx) +e; yi= Bot+ Bilxy) +e;
Yi = —7.89 + 1. 82(xl) + e; Yi = 14.00 + 1. 82(x,) + e;

1000s of Income
1000s of Income

Intercept There is no wrong way to center, only Intercept
Bo weird. Center so x;=0 is meaningful. Bo
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Beyond Empty GLMs: Residual Variance

- GLM describes how x; predicts y;: y; = Bo + f1(x;) + e;
> Fixed intercept = B,; Fixed slope of predictor x; = 84

> Total number of fixed effects = k = 2 here (used in later formulas)

- The y; created using the predictors is called y; = "y hat”

> Yi=Bo+P1(x;) > yi=yite; > e =y;—Y;

> y;is also called a “conditional mean” (because y; will be
the same for anyone with the same value of predictor x;)

- Now we can find the new e; residual for each person,
and thus the variance of the e; residuals across persons

N 5.2 N 2
1 ° ° 7] = 1~ =1\€i
. “residual variance”: g2 = 2! 1;3]_‘2”) = Z‘lezl)

> Once predictors are included, a2 should be smaller than s? for y;
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Visualizing GLM Residuals

Btw: B formulas result from the goal of
minimizing the squared e; residuals across
the sample—this is called “ordinary least

squares estimation’—let's see what
happens for one example person below

70

60

50

40

30

20

1000s of Income

Focus: x; = 8,y; = 58.8

] Q =]

Empty model
prediction

Qo o Q 0 <]

unexplained

0

o
oo
oo o

pd
~

[} o

N

oo o O
oo D o o [+]

=]
Q
E
B

DO O

4}
0
4]
4]

o 00
o
OO
[=]
o L= = B =] o
oop
o

[sls)

] o o
.
o0 o\o o
ooom oo o o o [+]

[+]

[ riiranalel
L]
I\ O 000 O [« T+
O aD

explained

-8 -6 -4 -2 0 2 4 6
Education (0=12 Years)
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Empty Model for y; = income:
= Po t+ e
YFocus = 17.3
YFocus = 17.3 +41.5
Variance: g% = L 090”190 5

- 190.2 = s? is all y; variance

Add Education as Predictor:
= Po + B1(Educ; —12) +e;
Yrocus = 14.0 + 1.8(8) = 28.4

Vrocus = 28.4 + 30.4
N

2
—_1(Vi=yi) —162.3
N-2

- 162.3 = leftover y; variance

Variance: 6% =

27



Uncertainty of Sample Estimates

- Besides their estimates (i.e., answers using our sample that
make a2 the smallest), we need to quantify inconsistency of
both fixed effects: B, intercept and f; slope of predictor x;

> How much would my sample intercept vary across similar samples?
(just like SE of mean, but for the mean conditional on x; = 0)

> How much would my sample slope vary across similar samples?
(same idea (n concept, but also taking into account the scale of x;)

- Demo: | made my own (normally-distributed) quantitative
variables x; and y; in a population of 100,000 fake people

> Predictor x; has mean = 0 and variance = 1

> Outcome y; = By + B1(x;) +e; 2 y; =100 + 2(x;)

> Residual variance is either 6% = 9 or 6% = 25

> Let's see what happens to 8, over 100 samples of varying N and o2

PSQF 6243: Lecture 2
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Effects of N and SD on Dispersion of 4

15

10

n

Fercent
[ o]

15

10

10123456 7-3-219012 3456 7321012345867

Residual SD =3 Residual SD =3 Residual SD = 3
N per Sample =10 N per Sample =30 N per Sample = 50

N .

Residual SD =5 Residual SD =5 Residual SD = 5
N per Sample =10 N per Sample = 30 N per Sample = 50

Estimate

These bars still do not show individual people!
They are summaries for distinct samples of people.
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Left to right:

- More N in each
sample - less
dispersion in 8,
across samples

Top to bottom:

- More SD in each
sample - more
dispersion in 8,
across samples

- Dispersion 2
Estimate
inconsistency
across samples
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Effects of N and SD on Dispersion of 4

Residual SD =3 Residual SD =3 Residual SD = 3
N per Sample =10 N per Sample =30 N per Sample = 50
15

" 4

Residual SD =5 Residual SD =5 Residual SD = 5
N per Sample =10 N per Sample = 30 N per Sample = 50

Fercent
[ o]

15

R

10123456 7-3-219012 3456 7321012345867

Estimate

These bars still do not show individual people!

They are summaries for distinct samples of people.
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- Population values:

Slope 84 =

-« More N - less SD
in 3, across samples;
B4 is also more normal

N/ Mean
SD pB1
10/3 2.22
30/3 2.06
50/3 2.05
10/5 1.62
30/5 1.79
50/5 1.90

SD Mean
B4 SE
1.14 1.03
0.63 0.57
047 043
1.78 1.73
099 0.97
0.74 0.71

30



Standard Errors in 2 One-Predictor GLM

- Back to example GLM with k = 2 fixed effects
> Model: Income; = ¢ + B1(Educ; — 12) + e;
> Result: ¥; = 14.00 + 1.82(Educ; — 12), 6% = 162.28

- Standard Error (SE) for
. . . . 2
a slope estimate fina s, =\/reS‘dual"a”ance oty :\/ e

. . 1 1 . — —
single-predictor GLM: variance of x; * (N = k) - si * (N — k)

16228 - Sample slope is expected to be
» Slope B4 SE = J8_46*(734_2) = 0.16 | off from (unknown) population
slope by + 0.16 on average

- SE of any predicted outcome ¥; (including the outcome captured
by B, for x; = 0) depends on the value of the predictor—the SE will
increase as you move away from the predictor’s mean (fulcrum):

. SEofJ; | x; = /02 * \/% + &m0 5 0,55 at Educ; = 12 specifically

(N—1)s2
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From Descriptive to Inferential Statistics

- A standard error (SE) captures expected inconsistency of any kind
of model estimate across repeated samples of the same kind

> SE: Mean distance of sample (estimate) from population (true unknown)
(*cough cough*, repeated homework question alert, *cough cough?*)

> Btw, SE? is known as "sampling variance” (but is not typically reported)
—not to be confused with SD?, which is “sample variance” (ugh, | know)

Remember: SE - width across samples; SD - width across people in a sample

- Moving forward: We can use an SE to assess how far away our
sample estimate is from a hypothesized population value

> By sampling only some persons, we expect some fluctuation in the sample-
specific estimates across multiple similar samples, but how different is
“too different” for our sample to not likely be from the same population?

> Said differently, if the population slope reaLIly were true, how unexpected
(what % of the time) is It to have observed this sample’s particular slope?

> This process is known as “null hypothesis significance testing” and it
requires us to make several decisions ahead of time: We need to operationally
define "hypothesized value”, as well as “too different” (or "how unexpected”)...
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Null Hypothesis Significance Testing

- A “null hypothesis” (H,) is a statement about the population parameter
being equal to some stated (expected) value

> e.g., for our GLM example education slope 1 =1.82, Hy: 1 =0
> Hg for a slope is usually 0, but it doesn’t have to be!
> Btw, you can also test y against Hy about u - "one-sample t-test”

- An “alternative hypothesis” (H,) is a statement that
contradicts the null hypothesis and conveys allowed
directionality of deviation from stated H, value

> "One-tailed test” is one-directional: Hy: 1 >0 OR Hy <0
> "Two-tailed test” is "different than”: H,: f1 # 0 (aka, Hy: f1="0)

- How far away is our sample estimate from H,? We standardize this
distance using its SE as a proxy for the $D of its sampling distribution

> For By =1.82 and Hy: B4 = 0, the standardized distance of B4 from H,

is given by this “test statistic” = ES;;H" =£ ;;0 = 1.:)3:0 =11.28
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Null Hypothesis Significance Testing

- So how far away is our sample estimate from H (using SE)?

> For B; =1.82 and Hy: B1 = 0, the standardized distance of #; from
Est-Hy _ f1-0 _ 182-0 _ .. ,g

SE SE 0.16
> So B1 = 1.82 is 11.28 sampling standard deviations away from H,

> Test statistic = how far off from expected value / expected offness

H, is given by this “test statistic” =

- And how unexpected is that result—how often would we see
a sample slope that far away from Hy—if H really were true?

> Probability density functions (PDFs) to the rescue! We use PDFs
describe expected behavior of an estimate’s sampling distribution

> 2 PDF choices to evaluate a slope’s test statistic (i.e., the 11.28 here)

= “Standard Normal” distribution, which is known as “z"—that's next
« “Student’s t" distribution, which is known as “t" (stay tuned!)
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Area Under Standard Normal Curve

Btw, y-axis created by:

fz) = =exp (- Z)

The x-axis (called z;) is
in standard deviation

Boundaries defined
by z “critical” values:
10% outside z = +1.65
5% outside z = +1.96
1% outside z = +2.58

) 68.3% of dat “data”= samples here
units (where SD = 1) i P
-1.65 +1.65
: — 95.5% of data = Y
—1.96 +1.96
| 99.7% of data e
-2.58 +2.58
|
38D -28D 4SD  MEAN +1SD  +2SD  +3SD

Image adapted from:
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https://medium.com/@harsharora0703/standard-normal-distribution-91f78a2b56e3

Denoting Expected vs. Unexpected

- "How unexpected” a test statistic is (e.g., 11.28 for f; = 1.82,
SE = 0.16 here) requires two more decisions made ahead of time

- How often is "unexpected”? This is known as “alpha level”
> Common is alpha = .05 (or .01 for conservative or .10 for lenient)

- Which directions contain “unexpected” (how can you be wrong)?
> "One-tailed test” allocates ALL of alpha % area to one direction (for H,)
> "Two-tailed test” allocates HALF of alpha % to each possible direction

- These decisions then create “critical values” for your PDF, which
then define boundaries as to where “unexpected” begins

> Test statistics that fall inside boundaries = sufficiently expected
- retain (do not reject) H, = “statistically nonsignificant” result

> Test statistics that fall outside boundaries = sufficiently unexpected
- reject H, = “statistically significant” result
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Allowed Directions of “Unexpected”:
One-Tailed Tests at Work

- Choices: Hy: B4 = 0; probability declared “unexpected” is alpha =
.05 (so 95% “expected”) > two possible versions of one-tailed Hy:

* HA:ﬁl >0 9
Zcritical = T1.65 ~-1.65 Ho +1.65
> Tests if B4 is bigger or
not bigger than H, { /--\ I \
> If B4 is actually smaller, z<1 65\ z=z—-1.65
1 ;
conclude “not bigger” >% | 95%
- Hy: 1 <0~ z < +1.65 Z>-I;1.65
Zcritical = —1.65 _/ ! 95% b 5%
> Tests if B4 is smaller -3 -2 -1 0 1 2 3
or not smaller than Ho z for test statistic

> If B4 is actually bigger,
conclude “not smaller”

Image adapted from:
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https://discovery.cs.illinois.edu/learn/Simulation-and-Distributions/Normal-Distribution/

Two-Tailed Test: + Critical Values Instead

Only one problem:
these z areas don't

work for small N...
|

(no, really... story time!)

68.3% of data

Boundaries defined
by z critical values:

10% outside z = +1.65

5% outside z = +1.96
1% outside z = +2.58

"data”= samples here

-1.65 +1.65
, — §5.5% of data = \
~1.96 y +1.96
=] 99.7% of data e
-2.58 +2.58
I
-3SD -2éD -1SD MEIAN + 1SD + EIE':D +3SD

Image adapted from:
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Meet Student’s & Distribution

- Both z (standard normal) and t distributions have the same metric:
M =0, SD = 1 (how far 84 is from Hy with sampling SD € SE)

. But t is flatter than z, more so with fewer “denominator
degrees of freedom”: DF;., = N — k (where k = fixed effects)

- Same rules: If t test statistic is outside boundaries set by t critical
values for your DF,,, = reject H, = "significant” result

Btw, t with  Ho et iricq Values for

DFgen = s z N e alpha = .05 by
L 262 DF ;,,, shown here

« With smaller N,
have to go farther
' —] out to get to 5%

Image borrowed, but source now unknown (original link is inactive)
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Critical Values for t versus z Distributions

et fOr alpha=.01 = == z for alpha=.01 Wlth Sma"er N -k

t for alpha=.05 z for alpha=.05 fewer DF more
38 s t fOr alpha=.10 = = = z for alpha=.10 ( den)r

extreme test-statistics
are needed when
using t to say 84

is “unexpectedly
different” from H,

22 (i.e., to cross the

Critical Value
%)
[3]

20 alpha-based boundary
:: to be “significant”)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8O0
Denominator Degrees of Freedom (N — k) | 7 doesn't use DF,.,

In the olden days, one needed to refer to tables of t.,;;icq1 Values for a given alpha
and DF, but now statistical software can give you the exact p-value: the probability
of a more extreme t test-statistic than you found if the null hypothesis H, were true
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Labeling t test-statistics and p-values:
Two-tailed boundaries using alpha = .05

< >
t < —2ish 95% expected t > +2ish
p<.05-> p=>.05-> p=>.05-> p<.05-
significantly | nonsignificantly | nonsignificantly |significantly
negative negative positive positive
unexpected unexpected

2.5% 2.5%
_A L

t = how many SE units sample estimate is from H,
t =0 at HO

Image adapted from: http://mathcenter.oxford.emory.edu/site/math | | 7/normalDistribution/
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From Alpha to Confidence Intervals

- Critical values from a t-distribution can also be used to compute a
“confidence interval” (CI) for your estimate

- CI = interval predicted to contain the population value in
(1-alpha)% of repeated samples (confidence = expected)

> Conservative: alpha =.01 =2 1% unexpected = 99% CI

> Common: alpha = .05 2 5% unexpected - 95% CI

> Lenient: alpha = .10 = 10% unexpected = 90% CI

> If CI does not cross H, then your result is “significant” at that alpha

. Confidence Interval: CI = Estimate + (t ritica; * SE)
. e.g., for By =1.82, SE = 0.16, DF ., = N — k = 732 > toritical

-+ 90% Cl for B1: CI = 1.82 £ (1.65 * 0.16) = 1.56 t0 2.08  [For reporting CI-
> 95% Clfor #,:CI =1.82 4 (1.96 * 0.16) = 1.51 to 2.13 | 'lower bound" to

"upper bound”
> 99% Clfor B4:CI =1.82+(2.58+0.16) = 1.41 to 2.23
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Significance Tests: What'’s in Your Output

- Each B fixed slope has 6 relevant characteristics (*essential to report):

>

>

*Estimate = best guess for the fixed slope from our sample data

*Standard Error = SE = average distance of sample slope from population slope
- expected inconsistency of slope across samples

“t-value” = (Estimate — H,) / SE = test-statistic for fixed slope against Hy(= 0)
Denominator DF = DF;., = N — k (where k = total number of fixed effects)

p-value = (two-tailed) probability of fixed slope estimate as or more extreme if
H, is true = how unexpected our result is on a t-distribution with 0=H,, SD=SE

(95%) Confidence Interval = CI = Estimate = t. iticq; * SE = range in which
true (population) value of estimate is expected to fall across (95%) of samples

- Compare t test-statistic to t critical-value at pre-chosen level of significance
(where % unexpected = alpha level): this is a “univariate Wald test”

> Btw, if denominator DF are not used (or are large enough), then t is treated as z

instead - same test-statistic, but different distribution for defining “unexpected”

43
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Significance Test of Fixed Education Slope

residual variance of y; \/ o2

a fixed slope estimate 8, SEp, =

in a single-predictor GLM: s¢ * (N — k)

variance of x; * (N — k)

- Standard Error (SE) for \/

. Example: Income; = B, + f1(Educ; — 12) + e;, 6% = 162.28,
N =734,x; = Educ; —12: M = 1.81,Var = 8.46

> Slope for education predictor: Hy: B, =0, Hy: B, # 0
Est = 1.82 SE = J 162.28 Est—0 _ 1.82-0

8.46+(734—2) 0.16, t = SE 016 11.28,
DFjo, =N —k =734 —2 =732, toriticaqy = 1.96, sop <.0001,
95% CI = Est + (toriricqy * SE) = 1.82 +(1.96 * 0.16) = 1.51 to 2.14

> Interpretation: Predicted income is significantly higher by 1.82k
for each additional year of education (so reject Hy that g1 = 0)
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SE's and CIs for Predicted Income

- SE of any predicted outcome y; (including the outcome captured by S,
for x; = 0) depends on the value of the predictor—the SE will increase as
you move away from the predictor’s mean:

SE (for By orany y;) =

~ 31 (xi—%)? average distance of
» SEofy; | x; = /0% * \/ﬁ T (N—1)s2 sample predicted value

from population value

. Income; = B + f1(Educ; — 12) + e;, 6% = 162.28,
N =734, Educ; —12: M = 1.81,Var = 8.46

« SE and CI for predicted income when Education = 127

: . _ . 1 (0-1.81)2
> Given by B,: Est = 14.00, SE = V162.28 * \/734 + (733846 0.55,

95% CI = Est + (t.pi * SE) = 14.00 +£(1.96 * 0.55) = 12.91 to 15.09

- You can use any software package to get predicted outcomes for any
value of the model predictors... and for any person in your dataset!
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Two Cls for Predicted Outcomes

LT eone , - The blue shading
shows the 95% range
for the y; outcomes
from the fixed effects
(Le., regression line)

> They are narrowest at
the predictor mean, and
widen as moving away

Intercept

Bo

60

o]
o
o]
[+]
o

40

nnonD o O O o =]

Qo 000 O . O [+]

O oo ol O O a

income: Annual Income in 1000s
=
O oMmmOCOd 0 o © 2O
o

|

I
I
I
I
I
.

-10 -4 0 5

educl12: Education (0=12 years) L The blue daShed Iines
Fit O 95% Confidence Limits 95% Prediction Limits ShOW the 95% ra nge for

Blue shaded line is created by ticq * SE;| the actual y; outcomes

blue dotted line also adds in error from o5 inC!uding .the resiqlual
variance (is way bigger!)
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Effect Size via Standardized Slopes

- GLM predictive equation uses the original variables as entered
directly into the model—this is the "unstandardized” solution

- e.g. For our GLM with y; = Bo + B1(x;) + €;
> X;1s Educ; —12: M = 1.81,Var = 8.46
> yiis Income:M = 17.30,Var = 190.21

- Unstandardized: Income; = 14.00 + 1.82(Educ; — 12) + e;

> Unstandardized fixed SD :
slopes (Bunsta) CANbe | Bry = Bunstd * a std B will
standardized (B:4) as: SD, | | always be 0!

- Standardized (Std): y; = 0 + 0.38(x;) + ¢;

> f’Standardized” solution refers to var_iables that have been z_—transformed
iINtoM =0,SD =12 x4q = (x; —%X)/s, and ys1q = (y; — y)/sy

> For one predictor, 3;;; = Pearson correlation (range = —1to 1)
> Why do this? To get an effect size that is independent of scaling and N!
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Remember Pearson’s Correlation 7!

- For two quantitative variables, x; and y;

> To graph their relationship, we can request a scatterplot, in which values
for x; are shown on the x-axis and values for y; are shown on the y-axis

> Relation between x; and y; values will be captured by a general effect size called
“correlation” (r); one specific type for quantitative variables is Pearson

= Btw, Pearson’s r for two binary variables is re-named “phi” r
= Btw, Pearson’s r for a binary and a quantitative variable is re-named “point-biserial” r

> Correlations range continuously from —1 to 1 (size indicated by absolute value)

- Here are some example scatterplots and the correlations they depict, ranging
from perfectly positive (r = 1), to none (r = 0), to perfectly negative (r = —1):

r=1 1>r>0 r=20 0>r>-1 r=-—1
a e® © ® o o, ® .. ® .‘o
o’...... o..... ° - .. '. .o *e . 0. : : = .'..o ...’o.
..00 .:.. .... = o Y o - .... .:. 00..
Perfect Strong Weak No Weak Strong Perfect
Positive Positive Positive Correlation  Negative  Negative Negative
Correlation Correlation Correlation Correlation Correlation Correlation

Image borrowed from:
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What about Categorical Predictors?

- We just saw how a Pearson'’s r between two quantitative variables
x; and y; can be represented equivalently with a general linear
model (GLM) of x; predicting y;: y; = Bo + B1(x;) + €;

> Fixed slope B4 captures a linear effect of x; predicting y; in an
unstandardized metric (via “centered” x; so intercept at 0 makes sense)

> For modeling nonlinear effects of quantitative predictors, stay tuned!

- Now we will see how to use the exact same type of GLM to predict
a quantitative outcome from a single categorical predictor

> General rule: predictors with C categories need C fixed effects
to distinguish the outcome means across all unique categories

= After including the intercept B, we still need C — 1 predictors, whose
B, slopes then capture specific mean differences between categories

> Let's start with a binary variable, which requires a single predictor slope
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A GLM with a Binary Predictor

- GLM of binary x; predicting y;: y; = Bo + B1(x;) + €;
> Create x; so 0 = reference category, 1 = alternative category

> Btw, this is also called an “independent (or two-sample) t-test” (even
though all types of predictors use a t test-statistic to test significance)

- e.g., annual income in $1000s predicted by binary marital status
> marrygroup; : 0 = no, 1 = yes 2> Income; = 3, + f1(Marry01;) + e;

> Bo = intercept = expected income for unmarried persons
(Marry01; = 0)
> 1 = slope for Marry01;= expected mean difference for married
persons relative to unmarried persons

> e; = residual = difference in model-predicted income (from ;) and

actual income y;, whose (residual) variance is estimated as ag
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A GLM with a Binary Predictor

Income; = B¢ + B1(Marry01;) + e; (btw, r =.23,p <.0001)
Slope result: 1 = 6.22,SE =0.996 — t = 6.25,p <.0001

Fit Plot for income

- Income predicted for unmarried: 5

« Income residual for unmarried:
e;=y;—yi>e =y —14.45

40 @

ncome: Annual Income in 1000s

« Predicted income for married: i
y; = 14.45 + 6.22(1) = 20.67 | . E E
« Income residual for married:
e;=y;—yi>e =y —20.67 N e e et N

Fit O 95% Confidence Limits 95% Prediction Limits

- So married people (x; = 1) are predicted to have significantly higher income
by $6.22 thousand dollars on average than unmarried people (x; = 0)

- A linear” relationship is the only kind possible for binary predictors
(there is only one possible “unit difference” in a binary x; from 0 to 1)
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Effect Size for a Mean Difference: d

- For categorical predictors, an r effect size is less intuitive than a
Cohen'’s d effect size, a standardized mean difference between
two groups (Iabeled 0 and 1 here)

- V1
——=  where SD =
SDpooled pooled 2

> Other variants you might see: Glass' delta (§) uses SD for only 1 group;
Hedges' g weights by the relative sample size in each group

2 2
So +Sl

> Cohen'sd =

- If your GLM contains only one binary predictor, then the pooled
SD is the same as the square root of GLM residual variance, +/ o2

> Otherwise, 1/ 62 will be smaller because of the other predictors
(stay tuned for more about effect sizes given multiple predictors)

- d orr can be found using the t test-statistic for a fixed effect:

2t 4r2

d2
> d= DF ! 2 4+d?
den t +DFden +

Formulas borrowed from:
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Effect Size, Sample Size, and Test Statistics

D U —

p = alpha: p < alpha:
“not significant” “is significant”
. >
Hy: i Effect Size Continuum Strongest
effect = 0 : (in Absolute Value) Possible Effect

* Role of test statistics (t when using denominator DF; z if not) is
to standardize an estimate’s deviation from the null hypothesis

» When compared to reference distribution, they give you a p-value:
probability of finding an effect > the obtained effect if H, is true

> But test statistics are a function of both effect size and sample size N!

» In other words, test statistics and alpha combine to locate the blue line
above that divides effect sizes into “not significant” and “significant”

» Blue line moves to the right (is harder to “find” the same effect) given:
> Lower alpha level (smaller % of distribution allowed for “unexpected”)
> Smaller N & Fewer people = less “power” (as discussed next!)
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Decision Errors in Hypothesis Testing

- Usually, we test a null hypothesis against a two-sided alternative:
> Typical null Hy: effect (i.e., slope) = 0; alternative H,: effect # 0
- 2 chances to get it right and 2 chances to get it wrong, governed by:
> Alpha (@) = expected percentage of Type | errors for a given H,
Higher alpha - less extreme boundaries for “significant” - more Type | errors

(B) = expected percentage of for a given effect size

Usually expressed as 1 — f = Power: Probability of finding a TRUE effect
More people N and/or greater effect size = more power (fewer Type Il errors)!

If Truth = H If Truth = H,
Decision: Correct:
Retain H Really NO Effect
Decision: False Alarm: Correct:
Reject H,, Type | Error Really IS an Effect
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Decision Errors in Hypothesis Testing

""""""" 1 — RO/ .
Distribution Distribution Choose alpha (a)=5%:
more Type | errors,

if truth=H, if truth=H, fewer Type Il errors,

\ 1% level \ (and more power)

‘ \ 5% level

P = kN Choose alpha (a)=1%:

- J A » fewer Type | errors,
/ % more Type |l errors,
/

(and less power)

H, graygreas =a
= % Type | errors
(false alarms)

H,red areas = 8
= % Type Il errors
(misses)

H, white area

:1—ﬁ

% power

Image borrowed from: https://images.app.goo.gl/eDuhatsiyKWijrUvcA
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Anticipating Statistical Power Tables...

Size = 42 Size =63 Size =85 - Demo: | simulated r =.3
2” Smaller N = more for 100,000 fake persons
15 variability in sample r | ]

- Drew 1000 samples each

' of N = 42, 63, or 85
J"’"mmh‘k 44"H LL J hL - Power = % area past t_,itical

(is greater with more N)

Percent

on

-03 00 03 06 08 -03 00 03 06 0% 03 00 03 06 08

Pearson r sample estimate N Type I I StatiStical
Size = 42 Size = 63 Size = 85 Error: Power:
T i T i , T o o
el |->Powelr | |->Power| | = Power /0 not A)
| | | |

I I . o go . oo

154 4 | N | | significant significant
Type || Type (|t I

10

L { R 42  50% 50%
; Error h_’_h‘ Error ]_’_’L Error h_hﬂ 63 37% 66%
11 1 o 85 21% 79%

2 4 6 -2 0 2 4 &

ot stafictc Typical desired power = 80%
(so Type Il error rate = 20%)

Percent
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Power Analysis for r Effect Size at
a = .05 (from )

r

Power 10 .20 30 .40 50 60 .70 .80 .90 -+ Cellsgive N for
25 | 167 | 42 | 20 12 8 B 5 4 3 row's power to
50 | 385 | 96 [ 42 | 24 15 10 7 B 4 find column’s r
60 | 490 | 122 | 53 | 29 18 12 9 B 5 ,
2/3 | 570 | 142 [ 63 | 234 | 21 14 10 7 5 |- If you start with
70 | 616 | 153 | 67 | 37 | 23 15 10 7 5 target r to find
75 | 692 | 172 [ 75 | 41 25 17 11 8 6 ﬂ N, it's “a priori
80 | 783 | 194 | 85 | 46 | 28 18 12 9 5 .
85| 895 | 221 | 97 | 52 | 32 | 21 14 10 3 power analysis
90 (1047 | 259 | 113 | 62 | 37 | 24 16 11 7 > eg, forr =3,
95 (1204 | 319 | 139 | 75 | 46 | 30 19 13 8 80% power is
90 (1828 | 450 | 195 | 105 | 64 | 40 | 27 18 11 predicted for

- If you start with a target N, it's “sensitivity analysis” N =85
to find a “minimum detectable effect size” (MDES) > eg, forr=.2,
80% power is
> e.g., for N = 30, should have power > 80% forr > .5 predicted for
N =194

> e.g. for N =50, should have power > 80% forr > .4
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Decisions and Decision Errors: Summary

- Given alpha (% unexpected), about the (Est — Hy)/SE = t-value:

- If t-value falls outside t-critical boundaries, then p < alpha:
Result is sufficiently unexpected - reject Hy - “significant”:

> DO have to worry about a false alarm (Type | error < your p-value)
> DO NOT have to worry about a Type Il error (because you didn’t miss!)

> BUT—a significant result with low power is less likely to replicate!

- If t-value falls inside t-critical boundaries, then p = alpha:
Result is sufficiently expected - retain H, = “nonsignificant”:

> DO NOT have to worry about false alarm (Type | error not applicable)
> DO have to worry about a miss (Type Il error)

> In planning studies, the conventional level of power (= 1 — Type Il error)
to aim for is .80 (which is much harder to do for smaller effects)
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Summary: Introduction to GLMs

- Predictive linear models (i.e., formed as outcome = constant*predictor
+ constant*predictor...) create expected outcomes from 1+ predictors

> @eneral linear models use a normal conditional (residual) distribution
(btw, Generalized linear models use some other conditional distribution)

- General linear models are called different names by type of predictor,
but any kind of predictive model can be specified, for example:

> Empty Model: no predictors; is used to recreate outcome mean and
variance as unconditional starting point (sample mean is predicted for all)

= yi=Bo+e; > By =7, variance of e, residuals = o7 > all the y; variance
l e yl

> Single Predictor Model: used to customize expected outcomes using a
single predictor > y; = By + B1(x; — ¢) + e; (c is centering constant)

= B, = intercept = expected y; when x; = 0

= B, = slope of x; = difference in y; per one-unit difference in x;

= e; = residual = deviation between actual y; and predicted y; (= y;)

= Xx; should have a meaningful 0 value €< center by subtracting constant ¢
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Foreshadowing... please stay tuned!

- In a GLM with a single predictor (quantitative or binary), the effect
size given by its standardized slope will be equal to Pearson’s r

- So what's the point of estimating a GLM??? The real utility lies
in expanding the model for at least one of these 3 reasons:

> Multiple fixed slopes for a single predictor variable (in lecture 3)

= To examine nominal or ordinal predictors of a quantitative outcome

= To examine nonlinear effects of a quantitative predictor on a
quantitative outcome (e.g., quadratic or piecewise spline predictors)

> Multiple predictors (each potentially using 1+ fixed slopes)

= To test the unique effects of correlated predictors after controlling
for what information they have in common (in lecture 4)

> Moderation of predictor effects (via interaction terms)
= To test if predictor slopes depend on other predictors (in lecture 5)
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