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Example 3: General Linear Models with Multiple Fixed Effects of a Single Conceptual Predictor 

(complete syntax, data, and output available for SAS, STATA, and R electronically) 

 
The data for this example were selected from the 2012 General Social Survey dataset (and were also used for 

examples 1 and 2). The current example will use general linear models to predict a single quantitative outcome 

(annual income) when multiple fixed effects are needed to describe a predictor’s relationship to the outcome: for 

categorical predictors with more than two categories (3-category working class), for quantitative predictors with 

nonlinear effects (quadratic years of age or piecewise years of education), or for testing the assumption of a 

single linear slope for ordinal predictors (5-category happiness). 

 

SAS Syntax for Importing and Preparing Data for Analysis: 

* Paste in the folder address where "GSS_Example.xlsx" is saved after = before ; 

%LET filesave= \\Client\C:\Dropbox\22SP_PSQF6243\PSQF6243_Example3; 

 

* IMPORT GSS_Example.xlsx data using filesave reference and exact file name; 

* from the Excel workbook in DATAFILE= location from SHEET= ; 

* New SAS file is in "work" library place with name "Example3"; 

* "GETNAMES" reads in the first row as variable names; 

* DBMS=XLSX (can also use EXCEL or XLS for .xls files); 

PROC IMPORT DATAFILE="&filesave.\GSS_Example.xlsx"  

            OUT=work.Example3 DBMS=XLSX REPLACE;  

     SHEET="GSS_Example";  

     GETNAMES=YES;  

RUN; 

* All data transformations must happen inside a DATA+SET combo to know where to use them; 

* Here is how to make a new variable: new = old; 

DATA work.Example3; SET work.Example3; 

* Label variables and apply value formats for variables used below; 

* LABEL name=      "name: Descriptive Variable Label"; 

  LABEL workclass= "workclass: 1=Lower, 2=Middle, 3=Upper" 

        age=       "age: Years of Age" 

        educ=      "educ: Years of Education" 

        happy=     "happy: 5-Category Happy Rating" 

        income=    "income: Annual Income in 1000s"; 

* Select cases complete on all variables to be used; 

  WHERE NMISS(income,workclass,age,educ,happy)=0; 

RUN; 

* Now dataset work.Example3 is ready to use;  

 

STATA Syntax for Importing and Preparing Data for Analysis: 

// Paste in the folder address where "GSS_Example.xlsx" is saved between " " 

cd "\\Client\C:\Dropbox\22SP_PSQF6243\PSQF6243_Example3" 

 

// IMPORT GSS_Example.xlsx data from working directory using exact file name 

// To change all variable names to lowercase, remove "case(preserve") 

clear // Clear before means close any open data 

import excel "GSS_Example.xlsx", case(preserve) firstrow clear  

// Clear after means re-import if it already exists (if need to start over) 

                             

// Label variables and apply value formats for variables used below 

// label variable name   "name: Descriptive Variable Label" 

label variable workclass "workclass: 1=Lower, 2=Middle, 3=Upper"   

label variable age       "age: Years of Age" 

label variable educ      "educ: Years of Education" 

label variable happy     "happy: 5-Category Happy Rating" 

label variable income    "income: Annual Income in 1000s" 

 

// Select cases complete on variables to be used 

egen nmiss = rowmiss(income workclass age educ happy) 

drop if nmiss>0 

// Now dataset is ready to use 

Note: All SAS commands and 

comments end in a semi-colon!  
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R Syntax for Importing and Preparing Data for Analysis: 

# Set working directory (to import and export files to) 

# Paste in the folder address where "GSS_Example.xlsx" is saved in quotes 

setwd("C:/Dropbox/22SP_PSQF6243/PSQF6243_Example3") 

 

# Import GSS_Example.xlsx data from working directory -- path = file name 

Example3 = read_excel(path="GSS_Example.xlsx", sheet="GSS_Example")  

# Convert to data frame to use for analysis 

Example3 = as.data.frame(Example3) 

 

# Label variables used below (add descriptive titles) using comments instead 

 

 

Syntax and SAS Output for Data Description: 
 

TITLE "SAS Descriptive Statistics for Quantitative and Ordinal Variables"; 

PROC MEANS NDEC=3 DATA=work.Example3;  

     VAR income age educ happy; 

RUN; TITLE; 

 

display "STATA Descriptive Statistics for Quantitative and Ordinal Variables" 

summarize income age educ happy 

 

print("R Descriptive Statistics for Quantitative or Ordinal Variables") 

describe(x=Example3[ , c("income","age","educ","happy")]) 

 

Variable Label N Mean Std Dev Minimum Maximum 

income 
age 
educ 
happy 

income: Annual Income in 1000s 
age: Years of Age 
educ: Years of Education 
happy: 5-Category Happy Rating 

734 
734 
734 
734 

17.303 
42.063 
13.812 

3.556 

13.792 
13.378 

2.909 
0.895 

0.245 
18.000 

2.000 
1.000 

68.600 
75.000 
20.000 

5.000 
 

TITLE "SAS Descriptive Statistics for Categorical Variables"; 

PROC FREQ DATA=work.Example3;  

     TABLE workclass happy;  

RUN; TITLE; 

 

display "SAS Descriptive Statistics for Categorical Variables" 

tabulate workclass 

tabulate happy 

 

print("R Descriptive Statistics for Categorical Variables") 

prop.table(table(x=Example3$workclass,useNA="ifany")) 

prop.table(table(x=Example3$happy,useNA="ifany")) 

 

 

workclass: 1=Lower, 2=Middle, 3=Upper 

workclass Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

1 436 59.40 436 59.40 

2 278 37.87 714 97.28 

3 20 2.72 734 100.00 
 

happy: 5-Category Happy Rating 

happy Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

1 26 3.54 26 3.54 

2 39 5.31 65 8.86 

3 256 34.88 321 43.73 

4 327 44.55 648 88.28 

5 86 11.72 734 100.00 

 

We will need 2 slopes to represent the 

differences across the 3 categories.  

We will need 4 slopes to represent the 

differences across the 5 categories.  
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Syntax to Create Indicator-Dummy-Coded Predictors—2 needed for 3 workclass categories: 

Categorical variables with 3+ categories cannot be included directly as predictors in the model, or else a 

single linear slope will be estimated to differentiate the total 𝐶 categories—this doesn’t make any sense, 

especially for nominal predictor variables. Instead, we need to create 𝑪 − 𝟏 new predictors to distinguish the 

predicted outcome for each of the 𝑪 categories. The coding scheme we are using is “indicator-dummy-

coding” where each category has a 1 for only a single predictor (that “activates” the predictor for that category). 
 

* SAS code to create 2 new indicator-dummy-coded binary predictors; 

* DATA + SET means "save as itself" after adding new predictors; 

DATA work.Example3; SET work.Example3; 

  LvM=.; LvU=.; * Make 2 new empty variables; 

  IF workclass=1 THEN DO; LvM=0; LvU=0; END; * Replace each for lower; 

  IF workclass=2 THEN DO; LvM=1; LvU=0; END; * Replace each for middle; 

  IF workclass=3 THEN DO; LvM=0; LvU=1; END; * Replace each for upper;  

  LABEL LvM="LvM: Low=0 vs Mid=1 Class" 

        LvU="LvU: Low=0 vs Upp=1 Class"; 

RUN; 

 

// STATA code to create 2 new indicator-dummy-coded binary predictors 

gen LvM=. // Make two new empty variables 

gen LvU=. 

replace LvM=0 if workclass==1 // Replace each for lower 

replace LvU=0 if workclass==1 

replace LvM=1 if workclass==2 // Replace each for middle 

replace LvU=0 if workclass==2 

replace LvM=0 if workclass==3 // Replace each for upper 

replace LvU=1 if workclass==3 

label variable LvM "LvM: Low=0 v Mid=1 Class" 

label variable LvU "LvU: Low=0 v Upp=1 Class" 

 

# R code to create indicator-dummy-coded binary predictors 

Example3$LvM=NA; Example3$LvU=NA  # Make 2 new empty variables  

Example3$LvM[which(Example3$workclass==1)]=0  # Replace each for lower 

Example3$LvU[which(Example3$workclass==1)]=0 

Example3$LvM[which(Example3$workclass==2)]=1  # Replace each for middle 

Example3$LvU[which(Example3$workclass==2)]=0 

Example3$LvM[which(Example3$workclass==3)]=0  # Replace each for upper 

Example3$LvU[which(Example3$workclass==3)]=1 

# LvM: Low=0 vs Mid=1 Class 

# LvU: Low=0 vs Upp=1 Class 

 

Syntax and SAS Output for 3-Category Working Class Predicting Income: 

Model with workclass via two indicator-dummy-coded predictors:     
   𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑳𝒗𝑴𝒊) + 𝜷𝟐(𝑳𝒗𝑼𝒊) + 𝒆𝒊 

Predicted  �̂�𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑳𝒗𝑴𝒊) + 𝜷𝟐(𝑳𝒗𝑼𝒊) 

 
The syntax below will also request the predicted outcome for each category and all possible pairwise differences. 
 

Low Mean:   �̂�𝑳 = 𝜷𝟎 + 𝜷𝟏(𝟎) + 𝜷𝟐(𝟎) = 𝜷𝟎   fixed effect #1 

Mid Mean:  �̂�𝑴 = 𝜷𝟎 + 𝜷𝟏(𝟏) + 𝜷𝟐(𝟎) = 𝜷𝟎 + 𝜷𝟏  linear combination 

Upp Mean:  �̂�𝑼 = 𝜷𝟎 + 𝜷𝟏(𝟎) + 𝜷𝟐(𝟏) = 𝜷𝟎 + 𝜷𝟐  linear combination 

 

Diff of Low vs Mid:   (𝜷𝟎 + 𝜷𝟏) − (𝜷𝟎) = 𝜷𝟏  fixed effect #2 

Diff of Low vs. Upp:  (𝜷𝟎 + 𝜷𝟐) − (𝜷𝟎) = 𝜷𝟐  fixed effect #3 

Diff of Mid vs Upp:   (𝜷𝟎 + 𝜷𝟐) − (𝜷𝟎 + 𝜷𝟏) = 𝜷𝟐 − 𝜷𝟏 linear combination 
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TITLE "SAS GLM Predicting Income from 2 New Variables for workclass"; 

PROC GLM DATA=work.Example3 NAMELEN=100;  

  MODEL income = LvM LvU / SOLUTION ALPHA=.05 CLPARM SS3; 

* Ask for predicted income per group and group differences; 

  ESTIMATE "Pred Income: Low"  intercept 1 LvM  0 LvU 0; 

  ESTIMATE "Pred Income: Mid"  intercept 1 LvM  1 LvU 0; 

  ESTIMATE "Pred Income: Upp"  intercept 1 LvM  0 LvU 1; 

  ESTIMATE "Low vs Mid Diff"               LvM  1 LvU 0; 

  ESTIMATE "Low vs Upp Diff"               LvM  0 LvU 1; 

  ESTIMATE "Mid vs Upp Diff"               LvM -1 LvU 1; 

* Save requested estimates as SAS dataset to do math on them; 

  ODS OUTPUT Estimates=work.ClassEstimates; 

RUN; QUIT; TITLE; 

 

display "STATA GLM Predicting Income from 2 New Variables for workclass" 

regress income c.LvM c.LvU, level(95) 

// Ask for predicted income per group and group differences 

   lincom _cons*1 + c.LvM*0  + c.LvU*0  // Pred Income: Low  

   lincom _cons*1 + c.LvM*1  + c.LvU*0  // Pred Income: Mid   

   lincom _cons*1 + c.LvM*0  + c.LvU*1  // Pred Income: Upp   

   lincom           c.LvM*1  + c.LvU*0  // Low vs Mid Diff  

   lincom           c.LvM*0  + c.LvU*1  // Low vs Upp Diff  

   lincom           c.LvM*-1 + c.LvU*1  // Mid vs Upp Diff  

 

print("R GLM Predicting Income from 2 New Variables for workclass") 

ModelClass = lm(data=Example3, formula=income~1+LvM+LvU) 

anova(ModelClass)   # anova to print residual variance 

summary(ModelClass) # summary to print fixed effects solution  

confint(ModelClass, level=.95) # confint for level% CI for fixed effects 

 

print("R Ask for predicted income per group and group differences") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredClass = glht(model=ModelClass, linfct=rbind( 

  "Pred Income: Low"  = c(1, 0, 0),   

  "Pred Income: Mid"  = c(1, 1, 0),  

  "Pred Income: Upp"  = c(1, 0, 1),  

  "Low vs Mid Diff"   = c(0, 1, 0), 

  "Low vs Upp Diff"   = c(0, 0, 1), 

  "Mid vs Upp Diff"   = c(0,-1, 1))) 

print("Save glht linear combination results with unadjusted p-values and 95% CIs") 

SavePredClass = summary(PredClass, test=adjusted("none"))  

print(SavePredClass); confint(PredClass, level=.95, calpha=univariate_calpha()) 

 

 

SAS GLM Predicting Income from 2 New Variables for workclass 

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        2      14414.0265       7207.0132      42.14    <.0001 

Error                      731     125009.2054        171.0112 

Corrected Total            733     139423.2319 

 

 

R-Square     Coeff Var      Root MSE    income Mean 

0.103383      75.57777      13.07713       17.30287 

 

Table of Model-Estimated Fixed Effects (normally is last) 
                            Standard 

Parameter      Estimate        Error    t Value    Pr > |t|    95% Confidence Limits 

Intercept   13.65004014   0.62628075      21.80      <.0001   12.42051668  14.87956360 Beta0 

LvM          8.85426742   1.00368116       8.82      <.0001    6.88382600  10.82470884 Beta1 

LvU         10.98470986   2.99044960       3.67      0.0003    5.11381580  16.85560393 Beta2 

 

Mean Square Error, the residual variance, is 

171.01 after including 2 slopes for workclass 

as a predictor (which accounted for 10.34% 

of the variance in income as the model R2). 

The F-test tells us this R2 is significantly > 0, 

F(2, 731) = 42.14, MSE = 171.01, p < .001. 
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Interpret 𝜷𝟎 = Intercept:  

Interpret 𝜷𝟏 = slope of Low vs Mid:  

Interpret 𝜷𝟐 = slope of Low vs Upp:  

 

Table of Extra Requested Linear Combinations of Model-Estimated Fixed Effects 
                                   Standard 

Parameter            Estimate         Error   t Value   Pr > |t|    95% Confidence Limits 

 

Pred Income: Low   13.6500401    0.62628075     21.80     <.0001    12.4205167   14.8795636 Beta0 

Pred Income: Mid   22.5043076    0.78431390     28.69     <.0001    20.9645311   24.0440840 Beta0+Beta1 

Pred Income: Upp   24.6347500    2.92413427      8.42     <.0001    18.8940472   30.3754528 Beta0+Beta2 

 

Low vs Mid Diff     8.8542674    1.00368116      8.82     <.0001     6.8838260   10.8247088 Beta1 

Low vs Upp Diff    10.9847099    2.99044960      3.67     0.0003     5.1138158   16.8556039 Beta2 

Mid vs Upp Diff     2.1304424    3.02749229      0.70     0.4818    -3.8131743    8.0740592 Beta2-Beta1 

 

Syntax and SAS Output to Compute Partial Effect Sizes from Requested Category Differences: 
 

* SAS code to compute effect sizes from stored ESTIMATE results; 

DATA work.ClassEstimates; SET work.ClassEstimates; 

* Cohen d is partial standardized mean difference;  

  PartialD=(2*tValue)/SQRT(731); * SQRT(number) = DF denominator; 

* PartialR is partial correlation; 

  PartialR = tvalue/(SQRT(tvalue**2 +731)); * +number = DF denominator; 

RUN; 

* Print estimates table with effect sizes added; 

TITLE "PartialD and PartialR Effect Sizes for 3-Category workclass"; 

PROC PRINT NOOBS DATA=work.ClassEstimates;  

     VAR Parameter--PartialR; * Print all contiguous columns;  

RUN; TITLE; 

 

Parameter Estimate StdErr tValue Probt LowerCL UpperCL PartialD PartialR 

Pred Income: Low 13.6500401 0.62628075 21.80 <.0001 12.4205167 14.8795636 1.61226 0.62760 

Pred Income: Mid 22.5043076 0.78431390 28.69 <.0001 20.9645311 24.0440840 2.12250 0.72780 

Pred Income: Upp 24.6347500 2.92413427 8.42 <.0001 18.8940472 30.3754528 0.62319 0.29749 

Low vs Mid Diff 8.8542674 1.00368116 8.82 <.0001 6.8838260 10.8247088 0.65257 0.31019 

Low vs Upp Diff 10.9847099 2.99044960 3.67 0.0003 5.1138158 16.8556039 0.27172 0.13462 

Mid vs Upp Diff 2.1304424 3.02749229 0.70 0.4818 -3.8131743 8.0740592 0.05205 0.02602 
 

 

// STATA code to compute effect sizes from stored results per lincom 

lincom c.LvM*1  + c.LvU*0 // Low vs Mid Diff    

   display "PartialD= " (2*(r(estimate)/r(se)))/sqrt(r(df)) 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.LvM*0  + c.LvU*1  // Low vs Upp Diff  

   display "PartialD= " (2*(r(estimate)/r(se)))/sqrt(r(df)) 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.LvM*-1 + c.LvU*1  // Mid vs Upp Diff  

   display "PartialD= " (2*(r(estimate)/r(se)))/sqrt(r(df)) 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

 

 

# R code to compute effect sizes from stored model and GLHT results 

PredClassPartialD=(2*SavePredClass$test$tstat)/sqrt(ModelClass$df.residual) 

PredClassPartialR=SavePredClass$test$tstat/ 

             sqrt(SavePredClass$test$tstat^2+ModelClass$df.residual) 

# Concatenate effect sizes to results table for mean differences 

data.frame(Estimate=SavePredClass$test$coefficients, pvalue=SavePredClass$test$pvalues,  

           PartialD=PredlassPartialD, PartialR=PredClassPartialR) 

Btw, effect sizes for 

predicted outcomes 

are not meaningful 

(but these rows were 

included in the 

dataset of saved 

estimates). 
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Example Results Section for Income Mean Differences by Working Class:  

We used a general linear model (i.e., analysis of variance) to examine the extent to which annual income in 

thousands of dollars (M = 17.30, SD = 13.79) could be predicted from three categories of self-reported working 

class membership (lower = 59.40%, middle = 37.87%, and upper = 2.72%). We created two contrasts to 

distinguish the three classes, in which lower-class respondents served as the reference group to be compared 

separately to middle-class and to upper-class respondents. We found that class membership significantly 

predicted annual income, F(2, 731) = 42.14, MSE = 171.01, p < .001, R2 = .10. Relative to lower-class 

respondents, annual income was significantly higher for both middle-class respondents (difference = 8.85, SE = 

1.00, d = 0.65) and upper-class respondents (difference = 10.98, SE = 2.99, d = 0.27). However, upper-class 

respondents did not differ significantly from middle-class respondents (difference = 2.13, SE = 3.03, d = 0.05). 

__________________________________________________________________________________ 

Syntax to Center Age at 18 years (minimum of sample): 

* SAS code to create 1 new age variable centered at 18 (minimum in sample); 

DATA work.Example3; SET work.Example3; 

  age18=age-18; LABEL age18= "age18: Age (0=18 years)"; 

RUN; 

 

// STATA code to create 1 new age variable centered at 18 (minimum in sample) 

gen age18=age-18 

label variable age18 "age18: Age (0=18 years)" 

 

# R code to make new age variable centered at 18 (minimum in sample) 

Example3$age18=Example3$age-18 # age18: Age (0=18 years)  

 

Syntax and SAS Output for Age Predicting Income: 

First Testing a Linear Effect of Age (0=18):  𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒈𝒆𝒊 − 𝟏𝟖) + 𝒆𝒊 

The syntax below will also request the predicted outcome for example ages 30, 50, and 70. 
 

TITLE "SAS GLM Predicting Income from Linear Centered Age (0=18)"; 

PROC GLM DATA=work.Example3 NAMELEN=100;  

  MODEL income = age18 / SOLUTION ALPHA=.05 CLPARM SS3; 

* Ask for predicted income for example ages; 

  ESTIMATE "Pred Income: Age 30 (age18=12)"  intercept 1 age18 12; 

  ESTIMATE "Pred Income: Age 50 (age18=32)"  intercept 1 age18 32; 

  ESTIMATE "Pred Income: Age 70 (age18=52)"  intercept 1 age18 52; 

RUN; QUIT; TITLE;  

 

display "STATA GLM Predicting Income from Linear Centered Age (0=18)" 

regress income c.age18, level(95) 

// Ask for predicted income for example ages 

   lincom _cons*1 + c.age18*12  // Pred Income: Age 30 (age18=12) 

   lincom _cons*1 + c.age18*32  // Pred Income: Age 50 (age18=32) 

   lincom _cons*1 + c.age18*52  // Pred Income: Age 70 (age18=52) 

 

print("R GLM Predicting Income from Linear Centered Age") 

ModelLinAge = lm(data=Example3, formula=income~1+age18) 

anova(ModelLinAge)   # anova to print residual variance 

summary(ModelLinAge) # summary to print fixed effects solution  

confint(ModelLinAge, level=.95) # confint to print level% CI for fixed effects 

 

print("R Ask for predicted income for example ages") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredLinAge = glht(model=ModelLinAge, linfct=rbind( 

  "Pred Income: Age 30 (age18=12)" = c(1,12),   

  "Pred Income: Age 50 (age18=32)" = c(1,32),  

  "Pred Income: Age 70 (age18=52)" = c(1,52))) 

print("Print glht linear combination results with unadjusted p-values and 95% CIs") 

summary(PredLinAge, test=adjusted("none"))  

confint(PredLinAge, level=.95, calpha=univariate_calpha()) 
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SAS GLM Predicting Income from Linear Centered Age (0=18) 

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        1       5580.7424       5580.7424      30.52    <.0001 

Error                      732     133842.4895        182.8449 

Corrected Total            733     139423.2319 

 

R-Square     Coeff Var      Root MSE    income Mean 

0.040027      78.14896      13.52202       17.30287 

 

Table of Model-Estimated Fixed Effects (normally is last) 
                                  Standard 

Parameter         Estimate           Error    t Value    Pr > |t|      95% Confidence Limits 

Intercept      12.33998883      1.02765825      12.01      <.0001     10.32247980  14.35749786 

age18           0.20624834      0.03733240       5.52      <.0001      0.13295699   0.27953969 

 

Interpret 𝜷𝟎 = Intercept: 

Interpret 𝜷𝟏 = slope of age18: 

 

Table of Extra Requested Linear Combinations of Model-Estimated Fixed Effects 
                                                Standard 

Parameter                          Estimate        Error  t Value  Pr > |t|   95% Confidence Limits 

Pred Income Age 30 (age18=12)    14.8149689   0.67223750    22.04    <.0001   13.4952255   16.1347124 

Pred Income Age 50 (age18=32)    18.9399357   0.58044193    32.63    <.0001   17.8004063   20.0794652 

Pred Income Age 70 (age18=52)    23.0649026   1.15623917    19.95    <.0001   20.7949622   25.3348429 

 

Second, Keeping a Linear Slope for Age and Adding a Quadratic Slope for Age (0=18): 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑨𝒈𝒆𝒊 − 𝟏𝟖) + 𝜷𝟐(𝑨𝒈𝒆𝒊 − 𝟏𝟖)𝟐 + 𝒆𝒊 
 

The syntax below will also request not only the predicted outcome for example ages 30, 50, and 70, but also the 

predicted instantaneous linear slopes at those ages too: 𝑳𝒊𝒏𝒆𝒂𝒓 𝑨𝒈𝒆 𝑺𝒍𝒐𝒑𝒆 = 𝜷𝟏 + 𝟐𝜷𝟐(𝑨𝒈𝒆𝒊 − 𝟏𝟖) 
 

TITLE "SAS GLM Predicting Income from Linear+Quadratic Centered Age"; 

PROC GLM DATA=work.Example3 NAMELEN=100; 

* Asterisk creates multiplied predictor variable; 

  MODEL income = age18 age18*age18 / SOLUTION ALPHA=.05 CLPARM SS3; 

* Ask for predicted income for example ages; 

  ESTIMATE "Pred Income: Age 30 (age18=12)"  intercept 1 age18 12 age18*age18  144; 

  ESTIMATE "Pred Income: Age 50 (age18=32)"  intercept 1 age18 32 age18*age18 1024; 

  ESTIMATE "Pred Income: Age 70 (age18=52)"  intercept 1 age18 52 age18*age18 2704; 

* Linear age slope changes by 2*quadratic coefficient per year, so multiply age*2; 

  ESTIMATE "Pred Linear Age Slope: Age 30 (age18=12)"    age18 1  age18*age18  24; 

  ESTIMATE "Pred Linear Age Slope: Age 50 (age18=32)"    age18 1  age18*age18  64; 

  ESTIMATE "Pred Linear Age Slope: Age 70 (age18=52)"    age18 1  age18*age18 104; 

* Save predicted income and SE to new dataset to make pictures; 

  OUTPUT OUT=work.PredIncomebyAge PREDICTED=YhatAge STDP=SEyhatAge; 

RUN; QUIT; TITLE;  

 

display as result "STATA GLM Predicting Income from Linear+Quadratic Centered Age (0=18)" 

regress income c.age18 c.age18#c.age18, level(95) // Hashtag multiplies predictors 

// Ask for predicted income for example ages 

   lincom _cons*1 + c.age18*12 + c.age18#c.age18*144  // Pred Income: Age 30 (age18=12) 

   lincom _cons*1 + c.age18*32 + c.age18#c.age18*1024 // Pred Income: Age 50 (age18=32)    

   lincom _cons*1 + c.age18*52 + c.age18#c.age18*2704 // Pred Income: Age 70 (age18=52) 

// Linear age slope changes by 2*quadratic coefficient, so multiply age*2 

   lincom  c.age18*1 + c.age18#c.age18*24  // Pred Linear Age Slope: Age 30 (age18=12) 

   lincom  c.age18*1 + c.age18#c.age18*64  // Pred Linear Age Slope: Age 50 (age18=32) 

   lincom  c.age18*1 + c.age18#c.age18*104 // Pred Linear Age Slope: Age 70 (age18=52) 

Mean Square Error, the residual variance, is 

182.84 after including a linear effect of age (which 

accounted for 4.00% of the variance in income as the 

model R2). The F-test tells us this R2 is significantly 

> 0, F(1, 732) = 30.52, MSE = 182.84, p < .001. 
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print("R GLM Predicting Income from Linear+Quadratic Centered Age") 

ModelQuadAge = lm(data=Example3, formula=income~1+age18+I(age18^2)) # I(x^2) squares x 

anova(ModelQuadAge)   # anova to print residual variance 

summary(ModelQuadAge) # summary to print fixed effects solution  

confint(ModelQuadAge, level=.95) # confint to print level% CI for fixed effects 

 

print("R Ask for predicted income and predicted linear age slopes for example ages") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredQuadAge = glht(model=ModelQuadAge, linfct=rbind( 

  "Pred Income: Age 30 (age18=12)" = c(1,12, 144),   

  "Pred Income: Age 50 (age18=32)" = c(1,32,1024),  

  "Pred Income: Age 70 (age18=52)" = c(1,52,2704), 

  "Pred Linear Age Slope: Age 30 (age18=12)" = c(0,1, 24), 

  "Pred Linear Age Slope: Age 50 (age18=32)" = c(0,1, 64), 

  "Pred Linear Age Slope: Age 70 (age18=52)" = c(0,1,104))) 

print("Print glht linear combination results with unadjusted p-values and 95% CIs") 

summary(PredQuadAge, test=adjusted("none"))  

confint(PredQuadAge, level=.95, calpha=univariate_calpha()) 

 

 

SAS GLM Predicting Income from Linear+Quadratic Centered Age (0=18) 

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        2      15885.4618       7942.7309      47.00    <.0001 

Error                      731     123537.7701        168.9983 

Corrected Total            733     139423.2319 

 

R-Square     Coeff Var      Root MSE    income Mean 

0.113937      75.13165      12.99994       17.30287 

 

Table of Model-Estimated Fixed Effects (normally is last) 
                                    Standard 

Parameter           Estimate           Error    t Value    Pr > |t|      95% Confidence Limits 

Intercept        2.676597431      1.58352919       1.69      0.0914    -0.432210062  5.785404923 Beta0 

age18            1.223080607      0.13507406       9.05      <.0001     0.957901252  1.488259961 Beta1 

age18*age18     -0.019537211      0.00250199      -7.81      <.0001    -0.024449155 -0.014625267 Beta2 

 

Interpret 𝜷𝟎 = Intercept: 

Interpret 𝜷𝟏 = slope of age18: 

Interpret 𝜷𝟐 = slope of age182: 

Interpret 𝑹𝟐 two different ways: 

 

The 𝑹𝟐 went from .040 to .114, an increase of .074. Do we know  

if the 𝑹𝟐 increased significantly relative to the linear age model? 
 

 

Table of Extra Requested Linear Combinations of Model-Estimated Fixed Effects 
                                                          Standard 

Parameter                                    Estimate      Error    t Value  Pr > |t|   95% Confidence Limits 

Pred Income: Age 30 (age18=12)              14.5402064   0.64723977    22.46    <.0001   13.2695359   15.8108769 

Pred Income: Age 50 (age18=32)              21.8090730   0.66813438    32.64    <.0001   20.4973819   23.1207641 

Pred Income: Age 70 (age18=52)              13.4481710   1.65902182     8.11    <.0001   10.1911553   16.7051867 

Pred Linear Age Slope: Age 30 (age18=12)     0.7541875   0.07881678     9.57    <.0001    0.5994533    0.9089218 

Pred Linear Age Slope: Age 50 (age18=32)    -0.0273009   0.04671950    -0.58    0.5592   -0.1190213    0.0644195 

Pred Linear Age Slope: Age 70 (age18=52)    -0.8087893   0.13485251    -6.00    <.0001   -1.0735337   -0.5440449 

 

Mean Square Error, the residual variance, is now 

169.00 from the two effects of age (which accounted 

for 11.39% of the variance in income as the model 

R2). The F-test says this R2 is significantly > 0,  

F(2, 731) = 47.00, MSE = 169.00, p < .001. 
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Left: model-predicted regression line through scatterplot (provided automatically) 

Right: model-predicted regression line through means for age (see extra code online) 
 

  

 
We forgo requesting standardized slopes for this model given the ambiguity of how to interpret them for models 

with interactions… R2 is a sufficiently useful effect size to describe the overall effect (trend) of age here. 
 

Example Results Section for the Linear and Quadratic Effects of Age:  

We used a general linear model (i.e., linear regression) to examine the extent to which annual income in 

thousands of dollars (M = 17.30, SD = 13.79) could be predicted from years of age (M = 42.06, SD = 13.38, 

range = 18 to 75). We first examined the means of income by age to identify plausible types of nonlinear 

associations. Given the apparent curvilinear trend (in which age appeared positively associated with income 

until middle age, upon which it appeared negatively associated instead), we fit a model including linear and 

quadratic slopes for age (in which age was centered such that 0 = 18 years, the minimum age in the sample). The 

quadratic age model captured a significant amount of variance in annual income, F(2, 731) = 47.00, MSE = 

169.00, p < .001, R2 = .114. The quadratic age model was also a significant improvement over a linear age 

model, as indicated by the significant slope for the quadratic effect of age. The model fixed effects can be 

interpreted as follows. The fixed intercept indicated that at age 18, annual income was predicted to be 2.676 

thousand dollars (SE = 1.584) and was expected to be significantly greater by 1.223 thousand dollars per year of 

age (i.e., the instantaneous linear slope for age at age 18; SE = 0.135, p < .001). The linear age slope at age 18 

was predicted to become significantly more negative per year of age by twice the quadratic coefficient of −0.020 

(SE = 0.002, p < .001). As given by the quantity (−1*linear slope) / (2*quadratic slope) + 18, the age of 

maximum predicted personal income was 48.575 (i.e., the age at which the linear age slope = 0). For example, 

the linear effect of age as evaluated at age 30 was significantly positive (Est = 0.754, SE = 0.079), the linear 

effect of age as evaluated at age 50 was nonsignificantly negative (Est = −0.027, SE = 0.047), and the linear 

effect of age as evaluated at age 70 was significantly negative (Est = −0.809, SE = 0.135). 
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Syntax to Create 3 Predictors for Piecewise Slopes for Education: 

The idea is to represent the 

3 different sections of 

education using 3 different 

predictors, that way the 

slope for each section is 

captured separately. 

 

 
 

 

 

 

 

 

 

 

* SAS code to create 3 new predictor variables for sections of education; 

DATA work.Example3; SET work.Example3; 

  lessHS=.; gradHS=.; overHS=.; * Make 3 new empty variables; 

* Replace each for educ less than 12; 

  IF educ LT 12 THEN DO; lessHS=educ-11; gradHS=0; overHS=0;       END; 

* Replace each for educ greater or equal to 12; 

  IF educ GE 12 THEN DO; lessHS=0;       gradHS=1; overHS=educ-12; END; 

  LABEL lessHS= "lessHS: Slope for Years Ed Less Than High School" 

        gradHS= "gradHS: Bump for Graduating High School" 

        overHS= "overHS: Slope for Years Ed After High School"; 

RUN; 

 

// STATA code to create 3 new predictor variables for sections of education 

gen lessHS=. // Make 3 new empty variables 

gen gradHS=. 

gen overHS=. 

// Replace each for educ less than 12 

replace lessHS=educ-11 if educ <  12 

replace gradHS=0       if educ <  12 

replace overHS=0       if educ <  12 

// Replace each for educ greater or equal to 12 

replace lessHS=0       if educ >= 12  

replace gradHS=1       if educ >= 12 

replace overHS=educ-12 if educ >= 12 

// Label variables 

label variable lessHS "lessHS: Slope for Years Ed Less Than High School" 

label variable gradHS "gradHS: Acute Bump for Graduating High School" 

label variable overHS "overHS: Slope for Years Ed After High School" 

 

# R code to make to make 3 new variables for sections of education 

# Make 3 new empty variables  

Example3$lessHS=NA; Example3$gradHS=NA; Example3$overHS=NA  

# Replace each for educ less than 12 

Example3$lessHS[which(Example3$educ<12)]=Example3$educ[which(Example3$educ<12)]-11   

Example3$gradHS[which(Example3$educ<12)]=0 

Example3$overHS[which(Example3$educ<12)]=0   

# Replace each for educ greater or equal to 12 

Example3$lessHS[which(Example3$educ>=12)]=0  

Example3$gradHS[which(Example3$educ>=12)]=1   

Example3$overHS[which(Example3$educ>=12)]=Example3$educ[which(Example3$educ>=12)]-12 

# lessHS: Slope for Years Ed Less Than High School 

# gradHS: Acute Bump for Graduating High School 

# overHS: Slope for Years Ed After High School 
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Syntax and SAS Output for Piecewise Linear Slopes of Education Predicting Income: 

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑳𝒆𝒔𝒔𝑯𝑺𝒊) + 𝜷𝟐(𝑮𝒓𝒂𝒅𝑯𝑺𝒊) + 𝜷𝟑(𝑶𝒗𝒆𝒓𝑯𝑺𝒊) + 𝒆𝒊 
 
TITLE "SAS GLM Predicting Income from 3 Piecewise Linear Slopes for Education"; 

PROC GLM DATA=work.Example3 NAMELEN=100; 

  MODEL income = lessHS gradHS overHS / SOLUTION ALPHA=.05 CLPARM SS3; 

* Example of how to compare slopes; 

  ESTIMATE "Diff in ed slope:  2-11 vs 11-12" lessHS -1 gradHS 1; 

  ESTIMATE "Diff in ed slope: 11-12 vs 12-20" gradHS -1 overHS 1; 

* Save predicted income and SE to new dataset to make pictures; 

  OUTPUT OUT=work.PredIncomebyEduc PREDICTED=YhatEduc STDP=SEyhatEduc; 

* Save fixed effect estimates and requested estimates as SAS datasets to do math on them; 

  ODS OUTPUT ParameterEstimates=work.EducSolution ParameterEstimates=work.EducEstimates; 

RUN; QUIT; TITLE; 

 

display "STATA GLM Predicting Income from 3 Piecewise Linear Slopes for Education" 

regress income c.lessHS c.gradHS c.overHS, level(95)  

// Example of how to compare slopes 

   lincom c.lessHS*-1 + c.gradHS*1 // Diff in ed slope:  2-11 vs 11-12 

   lincom c.gradHS*-1 + c.overHS*1 // Diff in ed slope: 11-12 vs 12-20 

 

print("R GLM Predicting Income from 3 Piecewise Linear Slopes for Education ") 

ModelEd3 = lm(data=Example3, formula=income~1+lessHS+gradHS+overHS) 

anova(ModelEd3)   # anova to print residual variance 

SaveModelEd3 = summary(ModelEd3) # summary to print fixed effects solution  

print(SaveModelEd3); confint(ModelEd3, level=.95) # confint for level% CI for fixed effects 

 

print("R Example of how to compare slopes") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredEd3 = glht(model=ModelEd3, linfct=rbind( 

  "Diff in ed slope:  2-11 vs 11-12" = c(0,-1, 1, 0),   

  "Diff in ed slope: 11-12 vs 12-20" = c(0, 0,-1, 1))) 

print("Print glht linear combination results with unadjusted p-values and 95% CIs") 

SavePredEd3 = summary(PredEd3, test=adjusted("none"))  

Print(SavePredEd3); confint(PredEd3, level=.95, calpha=univariate_calpha()) 

 
SAS GLM Predicting Income from 3 Piecewise Linear Slopes for Education 

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        3      22906.5605       7635.5202      47.84    <.0001 

Error                      730     116516.6714        159.6119 

Corrected Total            733     139423.2319 

 

R-Square     Coeff Var      Root MSE    income Mean 

0.164295      73.01538      12.63376       17.30287 

 

Table of Model-Estimated Fixed Effects (normally is last) 
                                  Standard 

Parameter         Estimate           Error    t Value    Pr > |t|      95% Confidence Limits 

Intercept      8.534867248      1.72935077       4.94      <.0001     5.139773001 11.929961495 Beta0 

lessHS        -0.268784499      0.59880153      -0.45      0.6537    -1.444363022  0.906794023 Beta1 

gradHS         4.684746178      1.87568395       2.50      0.0127     1.002367857  8.367124499 Beta2 

overHS         2.124528973      0.21372442       9.94      <.0001     1.704941139  2.544116806 Beta3 

 

Interpret 𝜷𝟎 = Intercept: 

Interpret 𝜷𝟏 = slope of lessHS: 

Interpret 𝜷𝟐 = slope of gradHS: 

Interpret 𝜷𝟑 = slope of overHS: 

Mean Square Error, the residual variance, is 159.61 

given the piecewise education slopes (which accounted 

for 16.43% of the variance in income as the model R2). 

The F-test says this R2 is significantly > 0, F(3, 730) = 

47.84, MSE = 159.61, p < .001. 

The syntax below will also show 

how to test slope differences. 
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Table of Extra Requested Linear Combinations of Model-Estimated Fixed Effects 
                                                        Standard 

Parameter                               Estimate           Error    t Value    Pr > |t|      95% Confidence Limits 

Diff in ed slope:  2-11 vs 11-12      4.95353068      2.28222698       2.17      0.0303      0.47301937   9.43404199 

Diff in ed slope: 11-12 vs 12-20     -2.56021721      1.94673385      -1.32      0.1889     -6.38208203   1.26164762 

 

Comparisons of Slopes Above: The slope for gradHS is significantly more positive than the slope for lessHS by 4.95 per 

year (indicating that they should not be constrained to be the same). The slope for overHS is nonsignificantly less positive 

than the slope for gradHS (by −2.56 per year, indicating that they *could* be constrained to be the same). However, it’s 

important to note that the slope for overHS—implying a linear effect of each additional year of education—does not appear 

to fit the means well. So efforts to refine the model should focus on better capturing differences after 12 years first… 

 

 

Left: model-predicted regression line through means for 

education (see extra code online) 
 

As shown by the misfit of the data to the model (dashed 

line), it looks like the effect of education after 12 years 

should have additional piecewise slopes (i.e., 12–15, 15–

17, 17–18, 18–20)… if you are feeling brave, give it a try 

and let me know what happens! 

 

Syntax and SAS Output to Compute Partial Effect Sizes from Requested Piecewise Slopes: 
 

* SAS code to compute effect sizes from stored fixed effect results; 

DATA work.EducEffectSizes; LENGTH Parameter $50; 

  SET work.EducSolution work.EducEstimates; * Combine tables; 

* PartialR is partial correlation (using +DFden); 

  PartialR = tvalue/(SQRT(tvalue**2 +730)); * +number = DF denominator; 

RUN; 

* Print estimates table with effect sizes added; 

TITLE "PartialR Effect Sizes for Piecewise Slopes for Education"; 

PROC PRINT NOOBS DATA=work.EducEffectSizes;  

     VAR Parameter--PartialR; * Print all contiguous columns; 

RUN; TITLE; 

 

Parameter Estimate StdErr tValue Probt LowerCL UpperCL PartialR 

Intercept 8.534867248 1.72935077 4.94 <.0001 5.139773001 11.929961495 0.17969 

lessHS -0.268784499 0.59880153 -0.45 0.6537 -1.444363022 0.906794023 -0.01661 

gradHS 4.684746178 1.87568395 2.50 0.0127 1.002367857 8.367124499 0.09205 

overHS 2.124528973 0.21372442 9.94 <.0001 1.704941139 2.544116806 0.34529 

Diff in ed slope:  2-11 vs 11-12 4.953530678 2.28222698 2.17 0.0303 0.473019369 9.434041986 0.08008 

Diff in ed slope: 11-12 vs 12-20 -2.560217205 1.94673385 -1.32 0.1889 -6.382082034 1.261647623 -0.04862 
 

 

* SAS alternative method to compute partial correlations for fixed slopes; 

TITLE "SAS Partial Correlation of income with lessHS"; 

PROC CORR NOSIMPLE DATA=work.Example3; VAR income lessHS; PARTIAL gradHS overHS; RUN; 

TITLE "SAS Partial Correlation of income with gradHS"; 

PROC CORR NOSIMPLE DATA=work.Example3; VAR income gradHS; PARTIAL lessHS overHS; RUN; 

TITLE "SAS Partial Correlation of income with overHS"; 

PROC CORR NOSIMPLE DATA=work.Example3; VAR income overHS; PARTIAL lessHS gradHS; RUN;  

TITLE; 
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// STATA code to compute effect sizes from stored results per lincom 

lincom c.lessHS*1 // Slope for 2-11 years   

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.gradHS*1 // Slope for 11-12 years  

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.overHS*1 // Slope for 12+ years  

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.lessHS*-1 + c.gradHS*1 // Diff in ed slope:  2-11 vs 11-12 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.gradHS*-1 + c.overHS*1 // Diff in ed slope: 11-12 vs 12-20 

   display "PartialR= " (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

    

// STATA alternative method to compute partial correlations from fixed slopes 

display "STATA Partial Correlations of Income with Education Slopes" 

pcorr income lessHS gradHS overHS 

 

 

# R code to compute effect sizes from stored model fixed effects 

ModelEd3PartialR=SaveModelEd3$coefficients[,"t value"]/ 

            sqrt(SaveModelEd3$coefficients[,"t value"]^2+ModelEd3$df.residual) 

# Concatenate effect sizes to results table for fixed effects 

data.frame(SaveModelEd3$coefficients, PartialR=ModelEd3PartialR) 

 

# R code to compute effect sizes from stored glht results 

PredEd3PartialR=SavePredEd3$test$tstat/sqrt(SavePredEd3$test$tstat^2+ModelEd3$df.residual) 

# Concatenate effect sizes to results table for mean differences 

data.frame(Estimate=SavePredEd3$test$coefficients, pvalue=SavePredEd3$test$pvalues,  

           PartialR=PredEd3PartialR) 

 

# R alternative method to compute partial correlations for fixed slopes 

print("R Partial Correlation of income with lessHS") 

pcor.test(Example3$income,Example3$lessHS, Example3[,c("gradHS","overHS")]) 

print("R Partial Correlation of income with gradHS") 

pcor.test(Example3$income,Example3$gradHS, Example3[,c("lessHS","overHS")]) 

print("R Partial Correlation of income with overHS") 

pcor.test(Example3$income,Example3$overHS, Example3[,c("lessHS","gradHS")]) 

 

 

Example Results Section for 3 Piecewise Linear Slopes for the Effect of Education:  

We used a general linear model (i.e., linear regression) to examine the extent to which annual income in 

thousands of dollars (M = 17.30, SD = 13.79) could be predicted from years of education (M = 13.81, SD = 

2.91). We first examined the means of income by education to identify plausible types of nonlinear associations. 

The effect of education predicting annual income appeared to differ across regions of education, suggesting a 

piecewise trend with the distinct region slopes to be captured by linear splines. Specifically, we fit one linear 

slope for the effect of education from 2 to 11 years, a second linear slope of education from 11 to 12 years, and a 

third linear slope of education from 12 to 20 years. Partial correlations were then computed from the t test-

statistics to index effect size per slope. The model including these three education slopes captured a significant 

amount of variance in annual income, F(3, 730) = 47.84, MSE = 159.61, p < .001, R2 = .164. The model fixed 

effects can be interpreted as follows. Annual income was expected to be nonsignificantly lower by 0.27 

thousand dollars per year of education from 2 to 11 years (SE = 0.60, p = .654, r = −.017), resulting in predicted 

annual income of 8.53 thousand dollars (SE = 1.73) at 11 years of education (i.e., as given by the fixed 

intercept). Annual income was then expected to be significantly higher by 4.68 thousand dollars (SE =1.88, p = 

.013, r = .092) for those achieving a high school degree (i.e., a significant difference between 11 and 12 years of 

education). Although annual income was expected to be significantly higher by 2.12 thousand dollars (SE = 

0.21, p < .001, r = .345) per year of additional education past 12 years, examining a plot of the observed versus 

predicted means for annual income at each year of education suggested a linear slope was not sufficient in 

capturing the observed differences in income from 12 to 20 years of education. We recommend considering in 

future research the use of additional piecewise slopes corresponding to distinct levels of higher education (e.g., 

bachelors, masters, or doctoral college degrees). 
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Syntax to Center 5-category Ordinal Happiness at 1 (minimum): 

* SAS code to create 1 new happy variable centered at lowest value; 

DATA work.Example3; SET work.Example3; 

  happy1=happy-1; LABEL happy1= "happy1: Happy Category (0=1)"; 

RUN; 

 

// STATA code to create 1 new happy variable centered at lowest value 

   gen happy1=happy-1 

   label variable happy1 "happy1: Happy Category (0=1)" 

 

# R code to make a single happy variable centered at lowest value 

Example3$happy1=Example3$happy-1 # happy1: Happy Category (0=1)  

 

Syntax and SAS Output for 5-Category Ordinal Happiness Predicting Income: 

First Testing a Linear Effect of Happy (0=1): 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑯𝒂𝒑𝒑𝒚𝒊 − 𝟏) + 𝒆𝒊 

TITLE "SAS GLM Predicting Income from Linear Centered Happy (0=1)"; 

PROC GLM DATA=work.Example3 NAMELEN=100; 

  MODEL income = happy1 / SOLUTION ALPHA=.05 CLPARM SS3; 

* Save predicted income and SE to new dataset to make pictures; 

  OUTPUT OUT=work.PredIncomebyHappy1 PREDICTED=Yhat1Happy STDP=SEyhat1Happy; 

RUN; QUIT; TITLE; 

 

display "STATA GLM Predicting Income from Linear Centered Happy (0=1)" 

regress income c.happyc1, level(95)  

 

print("R GLM Predicting Income from Linear Centered Age") 

ModelHappy1 = lm(data=Example3, formula=income~1+happy1) 

anova(ModelHappy1)   # anova to print residual variance 

summary(ModelHappy1) # summary to print fixed effects solution  

confint(ModelHappy1, level=.95) # confint for level% CI for fixed effects 

 

SAS GLM Predicting Income from Linear Centered Happy (0=1) 

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        1        320.3981        320.3981       1.69    0.1945 

Error                      732     139102.8338        190.0312 

Corrected Total            733     139423.2319 

 

R-Square     Coeff Var      Root MSE    income Mean 

0.002298      79.66988      13.78518       17.30287 

 

Table of Model-Estimated Fixed Effects (normally is last) 
                                  Standard 

Parameter         Estimate           Error    t Value    Pr > |t|      95% Confidence Limits 

Intercept      15.41494808      1.54042165      10.01      <.0001     12.39077678  18.43911937 Beta0 

happy1          0.73866637      0.56887362       1.30      0.1945     -0.37815205   1.85548479 Beta1 

 

Interpret 𝜷𝟎 = Intercept:  

Interpret 𝜷𝟏 = slope of happy1: 

 

 

  

Mean Square Error, the residual variance, is 190.03 

after a linear effect of happy (which accounted for 

0.23% of the variance in income as the model R2). 

The F-test tells us this R2 is not significantly > 0, 

F(1, 732) = 1.69, MSE = 190.03, p = .195. 
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Syntax to Create Sequential-Dummy-Coded Predictors—4 needed for 5 happy categories: 

In addition to not really making sense (i.e., these values are ordinal, so they aren’t really numbers), a single 

linear slope predicting the same difference between each pair of happiness categories doesn’t seem to fit the 

pattern of means. So let’s fit a piecewise slopes model created through sequential-dummy-coding, in which the 

slopes capture each shift between adjacent categories. 

 
 

* SAS code to create 4 new sequential-dummy-coded binary predictors for happy; 

DATA work.Example3; SET work.Example3; 

  h1v2=.; h2v3=.; h3v4=.; h4v5=.; * Make 4 new empty variables; 

  IF happy=1 THEN DO; h1v2=0; h2v3=0; h3v4=0; h4v5=0; END; * Replace each for happy=1; 

  IF happy=2 THEN DO; h1v2=1; h2v3=0; h3v4=0; h4v5=0; END; * Replace each for happy=2; 

  IF happy=3 THEN DO; h1v2=1; h2v3=1; h3v4=0; h4v5=0; END; * Replace each for happy=3; 

  IF happy=4 THEN DO; h1v2=1; h2v3=1; h3v4=1; h4v5=0; END; * Replace each for happy=4; 

  IF happy=5 THEN DO; h1v2=1; h2v3=1; h3v4=1; h4v5=1; END; * Replace each for happy=5; 

  LABEL h1v2="Slope from Happy 1 to 2" 

        h2v3="Slope from Happy 2 to 3" 

        h3v4="Slope from Happy 3 to 4" 

        h4v5="Slope from Happy 4 to 5"; 

RUN; 

 

 

// STATA code to make 4 new sequential-dummy-coded variables for happy 

// Make 4 new empty variables 

   gen h1v2=.  

   gen h2v3=.  

   gen h3v4=. 

   gen h4v5=. 

// Replace each with 0 values 

   replace h1v2=0 if happy < 2 

   replace h2v3=0 if happy < 3 

   replace h3v4=0 if happy < 4 

   replace h4v5=0 if happy < 5 

// Replace each with 1 values 

   replace h1v2=1 if happy >= 2 

   replace h2v3=1 if happy >= 3 

   replace h3v4=1 if happy >= 4 

   replace h4v5=1 if happy == 5 

// Label variables 

   label variable h1v2 "Slope from Happy 1 to 2" 

   label variable h2v3 "Slope from Happy 2 to 3" 

   label variable h3v4 "Slope from Happy 3 to 4" 

   label variable h4v5 "Slope from Happy 4 to 5" 

 

 

# R code to create 4 new sequential-dummy-coded predictors for happy 

# Make 4 new empty variables  

Example3$h1v2=NA; Example3$h2v3=NA; Example3$h3v4=NA; Example3$h4v5=NA;  

# Replace each with 0 values 

Example3$h1v2[which(Example3$happy<2)]=0   

Example3$h2v3[which(Example3$happy<3)]=0 

Example3$h3v4[which(Example3$happy<4)]=0  

Example3$h4v5[which(Example3$happy<5)]=0 

# Replace each with 1 values 

Example3$h1v2[which(Example3$happy>=2)]=1   

Example3$h2v3[which(Example3$happy>=3)]=1 

Example3$h3v4[which(Example3$happy>=4)]=1  

Example3$h4v5[which(Example3$happy>=5)]=1 

# h1v2: Slope from Happy 1 to 2 

# h2v3: Slope from Happy 2 to 3 

# h3v4: Slope from Happy 3 to 4 

# h4v5: Slope from Happy 4 to 5 
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Second, Testing 4 Sequential Adjacent Slopes for Happy:  

𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒉𝟏𝒗𝟐𝒊) + 𝜷𝟐(𝒉𝟐𝒗𝟑𝒊) + 𝜷𝟑(𝒉𝟑𝒗𝟒𝒊) + 𝜷𝟑(𝒉𝟒𝒗𝟓𝒊) + 𝒆𝒊 
 

TITLE "SAS GLM Predicting Income from Sequential Slopes for Happy"; 

PROC GLM DATA=work.Example4 NAMELEN=100;  

     MODEL income = h1v2 h2v3 h3v4 h4v5 / SOLUTION ALPHA=.05 CLPARM SS3; 

     * Example of how to compare slopes; 

     ESTIMATE "Diff in Slope 1-2 vs 2-3" h1v2 -1 h2v3 1; 

     ESTIMATE "Diff in Slope 2-3 vs 3-4" h2v3 -1 h3v4 1; 

     ESTIMATE "Diff in Slope 3-4 vs 4-5" h3v4 -1 h4v5 1; 

* Save fixed effect estimates and requested estimates as SAS datasets to do math on them; 

  ODS OUTPUT ParameterEstimates=work.HappySolution Estimates=HappyEstimates; 

RUN; QUIT; TITLE; 

display "STATA GLM Predicting Income from Sequential Slopes for Happy" 

regress income c.h1v2 c.h2v3 c.h3v4 c.h4v5, level(95) 

// Example of how to compare slopes 

   lincom c.h1v2*-1 + c.h2v3*1 // Diff in Slope 1-2 vs Slope 2-3 

   lincom c.h2v3*-1 + c.h3v4*1 // Diff in Slope 2-3 vs Slope 3-4 

   lincom c.h3v4*-1 + c.h4v5*1 // Diff in Slope 3-4 vs Slope 4-5 

 

print("R GLM Predicting Income from Sequential Slopes for Happy") 

ModelHappy5 = lm(data=Example3, formula=income~1+h1v2+h2v3+h3v4+h4v5) 

anova(ModelHappy5)   # anova to print residual variance 

SaveModelHappy5 = summary(ModelHappy5) # summary to print fixed effects solution  

print(SaveModelHappy5); confint(ModelHappy5, level=.95) # confint for level% CI 

 

print("R Example of how to compare slopes") 

print("In number lists below, values are multiplier for each fixed effect IN ORDER") 

PredHappy5 = glht(model=ModelHappy5, linfct=rbind( 

        "Diff in Slope 1-2 vs Slope 2-3" = c(0,-1, 1, 0, 0),   

        "Diff in Slope 2-3 vs Slope 3-4" = c(0, 0,-1, 1, 0), 

        "Diff in Slope 3-4 vs Slope 4-5" = c(0, 0, 0,-1, 1))) 

print("Print glht linear combination results with unadjusted p-values and 95% CIs") 

SavePredHappy5 = summary(PredHappy5, test=adjusted("none"))  

print(SavePredHappy5); confint(PredHappy5, level=.95, calpha=univariate_calpha()) 

 

 
SAS GLM Predicting Income from Sequential Slopes for Happy                                         

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        4        946.3348        236.5837       1.25    0.2902 

Error                      729     138476.8971        189.9546 

Corrected Total            733     139423.2319 

 

R-Square     Coeff Var      Root MSE    income Mean 

0.006787      79.65383      13.78240       17.30287 

 

Table of Model-Estimated Fixed Effects (normally is last) 
                                  Standard 

Parameter         Estimate           Error    t Value    Pr > |t|      95% Confidence Limits 

Intercept      15.12875000      2.70295132       5.60      <.0001      9.82225260  20.43524740 Beta0 

h1v2            1.68516026      3.48949515       0.48      0.6293     -5.16549843   8.53581894 Beta1 

h2v3           -0.58648838      2.36910124      -0.25      0.8045     -5.23756348   4.06458671 Beta2 

h3v4            2.29929831      1.15017869       2.00      0.0460      0.04124054   4.55735608 Beta3 

h4v5           -1.79692367      1.67023208      -1.08      0.2823     -5.07596246   1.48211511 Beta4 

The fixed intercept gives the mean for happy=1, and each slope gives the difference to the next category. 
 

 

 

 

 

Mean Square Error, the residual variance, is 189.95 

after adding the 4 slopes of happy (which accounted 

for 0.68% of the variance in income as the model R2). 

The F-test tells us this R2 is not significantly > 0, 

F(4, 729) = 1.25, MSE = 189.95, p = .290. 
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Table of Extra Requested Linear Combinations of Model-Estimated Fixed Effects 
                                            Standard 

Parameter                     Estimate         Error  t Value  Pr > |t|    95% Confidence Limits 

Diff in Slope 1-2 vs 2-3   -2.27164864    5.24694941    -0.43    0.6652  -12.57258275   8.02928547 

Diff in Slope 2-3 vs 3-4    2.88578669    2.90164986     0.99    0.3203   -2.81080036   8.58237373 

Diff in Slope 3-4 vs 4-5   -4.09622198    2.29660358    -1.78    0.0749   -8.60496798   0.41252402 

 

Comparisons of Slopes Above: No pairwise differences between slopes are significant, which means we would 

not lose anything predictive informative by constraining the slopes to be equal in these data.  
 

Syntax and SAS Output to Compute Partial Effect Sizes from Requested Piecewise Slopes: 
 

* SAS code to compute effect sizes from stored fixed effect results; 

DATA work.HappyEffectSizes; LENGTH Parameter $50; 

  SET work.HappySolution work.HappyEstimates; * Combine tables; 

  IF INDEX(Parameter, "Intercept")>0 THEN DELETE; * Remove intercept; 

* PartialR is partial correlation using +DFden); 

  PartialR = tvalue/(SQRT(tvalue**2 +729)); * +number = DF denominator; 

RUN; 

* Print estimates table with effect sizes added; 

TITLE "PartialR Effect Sizes for Sequential Slopes for Happy"; 

PROC PRINT NOOBS DATA=work.HappyEffectSizes;  

     VAR Parameter--PartialR; * Print all contiguous columns; 

RUN; TITLE; 

 

Parameter Estimate StdErr tValue Probt LowerCL UpperCL PartialR 

Intercept 15.12875000 2.70295132 5.60 <.0001 9.82225260 20.43524740 0.20299 

h1v2 1.68516026 3.48949515 0.48 0.6293 -5.16549843 8.53581894 0.01788 

h2v3 -0.58648838 2.36910124 -0.25 0.8045 -5.23756348 4.06458671 -0.00917 

h3v4 2.29929831 1.15017869 2.00 0.0460 0.04124054 4.55735608 0.07384 

h4v5 -1.79692367 1.67023208 -1.08 0.2823 -5.07596246 1.48211511 -0.03981 

Diff in Slope 1-2 vs 2-3 -2.27164864 5.24694941 -0.43 0.6652 -12.57258275 8.02928547 -0.01603 

Diff in Slope 2-3 vs 3-4 2.88578669 2.90164986 0.99 0.3203 -2.81080036 8.58237373 0.03681 

Diff in Slope 3-4 vs 4-5 -4.09622198 2.29660358 -1.78 0.0749 -8.60496798 0.41252402 -0.06592 
 

* SAS alternative method to compute partial correlations for fixed slopes; 

TITLE "SAS Partial Correlation of income with h1v2"; 

PROC CORR NOSIMPLE DATA=work.Example3; VAR income h1v2; PARTIAL h2v3 h3v4 h4v5; RUN; 

TITLE "SAS Partial Correlation of income with h2v3"; 

PROC CORR NOSIMPLE DATA=work.Example3; VAR income h2v3; PARTIAL h1v2 h3v4 h4v5; RUN; 

TITLE "SAS Partial Correlation of income with h3v4"; 

PROC CORR NOSIMPLE DATA=work.Example3; VAR income h3v4; PARTIAL h1v2 h2v3 h4v5; RUN; 

TITLE "SAS Partial Correlation of income with h4v5"; 

PROC CORR NOSIMPLE DATA=work.Example3; VAR income h4v5; PARTIAL h1v2 h2v3 h3v4; RUN; 

TITLE; 

 

// STATA code to compute effect sizes from stored results per lincom 

lincom c.h1v2*1 // Slope for 1-2 happy 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.h2v3*1 // Slope for 2-3 happy 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.h3v4*1 // Slope for 3-4 happy 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.h4v5*1 // Slope for 4-5 happy 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.h1v2*-1 + c.h2v3*1 // Diff in Slope 1-2 vs Slope 2-3 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.h2v3*-1 + c.h3v4*1 // Diff in Slope 2-3 vs Slope 3-4 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 

lincom c.h3v4*-1 + c.h4v5*1 // Diff in Slope 3-4 vs Slope 4-5 

   display "PartialR=" (r(estimate)/r(se))/sqrt((r(estimate)/r(se))^2+r(df)) 
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// STATA alternative method to compute partial correlations for fixed slopes 

display "STATA Partial Correlations of Income with Happy Slopes" 

pcorr income h1v2 h2v3 h3v4 h4v5 

 

 

# R code to compute effect sizes from stored model fixed effects 

ModelHappy5PartialR=SaveModelHappy5$coefficients[,"t value"]/ 

               sqrt(SaveModelHappy5$coefficients[,"t value"]^2+ModelHappy5$df.residual) 

# Concatenate effect sizes to results table for fixed effects 

data.frame(SaveModelHappy5$coefficients, PartialR=ModelHappy5PartialR) 

 

# R code to compute effect sizes from stored glht results 

PredHappy5PartialR=SavePredHappy5$test$tstat/ 

              sqrt(SavePredHappy5$test$tstat^2+ModelHappy5$df.residual) 

# Concatenate effect sizes to results table for mean differences 

data.frame(Estimate=SavePredHappy5$test$coefficients, pvalue=SavePredHappy5$test$pvalues,  

           PartialR=PredHappy5PartialR) 

 

# R alternative method to compute partial correlations for fixed slopes 

print("R Partial Correlation of income with h1v2") 

pcor.test(Example3$income,Example3$h1v2, Example3[,c("h2v3","h3v4","h4v5")]) 

print("R Partial Correlation of income with h2v3") 

pcor.test(Example3$income,Example3$h2v3, Example3[,c("h1v2","h3v4","h4v5")]) 

print("R Partial Correlation of income with h3v4") 

pcor.test(Example3$income,Example3$h3v4, Example3[,c("h1v2","h2v3","h4v5")]) 

print("R Partial Correlation of income with h4v5") 

pcor.test(Example3$income,Example3$h4v5, Example3[,c("h1v2","h2v3","h3v4")]) 

 

Example Results Section for the Linear and Piecewise Sequential Slopes for Happy:  

We used a general linear model (i.e., linear regression) to examine the extent to which annual income in 

thousands of dollars (M = 17.30, SD = 13.79) could be predicted from ordinal happiness (unhappy = 3.54%, 

neither happy nor unhappy = 5.31%, fairly happy = 34.88%, very happy = 44.55%, completely happy = 

11.72%). In first examining a linear effect of happiness (centered at unhappy = 0), the model fixed effects 

indicated that annual income was predicted to be 15.42 thousand dollars (SE = 1.54) for unhappy respondents 

(i.e., as given by the fixed intercept), and that annual income was predicted to be nonsignificantly greater by 

0.74 thousand dollars (SE = 0.57, p = .195, R2 = .002) per additional ordinal level of happiness.  

 

However, given that a linear slope for happiness assumes interval differences with respect to predicted income, 

we tested this assumption by specifying a piecewise slopes model by which to estimate all adjacent differences 

in predicted annual income by ordinal level of happiness. The revised model—predicting four adjacent 

differences across the five levels of happiness—did not capture a significant amount of variance in annual 

income, F(4, 729) = 1.25, MSE = 189.95, p = .290, R2 = .007. The model fixed effects indicated that annual 

income was 15.13 thousand dollars (SE = 2.70) for unhappy respondents (i.e., as given by the fixed intercept). 

Annual income was nonsignificantly higher by 1.69 thousand dollars (SE = 3.49, p = .629, r = .018) for neither 

than unhappy respondents, nonsignificantly lower by 0.59 thousand dollars (SE = 2.37, p = .804, r = −.009) for 

fairly happy than neither respondents, significantly higher by 2.30 thousand dollars (SE = 1.15, p = .046, r = 

.073) for very happy than fairly happy respondents, and nonsignificantly lower by 1.80 thousand dollars (SE = 

1.67, p = .282, r = −.040) for completely happy than very happy respondents. None of the differences between 

these adjacent differences were significant (as given by linear combinations of the model fixed effects, requested 

separately). Thus, there is little evidence that annual income can be predicted by self-rated happiness, whether 

treated as interval (through a linear slope) or treated as ordinal (through piecewise slopes). 


