General Linear Models for Testing Moderation: Multiple-Slope Interactions

- Topics:
 - Review of main effects of categorical predictors
 - Specification using dummy codes
 - Specification as "categorical" directly in the model syntax
 - Review of interaction concepts
 - > Examples of interactions that require multiple slopes
 - Interactions among categorical predictors
 - Interactions with quantitative predictors with nonlinear effects
 - > Special uses of interaction terms to create nested effects
 - "ANOVA with a hole in it"
 - Missing (or impossible) predictor data

Categorical Predictors (3+ Groups)

- Two alternatives for how to include grouping predictors
- 1. Manually create and include dummy-coded group contrasts
 - Need C 1 contrasts for C categories, added all at once, treated as quantitative (WITH in SPSS, by default in SAS, c. in STATA)
 - Corresponds more directly to linear model representation
 - > Can be easier to set own reference group and contrasts of interest

2. Let the program create and include group contrasts for you

- > **Treated as categorical**: BY in SPSS, CLASS in SAS, i. in STATA
 - SPSS and SAS: reference = highest/last group; STATA: reference = lowest/first group
- Can be more convenient if you have many groups, want many contrasts, or have interactions among grouping predictors
- ➤ But it marginalizes over main effects when estimating other effects ☺

Categorical Predictors Via Manual Contrasts

- Model: $y_i = \beta_0 + \beta_1 d\mathbf{1}_i + \beta_2 d\mathbf{2}_i + \beta_3 d\mathbf{3}_i + e_i$
 - "group" variable: Control=0, Treat1=1, Treat2=2, Treat3=3
 - New variables $d1=0, 1, 0, 0 \rightarrow difference between Control and T1 to be created for the model:
 <math display="block">d1=0, 1, 0, 0 \rightarrow difference between Control and T2 d3=0, 0, 0, 1 \rightarrow difference between Control and T3$
- How does the model give us **all possible group differences**? By determining each group's mean, and then the difference...

Control Mean	Treatment 1	Treatment 2	Treatment 3
(Reference)	Mean	Mean	Mean
β_0	$\beta_0 + \beta_1 d 1_i$	$\beta_0 + \beta_2 d2_i$	$\beta_0 + \beta_3 d3_i$

 The model for the 4 groups directly provides 3 differences (control vs. each treatment), and indirectly provides another 3 differences (differences between treatments)

Categorical Predictors Via Manual Contrasts

• Model: $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$

	Control Mean (Reference)	Treatment 1 Mean	Treatment 2 Mean	Treatment 3 Mean
	β_0	$\beta_0 + \beta_1 d 1_i$	$\beta_0 + \beta_2 d2_i$	$\beta_0 + \beta_3 d3_i$
	<u>/</u>	Alt Group <u>Ref</u>	Group Diff	ference
• Co	ontrol vs. T1 =	$(\beta_0 + \beta_1) - (\beta_0)$	$= \mu$	\mathcal{S}_1
· Co	ontrol vs. T2 =	$(\beta_0 + \beta_2) - (\beta_0)$	$() = \mu$	8 ₂
	ontrol vs. T3 =	$(\beta_0 + \beta_3) - (\beta_0)$	$() = \mu$	8 ₃
• T1	vs. T2 =	$(\beta_0 + \beta_2) - (\beta_0)$	$(\beta + \beta_1) = \beta$	$\beta_2 - \beta_1$
• T1	vs. T3 =	$(\beta_0 + \beta_3) - (\beta_0)$	$(\beta + \beta_1) = \beta$	$\beta_3 - \beta_1$
• T2	2 vs. T3 =	$(\beta_0 + \beta_3) - (\beta_0)$	$(\beta_1 + \beta_2) = \beta_2$	$\beta_3 - \beta_2$

Main Effects via Manual Contrasts: SAS

 Control vs. T1 = Control vs. T2 = Control vs. T3 = 	$(\beta_0+\beta_2) - (\beta_0)$	(-)) = (-)	$\frac{\text{fference}}{\beta_1} \\ \beta_2 \\ \beta_3$			the	the order of the equations: e reference group mean <i>is subtracted from</i> alternative group mean.
 T1 vs. T2 = T1 vs. T3 = T2 vs. T3 = 	$(\beta_0 + \beta_2) - (\beta_0)$ $(\beta_0 + \beta_3) - (\beta_0)$ $(\beta_0 + \beta_3) - (\beta_0)$	$(\beta_0 + \beta_1) =$	$\beta_2 - \beta_1$ $\beta_3 - \beta_1$ $\beta_3 - \beta_2$			SPSS the va	S ESTIMATE statements (or TEST or STATA LINCOM), riables refer to their betas; e numbers refer to the
	=work.datana d2 d3 / ALPH ibus DF=3 ma trol Mean" i Mean" i	me NAMELEN A=.05 CLPA in effect .ntercept 1 .ntercept 1	N=100; ARM SO F-test d1 0 d1 1	LUTI t"d d2 d2	ON S 1 1, 0 d3 0 d3	Op S3 EF d2 1 3 0; 3 0;	perations of their betas.
ESTIMATE "T3 I		ntercept 1 ntercept 1 d1		d2		1;	Intercepts are used <u>only</u> in predicted values.
ESTIMATE "Con	trol vs. T2" trol vs. T3"	d1	0 d2 0 d2	1 0	d3 0 d3 1	;	Positive values indicate addition; negative values
ESTIMATE "T1 ESTIMATE "T1 ESTIMATE "T2 RUN;	vs. T 3"		-1 d2 -1 d2 0 d2	0	d3 0 d3 1 d3 1	;	indicate subtraction.

Main Effects via Manual Contrasts: STATA

<u>Alt Group</u>	<u>Ref Group</u>	<u>Difference</u>	Note the order of the equations:
• Control vs. T1 = $(\beta_0 + \beta_1)$ –	(β_0)	$= \beta_1$	the reference group mean
• Control vs. T2 = $(\beta_0 + \beta_2)$ –	- (β ₀)	$=\beta_2$	<i>is subtracted from</i> the alternative group mean.
• Control vs. T3 = $(\beta_0 + \beta_3)$ –	$-(\beta_0)$	$=\beta_3$	
• T1 vs. T2 = $(\beta_0 + \beta_2)$ -		$=\beta_2-\beta_1$	In SAS ESTIMATE statements (or SPSS TEST or STATA LINCOM),
• T1 vs. T3 = $(\beta_0 + \beta_3)$ -	$(\beta_0 + \beta_1)$	$= \beta_3 - \beta_1$	the variables refer to their fixed
• T2 vs. T3 = $(\beta_0 + \beta_3)$ -	$(\beta_0 + \beta_2)$	$=\beta_3-\beta_2$	effects; the numbers refer to the
			operations of their fixed effects.
display "STATA Manual Cor	trasts for	4-Group Diffs"	

regress y c.d1 c.d2 c.d3, level(95) test (c.d1=0) (c.d2=0) (c.d3=0) // Omnibus F-test DF=3 group main effect lincom cons*1 + c.d1*0 + c.d2*0 + c.d3*0// Control Mean lincom cons*1 + c.d1*1 + c.d2*0 + c.d3*0 // T1 Mean lincom cons*1 + c.d1*0 + c.d2*1 + c.d3*0// T2 Mean lincom cons*1 + c.d1*0 + c.d2*0 + c.d3*1// T3 Mean lincom c.d1*1 + c.d2*0 + c.d3*0 // Control vs T1 lincom c.d1*0 + c.d2*1 + c.d3*0// Control vs T2 lincom c.d1*0 + c.d2*0 + c.d3*1// Control vs T3 lincom c.d1*-1 + c.d2*1 + c.d3*0// T1 vs T2 c.d1*-1 + c.d2*0 + c.d3*1lincom 11 T1 vs T3 c.d1*0 + c.d2*-1 + c.d3*1T2 vs T3 lincom 11

Review of Single-Slope Interactions

- Previously we examined interactions involving either binary predictors or quantitative predictors with only linear slopes
 - The role of a two-way interaction is to <u>adjust</u> its main effect slopes: to make them more/less positive or more/less negative
 - However, the term "main effect slope" no longer applies: each becomes a *simple slope* that is *conditional* on each interacting predictor = 0
- e.g., $y_i = \beta_0 + \beta_1(w_i) + \beta_2(x_i) + \beta_3(z_i) + \beta_4(x_i)(z_i) + e_i$
 - > w_i slope β_1 is a marginal main effect because it is not in an interaction
 - > x_i slope β_2 is the *conditional* main effect of x_i specifically when $z_i = 0$
 - > z_i slope β_3 is the *conditional* main effect of z_i specifically when $x_i = 0$
 - > $x_i z_i$ slope β_4 is how β_2 differs per unit z_i , or how β_3 differs per unit x_i
- The $x_i z_i$ interaction here requires only one slope to test it when x_i and z_i are quantitative (or binary)—but if either predictor has 3+ categories, the $x_i z_i$ interaction would require more than 1 slope

Interactions with Manual Contrasts: SAS

- When using manual contrasts for predictors with 3 or more categories, interactions must be specified with each separate contrast
- For example, adding an interaction of 4-category group with age (0=85):

```
y_i = \beta_0 + \beta_1(d1_i) + \beta_2(d2_i) + \beta_3(d3_i) + \beta_4(Age_i - 85) + \beta_5(d1_i)(Age_i - 85) + \beta_6(d2_i)(Age_i - 85) + \beta_7(d3_i)(Age_i - 85) + e_i
```

```
TITLE "SAS Group by Age for 4-Group Variable Included using Dummy Codes";
PROC GLM DATA=work.dataname NAMELEN=100;
MODEL y = d1 d2 d3 age d1*age d2*age d3*age / ALPHA=.05 CLPARM SOLUTION SS3 EFFECTSIZE;
CONTRAST "Omnibus DF=3 SIMPLE effect F-test" d1 1, d2 1, d3 1;
CONTRAST "Omnibus DF=3 interaction F-test"
                                            d1*age 1, d2*age 1, d3*age 1;
ESTIMATE "Age Slope for Control" age 1 d1*age 0 d2*age 0 d3*age
                                                                   0;
ESTIMATE "Age Slope for T1"
                                age 1 d1*age 1 d2*age 0 d3*age 0;
                                age 1 d1*age 0 d2*age 1 d3*age 0;
ESTIMATE "Age Slope for T2"
ESTIMATE "Age Slope for T3"
                                age 1 d1*age 0 d2*age 0 d3*age 1;
                                       d1*age 1 d2*age 0 d3*age 0;
ESTIMATE "Age Slope: Control vs.
                                T1"
ESTIMATE "Age Slope: Control vs. T2"
                                        d1*age 0 d2*age 1 d3*age 0;
ESTIMATE "Age Slope: Control vs. T3"
                                       d1*age 0 d2*age 0 d3*age 1;
ESTIMATE "Age Slope: T1 vs. T2"
                                       d1*age -1 d2*age 1 d3*age 0;
ESTIMATE "Age Slope: T1 vs. T3"
                                       d1*age -1 d2*age 0 d3*age 1;
ESTIMATE "Age Slope: T2 vs. T3"
                                       d1*age 0 d2*age -1 d3*age
                                                                   1;
* Would also want to request simple group differences per age (or regions for them);
```

Interactions with Manual Contrasts: STATA

- When using manual contrasts for predictors with more than 2 categories, interactions must be specified with each separate contrast
- For example, adding an interaction of 4-category group with age (0=85):

 $y_i = \beta_0 + \beta_1(d1_i) + \beta_2(d2_i) + \beta_3(d3_i) + \beta_4(Age_i - 85) + \beta_5(d1_i)(Age_i - 85) + \beta_6(d2_i)(Age_i - 85) + \beta_7(d3_i)(Age_i - 85) + e_i$

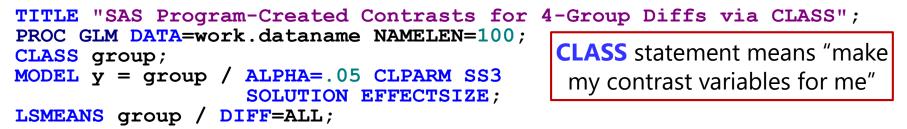
```
display "STATA Group by Age for 4-Group Variable Included using Dummy Codes"
regress y c.dl c.d2 c.d3 c.age c.dl#c.age c.d2#c.age c.d3#c.age, level(95)
test (c.d1=0) (c.d2=0) (c.d3=0) // Omnibus DF=3 SIMPLE effect F-test
test (c.d1#c.age=0) (c.d2#c.age=0) (c.d3#c.age=0) // DF=3 interaction F-test
lincom c.age*1 + c.d1#c.age*0 + c.d2#c.age*0 + c.d3#c.age*0 // Age Slope for Control
lincom c.age*1 + c.d1#c.age*1 + c.d2#c.age*1 + c.d3#c.age*0 // Age Slope for T1
lincom c.age*1 + c.d1#c.age*0 + c.d2#c.age*1 + c.d3#c.age*0 // Age Slope for T2
lincom c.age*1 + c.d1#c.age*0 + c.d2#c.age*1 + c.d3#c.age*0 // Age Slope for T2
```

```
lincom c.d1#c.age*1 + c.d2#c.age*0 + c.d3#c.age*0 // Age Slope: Control vs T1
lincom c.d1#c.age*0 + c.d2#c.age*1 + c.d3#c.age*0 // Age Slope: Control vs T2
lincom c.d1#c.age*0 + c.d2#c.age*0 + c.d3#c.age*1 // Age Slope: Control vs T3
lincom c.d1#c.age*-1 + c.d2#c.age*1 + c.d3#c.age*0 // Age Slope: T1 vs T2
lincom c.d1#c.age*-1 + c.d2#c.age*0 + c.d3#c.age*1 // Age Slope: T1 vs T3
lincom c.d1#c.age*0 + c.d2#c.age*1 + c.d3#c.age*1 // Age Slope: T2 vs T3
```

// Would also want to request simple group differences per age (or regions for them)

Using BY/CLASS/i. statements instead

- Designate a predictor as "**categorical**" in program syntax
 - > Put in on the CLASS statement in SAS; use i. prefix in STATA
- For a predictor with C categories, the program automatically then creates C new contrast variables, for example "group" with C = 4:


New Predictors Created Internally Mean this:	Control	Treat1	Treat2	Treat3
IsControl	1	0	0	0
IsTreat1	0	1	0	0
IsTreat2	0	0	1	0
IsTreat3	0	0	0	1

- It then figures out how many of these internal contrast variables are needed—if using an intercept (the default), then it's C 1, not all C
- It enters them until it hits that criterion—if it leaves the last one out (as when you have an intercept), then last category becomes your reference
- Everywhere in syntax you refer to the categorical predictor, you must tell the program what to do with EACH of these internal contrast variables

Using BY/CLASS/i. statements instead

- Designate as "**categorical**" predictor in program syntax
 - If you let SAS/SPSS do the dummy coding via CLASS/BY, then the highest/last group is default reference
 - In SAS 9.4 you can change reference group: REF='level' | FIRST | LAST but it changes that group to be last in the data (→ confusing, so don't do it)
 - "Type III test of fixed effects" provide multivariate Wald tests by default
 - **LSMEANS**/EMMEANS can be used to get all cell means and comparisons without specifying each individual contrast, but you still have to ask for interaction contrasts (add / E to end of ESTIMATE to see the order of category values)
 - If you let STATA do the dummy coding via i.group, then the lowest/first group is default reference
 - Can change reference group, e.g., last = ref \rightarrow ib(last).group
 - CONTRAST used to get omnibus tests (not provided by default)
 - MARGINS can be used to get all means and comparisons with much less code than describing each individual contrast
 - > Btw, no such thing as "categorical" predictors in Mplus ⊗
 - You must create contrasts manually for all grouping variables

Main Effects of Program-Categorical Predictors: SAS

The <u>LSMEANS line</u> above gives you ALL of the following... note that one value has to be given for each possible level of the categorical predictor in *data* order

ESTIMATE"Control Mean"intercept 1 group 1 0 0 0;ESTIMATE"T1 Mean"intercept 1 group 0 1 0 0;ESTIMATE"T2 Mean"intercept 1 group 0 0 1 0;ESTIMATE"T3 Mean"intercept 1 group 0 0 1;	When predicting intercepts, 1 means "for that group only"
ESTIMATE"Control vs. T1"group -1100;ESTIMATE"Control vs. T2"group -1010;ESTIMATE"Control vs. T3"group -1001;ESTIMATE"T1 vs. T2"group 0-110;ESTIMATE"T1 vs. T3"group 0-111;ESTIMATE"T2 vs. T3"group 00-11;	When predicting group differences, contrasts must sum to 0; here -1 = ref, 1 = alt, and 0 = ignore
CONTRAST "Omnibus DF=3 main effect F-test" group -1 1 0 CLASS also gives this contrast by default group -1 0 1 group -1 0 0 Can also make up whatever contrasts you feel like usin ESTIMATE "Mean of Treat groups" intercept 1 group 0 1 ESTIMATE "Control vs. Mean of Treat groups" group -3 1 RUN;	1 1 / DIVISOR=3;

Main Effects of Program-Categorical Predictors: STATA

```
display "STATA Program-Created Contrasts for 4-Group Diffs"
display "i. means make my contrast variables for me (factor var)"
regress y ib(last).group, level(95)
contrast i.group // Omnibus DF=3 main effect F-test
margins i.group, pwcompare(pveffects) // Means per group and mean diffs
```

The <u>MARGINS line</u> above gives you ALL of the following... note that one value has to be given for each possible level of the categorical predictor in *data* order

<pre>lincom _cons*1 +</pre>	1.group*1	+	2.group*0	+	3.group*0	+	4.group*0	11	Control	Mean
lincom _cons*1 +	1.group*0	+	2.group*1	+	3.group*0	+	4.group*0	11	T1 Mean	
lincom cons*1 +	1.group*0	+	2.group*0	+	3.group*1	+	4.group*0	11	T2 Mean	
<pre>lincom _cons*1 +</pre>	1.group*0	+	2.group*0	+	3.group*3	+	4.group*1	11	T3 Mean	
lincom	1.group*-1	+	2.group*1	+	3.group*0	+	4.group*0	11	Control	vs Tl
lincom	1.group*-1	+	2.group*0	+	3.group*1	+	4.group*0	11	Control	vs T2
lincom	1.group*-1	+	2.group*0	+	3.group*0	+	4.group*1	11	Control	vs T3
lincom	1.group*0	+	2.group*-1	+	3.group*1	+	4.group*0	11	T1 vs T2	2
lincom	1.group*0	+	2.group*-1	+	3.group*0	+	4.group*1	11	T1 vs T	3
lincom	1.group*0	+	2.group*0	+	3.group*-1	+	4.group*1	11	T2 vs T	3

Can also make up whatever contrasts you feel like (no DIVISOR option?) :

lincom _cons*1 + 1.group*0 + 2.group*.33 + 3.group*.33 + 4.group*.34 // Mean of Treat
lincom 1.group*-1 + 2.group*.33 + 3.group*.33 + 4.group*.34 // Cont v Treat

Interactions of Program-Categorical Predictors: SAS

```
For example, adding an interaction of group with age (0=85):
```

```
TITLE "SAS Group by Age for 4-Group Variable Included as Categorical";
PROC GLM DATA= work.dataname NAMELEN=100;
CLASS group;
MODEL y = group age group*age / ALPHA=.05 CLPARM SOLUTION SS3 EFFECTSIZE;
```

* To explain interaction as how group diffs depend on age: LSMEANS group / DIFF=ALL AT (age)=(-5); * group intercept diffs at age 80; LSMEANS group / DIFF=ALL AT (age)=(0); * group intercept diffs at age 85; LSMEANS group / DIFF=ALL AT (age)=(5); * group intercept diffs at age 90;

* To explain interaction as how age slope depends on group:

ESTIMATE	"Age	Slope	tor	Control"	age	1	group*age	1	0	0	0;	
ESTIMATE	"Age	Slope	for	T1 "	age	1	group*age	0	1	0	0;	
ESTIMATE	"Age	Slope	for	т2"	age	1	group*age	0	0	1	0;	
ESTIMATE	"Age	Slope	for	т3"	age	1	group*age	0	0	0	1;	

```
ESTIMATE"Age Slope: Control vs. T1"group*age -1100;ESTIMATE"Age Slope: Control vs. T2"group*age -1010;ESTIMATE"Age Slope: Control vs. T3"group*age -1010;ESTIMATE"Age Slope: Control vs. T3"group*age -101;ESTIMATE"Age Slope: T1 vs. T2"group*age 0-110;ESTIMATE"Age Slope: T1 vs. T3"group*age 0-11;ESTIMATE"Age Slope: T2 vs. T3"group*age 00-11;
```

Can also make up whatever contrasts you feel like using DIVISOR option:

```
ESTIMATE "Mean Age Slope in Treat groups" age 1 group*age 0 1 1 1 / DIVISOR=3;
ESTIMATE "Age Slope: Control vs. Mean of Treat" group*age -3 1 1 1 / DIVISOR=3;
RUN;
```

Interactions of Program-Categorical Predictors: STATA

```
For example, adding an interaction of group with age (0=85):
```

```
display "STATA Group by Age for 4-Group Variable Included as Categorical"
regress y ib(last).group c.age ib(last).group#c.age, level(95)
                    // Omnibus DF=3 simple effect F-test
contrast i.group
contrast i.group#c.age // DF=3 interaction F-test
lincom c.age*1 + i1.group#c.age*1 // Age Slope for Cont
lincom c.age*1 + i2.group#c.age*1 // Age Slope for T1
lincom c.age*1 + i3.group#c.age*1 // Age Slope for T2
lincom c.age*1 + i4.group#c.age*1 // Age Slope for T3
lincom i1.group#c.age*-1 + i2.group#c.age*1 // Age Slope: Cont vs T1
lincom i1.group#c.age*-1 + i3.group#c.age*1 // Age Slope: Cont vs T2
lincom i1.group#c.age*-1 + i4.group#c.age*1 // Age Slope: Cont vs T3
       i2.group#c.age*-1 + i3.group#c.age*1 // Age Slope: T1 vs T2
lincom
lincom i2.group#c.age*-1 + i4.group#c.age*1 // Age Slope: T1 vs T3
        i3.group#c.age*-1 + i4.group#c.age*1 // Age Slope: T2 vs T3
lincom
```

Can also make up whatever contrasts you feel like (no DIVISOR option?) :

```
lincom c.age*1 i1.group#c.age*0 + i2.group#c.age*.33 /// Age Slope for Treat
i1.group#c.age*.33 + i2.group#c.age*.34
lincom i1.group#c.age*-1 + i2.group#c.age*.33 /// Age Slope: C vs Treat
i1.group#c.age*.33 + i2.group#c.age*.34
```

Program-Categorical Predictors \rightarrow Marginal Effects

• Letting the program build contrasts for categorical predictors (instead of creating manual dummy codes) does the following:

> Allows LSMEANS/EMMEANS/MARGINS (for cell means and differences)

- > Provides omnibus (multiple DF) multivariate Wald tests for group effects
- Marginalizes the group effect across interacting predictors

 Image: omnibus F-tests represent marginal main effects (instead of simple)

Type 3 Tests of Fixed Effects	Interpretation if sexMW is "quantitative" (no CLASS/i)	Interpretation if sexMW is "categorical" on CLASS/i
sexMW	Marginal diff across groups	Marginal diff across groups
group	Group diff if sexMW=0	Marginal diff across sexes
group*sexMW	Interaction	Interaction

Interactions Among Program-**Categorical** Predictors: Default ANOVA Output

- Traditional ANOVA model includes all possible higher-order interactions among categorical predictors... by default!
 - Software does this for you; nonsignificant interactions usually still are kept in the model (but only significant interactions are interpreted)
 - > This is very different from typical practice in "multiple regression"!
- Omnibus **marginal** main effects are provided by default
 - > i.e., what we ask for via CONTRAST using manual group contrasts
 - > But are **basically useless** given significant interactions
- Omnibus interaction effects are provided
 - > i.e., what we ask for via CONTRAST using manual group contrasts
 - > But **need to be split into DF=1 effects** to understand the interaction
- In Example 7 we'll see how to make software give us more useful info... simple main effects and specific interaction contrasts to the rescue!

Multiple-DF Interactions More Generally

- Interactions can be tested between any predictors, including quantitative predictors that require more than one slope...
- Do piecewise education slopes differ between men and women? *(inspired by Example 4 models predicting annual income)*

 $Income_{i} = \beta_{0} + \beta_{1}(lessHS_{i}) + \beta_{2}(gradHS_{i}) + \beta_{3}(overHS_{i}) + \beta_{4}(MvW_{i}) + \beta_{5}(MvW_{i})(lessHS_{i}) + \beta_{6}(MvW_{i})(gradHS_{i}) + \beta_{7}(MvW_{i})(overHS_{i}) + e_{i}$

- > Use SAS CONTRAST or STATA TEST to lump together β_5 , β_6 , and β_7 for DF=3 *F*-test of interaction term
- > Simple slopes β_1 , β_2 , and β_3 give education effect for $MvW_i = 0$
- > Interactions β_5 , β_6 , and β_7 give DIFF in education effect for $MvW_i = 1$
- > So simple slopes for each subsample of education for $MvW_i = 1$ are given by: $\beta_1 + \beta_5$ for $lessHS_i$, $\beta_2 + \beta_6$ for $gradHS_i$, and $\beta_3 + \beta_7$ for $overHS_i$
- Btw, adding a third sex category (e.g., nonbinary) would require one more simple main effect for it, as well as three more interaction terms!

Categorical Predictors with Issues

- Experimental designs with fully crossed conditions lend themselves to analysis of variance-type models
- What happens when things go wrong? Two examples:
 - > ANOVA with a hole in it
 - > Predictors that don't apply or weren't measured for everyone
- These designs can be analyzed using **nested effects**
 - Different programs specify these differently, so I'll show them using a common language of pseudo-interaction terms
 - In specifying nested effects, what look like "interactions" actually act as switches instead to turn effects on/off...

A Traditional View of ANOVA

ANOVAs usually provide F-tests for marginal mean differences...

F(df=1)
$$\rightarrow$$
 a v.b
F(df=2) \rightarrow 1 v.2.v.3
F(df=2) \rightarrow a v.b * 1 v.2.v.3

Means	1	2	3
ā	a1	a2	a3
b	b1	b2	b3

ANOVA as a General Linear Model

$$y_{i} = \beta_{0} + \beta_{1}(a1 v. b1_{i})$$

+ $\beta_{2}(a1 v. a2_{i}) + \beta_{3}(a1 v. a3_{i})$
+ $\beta_{4}(a1 v. b1_{i})(a1 v. a2_{i})$
+ $\beta_{5}(a1 v. b1_{i})(a1 v. a3_{i}) + e_{i}$

The focus is now on differences between specific conditions as created by the ß fixed effects.

Means	1	2	3
ā	a1	a2	a3
b	b1	b2	b 3

ANOVA as a General Linear Model

- Software will find any simple slopes (differences) you ask for
 - > TEST in SPSS MIXED (not GLM); ESTIMATE in SAS (GLM or MIXED)
 - > LINCOM or MARGINS in STATA; NEW in Mplus
- Seeing research questions through linear models saves nontraditional research designs
 - > Not fully crossed on purpose or by accident... "ANOVA with a hole in it"

Means	1	2	3
ā	β ₀	$\beta_0 + \beta_2$	$\beta_0 + \beta_3$
b	$\beta_0 + \beta_1$	$ \begin{array}{c} \beta_0 + \beta_1 \\ + \beta_2 + \beta_4 \end{array} $	$\frac{\beta_0 + \beta_1}{+ \beta_3 + \beta_5}$

A Nontraditional ANOVA Design

$$y_{i} = \beta_{0} + \beta_{1}(t3 v.t1_{i}) + \beta_{2}(t2 v.t1_{i})$$

+
$$\beta_{3}(t1_{i})(t v.c_{i}) + \beta_{4}(t2_{i})(t v.c_{i}) + e_{i}$$
 inter-

 β_3 and β_4 are not interaction terms. Instead, they are *nested* effects.

You are allowed to use any *C* effects you want to represent the *C* means, even in fully crossed designs!

Means	Cohort 1	Cohort 2	Cohort 3
Control	$\beta_0 + \beta_1 + \beta_3$	$\beta_0 + \beta_2 + \beta_4$	
Treatment	$\beta_0 + \beta_1$	$\beta_0 + \beta_2$	β_0

A Nested-Effects General Linear Model

- Example: predicting outcomes by dementia type and dementia timing in persons with OR without dementia
 - > Type and timing do not apply to persons without dementia
 - > So this requires the following new variables...

* Create a switch variable and nested type variable; IF demtype="none" THEN DO; demYes=0; demAorV= 0; END; THEN DO; demYes=1; demAorV=-.5; END; IF demtype="AD" THEN DO; demYes=1; demAorV= .5; END; IF demtype="VA" variable (0=5 years) when applicable; * Create a timing IF demtype="none" THEN DO; demtime5=0; END; IF demtype="AD" THEN DO; demtime5=demtime-5; END; IF demtype="VA" THEN DO; demtime5=demtime-5; END;

A Nested-Effects General Linear Model

 $y_i = \beta_0 + \beta_1(demYes_i) + \beta_2(demAorV_i)$

 $+\beta_3(demYes_i)(demtime_i - 5) + \beta_4(demAorV_i)(demtime_i - 5) + e_i$

Fixed Effect	Interpretation	
β_0 : Intercept	Expected outcome for persons without dementia	
β_1 : demYes	Simple slope for difference between persons without dementia or with dementia at 5 years (averaged across AD and VA dementia types)	
β_2 : demAorV	Simple slope for difference between persons with AD or VA type dementia (at 5 years)	
β_3 : demYes* demtime5	Is NOT an interaction term: Slope for difference in outcome per year of dementia <i>only in persons with dementia</i> (averaged across AD and VA dementia types)	
eta_4 : demAorV* demtime5	IS an interaction term: Difference in slope for effect of years between persons with AD or VA type	

Other Uses for GLM Nested Effects

- **Nested effects** are main effects specified to apply selectively to subsamples of the possible cases contributing to the model
- They have lots of potential—but relatively unknown—uses
 - "If and how much" effects of semi-continuous predictors
 - Difference between groups of "younger" and "older" adults; + slope for years of age within "older" adults (see Hoffman 2015 ch. 12)
 - Presence and severity of abuse: difference between groups of "not abused" and "abused" persons; + slope for severity of abuse within "abused" group (for which severity > 0)
 - > Missing, refused to answer, or other **incomplete predictor data**:
 - Difference between groups of "incomplete" versus "complete" predictor values; + slope for predictor values in "complete" group
 - Predictor effects that only apply to one outcome in a multivariate GLM predicting multiple outcomes simultaneously...
 - Come back to my *Generalized Linear Models* class to see this usage!