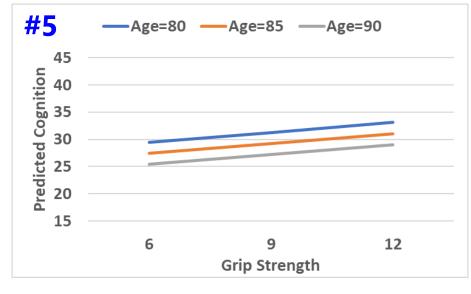
General Linear Models for Testing Moderation: Single-Slope Interactions*

• Topics:

- > Ways of getting predicted outcomes given multiple predictors
- Slopes of predictors within interactions: from unique main (marginal) effects to unique simple (conditional) effects
- > The 4 possible kinds of interactions: they make simple slopes more/less positive or more/less negative (and that's it)
- Model-implied slopes as linear combinations of model slopes
- > Regions of significance for when simple slopes "turn on or off"


* Such as when testing an interaction among binary predictors or quantitative predictors described by a single linear slope

Creating Predicted Outcomes: 3 Options

- Figures of **predicted outcomes** will be essential in describing the results of any linear model (especially when interaction slopes are included)
- Three ways to get them (in order of most to least painful and inefficient):
- 1. In **excel**: input fixed effects, input predictor values, **write an equation** to create predicted outcomes for each combination of predictor values
 - > Good for pedagogy, but is inefficient and error-prone (and SEs are harder)
- 2. Via **programming statements** (better for efficiency and accuracy):
 - ▶ Per prediction: Use SAS ESTIMATE or SPSS TEST → time-consuming ⊗
 - For a range of predictor values: Use STATA MARGINS → way faster! ©
- 3. Via "fake people" (most useful in SPSS and SAS without MARGINS)
 - > Add cases to your data with desired predictor values (but no outcomes!)
 - Ask program to save predicted outcomes for all cases into your data
 - Fake cases won't contribute to model, but they will get predicted outcomes

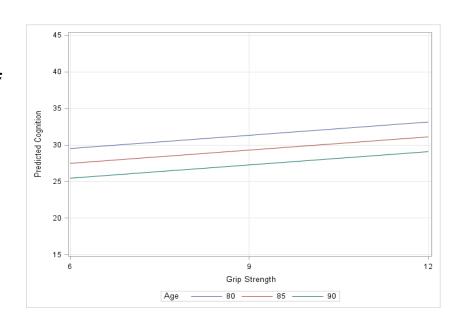
Creating Predicted Outcomes: Option 1

#1					
Fixed Effect Solution					
Effect	Parameter	Estimate	StdErr	t Value	Pr > t
ВО	Intercept	29.264	0.699	41.900	<.0001
B1	age85	-0.406	0.119	-3.410	0.001
B2	grip9	0.604	0.150	4.030	<.0001
В3	sexMW	-3.657	0.891	-4.100	<.0001
B4	demNF	-5.722	1.019	-5.610	<.0001
B5	demNC	-16.480	1.523	-10.820	<.0001

				#3	
#2 Predictor Values					
Grip-9	SexMW	demNF	demNC	Y-ha	
-3	0	0	0	29.480	
0	0	0	0	31.293	
3	0	0	0	33.106	
-3	0	0	0	27.452	
0	0	0	0	29.264	
3	0	0	0	31.077	
-3	0	0	0	25.423	
0	0	0	0	27.236	
3	0	0	0	29.048	
Grip Strength					
#4	6	9	12		
=80	29.480	31.293	33.106		
=85	27.452	29.264	31.077		
=90	25.423	27.236	29.048		
	Grip-9 -3 0 3 -3 0 3 -3 3 444 =80 =85	Grip-9 SexMW -3 0 0 0 3 0 -3 0 0 0 3 0 -3 0 0 0 3 0 -3 0 6rip -80 29.480 =85 27.452	Grip-9 SexMW demNF -3 0 0 0 0 3 0 0 -3 0 0 0 0 0 0 0 3 0	Grip-9 SexMW demNF demNC -3 0 0 0 0 0 0 0 0 3 0 0 0 -3 0 0 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 6 0 0 0 7 0 0 8 12 ■ 80 29.480 31.293 33.106 ■ 85 27.452 29.264 31.077	

Process using Excel (see above):

- 1. Enter fixed effect coefficients
- 2. Enter values of predictors
- 3. Calculate predicted y-hat values
- 4. Re-arrange into matrix of values
- 5. Request plot of matrix values


Creating Predicted Outcomes: Option 2 using SAS ESTIMATES

```
TITLE1 "SAS Combined Main Effects Only Model Predicting Cognition";
TITLE2 "Demonstrating how to get predicted outcomes using ESTIMATE statements";
PROC GLM DATA=work.Example6 NAMELEN=100;
    MODEL cognition = age85 grip9 sexMW demNF demNC / ALPHA=.05 CLPARM SOLUTION SS3 EFFECTSIZE;
     * Pred cognition outcomes holding sexMW=men, demNF=none, and demNC=none;
    ESTIMATE "Yhat for Age=80 Grip=6" intercept 1 age85 -5 grip9 -3 sexMW 0 demNF 0 demNC 0;
    ESTIMATE "Yhat for Age=80 Grip=9" intercept 1 age85 -5 grip9 0 sexMW 0 demNF 0 demNC 0;
    ESTIMATE "Yhat for Age=80 Grip=12" intercept 1 age85 -5 grip9 3 sexMW 0 demNF 0 demNC 0;
    ESTIMATE "Yhat for Age=85 Grip=6" intercept 1 age85 0 grip9 -3 sexMW 0 demNF 0 demNC 0;
    ESTIMATE "Yhat for Age=85 Grip=9"
                                       intercept 1 age85 0 grip9 0 sexMW 0 demNF 0 demNC 0;
    ESTIMATE "Yhat for Age=85 Grip=12" intercept 1 age85 0 grip9 3 sexMW 0 demNF 0 demNC 0;
                                       intercept 1 age85 5 grip9 -3 sexMW 0 demNF 0 demNC 0;
    ESTIMATE "Yhat for Age=85 Grip=6"
    ESTIMATE "Yhat for Age=85 Grip=9" intercept 1 age85 5 grip9 0 sexMW 0 demNF 0 demNC 0;
    ESTIMATE "Yhat for Age=85 Grip=12" intercept 1 age85 5 grip9 3 sexMW 0 demNF 0 demNC 0;
    ODS OUTPUT Estimates=work.EstMainEffects; * Save ESTIMATEs to dataset for plotting;
RUN; QUIT; TITLE1; TITLE2;
```

Parameter	Estimate	Standard Error	t Value	Pr > t	95% Confid	ence Limits
Yhat for Age=80 Grip=6	29.4803185	1.15590606	25.50	<.0001	27.2097326	31.7509045
Yhat for Age=80 Grip=9	31.2929952	0.92090860	33.98	<.0001	29.4840228	33.1019676
Yhat for Age=80 Grip=12	33.1056719	0.87396571	37.88	<.0001	31.3889110	34.8224327
Yhat for Age=85 Grip=6	27.4516487	0.93731216	29.29	<.0001	25.6104543	29.2928432
Yhat for Age=85 Grip=9	29.2643254	0.69850792	41.90	<.0001	27.8922223	30.6364285
Yhat for Age=85 Grip=12	31.0770021	0.70785742	43.90	<.0001	29.6865335	32.4674707
Yhat for Age=90 Grip=6	25.4229789	1.06198691	23.94	<.0001	23.3368816	27.5090763
Yhat for Age=90 Grip=9	27.2356556	0.91355395	29.81	<.0001	25.4411302	29.0301810
Yhat for Age=90 Grip=12	29.0483323	0.97218055	29.88	<.0001	27.1386447	30.9580199

Creating Predicted Outcomes: Option 2 using SAS ESTIMATE

```
* Labeling saved ESTIMATES for use in plot;
* INDEX finds value in parentheses for that column;
DATA work.EstMainEffects; SET work.EstMainEffects;
IF INDEX(Parameter, "Age=80") >0
                                 THEN age=80;
IF INDEX(Parameter, "Age=85") >0
                                 THEN age=85;
IF INDEX(Parameter, "Age=90")>0
                                 THEN age=90;
IF INDEX(Parameter, "Grip=6")>0
                                 THEN grip=6;
IF INDEX(Parameter, "Grip=9")>0
                                 THEN grip=9;
IF INDEX(Parameter, "Grip=12") > 0 THEN grip=12;
RUN:
* Plot ESTIMATES (same as for option 3);
* grip as X by age;
PROC SGPLOT DATA=work.EstMainEffects;
SERIES x=grip y=Estimate / GROUP=age;
XAXIS GRID LABEL="Grip Strength"
           VALUES=(3 TO 15 BY 3);
YAXIS GRID LABEL="Predicted Cognition"
           VALUES=(15 TO 45 BY 5);
RUN; QUIT;
```


Creating Predicted Outcomes: Option 2 using STATA Margins

// Get plot of predicted outcomes
marginsplot, xdimension(grip9)

Further customization of the plot can be done through marginsplots options or in the graph editor window

Creating Predicted Outcomes: Option 3 using SAS Fake People

```
* Demonstrating how to get predicted
  outcomes using "fake people";
* Each row is a fake person for
 which to create a pred outcome;
DATA work.FakePeople;
* List variables;
INPUT PersonID age grip
      sexMW demNF demNC;
* Center predictors;
age85=age-85; grip9=grip-9;
* Enter data:
 DATALINES:
-99 80 6
-99 80 9 0
-99 80 12 0 0 0
-99 85 6 0
-99 85 9 0
-99 85 12 0
-99 90 6 0
-99 90 9 0 0 0
-99 90 12
; RUN;
* Merge with real data;
DATA work.Example6;
SET work.FakePeople work.Example6;
RUN;
```

```
TITLE1 "SAS Combined Main Effects Only
Model Predicting Cognition";

TITLE2 "Using dataset with fake
people to get predicted
outcomes as saved variable";

PROC GLM DATA=work.Example6 NAMELEN=100;

MODEL cognition = age85 grip9 sexMW
demNF demNC
/ ALPHA=.05 CLPARM SOLUTION
SS3 EFFECTSIZE;

* Request pred outcome and SE for all;

OUTPUT OUT=work.PredOutcomes
PREDICTED=Yhat STDP=SEyhat;

RUN; QUIT; TITLE1; TITLE2;
```

SAS Code to generate the plot and the resulting plot are then the same as SAS option 2

GLM with an Interaction:

$$y_i = \beta_0 + \beta_1(x_i) + \beta_2(z_i) + \beta_3(x_i)(z_i) + e_i$$

- Interaction slopes (β_3 here) test "Moderation": whether a predictor's slope depends on the value of an interacting predictor
 - Either predictor can be "the moderator" (is interpretive distinction only)
- Interactions can always be evaluated for any combination of categorical and quantitative predictors, although traditionally...
 - > In "ANOVA": By default (in SPSS), all possible interactions are estimated
 - Oddly, nonsignificant interactions are usually kept in the model (even if only significant interactions are interpreted)
 - ➤ In "ANCOVA": Quantitative predictors ("covariates") are not included in interaction terms → this is the "homogeneity of regression assumption"
 - But you don't have to assume this—it is always a testable hypothesis!
 - > In "Regression": No default—effects of predictors are as you specify
 - Requires most thought, but gets annoying in regression-specific programs when you have to manually create the interaction variable:
 - e.g., XZinteraction = X * Z; Interaction variables are made on the fly in GLM!

Main Effects of Predictors within Interactions

- "Main effect" slopes of predictors that are included in interaction terms should always remain in the model regardless of their significance
 - \triangleright e.g., given $\beta_3(x_i)(z_i)$, you must keep $\beta_1(x_i)$ and $\beta_2(z_i)$ in the model, too
 - > Why? Because an interaction term creates an over-additive (enhancing) or under-additive (dampening) effect, so what it is additive to must be included for the interaction to actually represent an "interaction"
- The role of a two-way interaction is to <u>adjust</u> the "main effect" slopes of the two predictors involved... (in one of four possible ways)
 - > But the idea of a "marginal" main effect slope (that holds for everyone) no longer applies: the main effect slopes become **simple main effect slopes** that are **conditional** each interacting predictor = 0
- Note that this is a different type of conditionality than just "holding the other predictors constant" (which means constant at any value)
 - > Simple main effect slopes are held constant (conditional on) the **0 value** of the interacting predictor(s)—these slopes would be different if 0 were defined differently by centering the interacting predictor elsewhere
 - > This language can be confusing, so here is a taxonomy that may help...

A Taxonomy of Fixed Effect Interpretations

- In the most common statistical models, fixed effects will be either:
 - \succ an **intercept** that provides an expected (conditional) y_i outcome,
 - \rightarrow or **a slope** for the difference in y_i per unit difference in x_i predictor
- All slopes can be described as falling within one of three categories: bivariate marginal, unique marginal, or unique conditional
 - In models with only one fixed slope, that slope's main effect is bivariate marginal (is uncontrolled and applies across all persons)
 - > In models with **more than one fixed slope**, each slope's main effect is **unique** (it controls for the overlap in contribution with each other slope)
 - If a predictor is not part of an interaction term, its unique effect is marginal
 (it controls for the other slopes, but its effect still applies across all persons)
- NEW.
- If a predictor is part of one or more interaction terms, its *unique effect is conditional*, which means it is **specific to each interacting predictor = 0**
- Unique conditional effects are also called "simple main effects" (simple slopes)

Practice Labeling Fixed Slopes—Choices:

bivariate marginal, unique marginal, or unique conditional

Model:
$$y_i = \beta_0 + \beta_1(w_i) + e_i$$

• Label for β_1 slope of $w_i =$

Model:
$$y_i = \beta_0 + \beta_1(w_i) + \beta_2(x_i) + \beta_3(z_i) + \beta_4(x_i)(z_i) + e_i$$

- Label for β_1 slope of $w_i =$
- Label for β_2 slope of $x_i =$
- Label for β_3 slope of $z_i =$
- Label for β_4 slope of $x_i z_i$ interaction term=

The 4 Possible Kinds of Interactions

- There are only 4 kinds of interactions: they make each of their main effect slopes more/less positive/negative
 - ► More positive or more negative → effect becomes stronger, known as "over-additive" interaction
 - ▶ Less positive or less negative → effect becomes weaker, known as "under-additive" interaction

• Model:
$$y_i = \beta_0 + \beta_1(w_i) + \beta_2(x_i) + \beta_3(z_i) + \beta_4(x_i)(z_i) + e_i$$

Slope of x_i is β_2 =	Interaction Slope is β_4 =	So β_4 makes effect of x_i ??? per unit higher z_i
10	2	
10	-2	
-10	-2	
-10	2	

Fixed Effects: Why Centering Matters

• y_i = Student achievement (GPA as percentage out of 100) x_i = Parent attitudes about education (measured on 1–5 scale) z_i = Parent education level (measured in years of education)

$$GPA_i = \beta_0 + \beta_1(Att_i) + \beta_2(Ed_i) + \beta_3(Att_i)(Ed_i) + e_i$$

 $GPA_i = 30 + 1(Att_i) + 2(Ed_i) + 0.5(Att_i)(Ed_i) + e_i$

- Interpret β_0 :
- Interpret β₁:
- Interpret β₂:
- Interpret β_3 : Attitude as Moderator:

Education as Moderator:

• Predicted GPA for attitude = 3 and Ed = 12? 75 = 30 + 1*(3) + 2*(12) + 0.5*(3)*(12)

How Centering Changes Fixed Effects

- y_i = Student achievement (GPA as percentage out of 100) x_i = Parent attitudes about education (now centered at 3) z_i = Parent years of education (now centered at 12)
- $GPA_i = \beta_0 + \beta_1(Att_i 3) + \beta_2(Ed_i 12) + \beta_3(Att_i 3)(Ed_i 12) + e_i$ $GPA_i = 75 + 7(Att_i - 3) + 3.5(Ed_i - 12) + 0.5(Att_i - 3)(Ed_i - 12) + e_i$
- Interpret β_0 :
- Interpret β_1 :
- Interpret β_2 :
- Interpret β_3 : Attitude as Moderator:

Education as Moderator:

But how did I know what the new fixed effects would be???

Model-Implied Predicted Outcomes

- Predicted outcomes = expected outcomes = intercepts
 - > Need to start with "intercept 1" or "_const*1" (need 1 β_0)
 - > ALL model effects must be included (or else are assumed = 0)

$$\widehat{GPA}_i = \beta_0 + \beta_1 (Att_i - 3) + \beta_2 (Ed_i - 12) + \beta_3 (Att_i - 3) (Ed_i - 12)$$

SAS: Each line starts with ESTIMATE

```
"Yhat: Att=5 Ed=16" intercept 1 att ___ ed __ att*ed __

"Yhat: Att=1 Ed=12" intercept 1 att ___ ed __ att*ed __

"Yhat: Att=3 Ed=20" intercept 1 att ___ ed __ att*ed __
```

STATA: Each line starts with lincom, title moved to end of line after //

```
"Yhat: Att=5 Ed=16" _cons*1 + att*_ + ed*_ + att#ed*_"
"Yhat: Att=1 Ed=12" _cons*1 + att*_ + ed*_ + att#ed*_"
"Yhat: Att=3 Ed=20" _cons*1 + att*_ + ed*_ + att#ed*_"
```

Model-Implied Predictor Simple Slopes

- Example equation for <u>predicted GPA</u> using centered predictors: $\widehat{GPA}_i = \beta_0 + \beta_1 (Att_i - 3) + \beta_2 (Ed_i - 12) + \beta_3 (Att_i - 3) (Ed_i - 12)$
- This model equation provides predictions for:
 - > Expected outcome given any combination of predictor values
 - > Any conditional (simple) main effect slopes implied by interaction term
 - > Any slope can be found as: what it is + what modifies it
- Three steps to get any model-implied simple main effect slope:
- **Identify** all terms in model involving the predictor of interest
- Factor out common predictor variable to find slope linear combination
- **Calculate** estimate and SE for slope linear combination
 - By "calculate" I of course mean "ask a program to do this for you"

16

Model-Implied Predictor Simple Slopes

• Example equation for <u>predicted GPA</u> using centered predictors:

$$\widehat{GPA}_i = \beta_0 + \beta_1 (Att_i - 3) + \beta_2 (Ed_i - 12) + \beta_3 (Att_i - 3) (Ed_i - 12)$$

1. **Identify** all slopes in model involving the predictor of interest

```
To get attitudes slope: Est = \beta_1(Att_i - 3) + \beta_3(Att_i - 3)(Ed_i - 12)
To get education slope: Est = \beta_2(Ed_i - 12) + \beta_3(Att_i - 3)(Ed_i - 12)
```

2. Factor out predictor of interest to find slope linear combination

```
To get attitudes slope: Est = [\beta_1 + \beta_3 (Ed_i - 12)] that will multiply (Att_i - 3) To get education slope: Est = [\beta_2 + \beta_3 (Att_i - 3)] that will multiply (Ed_i - 12)
```

- Btw, the SEs for the new slopes provided by the program come from:
 - > SE^2 = sampling variance of slope estimate \rightarrow e.g., $Var(\beta_1) = SE_{\beta_1}^2$ attitudes slope: $SE^2 = Var(\beta_1) + Var(\beta_3)(Ed_i 12) + 2Cov(\beta_1, \beta_3)(Ed_i 12)$ education slope: $SE^2 = Var(\beta_2) + Var(\beta_3)(Att_i 3) + 2Cov(\beta_2, \beta_3)(Att_i 3)$

Model-Implied Predictor Simple Slopes

- To request <u>predicted simple slopes</u> (= simple main effects):
 - \rightarrow **DO NOT include the intercept** (β_0 does **not** contribute to slopes)
 - > **Include ONLY** the fixed effects that contain the predictor of interest

```
\widehat{GPA}_i = \beta_0 + \beta_1 (Att_i - 3) + \beta_2 (Ed_i - 12) + \beta_3 (Att_i - 3) (Ed_i - 12)
\Rightarrow attitudes slope: Est = [\beta_1 + \beta_3 (Ed_i - 12)] that multiplies (Att_i - 3)
\Rightarrow education slope: Est = [\beta_2 + \beta_3 (Att_i - 3)] that multiplies (Ed_i - 12)
```

SAS: Each line starts with ESTIMATE

```
"Att Slope if Ed=10" intercept 0 att ___ ed __ att*ed __
"Att Slope if Ed=18" intercept 0 att ___ ed __ att*ed __
"Ed Slope if Att=2" intercept 0 att ___ ed __ att*ed __
"Ed Slope if Att=5" intercept 0 att ___ ed __ att*ed __
```

STATA: Each line starts with lincom, title moved to end of line after //

```
"Att Slope if Ed=10" _cons*0 + att*_ + ed*_ + att#ed*_"
"Att Slope if Ed=18" _cons*0 + att*_ + ed*_ + att#ed*_"
"Ed Slope if Att=2" _cons*0 + att*_ + ed*_ + att#ed*_"
"Ed Slope if Att=5" _cons*0 + att*_ + ed*_ + att#ed*_"
```

Regions of Significance for Simple Slopes

- For quantitative predictors, there may not be specific values of the moderator at which you want to know the slope's significance...
- For example, with age*woman (in which 0=man, 1=woman here):

```
\widehat{y}_i = \beta_0 + \beta_1 (Age_i - 85) + \beta_2 (Woman_i) + \beta_3 (Age_i - 85)(Woman_i)
\rightarrow age slope: Est = that multiplies (Age_i - 85)
\rightarrow gender slope: Est = that multiplies (Woman_i)
```

• Age slopes are only relevant for two specific values of woman:

```
"Age Slope for Men" age85 __ woman __ age85*woman __ "Age Slope for Women" age85 __ woman __ age85*woman __
```

• But there are many ages to request gender differences for...

```
"Gender Diff at Age=80" age85 ___ woman __ age85*woman ___
"Gender Diff at Age=90" age85 ___ woman __ age85*woman ___
```

Regions of Significance for Simple Slopes

- An alternative approach for continuous moderators is known as regions of significance (see Hoffman 2015 chapter 2 for refs)
- Rather than asking if the simple main effect of gender is still significant at a particular age, we can find the **boundary ages** at which the gender effect becomes non-significant
- We know that: EST / SE = t-value \rightarrow if |t| > |1.96|, then p < .05
- So we work backwards to find the EST and SE such that:

```
\pm t = \pm 1.96 = \frac{\text{Slope Estimate}}{\sqrt{\text{Variance of Slope Estimate}}}, \text{ where:} Gender Slope (Gender Difference) Estimate = \beta_2 + \beta_3 \left( \text{Age} - 85 \right) \text{Variance of Slope Estimate} = \text{Var}(\beta_2) + \frac{2\text{Cov}(\beta_2\beta_3)(\text{Age} - 85)}{2} + \text{Var}(\beta_3)(\text{Age} - 85)^2
```

- Need to request "asymptotic covariance matrix" (COVB)
 - Covariance matrix of fixed effect estimates (SE² on diagonal)

Regions of Significance for Simple Slopes

```
\pm t = \pm 1.96 = \frac{\text{Slope Estimate}}{\sqrt{\text{Variance of Slope Estimate}}}, \text{ where:} Gender Slope (Gender Difference) Estimate = \beta_2 + \beta_3 \left( \text{Age} - 85 \right) Variance of Slope Estimate = \text{Var}(\beta_2) + 2\text{Cov}(\beta_2\beta_3) \left( \text{Age} - 85 \right) + \text{Var}(\beta_3) \left( \text{Age} - 85 \right)^2
```

- For example, age*woman (0=man, 1=woman), age = moderator: $\hat{y}_i = \beta_0 + \beta_1 (Age_i 85) + \beta_2 (Woman_i) + \beta_3 (Age_i 85) (Woman_i)$
- $\beta_2 = -0.5306^*$ at age=85, $Var(\beta_2) \rightarrow SE^2$ for β_2 was 0.06008
- $\beta_3 = -0.1104^*$ unconditionally, $Var(\beta_3) \rightarrow SE^2$ for β_3 was 0.00178
- Covariance of β_2 SE and β_3 SE was 0.00111
- Regions of Significance for Moderator of Age = 60.16 to 79.52
 - The gender effect β_2 is predicted to be <u>significantly negative</u> above age 79.52, <u>non-significant</u> from ages 79.52 to 60.16, and <u>significantly positive</u> below age 60.16 (because non-parallel lines will cross eventually).

Modeling Interactions: Summary

- Interactions create "moderation": the idea that the effect (slope)
 of one predictor depends upon the value of another predictor
 - The current "single slope" interaction examples show one form of moderation—that each predictor's slope increases linearly with the value of the interacting predictor
 - But other forms of moderation that involve 2+ slopes can be tested using the specifications shown in Lecture 4 (e.g., for interactions with 3+ groups, quadratic, or piecewise effects)
- Predictors' main effect slopes will change once they are included in an interaction term, because they now mean different things:
 - Former "marginal main effect slopes" become "conditional (or simple) effect slopes" specifically when the interacting predictor = 0
 - > Need to have **0** as a meaningful value for each predictor for that reason

Rules for interpreting conditional (or simple) fixed slopes:

- Predicted outcomes are conditional on (get adjusted by) main effect slopes
 - Positive slopes create higher outcomes; negative slopes create lower outcomes
- > Main effect slopes are conditional (get adjusted by) on two-way interactions
 - Interactions make main effect slopes more/less positive or more/less negative
 - Btw, three-way interactions do the same thing to two-way interactions
- Highest-order interaction slope is unconditional—it will stay the same regardless of centering (i.e., extent of moderation is unconditional)