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Example 4a: General Linear Models with Multiple Fixed Effects of Multiple Predictors 

Simultaneously (complete syntax, data, and output available for STATA, R, and SAS electronically) 
 

The data for this example were selected from the 2012 General Social Survey dataset (and were also used for 
Examples 1, 2, and 3). Building on these prior examples, this example will examine the unique effects of three-

category working class, linear and quadratic slopes for years of age, and three piecewise slopes (i.e., linear 

splines) for years of education in predicting annual income. It will also demonstrate how the results from 

hierarchical (stepwise) regression can be obtained from a single model using multivariate Wald F-tests instead, 
as well as how to compute effect sizes per fixed slope (or linear combinations thereof). 

 

STATA Syntax for Importing and Preparing Data for Analysis: 

// Paste in the folder address where "GSS_Example.xlsx" is saved between " " 

cd "\\Client\C:\Dropbox\24_PSQF6243\PSQF6243_Example4a" 

 

// IMPORT GSS_Example.xlsx data from working directory using exact file name 

// To change all variable names to lowercase, remove "case(preserve") 

clear // Clear before means close any open data 

import excel "GSS_Example.xlsx", case(preserve) firstrow clear  

                             

// Create and label predictor variables for model 1 (same as in Example 2) 

// Linear education predictor centered so that 0 is meaningful 

gen educ12=educ-12 

label variable educ12 "educ12: Education (0=12 years)" 

// Recode marry predictor so that 0 is meaningful 

gen marry01=. // Create new empty variable, then recode 

replace marry01=0 if marry==1 

replace marry01=1 if marry==2 

label variable marry01 "marry01: 0=unmarried, 1=married" 

 

// Create and label predictor variables for model 2 (same as in Example 3) 

// 2 Indicator-dummy-coded binary predictors for workclass 

gen LvM=. // Make two new empty variables 

gen LvU=. 

replace LvM=0 if workclass==1 // Replace each for lower 

replace LvU=0 if workclass==1 

replace LvM=1 if workclass==2 // Replace each for middle 

replace LvU=0 if workclass==2 

replace LvM=0 if workclass==3 // Replace each for upper 

replace LvU=1 if workclass==3 

label variable LvM "LvM: Low=0 v Mid=1 Class" 

label variable LvU "LvU: Low=0 v Upp=1 Class" 

 

// Center age at 18 (minimum in sample) 

gen age18 = age-18 

label variable age18 "age18: Age (0=18 years)" 

 

// 3 Piecewise slopes for education 

gen lessHS=. // Make 3 new empty variables 

gen gradHS=. 

gen overHS=. 

// Replace for educ less than 12 

replace lessHS=educ-11 if educ <  12 

replace gradHS=0 if educ <  12 

replace overHS=0 if educ <  12 

// Replace for educ greater or equal to 12 

replace lessHS=0 if educ >= 12  

replace gradHS=1 if educ >= 12 

replace overHS=educ-12 if educ >= 12 

// Label variables 

label variable lessHS "lessHS: Slope for Years Ed Less Than High School" 

label variable gradHS "gradHS: Acute Bump for Graduating High School" 

label variable overHS "overHS: Slope for Years Ed After High School" 
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// Label outcome 

label variable income "income: Annual Income in 1000s" 

 

 

R Syntax for Importing and Preparing Data for Analysis 

(after loading packages readxl, supernova, multcomp, lmhelpers, and TeachingDemos): 
 

# Set working directory (to import and export files to) 

# Paste in the folder address where "GSS_Example.xlsx" is saved in quotes 

setwd("C:/Dropbox/24_PSQF6243/PSQF6243_Example4a") 

 

# Import GSS_Example.xlsx data from working directory -- path = file name 

Example4a = read_excel(path="GSS_Example.xlsx", sheet="GSS_Example")  

# Convert to data frame to use for analysis 

Example4a = as.data.frame(Example4a) 

 

### Create and label predictor variables for model 1 (same as in Example 2) 

# Linear predictor for education centered so that 0 is meaningful 

Example4a$educ12=Example4a$educ-12  

# educ12: Education (0=12 years) 

# Recode marry predictor so that 0 is meaningful 

Example4a$marry01=NA  # Create new empty variable, then recode  

Example4a$marry01[which(Example4a$marry==1)]=0  

Example4a$marry01[which(Example4a$marry==2)]=1 

# marry01: 0=unmarried, 1=married  

 

### Create and label predictor variables for model 2 (same as in Example 3) 

# 2 Indicator-dummy-coded binary predictors for workclass 

Example4a$LvM=NA; Example4a$LvU=NA  # Make 2 new empty variables  

Example4a$LvM[which(Example4a$workclass==1)]=0  # Replace each for lower 

Example4a$LvU[which(Example4a$workclass==1)]=0 

Example4a$LvM[which(Example4a$workclass==2)]=1  # Replace each for middle 

Example4a$LvU[which(Example4a$workclass==2)]=0 

Example4a$LvM[which(Example4a$workclass==3)]=0  # Replace each for upper 

Example4a$LvU[which(Example4a$workclass==3)]=1 

# LvM: Low=0 vs Mid=1 Class 

# LvU: Low=0 vs Upp=1 Class 

 

# Center age at 18 (minimum in sample) 

Example4a$age18=Example4a$age-18  

# age18: Age (0=18 years)  

# 3 Piecewise slopes for education 

 

# Make 3 new empty variables  

Example4a$lessHS=NA; Example4a$gradHS=NA; Example4a$overHS=NA  

# Replace each for educ less than 12 

Example4a$lessHS[which(Example4a$educ<12)]=Example4a$educ[which(Example4a$educ<12)]-11   

Example4a$gradHS[which(Example4a$educ<12)]=0 

Example4a$overHS[which(Example4a$educ<12)]=0   

# Replace each for educ greater or equal to 12 

Example4a$lessHS[which(Example4a$educ>=12)]=0  

Example4a$gradHS[which(Example4a$educ>=12)]=1   

Example4a$overHS[which(Example4a$educ>=12)]=Example4a$educ[which(Example4a$educ>=12)]-12 

# lessHS: Slope for Years Ed Less Than High School 

# gradHS: Acute Bump for Graduating High School 

# overHS: Slope for Years Ed After High School 

# Label outcome variable 

# income: Annual Income in 1000s 

 

Note: I also wrote five custom functions to automate calculations of effect sizes from lm or glht 

output—please see code online for these (as used in this example). 

  



PSQF 6243 Example 4a page 3  

 

Model 1: Linear Education and Binary Marital Status Predicting Income 

Below is a summary of the results from estimating separate models per predictor (as in Example 2). Because 

there was only one slope in each model, the model R2 = semi-partial R2 = partial R2 (see excel sheet online). 
 

 
 

Combined:  𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒆𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝜷𝟐(𝒎𝒂𝒓𝒓𝒚𝟎𝟏𝒊) + 𝒆𝒊 

 
display "STATA Model 1: Linear Education and Binary Marital Status" 

regress income c.educ12 c.marry01, level(95) 

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(2, 731)       =     85.89 

       Model |  26530.4118         2  13265.2059   Prob > F        =    0.0000 

    Residual |   112892.82       731  154.436142   R-squared       =    0.1903 

-------------+----------------------------------   Adj R-squared   =    0.1881 

       Total |  139423.232       733  190.209048   Root MSE        =    12.427 

 

Mean Square Residual / Error, the residual variance, is 154.44 after including 1 slope each for the 2 predictor 

constructs (which accounted for 19.03% of the variance in income as the model R2 = .1903). The F-test says this 
R2 is significantly > 0, F(2, 731) = 85.89, MSE = 154.44, p < .001. 
 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      educ12 |    1.77385    .157981    11.23   0.000     1.463699       2.084  beta1 

     marry01 |   5.694607   .9216806     6.18   0.000      3.88515    7.504064  beta2 

       _cons |   11.47412   .6775219    16.94   0.000       10.144    12.80425  beta0 

------------------------------------------------------------------------------ 

 

matrix Model1 = r(table)  // Save results for computing effect sizes 

matrix list Model1        // Show saved results    d = 2t/SQRT(DFden) 

 

Model1[9,3] 

           educ12    marry01      _cons 

     b  1.7738496  5.6946068  11.474125 

    se  .15798099  .92168064  .67752192 

     t  11.228247  6.1785032  16.935429 

pvalue  4.230e-27  1.074e-09  1.597e-54 

    ll   1.463699    3.88515  10.144004 

    ul  2.0840002  7.5040636  12.804246 

    df        731        731        731 

  crit  1.9632145  1.9632145  1.9632145 

 eform          0          0          0 

 

display "Partial Cohen's D for marry01 = " 2*Model1[3,2]/sqrt(Model1[7,2]) 

Partial Cohen's D for marry01 = .45704039 

 

A separate STATA command, pcorr, provides partial and semi-partial effect sizes for fixed slopes: 
 

display "STATA Partial and Semi-Partial R and R2 Effect Sizes for Fixed Slopes" 

pcorr income c.educ12 c.marry01 

Separate Models
DF 

num
SS effect SS residual  SS total

semi-partial R2 

= SS effect / 

SS total

partial R2 = 

SS effect / 

(SS effect + 

SS residual)

Empty Model 0 0 139423 139423 0.0000 0.0000

Linear Education 1 20635 118788 139423 0.1480 0.1480

Binary Marital Status 1 7060 132363 139423 0.0506 0.0506

Sum of Separate Models 2 27695 0.1986 0.1986
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Partial and semipartial correlations of income with 

               Partial   Semipartial      Partial   Semipartial   Significance 

   Variable |    Corr.         Corr.      Corr.^2       Corr.^2          Value 

------------+----------------------------------------------------------------- 

     educ12 |   0.3835        0.3737       0.1471        0.1396         0.0000 

    marry01 |   0.2228        0.2056       0.0496        0.0423         0.0000 

 

The two most useful effect sizes can be interpreted as follows: 

Partial 𝒓 = effect size in correlation metric for unique effect controlling for other predictors 

Semi-partial 𝑹𝟐 = proportion of explained variance (amount of model 𝑅2) attributable to that fixed slope  

__________________________________________________________________________________________ 

The R code and output below uses three custom functions to organize output and compute effect sizes: 
 

print("R Model 1: Linear Education and Binary Marital Status") 

Model1 = lm(data=Example4a, formula=income~1+educ12+marry01) 

supernova(Model1)             # supernova prints sums of squares and residual variance 

 

Analysis of Variance Table (Type III SS) 

 Model: income ~ 1 + educ12 + marry01 

                                   SS  df        MS       F   PRE     p 

 ------- --------------- | ---------- --- --------- ------- ----- ----- 

   Model (error reduced) |  26530.412   2 13265.206  85.894 .1903 .0000 

  educ12                 |  19470.310   1 19470.310 126.074 .1471 .0000 

 marry01                 |   5895.430   1  5895.430  38.174 .0496 .0000 

   Error (from model)    | 112892.820 731   154.436                     

 ------- --------------- | ---------- --- --------- ------- ----- ----- 

   Total (empty model)   | 139423.232 733   190.209        

 

Mean Square Residual / Error, the residual variance, is 154.44 after including 1 slope each for the 2 predictor 

constructs (which accounted for 19.03% of the variance in income as the model R2 = .1903). The F-test says this 
R2 is significantly > 0, F(2, 731) = 85.89, MSE = 154.44, p < .001. 
 

SummaryCI(Model1, level=.95)  # custom function to add CIs to fixed effects table 

 

            Estimate  StdErr t-value    p-value LowerCI UpperCI 

(Intercept)  11.4741 0.67752 16.9354 1.5965e-54 10.1440 12.8042  beta0 

educ12        1.7738 0.15798 11.2282 4.2301e-27  1.4637  2.0840  beta1 

marry01       5.6946 0.92168  6.1785 1.0743e-09  3.8851  7.5041  beta2 

 

FixedEffectSizes(Model1)      # custom function to add effect sizes for fixed slopes 

 

            Estimate    p-value Partial-D Partial-R SemiPartial-R Partial-R2 SemiPartial-R2 

(Intercept)  11.4741 1.5965e-54   1.25276   0.53084       0.56364    0.28179       0.317692 

educ12        1.7738 4.2301e-27   0.83058   0.38353       0.37370    0.14710       0.139649 

marry01       5.6946 1.0743e-09   0.45704   0.22278       0.20563    0.04963       0.042284 

 

Below is a summary of the results for the overall model and the contribution of each predictor— As 

shown in the last row above, the sum across the two constructs of the Effects Sums of Squares (SS effect) differs 

from the Model SS (as SS effect for full model)—this is because the Model SS takes into account the predictive 

contribution of the shared variance among the sets of predictors (i.e., none of them “gets credit” for what they 

have in common that predicts income, but the model R2 does reflect that common contribution).  

  

Combined Model
DF 

num
SS effect SS residual  SS total

semi-partial R2 

= SS effect / 

SS total

partial R2 = 

SS effect / 

(SS effect + 

SS residual)

Full Model 2 26530 112893 139423 0.1903 0.1903

Linear Education 1 19470 112893 139423 0.1396 0.1471

Binary Marital Status 1 5895 112893 139423 0.0423 0.0496

Sum of Predictors 25366 0.1819 0.1967

PRE gives partial R2 

(so model version is 

full R2) 
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Model 2: Three-Category Workclass, Linear and Quadratic Age Slopes, and Three Piecewise 

Linear Education Slopes Predicting Income 

Below is a summary of the results from estimating separate models per conceptual predictor (as demonstrated in 

Example 3, as well as in the syntax and output online). Because there was only one conceptual predictor in each 

model, the model R2 = semi-partial R2 = partial R2 (see excel sheet online). 
 

 
 

Combined:  𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑳𝒗𝒔𝑴𝒊) + 𝜷𝟐(𝑳𝒗𝒔𝑼𝒊) + 𝜷𝟑(𝑨𝒈𝒆𝒊 − 𝟏𝟖) + 𝜷𝟒(𝑨𝒈𝒆𝒊 − 𝟏𝟖)𝟐 

                                            + 𝜷𝟓(𝑳𝒆𝒔𝒔𝑯𝑺𝒊) + 𝜷𝟔(𝑮𝒓𝒂𝒅𝑯𝑺𝒊) + 𝜷𝟕(𝑶𝒗𝒆𝒓𝑯𝑺𝒊) + 𝒆𝒊 

In addition to the overall 𝐹-test of the model 𝑅2, the purpose of estimating a single model with the seven slopes 

from all three predictive constructs combined (workclass, age, and education) is to determine to what extent 

their bivariate effects (when each construct was in a separate model predicting income, as was the case in 

Example 3) differ from their unique effects (when all constructs are combined in the same model, below). The 

solution for the fixed effects will provide tests for the significance of each slope (against a null hypothesis of a 0 

slope in the population), and we will also ask for joint F-tests (and their effect sizes) that combine the multiple 

slopes needed to capture the full effect of each construct. Effect sizes per slope are also reported below.  
 

display "STATA Model 2: Three-Category Workclass, Quadratic Age, and Piecewise Education" 

regress income c.LvM c.LvU c.age18 c.age18#c.age18 c.lessHS c.gradHS c.overHS, level(95) 

 

      Source |       SS           df       MS      Number of obs   =       734 

-------------+----------------------------------   F(7, 726)       =     42.09 

       Model |  40246.4243         7  5749.48919   Prob > F        =    0.0000 

    Residual |  99176.8076       726  136.607173   R-squared       =    0.2887 

-------------+----------------------------------   Adj R-squared   =    0.2818 

       Total |  139423.232       733  190.209048   Root MSE        =    11.688 

 

Mean Square Residual / Error, the residual variance, is 136.61 after including 7 slopes for the 3 predictor 
constructs (which accounted for 28.87% of the variance in income as the model R2 = .2887). The F-test says this 

R2 is significantly > 0, F(7, 726) = 42.04, MSE = 136.61, p < .001. 
 

--------------------------------------------------------------------------------- 

         income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

            LvM |   6.060105   .9470067     6.40   0.000     4.200907    7.919304  beta1 

            LvU |   7.208538   2.697879     2.67   0.008     1.911961    12.50511  beta2 

          age18 |    1.06998   .1230046     8.70   0.000     .8284928    1.311467  beta3 

c.age18#c.age18 |  -.0175062   .0022749    -7.70   0.000    -.0219724     -.01304  beta4 

         lessHS |   .2589179   .5612016     0.46   0.645    -.8428539     1.36069  beta5 

         gradHS |   3.157139   1.757267     1.80   0.073    -.2927916     6.60707  beta6 

         overHS |   1.528179   .2080423     7.35   0.000     1.119743    1.936616  beta7 

          _cons |  -3.686546   2.004615    -1.84   0.066    -7.622081    .2489889  beta0 

--------------------------------------------------------------------------------- 

 

estimates store Model1      // Save all model results 

ereturn list                // See what has been stored automatically 

 

scalars: 

               e(rank) =  8 

               e(ll_0) =  -2967.061946932051 

                 e(ll) =  -2842.058095807061 

Separate Models
DF 

num
SS effect SS residual  SS total

semi-partial R2 = 

SS effect / SS total

partial R2 = SS effect / 

(SS effect + SS residual)

3-Category Workclass 2 14414 125009 139423 0.1034 0.1034

Linear + Quadratic Age 2 15885 123538 139423 0.1139 0.1139

3 Piecewise Slopes Education 3 22907 116517 139423 0.1643 0.1643

Sum of Separate Models 2 53206 0.3816 0.3816
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               e(r2_a) =  .2818050735748676 

                e(rss) =  99176.80756352992 

                e(mss) =  40246.42433343873 

               e(rmse) =  11.68790712456771 

                 e(r2) =  .2886636881519153 

                  e(F) =  42.08775473663854 

               e(df_r) =  726 

               e(df_m) =  7 

                  e(N) =  734 

 

global SSresidual = e(rss)  // Save full model SS residual for effect sizes below 

global SSfull = e(mss)      // Save full model SS model for effect sizes below 

 

display "STATA Semi-Partial and Partial R and R2 Effect Sizes for Fixed Slopes" 

pcorr income c.LvM c.LvU c.age18 c.age18#c.age18 c.lessHS c.gradHS c.overHS 

 

Partial and semipartial correlations of income with 

 

               Partial   Semipartial      Partial   Semipartial   Significance 

   Variable |    Corr.         Corr.      Corr.^2       Corr.^2          Value 

------------+----------------------------------------------------------------- 

        LvM |   0.2311        0.2003       0.0534        0.0401         0.0000 

        LvU |   0.0987        0.0836       0.0097        0.0070         0.0077 

      age18 |   0.3072        0.2723       0.0944        0.0741         0.0000 

c.age18#~18 |  -0.2746       -0.2409       0.0754        0.0580         0.0000 

     lessHS |   0.0171        0.0144       0.0003        0.0002         0.6447 

     gradHS |   0.0665        0.0562       0.0044        0.0032         0.0728 

     overHS |   0.2630        0.2299       0.0692        0.0529         0.0000 

 

display "STATA Get Model-Implied Difference for Middle vs Upper and Effect Sizes" 

estimates restore Model1    // Restore model results for post-estimations below  

lincom c.LvM*-1 + c.LvU*1   // Code below should work after any lincom 

   display "Partial D= "      (2*(r(estimate)/r(se)))/sqrt(r(df)) 

   display "Partial R= "      (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

   display "Semi-Partial R= " (r(estimate)/r(se))*sqrt((1-e(r2))/r(df)) 

 

---------------------------------------------------------------------------- 

      income |      Coef.   Std. Err.    t    P>|t|     [95% Conf. Interval] 

-------------+-------------------------------------------------------------- 

         (1) |   1.148432    2.70813   0.42   0.672    -4.168269    6.465134  beta2 – beta1 

---------------------------------------------------------------------------- 

Partial D= .03147731 

Partial R= .01573671 

Semi-Partial R= .0132741 

    

Because the workclass predictors are related (each shares a reference group with another), the total of the sr2  

values for these three differences they imply (two of which are given by pcorr; the other was requested as a 

linear combination) is greater than it should be. The linear age slope’s sr2 effect size is valid but conditional on 

age 18. The per-slope sr2 effect sizes for the remainder of the slopes are ok, but these cannot be added together 

directly to represent the contribution per conceptual predictor. Instead, we need to obtain an 𝐹-test and effect 

size that combines the fixed slopes for the same construct… that’s what the STATA code below gives us!  
 

display "STATA F-test for Overall Effect of Workclass" 

test (c.LvM=0)(c.LvU=0) 

       F(  2,   726) =   21.82 

            Prob > F =    0.0000 

 

display "STATA F-test for Overall Effect of Age"     

test (c.age18=0)(c.age18#c.age18=0)   

       F(  2,   726) =   41.08 

            Prob > F =    0.0000 

 

display "STATA F-test for Overall Effect of Education" 

test (c.lessHS=0)(c.gradHS=0)(c.overHS=0)  
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       F(  3,   726) =   27.46 

            Prob > F =    0.0000 

 

display "STATA Reduced Model to Get Model SS from Omitting Workclass" 

quietly regress income c.age18 c.age18#c.age18 c.lessHS c.gradHS c.overHS, level(95) 

global  SSeffect = $SSfull - e(mss) 

display "Partial R2 = "      $SSeffect/($SSeffect+$SSresidual) 

display "Semi-Partial R2 = " $SSeffect/($SSfull+$SSresidual) 

Partial R2 = .0567038 

Semi-Partial R2 = .04276013 

 

display "STATA Reduced Model to Get Model SS from Omitting Age" 

quietly regress income c.LvM c.LvU c.lessHS c.gradHS c.overHS, level(95) 

global  SSeffect = $SSfull - e(mss) 

display "Partial R2 = "      $SSeffect/($SSeffect+$SSresidual) 

display "Semi-Partial R2 = " $SSeffect/($SSfull+$SSresidual) 

Partial R2 = .10166273 

Semi-Partial R2 = .08050027 

 

display "STATA Reduced Model to Get Model SS from Omitting Education" 

quietly regress income c.LvM c.LvU c.age18 c.age18#c.age18, level(95) 

global  SSeffect = $SSfull - e(mss) 

display "Partial R2 = "      $SSeffect/($SSeffect+$SSresidual) 

display "Semi-Partial R2 = " $SSeffect/($SSfull+$SSresidual) 

Partial R2 = .10189198 

Semi-Partial R2 = .08070239 

 

Below is a summary of the results for the overall model and the contribution of each predictor: 

 

 

As shown in the last row above, the sum across the three constructs of the Effects Sums of Squares (SS effect) 

differs from the Model SS (SS effect from full model)—this is because the Model SS takes into account the 

predictive contribution of the shared variance among the sets of predictors (i.e., none of them “gets credit” for 

what they have in common that predicts income, but the model R2 does reflect that common contribution).  
 

print("R Model 2: Three-Category Workclass, Quadratic Age, and Piecewise Education") 

Model2 = lm(data=Example4a, formula=income~1+LvM+LvU+age18+I(age18^2)+lessHS+gradHS+overHS) 

supernova(Model2)   # supernova prints sums of squares and residual variance 

 

Analysis of Variance Table (Type III SS) 

 Model: income ~ 1 + LvM + LvU + age18 + I(age18^2) + lessHS + gradHS + overHS 

 

                                      SS  df        MS      F   PRE     p 

 ---------- --------------- | ---------- --- --------- ------ ----- ----- 

      Model (error reduced) |  40246.424   7  5749.489 42.088 .2887 .0000 

        LvM                 |   5594.069   1  5594.069 40.950 .0534 .0000 

        LvU                 |    975.265   1   975.265  7.139 .0097 .0077 

      age18                 |  10336.707   1 10336.707 75.667 .0944 .0000 

 I(age18^2)                 |   8089.564   1  8089.564 59.218 .0754 .0000 

     lessHS                 |     29.078   1    29.078  0.213 .0003 .6447 

     gradHS                 |    440.946   1   440.946  3.228 .0044 .0728 

     overHS                 |   7370.869   1  7370.869 53.957 .0692 .0000 

      Error (from model)    |  99176.808 726   136.607                    

 ---------- --------------- | ---------- --- --------- ------ ----- ----- 

      Total (empty model)   | 139423.232 733   190.209        

Combined Model
DF 

num
SS effect SS residual  SS total

semi-partial R2 = 

SS effect / SS total

partial R2 = SS effect / 

(SS effect + SS residual)

Full Model 7 40246 99177 139423 0.2887 0.2887

2 Group Differences Workclass 2 5962 99177 139423 0.0428 0.0567

Linear + Quadratic Age 2 11224 99177 139423 0.0805 0.1017

3 Piecewise Slopes Education 3 11252 99177 139423 0.0807 0.1019

Sum of Workclass, Age, Education 7 28437 0.2040 0.2603
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Mean Square Residual / Error, the residual variance, is 136.61 after including 7 slopes for the 3 predictor 

constructs (which accounted for 28.87% of the variance in income as the model R2 = .2887). The F-test says this 

R2 is significantly > 0, F(7, 726) = 42.04, MSE = 136.61, p < .001. 
 

SummaryCI(Model2, level=.95)  # custom function to add CIs to fixed effects table 

 

             Estimate    StdErr  t-value    p-value   LowerCI  UpperCI 

(Intercept) -3.686546 2.0046155 -1.83903 6.6319e-02 -7.622081  0.24899  beta0 

LvM          6.060105 0.9470067  6.39922 2.7998e-10  4.200907  7.91930  beta1 

LvU          7.208538 2.6978794  2.67193 7.7108e-03  1.911961 12.50511  beta2 

age18        1.069980 0.1230046  8.69870 2.2305e-17  0.828493  1.31147  beta3 

I(age18^2)  -0.017506 0.0022749 -7.69530 4.6148e-14 -0.021972 -0.01304  beta4 

lessHS       0.258918 0.5612016  0.46136 6.4468e-01 -0.842854  1.36069  beta5 

gradHS       3.157139 1.7572666  1.79662 7.2812e-02 -0.292792  6.60707  beta6 

overHS       1.528179 0.2080423  7.34552 5.5215e-13  1.119743  1.93662  beta7 

 

 

FixedEffectSizes(Model2)      # custom function to add effect sizes for fixed slopes 

 

             Estimate    p-value Partial-D Partial-R SemiPartial-R Partial-R2 SemiPartial-R2 

(Intercept) -3.686546 6.6319e-02 -0.136506 -0.068094     -0.057565  0.0046368     0.00331372 

LvM          6.060105 2.7998e-10  0.474995  0.231070      0.200307  0.0533934     0.04012293 

LvU          7.208538 7.7108e-03  0.198329  0.098681      0.083636  0.0097378     0.00699500 

age18        1.069980 2.2305e-17  0.645678  0.307225      0.272285  0.0943875     0.07413906 

I(age18^2)  -0.017506 4.6148e-14 -0.571199 -0.274619     -0.240877  0.0754157     0.05802164 

lessHS       0.258918 6.4468e-01  0.034246  0.017120      0.014442  0.0002931     0.00020856 

gradHS       3.157139 7.2812e-02  0.133358  0.066531      0.056237  0.0044264     0.00316265 

overHS       1.528179 5.5215e-13  0.545236  0.263019      0.229928  0.0691791     0.05286686 

 

print("R Ask for missing model-implied group difference") 

glhtModel2 = glht(model=Model2, linfct=rbind("Mid vs Upp Diff" = c(0,-1,1,0,0,0,0,0))) 

glhtSummaryCI(glhtModel2, level=.95)  # custom function to add CIs to glht output table 

 

                Estimate StdErr p-value LowerCI UpperCI 

Mid vs Upp Diff   1.1484 2.7081 0.67164 -4.1683  6.4651  beta2 – beta1 

 

glhtEffectSizes(glhtObject=glhtModel2, modelObject=Model2,  

                level=.95) # custom function to compute glht effect sizes  

 

                Estimate p-value Partial-D Partial-R SemiPartial-R Partial-R2 SemiPartial-R2 

Mid vs Upp Diff   1.1484 0.67164  0.031477  0.015737      0.013274 0.00024764      0.0001762 

 

Because the workclass predictors are related (each shares a reference group with another), the total of the sr2  

values for these three differences they imply (two of which are given by pcorr; the other was requested as a 

linear combination) is greater than it should be. The linear age slope’s sr2 effect size is valid but conditional on 

age 18. The per-slope sr2 effect sizes for the remainder of the slopes are ok, but these cannot be added together 

directly to represent the contribution per conceptual predictor. Instead, we need to obtain an 𝐹-test and effect 

size that combines the slopes for the same construct… that’s what the R code below gives us!  
 

# Fit model without fixed slopes of interest (LvM and LvU for workclass here) 

Model2NoClass = lm(data=Example4a, formula=income~1+age18+agesq+lessHS+gradHS+overHS) 

# Get F-test and effect sizes for fixed slopes of interest using custom function 

R2changeF(ReducedModel=Model2NoClass, FullModel=Model2, PredName="Workclass") 

 

F-Test and R2 Change for Workclass Slopes  

  R2-total R2-change DF-num DF-den F-value    p-value Partial-R2 SemiPartial-R2 

2  0.28866   0.04276      2    726  21.821 6.2698e-10   0.056704        0.04276 

 

# Repeat for age slopes  

Model2NoAge = lm(data=Example4a, formula=income~1+LvM+LvU+lessHS+gradHS+overHS) 

R2changeF(ReducedModel=Model2NoAge, FullModel=Model2, PredName="Age") 
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F-Test and R2 Change for Age Slopes  

  R2-total R2-change DF-num DF-den F-value    p-value Partial-R2 SemiPartial-R2 

2  0.28866    0.0805      2    726   41.08 1.2546e-17    0.10166         0.0805 

 

# Repeat for education slopes 

Model2NoEduc = lm(data=Example4a, formula=income~1+LvM+LvU+age18+agesq) 

R2changeF(ReducedModel=Model2NoEduc, FullModel=Model2, PredName="Education") 

 

F-Test and R2 Change for Education Slopes  

  R2-total R2-change DF-num DF-den F-value  p-value Partial-R2 SemiPartial-R2 

2  0.28866  0.080702      3    726  27.455 7.95e-17    0.10189       0.080702 

 

Example Results Section for Model 2 (would continue from separate results described in Example 3):  

Table 1 

 

Final Model Results 

 

Fixed Effect Est SE p <  Cohen's d 
Partial 

r 

Intercept −3.687 2.005 .001   
Lower vs Middle Class 6.060 0.947 .001 0.475 .231 

Lower vs Upper Class 7.209 2.698 .008 0.198 .099 

(Middle vs Upper Class) 1.148 2.708 .672 0.031 .016 

Linear Age Slope 1.070 0.123 .001 0.646 .307 

Quadratic Age Slope −0.018 0.002 .001 −0.572 −.275 

Education  2 to 11 years 0.259 0.561 .645 0.034 .017 

Education: 11 to 12 years 3.157 1.757 .073 0.134 .067 

Education: 12 to 20 years 1.528 0.208 .001 0.546 .263 
            

Note: Cohen’s d and partial r effect sizes were computed as: 𝑑 = 
2𝑡

√𝐷𝐹𝑑𝑒𝑛
; 𝑟 = 

𝑡

√𝑡2+𝐷𝐹𝑑𝑒𝑛
. Model-implied effects are 

given in parentheses, computed as linear combinations of the fixed effects. 

 

After examining the bivariate contributions of three-category self-reported working class membership, linear 

and quadratic years of age, and piecewise slopes for years of education in separate models, we then estimated a 

combined model to examine their unique contributions after controlling for each other construct. Model 2 

(including all seven fixed slopes) captured a significant amount of variance in annual income, F(7, 726) = 42.09, 

MSE = 136.61, p < .001, R2 = .289. Parameter estimates and effect sizes are given in Table 1. Semipartial eta-

squared (η2) effect sizes and corresponding multivariate Wald F-tests were obtained to evaluate the amount of 

total variance captured by distinct sets of predictor slopes.  

 

The omnibus unique effect of three-category self-reported working class membership remained significant, F(2, 

726) = 21.83, MSE = 136.61, p < .0001, semipartial η2  = .043. As shown in Table 1, relative to lower-class 

respondents (the reference group), after controlling for years of age and years of education, annual income was 

still significantly higher for both middle-class and upper-class respondents (by 6.060 and 7.209 thousand 

dollars, respectively). Middle-class and upper-class respondents still did not differ significantly in predicted 

annual income. 

 

The omnibus unique effect of quadratic years of age (centered at 18) also remained significant, F(2, 726) = 

41.08, MSE = 136.61, p < .0001, semipartial η2  = .081. As shown in Table 1, after controlling for self-reported 

working class and years of education, annual income was expected to be significantly higher by 1.070 thousand 

dollars per year of age at age 18; this instantaneous linear age slope was predicted to become significantly less 
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positive per year of age by twice the quadratic coefficient of −0.018. As given by the quantity (−1*linear slope) / 

(2*quadratic slope) + 18, the age of maximum predicted personal income was 48.56 (i.e., the age at which the 

linear age slope = 0). 

 

The omnibus unique effect of piecewise years of education (centered at 11) also remained significant, F(3, 726) 

= 27.46, MSE = 136.61, p < .0001, semipartial η2  = .081. As shown in Table 1, after controlling for self-

reported working class and years of age, annual income was expected to be nonsignificantly higher by 0.259 

thousand dollars per year of education from 2 to 11 years, to be nonsignificantly higher by 3.157 thousand 

dollars for those achieving a high school degree, and to be significantly higher by 1.528 thousand dollars per 

year of additional education past 12 years. Notably, the effect of a high school degree (the difference between 11 

and 12 years of education) was no longer significant after controlling for age and self-reported working class 

membership. 

 

[The rest of the text would need to emphasize why it matters based on your research questions that the 

predictors had significant unique effects. This is the part that must be customized per research study!] 

 

 

 


