General Linear Models with More than One Predictor

- Topics:
 - > Review: specific and general model results
 - Special case of GLM 1: "Multiple (Linear) Regression" with 2+ quantitative predictors
 - Special case of GLM 2: "Analysis of Covariance" (ANCOVA) with both categorical and quantitative predictors
 - Non-problems and unexpected results

Review: Specific Info for Fixed Effects

- The role of each predictor variable x_i in creating a custom expected outcome y_i is described using <u>one or more fixed slopes</u>:
 - One slope is sufficient to capture the mean difference between two categories for a binary x_i or to capture a linear effect of a quantitative x_i (or an exponential-ish curve if x_i is log-transformed)
 - More than one slope is needed to capture other nonlinear effects of a quantitative x_i (e.g., quadratic curves or piecewise slopes)
 - ➤ C 1 slopes are needed to capture the mean differences in the outcome across a categorical predictor with C categories

• # pairwise mean differences =
$$\frac{C!}{2!(C-2)!}$$
, but only $C - 1$ are given directly

- For each fixed slope, we obtain an **unstandardized** solution:
 - > **Estimate, SE,** t**-value,** p**-value** (in which [Est-0]/SE = t, in which $DF_{num} = 1$ and $DF_{den} = N k$ are used to find the p-value; this is a "Univariate Wald Test" (or a "modified" test given use of t, not z)
 - Standardized effect size can be given by converting t into r or d

GLMs with Single Predictors: Review of Fixed Effects

- Predictor $x\mathbf{1}_i$ alone: $y_i = \beta_0 + \beta_1(x\mathbf{1}_i) + e_i$
 - > β_0 = intercept = expected y_i when $x\mathbf{1}_i = \mathbf{0}$
 - > β_1 = slope of $x1_i$ = difference in y_i per one-unit difference in $x1_i$
 - Standardized slope for β_1 = Pearson's r for y_i with $x1_i$ ($\beta_{1std} = r_{y,x1}$)
 - > e_i = difference of $y_i \hat{y}_i$ where $\hat{y}_i = \beta_0 + \beta_1(x\mathbf{1}_i)$
- Predictor $x2_i$ alone : $y_i = \beta_0 + \beta_2(x2_i) + e_i$
 - > β_0 = intercept = expected y_i when $x2_i = 0$
 - > β_2 = slope of x_{i}^2 = difference in y_i per one-unit difference in x_{i}^2
 - Standardized slope for β_2 = Pearson's r for y_i with x_{2i} ($\beta_{2std} = r_{y,x_2}$)
 - > e_i = difference of $y_i \hat{y}_i$ where $\hat{y}_i = \beta_0 + \beta_2(x2_i)$

Review: General Test of Fixed Effects

• Whether the **set of fixed slopes for** x_i significantly explains y_i variance (i.e., if $R^2 > 0$) is tested via "**Multivariate Wald Test**"

>
$$F(DF_{num}, DF_{den}) = \frac{SS_{model}/(k-1)}{SS_{residual}/(N-k)} = \frac{(N-k)R^2}{(k-1)(1-R^2)} = \frac{known}{unknown}$$

F test-statistic ("F-test") evaluates model R² per DF spent to get to it and DF leftover (is a ratio of info known to info unknown)

>
$$R^2 = \frac{SS_{total} - SS_{residual}}{SS_{total}} =$$
 square of r of predicted \hat{y}_i with y_i

• For GLMs with **one fixed slope**, the Univariate Wald (t) test for that slope is the same as the Multivariate Wald (F) Test for the model R^2

> Slope
$$\beta_{unstd}$$
: $t = \frac{Est(-H_0)}{SE}$, β_{unstd} = Pearson r

> Model: $F = t^2$, $R^2 = r^2$ because predicted \hat{y}_i only uses β_{unstd}

Moving On: GLMs with Multiple Predictors

- So far each set of fixed slopes within a separate model have worked together to describe the effect of a single variable
 - > So the *F*-test of the model R^2 has reflected the contribution of one predictor variable conceptually in forming \hat{y}_i , albeit with one or more fixed slopes to capture its effect
- Now we will see what happens to the fixed slopes for each variable when combined into a single model that includes multiple predictor variables, each with its own fixed slope(s)
 - > Short answer: fixed slopes go from representing "bivariate" to "**unique**" relationships (i.e., controlling for the other predictors), and \hat{y}_i is created from all predictors' fixed slopes simultaneously
 - Standardized slopes are no longer equal to bivariate Pearson's r, and are instead related to a "semipartial" (or "part") correlation

A Real-World Example of "Unique" Effects

• House-cleaning with the Pearsons—the cast from "This is Us"

A Real-World Example of "Unique" Effects

- Scenario: Rebecca Has. Had. It. with 3 messy tween-agers and decides to provide an incentive for them to clean the house
 - Let's say the Pearson house has 10 cleanable rooms: 4 bedrooms,
 2 bathrooms, 1 living area, 1 kitchen area, 1 dining area, 1 garage
- Incentive system for each cleaner (3 children and spouse Jack):
 - > Individual: one Nintendo game per room cleaned by yourself
 - > Family Bonus: if ≥ 8 rooms are clean, the family gets a new TV! (8 = average of 2 rooms per person)
- Rebecca decides to let the family decide what rooms they will each be responsible for while she is shopping for necessities
 - > She returns home to a cleaner house, and asks who did what...

Pearson House: Who Cleaned What?

Room	Jack	Kevin	Kate	Randall
Master bedroom	Х			
Kevin bedroom		Х		
Kate bedroom			Х	
Randall bedroom				х
Bathroom 1				х
Bathroom 2				х
Living area		Х	Х	х
Kitchen area	Х			х
Dining area	Х			х
Garage				

- 9/10 rooms are cleaned, so the family gets a new TV—hooray!
- But what should each person get for their <u>individual</u> effort?

Pearson House: Who Cleaned What?

Room	Jack	Kevin	Kate	Randall
Master bedroom	Х			
Kevin bedroom		х		
Kate bedroom			Х	
Randall bedroom				Х
Bathroom 1				х
Bathroom 2				х
Living area		Х	Х	Х
Kitchen area	х			Х
Dining area	х			х
Garage				

- Jack, Kevin, and Kate: only one Nintendo game each for cleaning one unique room (can't assign rewards for overlapping rooms)
- Randall: three Nintendo games for three **unique** rooms
- No one gets credit for overlapping rooms (but the family gets a TV)

From Cleaning to Modeling: 2 Goals

- <u>General Utility</u>: Do the model predictors explain a significant amount of variance?
 - > Is the model R^2 (the squared r of \hat{y}_i with y_i) significantly > 0 (is F-test significant)?
 - > R^2 is a function of the common AND unique effects of predictor variables
- <u>Specific Utility</u>: What is the **unique** contribution of each predictor to the model R² after discounting its redundancy with the other predictors?
 - This is tricky because no predictor gets individual credit for what they have in common in predicting y_i, even though their common variance still increases R²

From Correlations to Standardized Slopes

- Recall for a one-predictor model: $y_i = \beta_0 + \beta_1(x\mathbf{1}_i) + e_i$
 - > Unstandardized: $\boldsymbol{\beta}_0 = \boldsymbol{M}_y (\boldsymbol{\beta}_1 \boldsymbol{M}_{x1}), \boldsymbol{\beta}_1 = r_{y,x1} \frac{SD_y}{SD_{x1}}, \boldsymbol{\beta}_1 = \frac{Cov_{x1,y}}{SD_{x1}^2}$
 - > Standardized: $\beta_0 = 0$, $\beta_{1std} = \beta_1 \frac{SD_{x1}}{SD_y}$ (so $\beta_{1std} = r_{y,x1}$ here)
- For a two-predictor model: $y_i = \beta_0 + \beta_1(x\mathbf{1}_i) + \beta_2(x\mathbf{2}_i) + \mathbf{e}_i$
 - > Unstandardized: $\beta_0 = M_y (\beta_1 M_{x1}) (\beta_2 M_{x2})$
 - > Standardized: $\beta_{1std} = \frac{r_{y,x1} (r_{y,x2} * r_{x1,x2})}{1 R_{x1,x2}^2}$, $\beta_{2std} = \frac{r_{y,x2} (r_{y,x1} * r_{x1,x2})}{1 R_{x1,x2}^2}$
 - > Standardized to unstandardized: $\beta_1 = \beta_{1std} \frac{SD_y}{SD_{x1}}$, $\beta_2 = \beta_{2std} \frac{SD_y}{SD_{x2}}$

Semipartial (Part)* Correlations

- Just Pearson's r is an effect size for a bivariate (or "zero-order") relationship between two variables, semipartial correlations provide an effect size for the relationship of y_i with the <u>unique</u> part of each x_i (i.e., after controlling each x_i for the other predictors)
 - > When r is squared → R^2 → areas to the right represent "proportions of variance"
 - > **Area** $a = sr_{y,x1,x2}^2$ = semipartial R^2 for y_i with $x1_i$, controlling $x1_i$ for $x2_i$
 - > **Area** $b = sr_{y,x2.x1}^2$ = semipartial R^2 for y_i with $x2_i$, controlling $x2_i$ for $x1_i$
 - > R² = $\frac{a+b+c}{a+b+c+e}$ → c also contributes to R² but neither predictor gets "credit" for it

* Part correlations are not the same as "partial" correlations (which do not correspond to GLMs so we won't use them)

"Ballantine" image borrowed from: <u>http://alexanderdemos.org/Mixed1.html</u>

Standardized Slopes and Semi-Partial r

One-predictor model: $y_i = \beta_0 + \beta_1(x\mathbf{1}_i) + e_i, \beta_1 = \frac{Cov_{x1,y}}{Var_{x1}}$

For a two-predictor model: $y_i = \beta_0 + \beta_1(x\mathbf{1}_i) + \beta_2(x\mathbf{2}_i) + \mathbf{e}_i$

• Standardized "unique" slopes (repeated):

$$\beta_{1std} = \frac{r_{y,x1} - (r_{y,x2} * r_{x1,x2})}{1 - R_{x1,x2}^2} = \frac{\text{unique Cov of } y,x1}{\text{unique Var of } x1}$$

$$\beta_{2std} = \frac{r_{y,x2} - (r_{y,x1} * r_{x1,x2})}{1 - R_{x1,x2}^2} = \frac{\text{unique Cov of } y,x2}{\text{unique Var of } x2}$$

• Semipartial correlations (. indicates controlled):

>
$$sr_{y,x1.x2} = \sqrt{a} = \frac{r_{y,x1} - (r_{y,x2} * r_{x1,x2})}{\sqrt{1 - R_{x1,x2}^2}} = \frac{unique Cov of y,x1}{unique SD of x1}$$

> $sr_{y,x2.x1} = \sqrt{b} = \frac{r_{y,x2} - (r_{y,x1} * r_{x1,x2})}{\sqrt{1 - R_{x1,x2}^2}} = \frac{unique Cov of y,x2}{unique SD of x2}$

Where the "Common" Area c Goes

- Model R^2 can be understood in many ways—here, for two slopes:
 - > Old: R^2 is the square of the r between predicted \hat{y}_i and y_i

> Old said differently:
$$R^2 = \frac{Var_{\hat{y}_i}}{Var_{y_i}}$$

> New:
$$R^2 = \frac{r_{y,x_1}^2 + r_{y,x_2}^2 - (2 * r_{y,x_1} * r_{y,x_2} * r_{x_1,x_2})}{1 - R_{x_1,x_2}^2}$$

> New:
$$R^2 = \beta_{1std*r_{y,x1}} + \beta_{2std*r_{y,x2}}$$

Note: The version of this slide given in class had errors in the first two "new" R^2 formulas (now corrected)

- > New: $R^2 = \beta_{1std}^2 + \beta_{2std}^2 + (2 * \beta_{1std} * \beta_{2std} * r_{x1,x2})$
- In general: R^2 = unique effects + function of common effects

GLMs with Multiple Predictors: New Interpretation of Fixed Effects

- Two predictor variables: $y_i = \beta_0 + \beta_1(x\mathbf{1}_i) + \beta_2(x\mathbf{2}_i) + \mathbf{e}_i$
 - > β_0 = intercept = expected y_i when $x\mathbf{1}_i = \mathbf{0}$ AND when $x\mathbf{2}_i = \mathbf{0}$
 - > $\beta_1 = \text{slope of } x1_i = \text{unique}$ difference in y_i per one-unit difference in $x1_i$ "controlling for" or "partialling out" or "holding constant" $x2_i$ (so $\beta_{1std} \neq$ Pearson's bivariate $r_{y,x1}$ whenever $r_{x1,x2} \neq 0$)
 - > $\beta_2 = \text{slope of } x2_i = \text{unique}$ difference in y_i per one-unit difference in $x2_i$ "controlling for" or "partialling out" or "holding constant" $x1_i$ (so $\beta_{2std} \neq$ Pearson's bivariate $r_{y,x2}$ whenever $r_{x1,x2} \neq 0$)
- These unstandardized fixed effects (intercept and slopes) do create predicted ŷ_i in the original scale of y_i, but they <u>cannot be used to</u> ascertain the relative importance of each predictor to the model because unstandardized fixed effects are <u>scale-dependent (units matter)</u>

Standard Errors of Each Fixed Slope

• Standard Error (SE) for fixed effect estimate β_X in a one-predictor model (SE is like the SD of the estimated slope across samples):

$$SE_{\beta_X} = \sqrt{\frac{\text{residual variance of Y}}{Var(X)*(N-k)}}$$

N = sample size k = number of fixed effects

• When more than one predictor is included, SE turns into:

$$SE_{\beta_X} = \sqrt{\frac{\text{residual variance of Y}}{\text{Var}(X) * (1 - R_X^2) * (N - k)}}$$

 R_X^2 = X variance accounted for by other predictors, so $1-R_X^2$ = unique X variance

- So all things being equal, SE (index of inconsistency) is smaller when:
 - > More of the outcome variance has been reduced (better predictive model)
 - This means fixed effects can become significant later if R^2 is higher than before
 - > The predictor has less covariance with other predictors
 - Best case scenario: x_i is uncorrelated with all other predictors
- If SE is smaller $\rightarrow t$ -value (or z-value) is bigger $\rightarrow p$ -value is smaller

Effect Sizes of Single Fixed Slopes

- When a predictor's effect is captured by a single fixed slope, these unstandardized slopes have **two potential (related) effect sizes** that indicate their importance relative to other predictors' slopes:
 - Standardized slope (β_{std}) is from a "standardized" solution in which all variables have M = 0, SD = 1 (often labeled as "beta" in output)
 - Provided in SAS PROC REG or in STATA REGRESS with "beta" option
 - Can also get by z-scoring all variables, then doing usual GLM
 - > Squared semipartial $r(sr_x^2)$, also known as eta-squared (η^2) , gives the contribution to the model R^2 of a single slope or set of slopes
 - SAS: Provided in PROC REG (as SCORR2 option on MODEL)
 - STATA: Provided in separate PCORR routine (NOT same as ESTAT ESIZE)
 - Btw, semipartial $r(sr_x)$ is related to β_{std} as $\beta_{std} = \frac{sr_x}{\sqrt{1-R_x^2}} = \frac{sr_x}{unique SD_x}$
 - Btw, adjacent omega-squared (ω^2) version is analogous to adjusted- R^2
 - Can be confused with "partial" eta-squared, which partials the other predictors out of outcome, too (and which is thus less helpful to know)

Effect Sizes for Multiple Fixed Slopes

- When a single predictor's effect is captured by multiple fixed slopes, a standardized slope can still provide an effect size for each
- But slope-specific squared semipartial r (sr²) values should not be used because of the dependency between the slopes
 - > e.g., $Income_i = \beta_0 + \beta_1 (Age_i 18) + \beta_2 (Age_i 18)^2 + e_i$
 - Linear age slope β_1 is specific to when centered age = 0, so its unique $sr_{\beta_1}^2$ would change if age were centered differently (even though the model R^2 and the *F*-test of its significance would be the same)
 - > e.g., $Income_i = \beta_0 + \beta_1(LvsM_i) + \beta_2(LvsU_i) + e_i$
 - Slopes β_1 and β_2 share a common reference (low group) and imply (at least) 3 possible group differences (2 in model; 1 as linear combination)
 - So the squared semipartial *r* values across these group differences will sum to more than they should (given a single 3-category predictor)
- What to do instead? Request a multivariate squared semipartial r (sr^2) that is estimated jointly across the fixed slopes... stay tuned!

Special Cases of the GLM, continued

- So far we've seen what many would call "multiple (linear) regression"—this term generally refers to GLMs with quantitative predictors (and "linear" differentiates normal residuals specifically)
 - However, all of these concepts hold for categorical predictors (i.e., as called "analysis of covariance" when they are paired with quantitative predictors) or for quantitative predictors that use 2+ fixed slopes, for which one extra piece of info is often of interest
- For example, consider a quantitative predictor $x1_i$ paired with a three-category predictor of low vs. middle vs. upper class: $y_i = \beta_0 + \beta_1(x1_i) + \beta_2(LvsM_i) + \beta_3(LvsU_i) + e_i$

 $\int \left(\frac{p_1}{p_1} + \frac{p_2}{p_2} \right) + \frac{p_2}{p_2} \left(\frac{p_2}{p_2} + \frac{p_3}{p_2} \right) + \frac{p_3}{p_2} \left(\frac{p_3}{p_2} + \frac$

- > **Multivariate Wald** F**-Test** of model R^2 includes all 3 fixed slopes
- > To see if **3-category group contributes significantly** to the R^2 , we need to request another Multivariate Wald *F*-test for just β_2 and β_3
- The same request is needed when considering multiple slopes for any quantitative predictor variable—is their **joint effect** significant?

Multivariate Wald Tests for Joint Effects

 The *F*-test for the model *R*² was your first instance of a Multivariate Wald (*F*) Test, a general way to jointly test the significance of 2 or more fixed slopes simultaneously

> Remember, for one fixed slope, its $t^2 = F$, so separate F is not needed

- These *F*-tests can be requested for any combo of fixed slopes:
 - SAS: CONTRAST within PROC GLM (which also provides effect sizes) or TEST within PROC REG (which does not provide effect sizes)
 - > STATA: TEST within REGRESS (which does not provide effect sizes)
 - > They take into account the covariance among the predictors as part of the test of their joint contribution to the model R^2
 - Can choose hierarchical (Type I SS) or not (Type II, III, or IV SS), but hierarchical (in which order of predictors matters) is rarely needed
 - > Can replace "hierarchical regression" (entering predictors in sequence) as a way to test the change in the model R^2 for new fixed slopes

Joint squared semi-partial correlations

- In SAS PROC GLM, CONTRAST can be used to get Multivariate Wald F-tests for 2+ slopes simultaneously AND get their joint sr^2 value
 - Takes into account any covariance among predictors (i.e., dependency between slopes) due to a common reference group
 - > sr^2 value is labeled as "Semipartial Eta-Square" on SAS output
- In STATA, TEST can be used to get F-tests but not joint sr^2 values for 2+ slopes, but you can compute them using unique sums of squares (SS)
 - > Step 1: From the full model, get SS for the model: SS_{Full} From the full model, get SS for corrected total: SS_{Total}
 - Step 2: Get the model SS from <u>a reduced model</u> without the slopes for which you want a joint test: SS_{Reduced}
 - > Step 3: Compute SS difference between models: $SS_{Test} = SS_{Full} SS_{Reduced}$
 - > Step 4: Compute squared semipartial $r: sr^2 = \frac{SS_{Test}}{SS_{Total}}$
 - > Tip: STATA is a calculator if you type "display" and then the math you want it to do (the result of the calculation shows in output)

General Linear Model Assumptions

- For us to believe in the accuracy of our model results, the following assumptions must be plausible (some are testable, some are not)
- Because we have selected the GLM specifically:
 - > Individual residual e_i values (i.e., as formed from $y_i \hat{y}_i$) are independent and normally distributed with constant variance (i.e., with homoscedasticity) across predicted outcomes and predictor variables
 - If not independent, need multilevel (mixed-effects) models
 - If not normal/constant variance, may need generalized linear models (or general linear models that allow heterogeneous variance by predictors)
 - If not both, need generalized multilevel (mixed-effects) models
- Also applicable to any linear model using observed variables:
 - All variables are measured without error (what "structural equation models" with regressions among "latent" variables try to solve; see PSQF 6249)
 - All predictors have their effects specified in the correct form (e.g., no missing nonlinearity or non-additivity in their effects)
 - Any predictors not included would have had a fixed slope ≈ 0 (only testable with the predictors you have measured, unfortunately)

Dealing with Problematic Reviewers

- A frequently claimed non-problem is "multicolinearity" (see also "multicollinearity" or just "colinearity" or "collinearity")
- As shown before, the <u>SE for a predictor's slope will be greater</u> to the extent that the predictor has in common (more correlation) with the other predictors—that makes it <u>harder to determine its unique effect</u>
- Diagnostics for this supposed danger are given in many forms
 - > "tolerance" = unique predictor variance = $1 R_X^2$ (<.10 = "bad")
 - > "variance inflation factor" (VIF) = 1/tolerance (> 10 = "bad")
 - Computers used to have numerical stability problems with high collinearity, but these problems are largely nonexistent nowadays
- Only when you have "singularity" is it actually a problem—when one predictor is a perfect linear combination of the others (such as when including two subscale scores AND their total as predictors)
 - It's always a good idea to examine the bivariate relationships among your to-be-modeled predictors to see to what extent they are redundant for conceptual reasons to consider the possibility of "equivalent" models

Problematic Participants

- Fixed effects estimates are the values that collectively minimize the sum of the squared residuals for the sample (→ smallest residual variance; "OLS")
- Extreme values can have undue influence on these estimates, though
 - > "**Distance**" = extreme on e_i (e.g., A, C)
 - > "Leverage" = extreme on x_i (e.g., B)
 - > "Influence" = impact on slope (e.g., C)
 - Measured by absolute value of change in slope if each case were removed: Cook's D = $(\beta_{1new} \beta_1)^2$
- Btw, "quantile regression" can avoid bias in results due to cases with influence
 - Predict median (or any percentile) instead of mean; in my generalized models class

Figure 15.5 Scatterplot of Y on X

What to do with any high influence cases? There are no good uniform solutions... it depends on how much you believe the aberrant cases are representative...

Image borrowed from: Howell, D. C. (201). Statistical methods for psychology (8th ed). Belmont, CA: Cengage Wadsworth.

PSQF 6242: Lecture 5

Unexpected Results: Suppression

- In general, the semipartial r for each predictor (and its unique standardized effect) will be smaller in magnitude than the bivariate r (and its standardized effect when by itself) with y_i
- However, this will not always be the case given suppression: when the relationship between the predictors is hiding (suppressing) their "real" relationship with the outcome
 - Occurs given $r_{y,x1} > 0$ and $r_{y,x2} > 0$ in three conditions:
 (a) $r_{y,x1} < r_{y,x2} * r_{x1,x2}$, (b) $r_{y,x2} < r_{y,x1} * r_{x1,x2}$, or (c) $r_{x1,x2} < 0$
 - > For example: Consider y_i = sales success as predicted by $x1_i$ = assertiveness and $x2_i$ = record-keeping diligence
 - $r_{y,x1} = .403$, $r_{y,x2} = .127$, and $r_{x1,x2} = -.305$ (so is condition c)
 - Standardized: $\hat{y}_i = 0 + 0.487(x1_i) + 0.275(x2_i)$
 - So these standardized slopes (for the predictors' unique effects) are greater than their bivariate correlations with the outcome!
- This is one of the reasons why you cannot anticipate just from bivariate correlations what will happen in a model with multiple predictors...

Example taken from Cohen, Cohen, Aiken, & West (2002)

Unexpected Results: Multivariate Power

Correlations

		Y	X1	X2	X3	X4	X5
Y	Pearson Correlation	1	.191	.192	.237	.174	.11
	Sig. (2-tailed)		.119	.117	.081	.155	.37
	N	68	68	68	68	68	68
X1	Pearson Correlation	.191	1	250*	077	079	11
	Sig. (2-tailed)	.119		.039	.535	.521	.37
	N	68	68	68	68	68	68
X2	Pearson Correlation	.192	250*	1	077	.361**	.01
	Sig. (2-tailed)	.117	.039		.532	.003	.91
		68	68	68	68	68	68
X3	Pearson Correlation	.237	077	077	1	.203	.21
	Sig. (2-tailed)	.081	.535	.532		.098	.07
	N	68	68	68	68	68	68
X4	Pearson Correlation	.174	079	.361**	.203	1	.16
	Sig. (2-tailed)	.155	.521	.003	.098		.18
	N	68	68	68	68	68	68
X5	Pearson Correlation	.110	110	.013	.219	.162	1
	Sig. (2-tailed)	.371	.371	.917	.073	.187	
	N	68	68	68	68	68	68

Even though none of these five predictors has a significant bivariate correlation with y_i , they still combined to create a significant model R^2

$$F(5,62) = 2.77,$$

 $MSE = 272631.57,$
 $p = .025, R^2 = .183$

This is most likely when the predictors have little correlation amongst themselves (and thus can contribute uniquely)

*. Correlation is significant at the 0.05 level (2-tailed).

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	B Std. Error		t	Sig.
1	(Constant)	-350.742	195.472		-1.794	.078
	X1	3.327	1.376	.290	2.418	.019
	X2	2.485	1.185	.271	2.098	.040
	X3	3.125	1.479	.257	2.112	.039
	X4	.366	1.342	.035	.273	.786
	X5	.844	1.309	.077	.644	.522

Example borrowed from: https://psych.unl.edu/psycrs/statpage/mr_rem.pdf

Unexpected Results: Null Washout

Correlations

		P1	P2	P3	P4	P5	P6	P7	P8	P9
Y	Pearson Correlation	.230	.059	.004	.079	100	028	040	007	.013
	Sig. (2-tailed)	.002	.432	.953	.294	.186	.709	.595	.927	.863
	N	177	177	177	177	177	177	177	177	177

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	100.454	17.866		5.623	.000
	P1	.115	.038	.233	3.047	.003
	P2	4.511E-02	.077	.044	.583	.561
	P3	-1.93E-02	.076	019	254	.800
	P4	7.511E-02	.076	.075	.988	.325
	P5	-9.22E-02	.070	099	-1.320	.189
	P6	6.555E-04	.077	.001	.009	.993
	P7	-4.86E-02	.076	048	640	.523
	P8	-4.13E-02	.073	044	568	.571
	P9	6.592E-03	.076	.007	.087	.931

Even though P1 has a significant bivariate correlation with y_i and a significant unique effect, the model R^2 is not significant—because it measures the <u>average</u> predictor contribution

$$F(9,167) = 1.49,$$

 $MSE = 93.76,$
 $p = .155, R^2 = .074$

Example borrowed from: https://psych.unl.edu/psycrs/statpage/mr_rem.pdf

Unexpected Results: A Significant Model R² with No Significant Predictors???

		Y	P1	P2	P3	P4	P5
Y	Pearson Correlation	1	.298**	.198**	.221**	.221**	.251*
	Sig. (2-tailed)		.000	.008	.003	.003	.001
	N	177	177	177	177	177	177
P1	Pearson Correlation	.298**	1	.689**	.712**	.742**	.728*
	Sig. (2-tailed)	.000		.000	.000	.000	.000
	N	177	177	177	177	177	177
P2	Pearson Correlation	.198**	.689**	1	.499**	.500**	.520*
	Sig. (2-tailed)	.008	.000		.000	.000	.000
	N	177	177	177	177	177	177
P3	Pearson Correlation	.221**	.712**	.499**	1	.471**	.494*
	Sig. (2-tailed)	.003	.000	.000		.000	.000
	N	177	177	177	177	177	177
P4	Pearson Correlation	.221**	.742**	.500**	.471**	1	.593*
	Sig. (2-tailed)	.003	.000	.000	.000		.000
	N	177	177	177	177	177	177
P5	Pearson Correlation	.251**	.728**	.520**	.494**	.593**	1
1	Sig. (2-tailed)	.001	.000	.000	.000	.000	
	Ν	177	177	177	177	177	177

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	93.378	1.899		49.184	.000
	P1	.115	.080	.244	1.441	.151
	P2	-1.23E-02	.073	017	169	.866
	P3	1.555E-02	.076	.022	.206	.837
	P4	-4.41E-03	.077	006	057	.954
	P5	5.211E-02	.074	.076	.707	.481

Example borrowed from: https://psych.unl.edu/psycrs/statpage/mr_rem.pdf

This model R^2 is definitely significant: F(5,171) = 3.455,MSE = 89.85, $p = .005, R^2 = .190$

Yet no predictor has a significant <u>unique</u> effect—this is because of their strong(ish) correlations with each other (and "common" still contributes to R^2)

GLM with Multiple Predictors: Summary

- For any GLM with multiple fixed slopes, we want to know:
 - > Is each slope significantly \neq 0? Check *p*-value for *t* = (Est-0)/SE
 - > What is each slope's effect size? Check $r (=\beta_{std})$ or find d from t
 - > Do the slopes join to create a model $R^2 > 0$? Check *p*-value for *F*
 - > What is the model's effect size? Check R^2 (r of \hat{y}_i with y_i)²
- When combining the fixed slopes from different conceptual predictor variables into the same model, we also want to know:
 - > Is each slope *still* significantly \neq 0? If yes, has a "unique" effect
 - Unique effect is *usually* smaller than bivariate effect (but not necessarily)
 - 1 slope: check p-value for t = (Est-0)/SE
 - >1 slopes: check *p*-value for *F*-test of joint effect (requested separately)
 - > What is the effect size for each predictor's unique effect?
 - 1 slope: check sr^2 (or β_{std}) or find "adjusted" d or r from t
 - >1 slopes: check joint sr^2 for predictor's overall contribution to R^2