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• Topics:

➢ Review: specific and general model results

➢ Special case of GLM 1: 

“Multiple (Linear) Regression” with 2+ quantitative predictors

➢ Special case of GLM 2: 

“Analysis of Covariance” (ANCOVA) with both 

categorical and quantitative predictors

➢ Non-problems and unexpected results



Review: Specific Info for Fixed Effects
• The role of each predictor variable 𝒙𝒊 in creating a custom 

expected outcome 𝒚𝒊 is described using one or more fixed slopes:

➢ One slope is sufficient to capture the mean difference between 
two categories for a binary 𝒙𝒊 or to capture a linear effect of a 
quantitative 𝒙𝒊 (or an exponential-ish curve if 𝑥𝑖 is log-transformed)

➢ More than one slope is needed to capture other nonlinear effects 
of a quantitative 𝒙𝒊 (e.g., quadratic curves or piecewise slopes)

➢ 𝑪 − 𝟏 slopes are needed to capture the mean differences in 
the outcome across a categorical predictor with 𝐶 categories

▪ # pairwise mean differences = 
𝐶!

2! 𝐶−2 !
, but only 𝐶 − 1 are given directly

• For each fixed slope, we obtain an unstandardized solution:

➢ Estimate, SE, 𝒕-value, 𝒑-value (in which [Est−0]/SE = 𝑡, in which 
𝐷𝐹𝑛𝑢𝑚 = 1 and 𝐷𝐹𝑑𝑒𝑛 = 𝑁 − 𝑘 are used to find the 𝑝-value; this is 
a “Univariate Wald Test” (or a “modified” test given use of 𝑡, not 𝑧)

➢ Standardized effect size can be given by converting 𝒕 into 𝒓 or 𝒅
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GLMs with Single Predictors: 

Review of Fixed Effects
• Predictor 𝒙𝟏𝒊 alone:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝒆𝒊

➢ 𝜷𝟎 = intercept = expected 𝒚𝒊 when 𝒙𝟏𝒊 = 𝟎

➢ 𝜷𝟏 = slope of 𝒙𝟏𝒊 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝟏𝒊

▪ Standardized slope for 𝜷𝟏 = Pearson’s 𝑟 for 𝑦𝑖 with 𝑥1𝑖 (𝛽1𝑠𝑡𝑑 = 𝑟𝑦,𝑥1)

➢ 𝒆𝒊 = difference of 𝑦𝑖 − ො𝑦𝑖 where ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊

• Predictor 𝒙𝟐𝒊 alone : 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊

➢ 𝜷𝟎 = intercept = expected 𝒚𝒊 when 𝒙𝟐𝒊 = 𝟎

➢ 𝜷𝟐 = slope of 𝒙𝟐𝒊 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝟐𝒊

▪ Standardized slope for 𝜷𝟐 = Pearson’s 𝑟 for 𝑦𝑖 with 𝑥2𝑖 (𝛽2𝑠𝑡𝑑 = 𝑟𝑦,𝑥2)

➢ 𝒆𝒊 = difference of 𝑦𝑖 − ො𝑦𝑖 where ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟐 𝒙𝟐𝒊
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Review: General Test of Fixed Effects
• Whether the set of fixed slopes for 𝒙𝒊 significantly explains 𝑦𝑖

variance (i.e., if 𝑅2 > 0) is tested via “Multivariate Wald Test”

➢ 𝐹 𝐷𝐹𝑛𝑢𝑚, 𝐷𝐹𝑑𝑒𝑛 =
𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑘−1)

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/(𝑁−𝑘)
=

𝑁−𝑘 𝑅2

(𝑘−1)(1−𝑅2)
=

𝑘𝑛𝑜𝑤𝑛

𝑢𝑛𝑘𝑛𝑜𝑤𝑛

➢ 𝑭 test-statistic (“𝐹-test”) evaluates model 𝑅2 per DF spent to get 

to it and DF leftover (is a ratio of info known to info unknown)

➢ 𝑹𝟐 = 
𝑆𝑆𝑡𝑜𝑡𝑎𝑙−𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
= square of 𝒓 of predicted ෝ𝒚𝒊 with 𝒚𝒊

• For GLMs with one fixed slope, the Univariate Wald (𝑡) test for that 

slope is the same as the Multivariate Wald (𝐹) Test for the model 𝑅2

➢ Slope 𝜷𝑢𝑛𝑠𝑡𝑑: 𝑡 =
𝐸𝑠𝑡(−𝐻0)

𝑆𝐸
, 𝜷𝑢𝑛𝑠𝑡𝑑 = Pearson 𝑟

➢ Model: 𝐹 = 𝑡2, 𝑅2 = 𝑟2 because predicted ෝ𝒚𝒊 only uses 𝜷𝑢𝑛𝑠𝑡𝑑

4PSQF 6242: Lecture 5



Moving On: GLMs with Multiple Predictors
• So far each set of fixed slopes within a separate model have 

worked together to describe the effect of a single variable

➢ So the 𝐹-test of the model 𝑅2 has reflected the contribution of 
one predictor variable conceptually in forming ෝ𝒚𝒊, albeit with 
one or more fixed slopes to capture its effect

• Now we will see what happens to the fixed slopes for each 
variable when combined into a single model that includes 
multiple predictor variables, each with its own fixed slope(s)

➢ Short answer: fixed slopes go from representing “bivariate” to 
“unique” relationships (i.e., controlling for the other predictors), 
and ෝ𝒚𝒊 is created from all predictors’ fixed slopes simultaneously

▪ Standardized slopes are no longer equal to bivariate Pearson’s 𝑟, 
and are instead related to a “semipartial” (or “part”) correlation
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A Real-World Example of “Unique” Effects

• House-cleaning with the Pearsons—the cast from “This is Us”
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Jack

Rebecca

Randall

Kate

Kevin



A Real-World Example of “Unique” Effects

• Scenario: Rebecca Has. Had. It. with 3 messy tween-agers and 

decides to provide an incentive for them to clean the house

➢ Let’s say the Pearson house has 10 cleanable rooms: 4 bedrooms, 

2 bathrooms, 1 living area, 1 kitchen area, 1 dining area, 1 garage

• Incentive system for each cleaner (3 children and spouse Jack): 

➢ Individual: one Nintendo game per room cleaned by yourself

➢ Family Bonus: if ≥ 8 rooms are clean, the family gets a new TV! 

(8 = average of 2 rooms per person)

• Rebecca decides to let the family decide what rooms they will 

each be responsible for while she is shopping for necessities

➢ She returns home to a cleaner house, and asks who did what…
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Pearson House: Who Cleaned What?

• 9/10 rooms are cleaned, so the family gets a new TV—hooray!

• But what should each person get for their individual effort?
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Room Jack Kevin Kate Randall

Master bedroom x

Kevin bedroom x

Kate bedroom x

Randall bedroom x

Bathroom 1 x

Bathroom 2 x

Living area x x x

Kitchen area x x

Dining area x x

Garage



Room Jack Kevin Kate Randall

Master bedroom x

Kevin bedroom x

Kate bedroom x

Randall bedroom x

Bathroom 1 x

Bathroom 2 x

Living area x x x

Kitchen area x x

Dining area x x

Garage

Pearson House: Who Cleaned What?

• Jack, Kevin, and Kate: only one Nintendo game each for cleaning 
one unique room (can’t assign rewards for overlapping rooms)

• Randall: three Nintendo games for three unique rooms

• No one gets credit for overlapping rooms (but the family gets a TV)
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From Cleaning to Modeling: 2 Goals
• General Utility: Do the model predictors 

explain a significant amount of variance? 

➢ Is the model 𝑅2 (the squared 𝒓 of ෝ𝒚𝒊 with 
𝒚𝒊) significantly > 0 (is 𝐹-test significant)?

➢ 𝑅2 is a function of the common AND 
unique effects of predictor variables

• Specific Utility: What is the unique
contribution of each predictor to the
model 𝑅2 after discounting its 
redundancy with the other predictors? 

➢ This is tricky because no predictor gets 
individual credit for what they have in 
common in predicting 𝒚𝒊, even though 
their common variance still increases 𝑅2

10
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From Correlations to Standardized Slopes

• Recall for a one-predictor model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝒆𝒊

➢ Unstandardized: 𝜷𝟎 = 𝑴𝒚 − (𝜷𝟏𝑴𝒙𝟏), 𝜷𝟏 = 𝒓𝒚,𝒙𝟏
𝑺𝑫𝒚

𝑺𝑫𝒙𝟏
, 𝜷𝟏 =

𝑪𝒐𝒗𝒙𝟏,𝒚

𝑺𝑫𝒙𝟏
𝟐

➢ Standardized: 𝜷𝟎 = 𝟎,𝜷𝟏𝒔𝒕𝒅 = 𝜷𝟏
𝑺𝑫𝒙𝟏

𝑺𝑫𝒚
(so 𝜷𝟏𝒔𝒕𝒅 = 𝒓𝒚,𝒙𝟏 here)

• For a two-predictor model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊

➢ Unstandardized: 𝜷𝟎 = 𝑴𝒚 − (𝜷𝟏𝑴𝒙𝟏) − (𝜷𝟐𝑴𝒙𝟐)

➢ Standardized: 𝜷𝟏𝒔𝒕𝒅 =
𝒓𝒚,𝒙𝟏−(𝒓𝒚,𝒙𝟐∗𝒓𝒙𝟏,𝒙𝟐)

𝟏−𝑹𝒙𝟏,𝒙𝟐
𝟐 , 𝜷𝟐𝒔𝒕𝒅 =

𝒓𝒚,𝒙𝟐−(𝒓𝒚,𝒙𝟏∗𝒓𝒙𝟏,𝒙𝟐)

𝟏−𝑹𝒙𝟏,𝒙𝟐
𝟐

➢ Standardized to unstandardized: 𝜷𝟏 = 𝜷𝟏𝒔𝒕𝒅
𝑺𝑫𝒚

𝑺𝑫𝒙𝟏
, 𝜷𝟐 = 𝜷𝟐𝒔𝒕𝒅

𝑺𝑫𝒚

𝑺𝑫𝒙𝟐
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Semipartial (Part)* Correlations
• Just Pearson’s 𝑟 is an effect size for a 

bivariate (or “zero-order”) relationship 
between two variables, semipartial 
correlations provide an effect size for 
the relationship of 𝒚𝒊 with the unique
part of each 𝒙𝒊 (i.e., after controlling 
each 𝑥𝑖 for the other predictors)

➢ When 𝑟 is squared → 𝑅2 → areas to the 
right represent “proportions of variance”

➢ Area 𝒂 = 𝑠𝑟𝑦,𝑥1.𝑥2
2 = semipartial 𝑅2 for 

𝑦𝑖 with 𝑥1𝑖 , controlling 𝑥1𝑖 for 𝑥2𝑖

➢ Area 𝒃 = 𝑠𝑟𝑦,𝑥2.𝑥1
2 = semipartial 𝑅2 for 

𝑦𝑖 with 𝑥2𝑖 , controlling 𝑥2𝑖 for 𝑥1𝑖

➢ 𝑹𝟐 =
𝒂+𝒃+𝒄

𝒂+𝒃+𝒄+𝒆
→ 𝑐 also contributes to 𝑅2

but neither predictor gets “credit” for it

12
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* Part correlations are not the 

same as “partial” correlations 

(which do not correspond to 

GLMs so we won’t use them)

http://alexanderdemos.org/Mixed1.html


Standardized Slopes and Semi-Partial 𝑟

One-predictor model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝒆𝒊, 𝜷𝟏 =
𝑪𝒐𝒗𝒙𝟏,𝒚

𝑽𝒂𝒓𝒙𝟏

For a two-predictor model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊
• Standardized “unique” slopes (repeated): 

➢ 𝜷𝟏𝒔𝒕𝒅 =
𝒓𝒚,𝒙𝟏−(𝒓𝒚,𝒙𝟐∗𝒓𝒙𝟏,𝒙𝟐)

𝟏−𝑹𝒙𝟏,𝒙𝟐
𝟐 =

𝒖𝒏𝒊𝒒𝒖𝒆 𝑪𝒐𝒗 𝒐𝒇 𝒚,𝒙𝟏

𝒖𝒏𝒊𝒒𝒖𝒆 𝑽𝒂𝒓 𝒐𝒇 𝒙𝟏

➢ 𝜷𝟐𝒔𝒕𝒅 =
𝒓𝒚,𝒙𝟐−(𝒓𝒚,𝒙𝟏∗𝒓𝒙𝟏,𝒙𝟐)

𝟏−𝑹𝒙𝟏,𝒙𝟐
𝟐 =

𝒖𝒏𝒊𝒒𝒖𝒆 𝑪𝒐𝒗 𝒐𝒇 𝒚,𝒙𝟐

𝒖𝒏𝒊𝒒𝒖𝒆 𝑽𝒂𝒓 𝒐𝒇 𝒙𝟐

• Semipartial correlations ( . indicates controlled): 

➢ 𝒔𝒓𝒚,𝒙𝟏.𝒙𝟐 = 𝒂 =
𝒓𝒚,𝒙𝟏−(𝒓𝒚,𝒙𝟐∗𝒓𝒙𝟏,𝒙𝟐)

𝟏−𝑹𝒙𝟏,𝒙𝟐
𝟐

=
𝒖𝒏𝒊𝒒𝒖𝒆 𝑪𝒐𝒗 𝒐𝒇 𝒚,𝒙𝟏

𝒖𝒏𝒊𝒒𝒖𝒆 𝑺𝑫 𝒐𝒇 𝒙𝟏

➢ 𝒔𝒓𝒚,𝒙𝟐.𝒙𝟏 = 𝒃 =
𝒓𝒚,𝒙𝟐−(𝒓𝒚,𝒙𝟏∗𝒓𝒙𝟏,𝒙𝟐)

𝟏−𝑹𝒙𝟏,𝒙𝟐
𝟐

=
𝒖𝒏𝒊𝒒𝒖𝒆 𝑪𝒐𝒗 𝒐𝒇 𝒚,𝒙𝟐

𝒖𝒏𝒊𝒒𝒖𝒆 𝑺𝑫 𝒐𝒇 𝒙𝟐
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𝑅2 =
𝑎 + 𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑒



Where the “Common” Area 𝑐 Goes

• Model 𝑅2 can be understood in many ways—here, for two slopes:

➢ Old: 𝑅2 is the square of the 𝑟 between predicted ෝ𝒚𝒊 and 𝒚𝒊

➢ Old said differently: 𝑅2 =
𝑉𝑎𝑟ෝ𝒚𝒊
𝑉𝑎𝑟𝒚𝒊

➢ New: 𝑅2 =
𝑟𝑦,𝑥1
2 +𝑟𝑦,𝑥2

2 − 2∗𝑟𝑦,𝑥1∗𝑟𝑦,𝑥2∗𝑟𝑥1,𝑥2

1−𝑅𝑥1,𝑥2
2

➢ New: 𝑅2 = 𝛽1𝑠𝑡𝑑∗𝑟𝑦,𝑥1 + 𝛽2𝑠𝑡𝑑∗𝑟𝑦,𝑥2

➢ New: 𝑅2 = 𝛽1𝑠𝑡𝑑
2 + 𝛽2𝑠𝑡𝑑

2 + 2 ∗ 𝛽1𝑠𝑡𝑑 ∗ 𝛽2𝑠𝑡𝑑 ∗ 𝑟𝑥1,𝑥2

• In general: 𝑅2= unique effects + function of common effects
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had errors in the first 

two “new” 𝑅2 formulas 

(now corrected)



GLMs with Multiple Predictors: 

New Interpretation of Fixed Effects
• Two predictor variables: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + 𝒆𝒊

➢ 𝜷𝟎 = intercept = expected 𝒚𝒊 when 𝒙𝟏𝒊 = 𝟎 AND when 𝒙𝟐𝒊 = 𝟎

➢ 𝜷𝟏 = slope of 𝒙𝟏𝒊 = unique difference in 𝒚𝒊 per one-unit difference 

in 𝒙𝟏𝒊 “controlling for” or “partialling out” or “holding constant” 𝒙𝟐𝒊
(so 𝛽1𝑠𝑡𝑑 ≠ Pearson’s bivariate 𝑟𝑦,𝑥1 whenever 𝑟𝑥1,𝑥2 ≠ 0)

➢ 𝜷𝟐 = slope of 𝒙𝟐𝒊 = unique difference in 𝒚𝒊 per one-unit difference 

in 𝒙𝟐𝒊 “controlling for” or “partialling out” or “holding constant” 𝒙𝟏𝒊
(so 𝛽2𝑠𝑡𝑑 ≠ Pearson’s bivariate 𝑟𝑦,𝑥2 whenever 𝑟𝑥1,𝑥2 ≠ 0)

• These unstandardized fixed effects (intercept and slopes) do create 

predicted ෝ𝒚𝒊 in the original scale of 𝑦𝑖 , but they cannot be used to 

ascertain the relative importance of each predictor to the model 

because unstandardized fixed effects are scale-dependent (units matter)
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Standard Errors of Each Fixed Slope
• Standard Error (SE) for fixed effect estimate βX in a one-predictor 

model (SE is like the SD of the estimated slope across samples):

SE𝛽𝑋 =
residual variance of Y

Var X ∗ 𝑁−𝑘

• When more than one predictor is included, SE turns into:

SE𝛽𝑋 =
residual variance of Y

Var X ∗ 𝟏−𝐑𝐗
𝟐 ∗ 𝑁−𝑘

• So all things being equal, SE (index of inconsistency) is smaller when:

➢ More of the outcome variance has been reduced (better predictive model)

▪ This means fixed effects can become significant later if 𝑅2 is higher than before

➢ The predictor has less covariance with other predictors

▪ Best case scenario: 𝑥𝑖 is uncorrelated with all other predictors

• If SE is smaller → 𝑡-value (or 𝑧-value) is bigger→ 𝑝-value is smaller 

𝑅𝑋
2 = X variance accounted 

for by other predictors, so 

1−𝑹𝑿
𝟐 = unique X variance

16PSQF 6242: Lecture 5

𝑁 = sample size

𝑘 = number of fixed effects



Effect Sizes of Single Fixed Slopes
• When a predictor’s effect is captured by a single fixed slope, these 

unstandardized slopes have two potential (related) effect sizes
that indicate their importance relative to other predictors’ slopes:

➢ Standardized slope (𝜷𝒔𝒕𝒅) is from a “standardized” solution in which 
all variables have 𝑀 = 0, 𝑆𝐷 = 1 (often labeled as “beta” in output) 

▪ Provided in SAS PROC REG or in STATA REGRESS with “beta” option

▪ Can also get by z-scoring all variables, then doing usual GLM

➢ Squared semipartial 𝒓 (𝒔𝒓𝒙
𝟐), also known as eta-squared (𝜼𝟐), gives 

the contribution to the model 𝑅2 of a single slope or set of slopes

▪ SAS: Provided in PROC REG (as SCORR2 option on MODEL)

▪ STATA: Provided in separate PCORR routine (NOT same as ESTAT ESIZE)

▪ Btw, semipartial 𝑟 (𝑠𝑟𝑥) is related to 𝛽𝑠𝑡𝑑 as 𝛽𝑠𝑡𝑑 =
𝑠𝑟𝑥

1−𝑅𝑥
2
=

𝑠𝑟𝑥

𝑢𝑛𝑖𝑞𝑢𝑒 𝑆𝐷𝑥

▪ Btw, adjacent omega-squared (𝜔2) version is analogous to adjusted-𝑅2

▪ Can be confused with “partial” eta-squared, which partials the other 
predictors out of outcome, too (and which is thus less helpful to know)
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Effect Sizes for Multiple Fixed Slopes
• When a single predictor’s effect is captured by multiple fixed 

slopes, a standardized slope can still provide an effect size for each

• But slope-specific squared semipartial 𝒓 (𝒔𝒓𝟐) values should 
not be used because of the dependency between the slopes

➢ e.g., 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑨𝒈𝒆𝒊 − 𝟏𝟖 + 𝜷𝟐 𝑨𝒈𝒆𝒊 − 𝟏𝟖 𝟐 + 𝒆𝒊

▪ Linear age slope 𝜷𝟏 is specific to when centered age = 0, so its unique 
𝒔𝒓𝜷𝟏

𝟐 would change if age were centered differently (even though the 

model 𝑅2 and the 𝐹-test of its significance would be the same)

➢ e.g., 𝑰𝒏𝒄𝒐𝒎𝒆𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑳𝒗𝒔𝑴𝒊 + 𝜷𝟐 𝑳𝒗𝒔𝑼𝒊 + 𝒆𝒊

▪ Slopes 𝜷𝟏 and 𝜷𝟐 share a common reference (low group) and imply (at 
least) 3 possible group differences (2 in model; 1 as linear combination)

▪ So the squared semipartial 𝒓 values across these group differences will 
sum to more than they should (given a single 3-category predictor)

• What to do instead? Request a multivariate squared semipartial 𝒓
(𝒔𝒓𝟐) that is estimated jointly across the fixed slopes… stay tuned!
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Special Cases of the GLM, continued
• So far we’ve seen what many would call “multiple (linear) 

regression”—this term generally refers to GLMs with quantitative 

predictors (and “linear” differentiates normal residuals specifically)

➢ However, all of these concepts hold for categorical predictors 

(i.e., as called “analysis of covariance” when they are paired with 

quantitative predictors) or for quantitative predictors that use 2+ 

fixed slopes, for which one extra piece of info is often of interest

• For example, consider a quantitative predictor 𝑥1𝑖 paired with a 

three-category predictor of low vs. middle vs. upper class: 

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝑳𝒗𝒔𝑴𝒊 + 𝜷𝟑 𝑳𝒗𝒔𝑼𝒊 + 𝒆𝒊

➢ Multivariate Wald 𝑭-Test of model 𝑅2 includes all 3 fixed slopes

➢ To see if 3-category group contributes significantly to the 𝑅2, we 

need to request another Multivariate Wald 𝐹-test for just 𝜷𝟐 and 𝜷𝟑

➢ The same request is needed when considering multiple slopes for 

any quantitative predictor variable—is their joint effect significant?
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Multivariate Wald Tests for Joint Effects
• The 𝐹-test for the model 𝑅2 was your first instance of a 

Multivariate Wald (𝑭) Test, a general way to jointly test 
the significance of 2 or more fixed slopes simultaneously

➢ Remember, for one fixed slope, its 𝑡2 = 𝐹, so separate 𝐹 is not needed

• These 𝐹-tests can be requested for any combo of fixed slopes: 

➢ SAS: CONTRAST within PROC GLM (which also provides effect sizes) 
or TEST within PROC REG (which does not provide effect sizes)

➢ STATA: TEST within REGRESS (which does not provide effect sizes)

➢ They take into account the covariance among the predictors 
as part of the test of their joint contribution to the model 𝑅2

➢ Can choose hierarchical (Type I SS) or not (Type II, III, or IV SS), but 
hierarchical (in which order of predictors matters) is rarely needed

➢ Can replace “hierarchical regression” (entering predictors in sequence) 
as a way to test the change in the model 𝑅2 for new fixed slopes
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Joint squared semi-partial correlations
• In SAS PROC GLM, CONTRAST can be used to get Multivariate Wald 
𝐹-tests for 2+ slopes simultaneously AND get their joint 𝑠𝑟2 value

➢ Takes into account any covariance among predictors (i.e., dependency 
between slopes) due to a common reference group

➢ 𝑠𝑟2 value is labeled as “Semipartial Eta-Square” on SAS output

• In STATA, TEST can be used to get 𝐹-tests but not joint 𝑠𝑟2 values for 2+ 
slopes, but you can compute them using unique sums of squares (SS)

➢ Step 1: From the full model, get SS for the model: 𝑆𝑆𝐹𝑢𝑙𝑙
From the full model, get SS for corrected total: 𝑆𝑆𝑇𝑜𝑡𝑎𝑙

➢ Step 2: Get the model SS from a reduced model without 
the slopes for which you want a joint test: 𝑆𝑆𝑅𝑒𝑑𝑢𝑐𝑒𝑑

➢ Step 3: Compute SS difference between models: 𝑆𝑆𝑇𝑒𝑠𝑡 = 𝑆𝑆𝐹𝑢𝑙𝑙 − 𝑆𝑆𝑅𝑒𝑑𝑢𝑐𝑒𝑑

➢ Step 4: Compute squared semipartial 𝑟: 𝑠𝑟2 =
𝑆𝑆𝑇𝑒𝑠𝑡

𝑆𝑆𝑇𝑜𝑡𝑎𝑙

➢ Tip: STATA is a calculator if you type “display” and then the math 
you want it to do (the result of the calculation shows in output)
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General Linear Model Assumptions
• For us to believe in the accuracy of our model results, the following 

assumptions must be plausible (some are testable, some are not)

• Because we have selected the GLM specifically:

➢ Individual residual 𝒆𝒊 values (i.e., as formed from 𝒚𝒊 − ෝ𝒚𝒊) are independent 
and normally distributed with constant variance (i.e., with homoscedasticity) 
across predicted outcomes and predictor variables

▪ If not independent, need multilevel (mixed-effects) models

▪ If not normal/constant variance, may need generalized linear models 
(or general linear models that allow heterogeneous variance by predictors) 

▪ If not both, need generalized multilevel (mixed-effects) models

• Also applicable to any linear model using observed variables:

➢ All variables are measured without error (what “structural equation models” 
with regressions among “latent” variables try to solve; see PSQF 6249)

➢ All predictors have their effects specified in the correct form 
(e.g., no missing nonlinearity or non-additivity in their effects)

➢ Any predictors not included would have had a fixed slope ≈ 0 
(only testable with the predictors you have measured, unfortunately)
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Dealing with Problematic Reviewers
• A frequently claimed non-problem is “multicolinearity” (see also 

“multicollinearity” or just “colinearity” or “collinearity”)

• As shown before, the SE for a predictor’s slope will be greater to the 
extent that the predictor has in common (more correlation) with the 
other predictors—that makes it harder to determine its unique effect

• Diagnostics for this supposed danger are given in many forms 

➢ “tolerance” = unique predictor variance = 1 − 𝑅𝑋
2 (<.10 = “bad”)

➢ “variance inflation factor” (VIF) = 1/tolerance (> 10 = “bad”)

➢ Computers used to have numerical stability problems with high 
collinearity, but these problems are largely nonexistent nowadays

• Only when you have “singularity” is it actually a problem—when 
one predictor is a perfect linear combination of the others (such as 
when including two subscale scores AND their total as predictors) 

➢ It’s always a good idea to examine the bivariate relationships among 
your to-be-modeled predictors to see to what extent they are redundant 
for conceptual reasons to consider the possibility of “equivalent” models
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Problematic Participants
• Fixed effects estimates are the values 

that collectively minimize the sum of 
the squared residuals for the sample 
(→ smallest residual variance; “OLS”)

• Extreme values can have undue influence 
on these estimates, though

➢ “Distance” = extreme on 𝑒𝑖 (e.g., A, C)

➢ “Leverage” = extreme on 𝑥𝑖 (e.g., B)

➢ “Influence” = impact on slope (e.g., C)

▪ Measured by absolute value of change 
in slope if each case were removed: 
Cook’s D = 𝛽1𝑛𝑒𝑤 − 𝛽1

2

• Btw, “quantile regression” can avoid bias 
in results due to cases with influence

➢ Predict median (or any percentile) instead 
of mean; in my generalized models class

24

Image borrowed from:  Howell, D. C. (201). Statistical methods for psychology (8th ed). Belmont, CA: Cengage Wadsworth. 
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What to do with any high 

influence cases? There are 

no good uniform solutions… 

it depends on how much 

you believe the aberrant 

cases are representative…

http://lesahoffman.com/PSQF7375_Generalized/index.html


Unexpected Results: Suppression
• In general, the semipartial 𝑟 for each predictor (and its unique 

standardized effect) will be smaller in magnitude than the 
bivariate 𝑟 (and its standardized effect when by itself) with 𝑦𝑖

• However, this will not always be the case given suppression: 
when the relationship between the predictors is hiding 
(suppressing) their “real” relationship with the outcome

➢ Occurs given 𝑟𝑦,𝑥1 > 0 and 𝑟𝑦,𝑥2 > 0 in three conditions: 
(a) 𝑟𝑦,𝑥1 < 𝑟𝑦,𝑥2 ∗ 𝑟𝑥1,𝑥2, (b) 𝑟𝑦,𝑥2 < 𝑟𝑦,𝑥1 ∗ 𝑟𝑥1,𝑥2, or (c) 𝒓𝒙𝟏,𝒙𝟐 < 𝟎

➢ For example: Consider 𝑦𝑖 = sales success as predicted by 
𝑥1𝑖= assertiveness and 𝑥2𝑖= record-keeping diligence

▪ 𝑟𝑦,𝑥1 = .403, 𝑟𝑦,𝑥2 = .127, and 𝑟𝑥1,𝑥2 = −.305 (so is condition c)

▪ Standardized: ො𝑦𝑖 = 0 + 0.487 𝑥1𝑖 + 0.275(𝑥2𝑖)

▪ So these standardized slopes (for the predictors’ unique effects) 
are greater than their bivariate correlations with the outcome!

• This is one of the reasons why you cannot anticipate just from bivariate 
correlations what will happen in a model with multiple predictors…
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Example taken from Cohen, Cohen, Aiken, & West (2002) 
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Unexpected Results: Multivariate Power
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Example borrowed from: https://psych.unl.edu/psycrs/statpage/mr_rem.pdf
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Even though none of 

these five predictors has 

a significant bivariate 

correlation with 𝑦𝑖 , they 

still combined to create 

a significant model 𝑅2

𝐹 5,62 = 2.77,
𝑀𝑆𝐸 = 272631.57,
𝑝 = .025, 𝑅2 = .183

This is most likely when 

the predictors have little 

correlation amongst 

themselves (and thus 

can contribute uniquely)

https://psych.unl.edu/psycrs/statpage/mr_rem.pdf


Unexpected Results: Null Washout
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Example borrowed from: https://psych.unl.edu/psycrs/statpage/mr_rem.pdf
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Even though P1 has a 

significant bivariate 

correlation with 𝑦𝑖 and 

a significant unique effect, 

the model 𝑅2 is not 

significant—because it 

measures the average

predictor contribution

𝐹 9,167 = 1.49,
𝑀𝑆𝐸 = 93.76,
𝑝 = .155, 𝑅2 = .074

https://psych.unl.edu/psycrs/statpage/mr_rem.pdf


Unexpected Results: A Significant Model 𝑅2

with No Significant Predictors???
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Example borrowed from: https://psych.unl.edu/psycrs/statpage/mr_rem.pdf
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This model 𝑅2 is 

definitely significant:

𝐹 5,171 = 3.455,
𝑀𝑆𝐸 = 89.85,
𝑝 = .005, 𝑅2 = .190

Yet no predictor has a 

significant unique

effect—this is because 

of their strong(ish) 

correlations with each 

other (and “common” 

still contributes to 𝑅2)

https://psych.unl.edu/psycrs/statpage/mr_rem.pdf


GLM with Multiple Predictors: Summary
• For any GLM with multiple fixed slopes, we want to know:

➢ Is each slope significantly ≠ 0? Check 𝑝-value for 𝑡 = (Est−0)/SE

➢ What is each slope’s effect size? Check 𝑟 (=𝛽𝑠𝑡𝑑) or find 𝑑 from 𝑡

➢ Do the slopes join to create a model 𝑅2 > 0? Check 𝑝-value for 𝐹

➢ What is the model’s effect size? Check 𝑅2 (𝑟 of ෝ𝒚𝒊 with 𝒚𝒊)
2

• When combining the fixed slopes from different conceptual 
predictor variables into the same model, we also want to know:

➢ Is each slope *still* significantly ≠ 0? If yes, has a “unique” effect

▪ Unique effect is usually smaller than bivariate effect (but not necessarily)

▪ 1 slope: check 𝑝-value for 𝑡 = (Est−0)/SE

▪ >1 slopes: check 𝑝-value for 𝐹-test of joint effect (requested separately)

➢ What is the effect size for each predictor’s unique effect? 

▪ 1 slope: check s𝑟2 (or 𝛽𝑠𝑡𝑑) or find “adjusted” 𝑑 or 𝑟 from 𝑡

▪ >1 slopes: check joint s𝑟2 for predictor’s overall contribution to 𝑅2
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