Example 2: General Linear Models with a Single Quantitative or Binary Predictor (complete syntax, data, and output available for STATA, R, and SAS electronically)

The data for this example were selected from the 2012 General Social Survey dataset (and were also used for Example 1). The current example will use general linear models to predict a single quantitative outcome (annual income in 1000s) from a quantitative predictor (a linear slope for years of education) and from a binary predictor (marital status: 0=unmarried and 1=married). It will also introduce how to obtain linear combinations of fixed effects to create predicted outcomes using STATA LINCOM and R GLHT (and SAS ESTIMATE online).

STATA Syntax for Data Import and Manipulation:

```
// Paste in the folder address where "GSS_Example.xlsx" is saved between " "
// Using the UIowa virtual desktop, it would look like this
cd "\\Client\C:\Dropbox\24_PSQF6243\PSQF6243_Example2"
// Import GSS_Example.xlsx data from working directory and exact file name
// To change all variable names to lowercase, remove "case(preserve")
clear // Clear before means close any open data
import excel "GSS_Example.xlsx", sheet("GSS_Example") case(preserve) firstrow clear
// Clear after means re-import if it already exists (if need to start over)
// Label variables and apply value formats for variables used below
// label variable name "name: Descriptive Variable Label"
label variable marry "marry: Marital Status (1=unmarried, 2=married)"
label variable educ "educ: Years of Education"
label variable income "income: Annual Income in 1000s"
```

<u>R</u> Syntax for Importing and Preparing Data for Analysis

(after loading packages readxl, psych, supernova, multcomp, and TeachingDemos):

```
# Set working directory (to import and export files to)
# Paste in the folder address where "GSS_Example.xlsx" is saved in quotes
setwd("C:/Dropbox/24_PSQF6243/PSQF6243_Example2")
```

```
# Import GSS_Example.xlsx data from working directory -- path = file name
Example2 = read_excel(path="GSS_Example.xlsx", sheet="GSS_Example")
# Convert to data frame to use for analysis
Example2 = as.data.frame(Example2)
# Labels added only as comments in R syntax file
```

STATA Descriptive Statistics:

display "STATA Descriptive Statistics for Quantitative or Binary Variables" summarize income educ marry, detail

	income	: Annual Income	in 1000s		
	Percentiles	Smallest			
1%	.245	.245			
5%	.98	.245			
10%	2.695	.245	Obs	734	
25%	6.7375	.245	Sum of Wgt.	734	
50%	13.475		Mean	17.30287	
		Largest	Std. Dev.	13.79163	
75%	22.05	58.8			Remember, $SD^2 = variance$
90%	40.425	68.6	Variance	190.209	remember, 52 variance
95%	49	68.6	Skewness	1.15836	$13.792^2 = 190.209$
99%	58.8	68.6	Kurtosis	4.086398	13.792* = 190.209

educ: Years of Education									
	Percentiles	Smallest							
1%	6	2							
5%	9	4							
10%	11	4	Obs	734					
25%	12	4	Sum of Wgt.	734					
50%	14		Mean	13.81199					
		Largest	Std. Dev.	2.909282					
75%	16	20							
90%	18	20	Variance	8.463922					
95%	19	20	Skewness	2301836					
99%	20	20	Kurtosis	3.786849					
	marry: Marital	Status (1=unm	arried, 2=marrie	ed)					
	marry: Marital Percentiles		arried, 2=marrie	ed)					
			arried, 2=marrie	ed)					
 1% 5%	Percentiles	Smallest	arried, 2=marrie	ed)					
	Percentiles 1	Smallest	arried, 2=marrie	ed) 734					
5%	Percentiles 1 1	Smallest 1 1							
5% 10%	Percentiles 1 1 1	Smallest 1 1 1	Obs	734					
5% 10%	Percentiles 1 1 1	Smallest 1 1 1	Obs	734					
5% 10% 25%	Percentiles 1 1 1 1 1 1	Smallest 1 1 1	Obs Sum of Wgt.	734 734 1.459128					
5% 10% 25% 50% 75%	Percentiles 1 1 1 1 1 1 2	Smallest 1 1 1 1 Largest 2	Obs Sum of Wgt. Mean	734 734 1.459128					
5% 10% 25% 50% 75% 90%	Percentiles 1 1 1 1 1 1 2 2	Smallest 1 1 1 1 Largest 2 2	Obs Sum of Wgt. Mean	734 734 1.459128 .4986665					
5% 10% 25% 50% 75%	Percentiles 1 1 1 1 1 1 2	Smallest 1 1 1 1 Largest 2	Obs Sum of Wgt. Mean Std. Dev.	734 734 1.459128 .4986665 .2486683 .1640367					

<u>R</u> Descriptive Statistics:

describe prints sample descriptive statistics for quantitative variables # list variables to be included in separate quotes within c concatenate function # wrapped a print command around to get more than two significant digits print("R Descriptive Statistics for Quantitative for Quantitative or Binary Variables") print(describe(x=Example2[, c("income","educ","marry")], fast=TRUE), digits=3)

	vars	n	mean	sd	median	min	max	range	skew	kurtosis	se	$SD^2 = variance$
income	1	734	17.303	13.792	13.475	0.245	68.6	68.355	1.156	1.075	0.509	
educ	2	734	13.812	2.909	14.000	2.000	20.0	18.000	-0.230	0.777	0.107	$13.792^2 = 190.209$
marry	3	734	1.459	0.499	1.000	1.000	2.0	1.000	0.164	-1.976	0.018	15.792 = 190.209

Get variances too (on diagonal of output covariance matrix) var(x=Example2[, c("income","educ","marry")])

		, -,		,	
	income	educ	marrv		This is called a "covariance matrix"
income		15.436039	- 1		(or "variance–covariance matrix"). Variances are on the diagonal, and
educ	15.4360	8.463922	0.074161		e ,
marry	1.5476	0.074161	0.248668		covariances are on the off-diagonal.

Empty General Linear Model (no predictors): $Income_i = \beta_0 + e_i$

The empty model is our starting point—the most naïve prediction of income in which everyone is predicted to have the mean income: $\hat{y}_i = \beta_0$. Thus, the variance of the e_i residuals will be ALL the y_i variance. In the output below, MS stands for Mean Square. **Mean Square Residual is the residual variance** (= 190.21 here). The Root MSE is the square root of residual variance—the residual standard deviation describes how wrong the model prediction is across people on average. Stay tuned for what the rest of the first table means!

In STATA:

STATA's **regress** is general GLM routine. The first word after **regress** is the outcome variable. Level(95) requests 95% confidence intervals (the default).

display "STATA regress income				for unstandardiz	ed solution	
Source	SS	df	MS		= 734	
Model Residual	0 139423.232 139423.232	0 733 :	190.209048 	R-squared Adj R-squared		
income	Coef.			t [95% Conf	. Interval]	
_cons	17.30287	.5090583	33.99 0.0	16.30349	18.30226	beta0

STATA refers to the fixed intercept as **_cons**, which stands for constant. In models with more than one fixed effect, STATA will always list the fixed intercept LAST (much to my dismay).

In R:

```
print("R Empty GLM Predicting Income -- save as ModelEmpty")
ModelEmpty = lm(data=Example2, formula=income~1) # 1 represents intercept
supernova (ModelEmpty) # supernova prints sums of squares and residual variance
Analysis of Variance Table (Type III SS)
Model: income ~ 1
                          SS df MS F PRE p
Model (error reduced) | --- --- --- ---
Error (from model)
                         ----
                                    ____ ___ ___
----- --- --- --- --- --- --- --- ---
Total (empty model) | 139423.232 733 190.209
summary(ModelEmpty)  # summary prints fixed effects solution
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.303 0.509 34 <2e-16 Beta0
Residual standard error: 13.8 on 733 degrees of freedom
confint(ModelEmpty, level=.95) # confint prints level% CI for fixed effects
          2.5 % 97.5 %
(Intercept) 16.303 18.302
```

Now let's see if years of education can predict income by giving it a fixed linear slope! $Income_i = \beta_0 + \beta_1(Educ_i) + e_i$

Interpret β_0 = intercept:

Interpret β_1 = slope of education:

How much income variance is leftover after considering education?

How wrong is the model-predicted income on average?

In STATA:

display "STATA GLM Predicting Income from Original Education" regress income educ, level(95)

Source	SS	df	MS	Number of obs	= 734 = 127.16	
Model Residual	20634.9817 118788.25	1 732	20634.9817 162.27903	F(1, 732) Prob > F R-squared Adj R-squared	= 0.0000	
Total	139423.232	733	190.209048	Root MSE	= 12.739	STATA always lists the fixed
income				?> t [95% Co	nf. Interval]	
educ _cons	1.823746	.161731 2.282778	11.28 0	0.000 1.506234 0.001 -12.3682		

In R:

print("R GLM Predicting Income from Original Education -- save as ModelEduc")
ModelEduc = lm(data=Example2, formula=income~1+educ)
supernova(ModelEduc) # supernova prints sums of squares and residual variance

Analysis of Variance Table (Type III SS)

			SS	df	MS	F	PRE	р	
		I							
,	error reduced)					127.157	.1480	.0000	
Error (f	from model)		118788.250	732	162.279				
Total (e	empty model)		139423.232	733	190.209				

summary (ModelEduc) # summary prints fixed effects solution

Coefficients:

	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	-7.887		2.283		-3.45	0.00058	Beta0
educ	1.824		0.162		11.28	< 2e-16	Beta1

Residual standard error: 12.7 on 732 degrees of freedom Multiple R-squared: 0.148, Adjusted R-squared: 0.147 F-statistic: 127 on 1 and 732 DF, p-value: <2e-16

confint(ModelEduc, level=.95) # confint prints level% CI for fixed effects

2.5 % 97.5 % (Intercept) -12.3683 -3.4051 educ 1.5062 2.1413 Given that no one actually had education = 0 years, let's center the education predictor so 0 now indicates 12 years to create a more meaningful model intercept (i.e., the "you are here" sign as the model reference point).

Add a linear slope of a CENTERED quantitative years of education predictor: $Income_i = \beta_0 + \beta_1 (Educ_i - 12) + e_i$

Interpret β_0 = intercept:

Interpret β_1 = slope of (education-12):

In STATA:

```
// Center education predictor so that 0 is meaningful
gen educ12=educ-12
label variable educ12 "educ12: Education (0=12 years)"
```

display "STATA GLM Predicting Income from Centered Education (0=12)" regress income educ12, level(95) // with 95% CI for unstandardized solution

Source	SS	df	MS		= 7 = 127.	
Model Residual	20634.9817 118788.25	1 732	20634.9817 162.27903	Prob > F R-squared	= 0.00 = 0.14	00 80
	139423.232			naj n ogaaroa	= 0.14 = 12.7	
income				P> t [95% Conf		_]
educ12 _cons	1.823746	.161731	11.28	0.000 1.506234	2.14125	8 betal is same 8 beta0 differs -

In R:

Center education predictor so that 0 is meaningful: new = old-12
Example2\$educ12 = Example2\$educ-12
educ12: Education (0=12 years) # label as a comment only

print("R GLM Predicting Income from Centered Education 0=12 -- save as ModelEduc12")
ModelEduc12 = lm(data=Example2, formula=income~1+educ12)
supernova(ModelEduc12) # supernova prints residual variance

Analysis of Variance Table (Type III SS)

1			SS	df	MS	F	PRE	р	
Model (e	rror reduced)		20634.982	1	20634.982	127.157	.1480	.0000	
Error (f	rom model)		118788.250	732	162.279				
Total (e	mpty model)	l	139423.232	733	190.209				

summary(ModelEduc12) # summary prints fixed effects solution

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 13.998 0.554 25.3 <2e-16 educ12 1.824 0.162 11.3 <2e-16

The next set of commands in each program illustrate how to compute predicted \hat{y}_i outcomes given any value(s) of the predictor(s). Model: $Income_i = \beta_0 + \beta_1(Educ_i - 12) + e_i$

Predicted income for 8 years education: $\hat{y}_i = 14.00(1) + 1.82(-4) = 6.70$ Predicted income for 12 years education: $\hat{y}_i = 14.00(1) + 1.82(0) = 14.00$ Predicted income for 16 years education: $\hat{y}_i = 14.00(1) + 1.82(4) = 21.29$ Predicted income for 20 years education: $\hat{y}_i = 14.00(1) + 1.82(8) = 28.59$

```
// In STATA LINCOMs below, _cons is the intercept, words refer to the beta fixed effect,
// and values are the multiplier for the requested predictor value
lincom _cons*1 + educl2*-4 // Pred Income for 8 years (educl2=-4)
lincom _cons*1 + educl2*0 // Pred Income for 12 years (educl2= 0)
lincom _cons*1 + educl2*4 // Pred Income for 16 years (educl2= 4)
lincom _cons*1 + educl2*8 // Pred Income for 18 years (educl2= 8)
print("R Get predicted outcomes using glht from multcomp package -- save as PredEducl2")
print("In number lists below, the values are multipliers for each fixed effect in order")
PredEducl2 = glht(model=ModelEducl2, linfct=rbind(
    "Pred Income at 8 years (educl2=-4)" = c(1,-4),
    "Pred Income at 12 years (educl2= 0)" = c(1, 0),
    "Pred Income at 16 years (educl2= 4)" = c(1, 4),
    "Pred Income at 20 years (educl2= 8)" = c(1, 8)))
print("Print glht linear combination results with unadjusted p-values")
summary(PredEducl2, test=adjusted("none"))
```

confint(PredEduc12, level=.95, calpha=univariate_calpha())

These are the results from STATA LINCOMs:

. lincom _cons*1	+ educ12*-	4 // Pred	Income for	r 8 years	(educ12=-4)
income					[95% Conf. Interval]
(1)	6.703285	1.051023	6.38	0.000	4.639907 8.766664
. lincom _cons*1					
income			t	P> t	[95% Conf. Interval]
			25.27		12.91055 15.08598
. lincom _cons*1	+ educ12*4	// Pred	Income fo	r 16 years	(educ12= 4)
	Coef.	Std Err			
					[95% Conf. Interval]
(1)	21.29325	.5884829	36.18	0.000	20.13793 22.44857
(1)	21.29325	.5884829	36.18	0.000	20.13793 22.44857
(1) . lincom _cons*1	21.29325 + educ12*8 Coef.	.5884829 // Pred Std. Err.	36.18 Income for	0.000 r 18 years P> t	20.13793 22.44857

These are the results from R GLHTs:

Linear Hypotheses:

	E	stimate Std.	Error t	value	Pr(> t)
Pred Income for 8 years	(educ12=-4) == 0	6.703	1.051	6.38 (0.0000000032
Pred Income for 12 years	(educ12= 0) == 0	13.998	0.554	25.27	< 2e-16
Pred Income for 16 years	(educ12= 4) == 0	21.293	0.588	36.18	< 2e-16
Pred Income for 20 years	(educ12= 8) == 0	28.588	1.106	25.85	< 2e-16

Simultaneous Confidence Intervals Pred Income at 8 years (educ12=-4) == 0 6.70329 4.63991 8.76666 Pred Income at 12 years (educ12= 0) == 0 13.99827 12.91055 15.08598 Pred Income at 16 years (educ12= 4) == 0 21.29325 20.13793 22.44857 Pred Income at 20 years (educ12= 8) == 0 28.58823 26.41742 30.75905

Standardized Solution for Education Predicting Income: Results using standardized variables (z-scored income and education), in which fixed slopes are then in a correlation metric (-1 to 1)

In STATA:

In R:

print ("R standardized fixed effect solution using lm.beta package")
lm.beta(ModelEduc12)

Standardized Coefficients:: (Intercept) educ12 NA **0.38471**

Now let's see if binary marital status can predict income by giving it a fixed linear slope! $Income_i = \beta_0 + \beta_1(Marry01_i) + e_i$

Interpret β_0 = intercept:

Interpret β_1 = slope of marry01:

<u>Results will be:</u> Predicted income unmarried (marry01=0): $\hat{y}_i = 14.45(1) + 6.22(0) = 14.45$ Predicted income unmarried (marry01=1): $\hat{y}_i = 14.45(1) + 6.22(1) = 20.67$

How much income variance is leftover after considering education?

How wrong is the model-predicted income on average?

In STATA:

```
// Recode marry predictor so that 0 is meaningful
gen marry01=. // Create new empty variable, then recode
replace marry01=0 if marry==1
replace marry01=1 if marry==2
label variable marry01 "marry01: 0=unmarried, 1=married"
display "STATA GLM Predict Income from Marry01 (0=Unmarried,1=Married)"
regress income marry01, level(95) // with 95% CI for unstandardized solution
// Save fixed effects solution in a matrix "marryresults" for use in computation below
matrix marryresults = r(table)
```

	734 39.04	s = =	per of ob 732)		MS	df	SS	Source
	0.0000	= =) > F quared	51 Prob 8 R-sq	7060.1016 180.82394	1 732	7060.10161 132363.13	Model Residual
	0.0199	ed = =	R-square MSE	2	190.20904	733	139423.232	+- Total
	Interval]		-			Std. Err.	Coef.	income
bet	8.17901		4.268	0.000	6.25	.9960148	6.223623	+- marry01

lincom cons*1 + marry01*0 // Pred Income for Unmarried=0 = Beta0 lincom cons*1 + marry01*1 // Pred Income for Married=1 = Beta0 + Beta1

. lincom cons*1 + marry01*0 // Pred Income for Unmarried=0 = Beta0

income			[95% Conf.	Interval]
			13.12048	15.77038

. lincom _cons*1	+ marry01*	1 // Pred I	ncome for	Married=1	= Beta0 + E	Betal
income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	20.66906	.7325091	28.22	0.000	19.23099	22.10713

In R:

Recode marry predictor so that 0 is meaningful Example2\$marry01=NA # Create new empty variable Example2\$marry01[which(Example2\$marry==1)]=0 # marry01=0 if marry=1 Example2\$marry01[which(Example2\$marry=2)]=1 # marry01=1 if marry=2 # marry01: 0=unmarried, 1=married # label as a comment only

print("R GLM Predicting Income from Marry01 (0=Unmarried,1=Married) -- save ModelMarry01")
ModelMarry01 = lm(data=Example2, formula=income~1+marry01)
supernova(ModelMarry01) # supernova prints residual variance

Analysis of	Variance Ta	ble	е (Туре	III	SS)						
				SS	df		MS		F	PRE	р
		-									
Model (erro	or reduced)		7060.1	02	1	7060.1	02	39.0	44	.0506	.0000
Error (from	n model)	1	32363.1	30	732	180.8	24				
		-									
Total (empt	ty model)	1	39423.2	32	733	190.2	09				

summary(ModelMarry01) # summary prints fixed effects solution

Coefficients:

Estimate Std. Error t valuePr(>|t|)(Intercept)14.4450.67521.40< 2e-16</td>marry016.2240.9966.250.000000007

Residual standard error: 13.4 on 732 degrees of freedom Multiple R-squared: 0.0506, Adjusted R-squared: 0.0493 F-statistic: 39 on 1 and 732 DF, p-value: 0.000000000703

confint(ModelMarry01, level=.95) # confint to print level% CI for fixed effects

2.5 % 97.5 % (Intercept) 13.1205 15.770 marry01 4.2682 8.179

```
print("R Get predicted outcomes using glht from multcomp package -- save as PredMarry01")
print("In number lists below, values are multiplier for each fixed effect in order")
PredMarry01 = glht(model=ModelMarry01, linfct=rbind(
  "Pred Income for Unmarried=0" = c(1, 0),
  "Pred income for Married=1" = c(1,1))
print("Print glht linear combination results with unadjusted p-values")
summary(PredMarry01, test=adjusted("none"))
confint(PredMarry01, level=.95, calpha=univariate calpha())
Linear Hypotheses:
                                      Estimate Std. Error t value Pr(>|t|)

        Pred Income for Unmarried=0 == 0
        14.445
        0.675
        21.4
        <2e-16</th>

        Pred income for Married=1 == 0
        20.669
        0.733
        28.2
        <2e-16</td>

Pred income for Married=1 == 0
Simultaneous Confidence Intervals
Linear Hypotheses:
                                       Estimate lwr
                                                            upr
Pred Income for Unmarried=0 == 0 14.44543 13.12048 15.77038
Pred income for Married=1 == 0 20.66906 19.23099 22.10713
```

One last thing: To get a Cohen's *d* effect size for the mean income difference between unmarried and married persons, we can calculate *d* from the *t* test-statistic: $d = \frac{2t}{\sqrt{DF_{den}}} = \frac{2*6.25}{\sqrt{732}} = 0.462 \rightarrow$ mean income is about 0.462 standard deviations higher for married than unmarried persons.

In STATA:

```
display "STATA Compute Cohen's d effect size from t test-statistic manually"
display 2*6.25/sqrt(732) // d = 2*t/SQRT(DF den)
.46201329
display "STATA Compute Cohen's d effect size from t test-statistic using internal values"
matrix list marryresults // Show internally saved object of fixed effects
marryresults[9,2]
        marry01
                       cons
    b 6.2236234 14.445435
   se .99601482 .67488958
    t 6.2485249 21.404145
pvalue 7.029e-10 2.621e-79
   11 4.268237 13.120484
   ul 8.1790097 15.770385
 df 732 732
crit 1.9632101 1.9632101
eform
               0
                          0
// t test-statistic we want is in row 3 column 1
display 2*marryresults[3,1]/ sqrt(e(df r)) // d = 2*t/SQRT(DF den)
.46190425
In R:
```

```
print("R Compute Cohen's d effect size from t test-statistic manually")
2*6.25/sqrt(732)
[1] 0.46201329
```

```
print("Compute Cohen's d effect size from t test-statistic using internal values")
as.matrix(summary(ModelMarry01)$coefficients[,3]) # print saved t values
               [,1]
(Intercept) 21.4041
           6.2485
marry01
# t test-statistic we want is in row 2 column 1
as.matrix(summary(ModelMarry01)$coefficients[,3])[2,1]*2 / sqrt(ModelMarry01$df.residual)
marry01
 0.4619
```

Here is what the saved objects for the last model look like in the R environment: Value

Number 1	type	Value
ModelMarry01	list [12] (S3: Im)	List of length 12
coefficients	double [2]	14.45 6.22
(Intercept)	double [1]	14.445
marry01	double [1]	6.2236
residuals	double [734]	-11.26 -6.48 6.28 7.60 12.41 28.33
effects	double [734]	-468.78 84.02 6.44 8.20 12.56 28.49
rank	integer [1]	2
fitted.values	double [734]	14.4 14.4 20.7 14.4 20.7 20.7
assign	integer [2]	0 1
🚺 qr	list [5] (S3: qr)	List of length 5
df.residual	integer [1]	732

Type

Example Results Section (although it's more verbose than would be typical for the sake of completeness):

The extent to which annual income in thousands of US dollars (M = 17.30, SD = 13.79) could be predicted from years of education (M = 13.81, SD = 2.91) and binary marital status (1 = unmarried 54.09%, 2 = married 45.91%) was examined in separate general linear models (i.e., simple linear regressions). All analyses were conducted using [the regress function in Stata v. 18] or [the lm function in R v. 4.4.0]. Predicted outcomes were generated using [lincom in Stata] or [the glht function within the multicomp package v. 1.4-25 in R].

To create a meaningful model intercept, education was centered such that 0 = 12 years. Education was found to be a significant predictor of annual income: Relative to the reference expected income for a person with 12 years of education provided by the model intercept of 14.00k (SE = 0.55), for every additional year of education, annual income was expected to be higher by 1.82k (SE = 0.16, p < .001), resulting in a standardized coefficient = 0.38 (i.e., the Pearson correlation between annual income and education). For example, persons with only 8 years of education were predicted to have an annual income of only 6.70k (SE = 1.05), persons with 16 years of education were predicted to have an annual income of 21.29k (SE = 0.59), and persons with 20 years of education were predicted to have an annual income of 28.59k (SE = 1.11). [Spoiler alert: we will test the adequacy of only a linear (constant) effect for years of education in Example 3.]

We then examined prediction of annual income by binary marital status. To create a meaningful model intercept, marital status was dummy-coded so that 0 = unmarried persons and 1 = married persons. Marital status was also a significant predictor of annual income: Relative to the reference expected income for unmarried persons provided by the model intercept of 14.45k (SE = 0.67), married persons were expected to have significantly greater income by 6.22k (SE = 1.00, p< .001), resulting in a predicted income for married persons of 20.67k (SE = 0.73) and a standardized mean difference of Cohen's d = 0.462.

Note: because a GLM with a single binary predictor is also known as a "two-sample t-test" here is what the results would look like written from that angle... A two-sample t-test (i.e., assuming homogeneous variance across groups) was used to examine mean differences between unmarried and married persons in annual income. A significant mean difference was found, t(732) = 6.25, p < .001, such that annual income for married persons (M = 20.67k, SE = 0.73) was significantly higher than for unmarried persons (M = 14.45k, SE = 0.67).

Bonus: Bivariate Pearson Correlation Matrix, Significance Tests, and Confidence Intervals

In STATA:

```
display "STATA Pearson Correlations and CIs"
pwcorr income educ marry, sig
                                             In this "correlation matrix" the top
            income
                           educ marry
                                             value is the correlation coefficient r
_____
                                             and the bottom value is the p-value
                 1.0000
      income |
                                             for that correlation.
                          1.0000
        educ |
                0.3847
                                             These same values are in separate
                0.0000
             1.0000
                0.2250
                          0.0511
       marry |
                                             tables in the R output below.
                 0.0000
                          0.1665
```

```
// To get CI using r-to-z, need to download and run a special module
ssc install ci2
ci2 income educ, corr
ci2 income marry, corr
```

Confidence interval for Pearson's product-moment correlation of income and educ, based on Fisher's transformation. Correlation = 0.385 on 734 observations (95% CI: 0.321 to 0.445)

Confidence interval for Pearson's product-moment correlation of income and marry, based on Fisher's transformation. Correlation = 0.225 on 734 observations (95% CI: 0.155 to 0.293)

In R after loading the Hmisc package:

print("R Pearson Correlation Matrix with P-values using rcorr from Hmisc package")
cor(x=cbind(Example2\$income,Example2\$educ,Example2\$marry), method="pearson")

	income	educ12	marry01
income	1.00	0.38	0.23
educ12	0.38	1.00	0.05
marry01	0.23	0.05	1.00

Ρ

	income	educ12	marry01
income		0.0000	0.0000
educ12	0.0000		0.1665
marry01	0.0000	0.1665	

print("R Pearson Correlation Pairwise Significance tests and CIs")
cor.test(x=Example2\$income, y=Example2\$educ, method="pearson", conf.level=.95)
cor.test(x=Example2\$income, y=Example2\$marry, method="pearson", conf.level=.95)

0.38471088