General Linear Models
with More than One Predictor

- Topics:
> Review: specific and general model results

> Special case of GLM 1:
“Multiple (Linear) Regression” with 2+ quantitative predictors

> Special case of GLM 2:
"Analysis of Covariance” (ANCOVA) with both
categorical and quantitative predictors

> Non-problems and unexpected results
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Review: Specific Info for Fixed Effects

- The role of each predictor variable x; in creating a custom
expected outcome y; is described using one or more fixed slopes:

> One slope is sufficient to capture the mean difference between
two categories for a binary x; or to capture a linear effect of a
quantitative x; (or an exponential-ish curve if x; is log-transformed)

> More than one slope is needed to capture other nonlinear effects
of a quantitative x; (e.g., quadratic curves or piecewise slopes)

> € — 1 slopes are needed to capture the mean differences in
the outcome across a categorical predictor with C categories
C!

21(c=-2)!"'

= # pairwise mean differences = but only C — 1 are given directly

- For each fixed slope, we obtain an unstandardized solution:

> Estimate, SE, t-value, p-value (in which [Est—0]/SE = t, in which
DE,,, =1and DF,4,, = N — k are used to find the p-value; this is
a "Univariate Wald Test” (or a “modified” test given use of ¢, not 2)

> Standardized effect size can be given by converting t into r or d
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GLMs with Single Predictors:
Review of Fixed Effects

- Predictor x1; alone: y; = Bo + B1(x1;) + €;
> Bo = intercept = expected y; when x1; = 0
> 1 = slope of x1; = difference in y; per one-unit difference in x1;
- Standardized slope for 8, = Pearson’s r for y; with x1; (B15¢q = 7y x1)

> e; = difference of y; — y; where y; = B¢ + B1(x1;)

- Predictor x2; alone : y; = Bo + B2(x2;) + €;
> Bo = intercept = expected y; when x2; = 0
> [, = slope of x2; = difference in y; per one-unit difference in x2;
- Standardized slope for B, = Pearson’s r for y; with x2; (Basta = Ty x2)

> e; = difference of y; — y; where y; = By + B2(x2;)
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Review: General Test of Fixed Effects

- Whether the set of fixed slopes for x; significantly explains y;
variance (i.e., if R > 0) is tested via "Multivariate Wald Test"

__ SSmodet/(k-1) __ (N-k)R*> _ known
» F(DEwum DFgen) = SSresidual/ (N—k) _ (k—=1)(1-R2) _ unknown

> F test-statistic ("F-test”) evaluates model R? per DF spent to get
to it and DF leftover (is a ratio of info known to info unknown)

SS —SSoci i £y i
» R? = —fere—residual = square of r of predicted y; with y;
total

- For GLMs with one fixed slope, the Univariate Wald (t) test for that
slope is the same as the Multivariate Wald (F) Test for the model R?

Est(—Hg)
> Slope Bunstat t = —5—

> Model: F =t?, R? = r? because predicted y; only uses B,,,std
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Moving On: GLMs with Multiple Predictors

- So far each set of fixed slopes within a separate model have
worked together to describe the effect of a single variable

> So the F-test of the model R? has reflected the contribution of
one predictor variable conceptually in forming y;, albeit with
one or more fixed slopes to capture its effect

- Now we will see what happens to the fixed slopes for each
variable when combined into a single model that includes
multiple predictor variables, each with its own fixed slope(s)

> Short answer: fixed slopes go from representing “bivariate” to
“unique” relationships (i.e., controlling for the other predictors),
and y; is created from all predictors’ fixed slopes simultaneously

= Standardized slopes are no longer equal to bivariate Pearson’s r,
and are instead related to a “semipartial” (or “part”) correlation
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A Real-World Example of “Unique” Effects

- House-cleaning with the Pearsons—the cast from “This is Us”

Randall
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A Real-World Example of “Unique” Effects

- Scenario: Rebecca Has. Had. It. with 3 messy tween-agers and
decides to provide an incentive for them to clean the house

> Let's say the Pearson house has 10 cleanable rooms: 4 bedrooms,
2 bathrooms, 1 living area, 1 kitchen area, 1 dining area, 1 garage

- Incentive system for each cleaner (3 children and spouse Jack):
> Individual: one Nintendo game per room cleaned by yourself

> Family Bonus: if > 8 rooms are clean, the family gets a new TV!
(8 = average of 2 rooms per person)

- Rebecca decides to let the family decide what rooms they will

each be responsible for while she is shopping for necessities

> She returns home to a cleaner house, and asks who did what...
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Pearson House:YWho Cleaned VWhat!
m_mmm

Master bedroom

Kevin bedroom X

Kate bedroom X
Randall bedroom

Bathroom 1

Bathroom 2

Living area X X

Kitchen area X

X X X X X X

Dining area X

Garage

- 9/10 rooms are cleaned, so the family gets a new TV—hooray!
- But what should each person get for their individual effort?
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Pearson House:YWho Cleaned VWhat!
m_mmm

Master bedroom

Kevin bedroom X

Kate bedroom X

Randall bedroom
Bathroom 1

Bathroom 2

Living area X X

Kitchen area X

X X [ XX X X

Dining area X

Garage

» Jack, Kevin, and Kate: only one Nintendo game each for cleaning
one unique room (can't assign rewards for overlapping rooms)

- Randall: three Nintendo games for three unique rooms
- No one gets credit for overlapping rooms (but the family gets a TV)
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From Cleaning to Modeling: 2 Goals

- General Utility: Do the model predictors
explain a significant amount of variance?

> Is the model R (the squared r of y; with
y;) significantly > 0 (is F-test significant)?

> R?%is a function of the common AND

unique effects of predictor variables
- Specific Utility: What is the unique a a

contribution of each predictor to the
model R? after discounting its
redundancy with the other predictors?
> This is tricky because no predictor gets
individual credit for what they have in X1 X2

common in predicting y;, even though
their common variance still increases R*

“Ballantine” image borrowed from:
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From Correlations to Standardized Slopes

- Recall for a one-predictor model: y; = By + f1(x1;) + €;

. . SD _ Covxl,y
» Unstandardized: Bo = My — (B1My1), B1 = Ty x1 SD—xyl,ﬁl = 507,

SDx1

» Standardized: Bo = 0, B1sta = P17
y

(sO B1sta = Ty x1 here)

- For a tWO'prediCtor model: Yi — ﬁo + ﬁl(xli) + ﬁz(xZi) + e;
> Unstandardized: Bog = My, — (B1My1) — (B2M,2)

: Ty x1— Ty x2*T'x1 x2) Ty x2— Ty x1*T'x1 x2)
> Standardized: Bistqa = 22 ,Basta = L—2
1_RX1,x2 1_Rxl,xz

S

> Standardized to unstandardized: g, = ﬁmm%, B> = Bastd
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Semipartial (Part)*™ Correlations

- Just Pearson’s r is an effect size for a
bivariate (or “zero-order”) relationship
between two variables, semipartial
correlations provide an effect size for
the relationship of y; with the unique
part of each x; (i.e,, after controlling
each x; for the other predictors)

> When r is squared = R* - areas to the
right represent “proportions of variance”

> Area a = sry 1 4, = semipartial R* for
y; with x1;, controlling x1; for x2;

> Area b = s1y,,,1 = semipartial R* for
y; with x2;, controlling x2; for x1;

a+b+c :
> R? = > ¢ also contributes to R?
a+b+c+e

but neither predictor gets “credit” for it

“Ballantine” image borrowed from:
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Y

X1 X2

* Part correlations are not the
same as “partial” correlations
(which do not correspond to
GLMs so we won't use them)



http://alexanderdemos.org/Mixed1.html

Standardized Slopes and Semi-Partial r

One-predictor model: y; = Bo + B1(x1;) + €;, B1 =

Var,q

For a two-predictor model: y; = Bo + B1(x1;) + B,(x2;) + €;

- Standardized "unique” slopes (repeated):

5 ﬁ . ry,xl_(ry,xz*rxl,xz) __unique Cov of yx1
1std 1—R,261,x2 unique Var of x1

5 ﬂ . ry,xz_(ry,xl*rxl,xz) __unique Cov of y,x2
2std 1—R,261,x2 unique Var of x2

- Semipartial correlations (. indicates controlled):

ryx1—(Tyx2*Tx1x2)  unique Cov of y,x1

> ST = \/ = =
yx1.x2 2 unique SD of x1
1_Rxl,xz

_ Tyx2—(Tyx1*Tx1x2) _ unique Cov of y,x2

Y

N
@
-

X1 X2

> ST =+Vb =
yxz.xl 2 unique SD of x2
1_Rxl,xz
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Where the “Common” Area ¢ Goes

- Model R? can be understood in many ways—here, for two slopes:

> Old: R? is the square of the r between predicted y; and y;

Var

> Old said differently: R* =

V“"‘yl Note: The version of
this slide given in class

2 2 . .
2 _ Ty tTyxa (257 5157y x2%Tx1 22) had errors in the first
> New: R 2 ; i
1=Rx1,x2 two "new” R4 formulas

Bistasry v + Bastdsry (now corrected)

> New: R? = Biiq + Pisea + (2 * Bista * Basta * rxl,xZ)

> New: R?

- In general: R%= unique effects + function of common effects
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GLMs with Multiple Predictors:

New Interpretation of Fixed Effects

- Two predictor variables: y; = Bo + B1(x1;) + B2(x2;) + €;
> Bo = intercept = expected y; when x1; = 0 AND when x2; = 0

> 1 = slope of x1; = unique difference in y; per one-unit difference
in x1; “controlling for” or “partialling out” or “holding constant” x2;
(SO Bi1sta # Pearson’s bivariate 7, ,; whenever ryq ,, # 0)

> [, = slope of x2; = unique difference in y; per one-unit difference
in x2; “controlling for” or “partialling out” or “holding constant” x1;
(SO Bostq # Pearson’s bivariate 7, ,, whenever ryq 5, # 0)

- These unstandardized fixed effects (intercept and slopes) do create
predicted y; in the original scale of y;, but they cannot be used to
ascertain the relative importance of each predictor to the model
because unstandardized fixed effects are scale-dependent (units matter)
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Standard Errors of Each Fixed Slope

Standard Error (SE) for fixed effect estimate 8, in a one-predictor
model (SE is like the SD of the estimated slope across samples):

SE, — residual variance of Y N = sample size
Bx — Var(X)*(N—k) k = number of fixed effects

When more than one predictor is included, SE turns into:

Var(X)+(1-R%)+(N—k) | for by other predictors, so

SE, — residual variance of Y R% = X variance accounted
Bx —
1-R% = unique X variance

So all things being equal, SE (index of inconsistency) is smaller when:

> More of the outcome variance has been reduced (better predictive model)

This means fixed effects can become significant later if R? is higher than before
> The predictor has less covariance with other predictors

Best case scenario: x; is uncorrelated with all other predictors

If SE is smaller - t-value (or z-value) is bigger—> p-value is smaller
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Effect Sizes of Single Fixed Slopes

- When a predictor’s effect is captured by a single fixed slope, these
unstandardized slopes have two potential (related) effect sizes
that indicate their importance relative to other predictors’ slopes:

> Standardized slope (B,;4) is from a “standardized” solution in which
all variables have M = 0,5D = 1 (often labeled as "beta” in output)

= Provided in SAS PROC REG or in STATA REGRESS with “beta” option
= Can also get by z-scoring all variables, then doing usual GLM

> Squared semipartial r (sr2), also known as eta-squared (n?), gives
the contribution to the model R? of a single slope or set of slopes

= SAS: Provided in PROC REG (as SCORR2 option on MODEL)
« STATA: Provided in separate PCORR routine (NOT same as ESTAT ESIZE)

Btw, semipartial r (s7) is related to Byq as Borg = = = ——2

/1—R2 unique SD,
Btw, adjacent omega-squared (w?) version is analogous to adjusted-R?

= Can be confused with “partial” eta-squared, which partials the other
predictors out of outcome, too (and which is thus less helpful to know)
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Effect Sizes for Multiple Fixed Slopes

- When a single predictor’s effect is captured by multiple fixed
slopes, a standardized slope can still provide an effect size for each

- But slope-specific squared semipartial r (sr*) values should
not be used because of the dependency between the slopes

> e.g., Income; = B, + f,(Age; — 18) + B,(Age; — 18)?% + e;

Linear age slope f3; is specific to when centered age = 0, so its unique
sré1 would change if age were centered differently (even though the
model R? and the F-test of its significance would be the same)

> e.g., Income; = By + f1(LvsM;) + B,(LvsU;) + e;

= Slopes B4 and B, share a common reference (low group) and imply (at
least) 3 possible group differences (2 in model; 1 as linear combination)

= So the squared semipartial r values across these group differences will
sum to more than they should (given a single 3-category predictor)

- What to do instead? Request a multivariate squared semipartial r
(sr?) that is estimated jointly across the fixed slopes... stay tuned!
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Special Cases of the GLM, continued

- So far we've seen what many would call “multiple (linear)
regression”—this term generally refers to GLMs with quantitative
predictors (and “linear” differentiates normal residuals specifically)

> However, all of these concepts hold for categorical predictors
(i.e., as called "analysis of covariance” when they are paired with
guantitative predictors) or for quantitative predictors that use 2+
fixed slopes, for which one extra piece of info is often of interest

- For example, consider a quantitative predictor x1; paired with a
three-category predictor of low vs. middle vs. upper class:

Yi = Bo + B1(x1;) + B2(LvsM;) + B3(LvsU;) + e;
> Multivariate Wald F-Test of model R? includes all 3 fixed slopes

> To see if 3-category group contributes significantly to the R?, we
need to request another Multivariate Wald F-test for just 3, and S5

> The same request is needed when considering multiple slopes for
any quantitative predictor variable—is their joint effect significant?
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Multivariate Wald Tests for Joint Effects

- The F-test for the model R? was your first instance of a
Multivariate Wald (F) Test, a general way to jointly test
the significance of 2 or more fixed slopes simultaneously

> Remember, for one fixed slope, its t? = F, so separate F is not needed

- These F-tests can be requested for any combo of fixed slopes:

> SAS: CONTRAST within PROC GLM (which also provides effect sizes)
or TEST within PROC REG (which does not provide effect sizes)

> STATA: TEST within REGRESS (which does not provide effect sizes)

> They take into account the covariance among the predictors
as part of the test of their joint contribution to the model R?

> Can choose hierarchical (Type I SS) or not (Type II, Ill, or IV SS), but
hierarchical (in which order of predictors matters) is rarely needed

> Can replace "hierarchical regression” (entering predictors in sequence)
as a way to test the change in the model R? for new fixed slopes
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Joint squared semi-partial correlations

- In SAS PROC GLM, CONTRAST can be used to get Multivariate Wald
F-tests for 2+ slopes simultaneously AND get their joint sr? value

> Takes into account any covariance among predictors (i.e., dependency
between slopes) due to a common reference group

> sr? value is labeled as “Semipartial Eta-Square” on SAS output

- In STATA, TEST can be used to get F-tests but not joint sr? values for 2+
slopes, but you can compute them using unique sums of squares (SS)

> Step 1: From the full model, get SS for the model: SSg,;;
From the full model, get SS for corrected total: SS7,ta

> Step 2: Get the model SS from a reduced model without
the slopes for which you want a joint test: SSgeguced

> Step 3: Compute SS difference between models: SS7ost = SSrun — SSreduced

. . SS
> Step 4: Compute squared semipartial r: sr? = Ssﬂ
Total

> Tip: STATA is a calculator if you type “display” and then the math
you want it to do (the result of the calculation shows in output)
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General Linear Model Assumptions

- For us to believe in the accuracy of our model results, the following
assumptions must be plausible (some are testable, some are not)

- Because we have selected the GLM specifically:

> Individual residual e; values (i.e., as formed from y; —3;) are independent
and normally distributed with constant variance (i.e., with homoscedasticity)
across predicted outcomes and predictor variables

If not independent, need multilevel (mixed-effects) models

If not normal/constant variance, may need generalized linear models
(or general linear models that allow heterogeneous variance by predictors)

If not both, need generalized multilevel (mixed-effects) models

- Also applicable to any linear model using observed variables:

> All variables are measured without error (what “structural equation models”
with regressions among “latent” variables try to solve; see PSQF 6249)

> All predictors have their effects specified in the correct form
(e.g., no missing nonlinearity or non-additivity in their effects)

> Any predictors not included would have had a fixed slope = 0
(only testable with the predictors you have measured, unfortunately)
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Dealing with Problematic Reviewers

- A frequently claimed non-problem is “multicolinearity” (see also
“multicollinearity” or just “colinearity” or “collinearity”)

- As shown before, the SE for a predictor’s slope will be greater to the
extent that the predictor has in common (more correlation) with the
other predictors—that makes it harder to determine its unique effect

- Diagnostics for this supposed danger are given in many forms
> "tolerance” = unique predictor variance = 1 — R% (<.10 = “bad")
> "variance inflation factor” (VIF) = 1/tolerance (> 10 = “"bad")

> Computers used to have numerical stability problems with high
collinearity, but these problems are largely nonexistent nowadays

- Only when you have “singularity” is it actually a problem—when
one predictor is a perfect linear combination of the others (such as
when including two subscale scores AND their total as predictors)

> It's always a good idea to examine the bivariate relationships among
your to-be-modeled predictors to see to what extent they are redundant
for conceptual reasons to consider the possibility of “equivalent” models
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Problematic Participants

. Fixed effects estimates are the values
that collectively minimize the sum of
the squared residuals for the sample
(= smallest residual variance; “OLS")

- Extreme valqes can have undue influence
on these estimates, though

> "Distance” = extreme on ¢; (e.g., A, )
> "Leverage” = extreme on x; (e.g., B)
> "Influence” = impact on slope (e.g., C)

- Measured by absolute value of change
in slope if each case were removed:

Cook's D = (Binew — B1)*

- Btw, “quantile regression” can avoid bias
in results due to cases with influence

> Predict median (or any percentile) instead
of mean; in my

N
|

b

V=]

[
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=]

T T T T T T 1T 1 71
6 9 12 15

X

Figure 15.5 Scatterplot of ¥ on X

© Cengage Leaming 20013

What to do with any high
influence cases? There are

no good uniform solutions...

it depends on how much
you believe the aberrant
cases are representative...

Image borrowed from: Howell, D. C. (201). Statistical methods for psychology (8" ed). Belmont, CA: Cengage Wadsworth.
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http://lesahoffman.com/PSQF7375_Generalized/index.html

Unexpected Results: Suppression

- In general, the semipartial r for each predictor (and its unique
standardized effect) will be smaller in magnitude than the
bivariate r (and its standardized effect when by itself) with y;

- However, this will not always be the case given suppression:
when the relationship between the predictors is hiding
(suppressing) their “real” relationship with the outcome

» Occurs given 1y, > 0 and ry,,, > 0 in three conditions:
(@) Ty 1 <Tyx2 *Terxz2 (0) Ty a2 <Tyx1 * Tep 02, OF (C) Tyg 2 < 0

> For example: Consider y; = sales success as predicted by
x1;= assertiveness and x2;= record-keeping diligence

= Tyx1 = 403,74, =.127, and 14 x, = —.305 (so is condition ¢)
« Standardized: y; = 0 + 0.487(x1;) + 0.275(x2;)

= So these standardized slopes (for the predictors’ unique effects)
are greater than their bivariate correlations with the outcome!

- This is one of the reasons why you cannot anticipate just from bivariate
correlations what will happen in a model with multiple predictors...

Example taken from Cohen, Cohen, Aiken, & West (2002)

PSQF 6242: Lecture 5



Unexpected Results: Multivariate Power

Correlations

Y X1 X2 X3 X X5
Y Pearson Comelation 1 191 A5z 237 A74 10
Sig. (2-tailed) : 119 T 081 155 a7
N 63 68 63 68 68 68
X1 Pearson Comelation 191 1 - 250 - 077 -079 -110
Sig. (2-tailed) 119 ) 0329 535 521 a7
N 63 68 63 68 68 68
X2 Pearson Correlation 92 - 250 1 -077 eloh 013
Sig. (2-tailed) AT 03s . 532 .003 917
68 68 68 68 68 68
X3 Pearson Comelation 237 -077 | 077 1 203 219
Sig. (2-tailed) 081 535 h3z . 098 073
N 63 68 | 63 68 68 68
X4 Pearson Comelation AT74 -079 361 203 1 162
Sig. (2-tailed) 155 521 003 098 ) 87
M 68 68 63 68 68 68
X5 Pearson Cormrelation 110 - 110 013 219 62 1
Sig. (2-tailed) amn T M7 073 A8T )
N 58 68 68 68 68 i)
*. Correlation is significant at the 0.05 level (2-tailed).
Coefficients?
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -350.742 195472 -1.794 078
X1 3.327 1.376 290 2418 019
X2 2485 1.185 271 2.098 040
X3 3125 1.479 257 2112 039
X4 366 1.342 035 273 786
X5 844 1.309 077 644 922

Example borrowed from:
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Even though none of
these five predictors has
a significant bivariate
correlation with y;, they
still combined to create
a significant model R?

F(5,62) = 2.77,
MSE = 272631.57,
p = .025,R? =.183

This is most likely when
the predictors have little
correlation amongst
themselves (and thus
can contribute uniquely)


https://psych.unl.edu/psycrs/statpage/mr_rem.pdf

Unexpected Results: Null Washout

Correlations

P1 P2 P3 P4 P5 P6 P7 P8 Pg
Y Fearson Correlation 230 059 004 079 =100 - 028 -.040 -.007 013
Sig. (2-tailed) 002 432 953 294 .186 709 Rateiay 927 863
M 177 177 177 177 177 177 177 177 177
Coefficients
Unstandardized Standardized
Coefficients Coefficients Even though P1 has a
Model B Std. Error Beta t Sig. 1 1fi 1 1
1 (Constant) 100.454 17.866 5623 ‘000 Slgn'ﬁca.nt b'Ya”ate
[ 115 038 233 [ 3047 03| correlation with y; and
P2 4 511E-02 077 044 583 561 . g .
. L 03E.0 76 ot es 00 | @ significant u plque effect,
P4 7 511E-02 076 075 988 325 | the model R? is not
P5 9.22E-02 070 099 -1.320 189 ianifi b .
P6 6.555E-04 77 001 009 993 | SIgNI Icant—Dbecause It
P7 4 86E-02 076 -048 _ 640 523 | measures the average
P8 4 13E-02 073 - 044 - 568 571 di ‘buti
P9 6.502E-03 076 007 087 931 | predictor contribution

F(9,167) = 1.49,
MSE = 93.76,
p = .155,R? = .074

Example borrowed from:
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https://psych.unl.edu/psycrs/statpage/mr_rem.pdf

Unexpected Results: A Significant Model R?
with No Significant Predictors???

Y P1 P2 P3 P4 P5
Y Fearson Correlation 1 298" NECRS 221 221 251
Sig. (2-tailed) ) .000 008 003 003 001
M 177 177 177 177 177 177
P1 Pearson Correlation 298 1 689 T12 T42™ g8
Sig. (2-tailed) 000 . .000 .000 000 000
M 177 177 177 177 177 177
P2 Pearson Correlation 198* Lifait 1 A9G* B00™ 520"
Sig. (2-tailed) 008 .000 ) 000 000 000
N 177 177 177 177 177 177
P3 Pearson Correlation 221 T2+ A495* 1 AT 494>
Sig. (2-tailed) 003 .000 000 . 000 000
N 177 177 177 177 177 177
P4 Pearson Correlation 221* 742+ 500 AT 1 B9
Sig. (2-tailed) 003 .000 000 000 ) 000
N 177 177 177 177 177 177
P5 Pearson Correlation 251* 728 520 A94* 593 1
Sig. (2-tailed) 0o 000 000 000 000 :
N 177 177 177 177 177 177
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta { Sig.
1 (Constant) 93.378 1.899 49.184 .000
P1 115 .080 244 1.441 151
P2 -1.23E-02 073 -.017 -. 169 .866
P3 1.555E-02 076 022 206 837
P4 -4 41E-03 077 -.006 -.057 954
P5 5.211E-02 .074 076 a07 481

Example borrowed from:
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This model R? is
definitely significant:
F(5,171) = 3.455,
MSE = 89.85,
p = .005 R2 =.190

Yet no predictor has a
significant unique
effect—this is because
of their strong(ish)
correlations with each
other (and “common”
still contributes to R?)


https://psych.unl.edu/psycrs/statpage/mr_rem.pdf

GLM with Multiple Predictors: Summary

- For any GLM with multiple fixed slopes, we want to know:
> |Is each slope significantly # 0? Check p-value for t = (Est—0)/SE
> What is each slope’s effect size? Check r (=f4:4) or find d from t
> Do the slopes join to create a model R? > 0? Check p-value for F
> What is the model’s effect size? Check R? (r of J; with y;)?

- When combining the fixed slopes from different conceptual
predictor variables into the same model, we also want to know:

> |s each slope *still* significantly # 07 If yes, has a “unique” effect
Unique effect is usually smaller than bivariate effect (but not necessarily)

1 slope: check p-value for t = (Est—0)/SE
>1 slopes: check p-value for F-test of joint effect (requested separately)

> What is the effect size for each predictor’s unique effect?

1 slope: check sr? (or Bg4) or find “adjusted” d or r from t
>1 slopes: check joint sr? for predictor’s overall contribution to R?
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