General Linear Models
with One Predictor

- Topics:
> Vocabulary and broad categories of predictive linear models

> Special case of GLM 1:
“(Simple) Linear Regression” with a quantitative predictor

> Special case of GLM 2:
‘Independent (or two-sample) t-test” with a binary predictor

> Foreshadowing uses of the GLM
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Review: Methods to Answer
Univariate and Bivariate Questions

- Univariate mean comparisons and what they are known as:

> "One-sample z-test”: Used to test a sample mean against an expected
population mean (the H,) using a known variance (and big enough N)

> "One-sample t-test”: Used to test a sample mean against an expected
population mean (the H,) using an unknown variance—because variance
must be estimated, we need to correct for denominator DF remaining (N)

- Bivariate association indices for different types of variables:

> "Pearson’s r": Used to quantify linear relationship between two quantitative
variables; r is tested for significance against H, (e.g., 0) using t-distribution

> "Spearman’s rho": Pearson’s r using rank-ordered versions of quantitative
variables instead, which is more appropriate for quantitative variables with
concerning extreme values or for ordinal variables (i.e., numbers are labels)

> "Pearson’s y?": Test if association between categorical variables is # 0 using

x? distribution; y? must be converted to an effect size (e.g., 7, risk ratio,
odds ratio) to quantify strength of association independent of significance
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Steps in Quantitative Data Analysis

- Quantitative data analysis: the process of applying statistical
models to a sample of data to answer your research questions

> Enter, download, or otherwise acquire quantitative data
> Import data into statistical software and verify its accuracy

> Describe data using univariate statistics and bivariate measures
of association; use these to double-check accuracy of data

- Select a family of statistical models based on the characteristics
of the variables of interest and the questions to be answered

> Estimate statistical models, check results for potential problems...
> Estimate more statistical models, check results again...
> Estimate even more statistical models... interpret results!

> Write up the results: Btw: you did not “run analyses” or “calculate
models”; you “conducted analyses” and “estimated models”
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Roles and Labels of Study Variables

When research questions are phrased as what is the role of
x (n explaining y, below are possible synonyms of x and y:

- Reason (Explainer): - What is To Be Explained:
> In notation: x variable > In notation: y variable
Exogenous (is not explained) = Endogenous (is explained)
> Predictor > Outcome
My preferred generic term = My preferred generic term
> Independent variable (IV) > Dependent variable (DV)
« Used more often when variable « Used more often in
is manipulated (like treatment) experimental studies
> Covariate > Criterion
« Used for reasons the researcher « Used in observational studies
Is not interested in (but must with “regression” models

include to keep others happy);
also used for quantitative
predictor in ANCOVA
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Roles of Variables: Some Examples

- In the following example research questions, identify which
variables are predictors or outcomes and their likely types:

> To what extent does positive feedback improve performance
speed and accuracy more than neutral feedback?
= Predictors:
= Qutcomes:
> |s faster academic growth in elementary school related
to more frequent reading to children when in preschool?
= Predictors:
= Qutcomes:
> How effective is teacher training for creating higher rates
of positive feedback to a teacher’s students?
= Predictors:
= Qutcomes:
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Types of Inferences: 2 possibilities
in describing how x relates to y

- x causes y - causal inference requires the following:
> x variable had to come first (temporal precedence)

> x variable was under complete experimental control during the study
(i.e., through random assignment and experimental manipulation)

> Study design eliminates all possible alternative explanations

- x relates to y (synonyms = associative, correlational)

> We have observed a relationship, but we do not have the ability to infer
cause given the design (i.e., it's an observational study without control)

> In lieu of experimental control, we can attempt statistical control: include
other predictors that represent alternative explanations for why x relates to
y, and see if x is still related to y = many research questions try to do this

- These 2 possibilities can only be distinguished by study design—they have
nothing to with the type of variables collected (a common misconception)

- Because causal inference is rarely possible in studies of real people, we will
only use associative language in describing model effects in this class
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Moving On to Predictive Linear Models

- Questions concerning more than variables at a time are best
answered using predictive linear models, in which one must
designate which variables are predictors and which are outcomes

- Models come in different flavors based on type of outcome variable

> Continu-ish quantitative outcome?
= “General” Linear Models using the normal distribution—us this semester
> Literally any other kind of outcome variable?

- "Generalized” Linear Models using some other distribution and a
transformed predicted outcome (called a “link function”) to address
variable possible values and boundaries—here are some examples:
— Binary outcome? Use Bernoulli distribution and logit link
— Ordinal outcome? Use multinomial distribution and cumulative logit link
— Nominal outcome? Use multinomial distribution and baseline logit link
— Binomial outcome? Use binomial distribution and logit link
— Count outcome? Use Poisson-family distributions and log link

= Come back in Spring 2022 to learn these generalized linear models ©

PSQF 6242: Lecture 3



What “Linear’ in “Linear Models’’ Means

- Most predictive models have a “linear” form, which looks like this:
> y; = (constant * 1) + (constant * Xpred1;) + (constant * Xpred2;)...

> Fortunately, this does NOT mean that we can ONLY predict linear
relationships—we can specify many nonlinear forms of relationships of
quantitative predictors (the Xpred; variables) as needed or expected

> Fortunately, this also means we can include categorical x; predictors

- Historically, variants of the general linear model (for continu-ish
outcomes) get siloed into different classes and called different
names based on what kind of x; predictor variables are included.:

> Called “(Linear) (Multiple) Regression” if using quantitative predictors
> Called "Analysis of Variance” (ANOVA) if using categorical predictors
> Called "Analysis of Covariance” (ANCOVA) if using both predictor kinds

> We are going to cover all of these as special cases of the General Linear
Model (“the GLM")—separating them does way more harm than good

= We will use SAS GLM (REG for standardized) and STATA regress for all!
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Welcome to the GLM!

- Linear models use new notation within one equation to describe
how all the x; predictors relate to the y; outcome(s) in your sample

> 1 outcome? “Univariate GLM" 2+ outcomes? “Multivariate GLM"

- Starting point for univariate GLMs is always to represent
central tendency and dispersion of the outcome variable (y;)

> We will use mean and variance to describe the outcome because the
GLM uses the normal distribution (in which skewness should be 0)

- Your first GLM is the "Empty” model (=no predictors): y; = By + €;
> y; = "y sub i”: outcome variable for each person in your sample

> Lo = "beta 0" (sometimes called "beta not” but not by me)

More generally, betas (B) will represent values to be estimated that will
apply to the whole sample (i.e., betas are constants) = “fixed effects”

= The beta subscripts index each fixed effect (starting at 0)
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The “Empty” General Linear Model

- The "Empty” model (empty = no predictors): y; = o + e;

> Bo = "beta 0" = “"the intercept” (or “the constant”, ugh) and is defined as the
predicted (expected) value for the y; outcome when all x; predictors = 0
(so the estimated value for 8 will change as the predictors are changed)

> We don't have any predictors yet, so the intercept takes on the single most likely
value for everyone—the sample (or “grand”) mean (so in this model, o = y)

- So what would ¢ be for: wf T
B H=0, 0%=0.2, == _
> The blue line? the red line? —~ o8] oo 0210, — ]
=t o gm0 e
> Butwhydothered and blue = | H=-2, 07205, == ]
lines differ???? S L 1
o

.E 0.4
Univariate Normal PDF: < ]

) é 0.2_
f(yi)=—1 *exp _E*(yi _2“) O'Of .

1[27‘[(52 2 (@) N T R | | | | | | |

Image borrowed from:
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The “Empty” General Linear Model

- The "Empty” model ("no predictors”): y; = By + e; (in which By =)

> e; ="esubi” or "residual’ = deviation between the actual y; outcome for each
person and y; outcome predicted by the model (through the beta fixed effects)

> Because the empty model predicts the same y for all y; values, the e; residual
for each person will just be the difference between y; and By: e; = y; — Bo

> Rather than focusing on each individual e; residual, we keep track of their
variance across persons as the estimated model parameter, denoted as o2
2 _ ZL0i=3? _ T (e)? 2

» You've seen this before: Variance = s* = === ~—— = now g

In other words, the two parameters in the empty model give us the y; outcome
mean (as ) and the y; variance (as %) - right now o2 = all the y; variance

- In describing predictive linear models, the notation refers to population
parameters instead of sample statistics (i.e., we use 2 instead of s?)

> Why? Because we only ever have one sample from which to estimate parameters
that we are trying to make inferences about with respect to some population
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Beyond Empty GLMs: 2 Fixed Effects

- Purpose of predictive linear models (general and generalized) is to
customize each person’s expected outcome by adding predictors

> Soon we will examine the unique effects of multiple predictors, but let's
start with just one quantitative predictor: “(simple) linear regression”

- e.g., two quantitative variables, x; and y;, that both have a mean
(M) = 0, a standard deviation (SD) = 1, and have a Pearson’s r =.5

- A GLM to describe how x; predicts y;: y; = By + B1(x;) + €;

> 1 = slope of x; = difference in y; per one-unit difference in x;
= p1= T(%) =0.5 G) =0.5 B1 is a linear slope (just like r)

> B, = intercept = expected y; when x; = 0 | Bo adjusts for any

mean difference
- Bo=M,—(f1*M,)=0-(0.5%x0)=0 between x; and y;
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Unstandardized Intercepts and Slopes

- e.g, x; and y; bothhave M =0,5D =1,andr =.5
> B1 = slope of x; = still the difference in y; per one-unit difference in x;

. By = T(SDY) — 0.5 (1) — 0.5 B is a linear slope (just like r)
SD, 1 :
> Bo = expected y; when x; = 0 Bo adjusts for any

mean difference
between x; and y;

- What if x; has M = 50, SD = 10 instead (but y; still has M = 0, SD = 1)?

= () =0s(k) = 00s

> Bo=M,— (B1+M,)=0-(0.05%50)=2.5

. ﬁony—(Bl*Mx)=0—(0.5*0)=0

- What if y; has M = 50, SD = 10 instead (but x; still has M = 0, SD = 1)?
SD,,
> ﬁ1=r(SDx)—05( ®)=5.0
> Bo=M,—(B1*M,) =50—(50+0) =50
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Why the Unstandardized Fixed
ntercept [, *Should* Be Meaningful...

Concourse B Directory

m Beverag i LT e ————————
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This is a very detailed map...
But what do we need to know
to be able to use the map at all?
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Intercept ="You

are Here” Sign

Yi =

Using original years of education:
x; =education, y; = income
Bo+ B1(x;) + e; Yi =

Using education centered at 12:
x; =educ—12, y; = income
Bo+ Bi1(xy) +e;

yi = 14.00 + 1.82(x;)

1000s of Income

1000s of Income

Intercept

Bo

There is no wrong way to center, only

weird. Center so x;=0 is meaningful.
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Beyond Empty GLMs: Residual Variance

« Our GLM describes how x; predicts y;: y; = Bo + B1(x;) + €;
> Intercept: B; Slope of x;: 4

- The y; expected from the predictors is called y; = "y hat”

> Yi=Bot+B1(x)) 2> yi=Yite; > e =y;—Y,
> Now we can determine what the e; residual would be for each
person, and thus what the variance of the e; residuals would be

“residual variance”: o7 = L 090 _ Bima(e)’
N-2 N-2
> Remember testing r against H, using the t-distribution
with N — 27 Same N — 2 here, because we had to estimate
two fixed effects: By and 84

N-2
1—-7r2

t=r » DFgenominator = N — 2
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More on GLM Residuals

The B formulas result from the goal of
minimizing the squared residuals across
the sample—this is called "ordinary
least squares estimation”"—let's see
what happens for one example person

Empty Model for y; = income:

;: Focus: x; = 8,y; = 58.8 \

». [Empty model
prediction

0 0 L) 0 0

unexplained

40

o o

o
30

[s]
<.
~
oo
o o o

= =
o oo

o

oo
O [=]
o a0 0o =]
@ (=]
OEEINTDOOC o O 2O

20

=]

1000s of Income
oo o o
oo o © o

CEENEEDO O)C o o
o0 o\o o
oo o o o o o [+]

O 0000 O o o
o ao
Q [s]s]

D oo, o O

RN ENEEIDC O

10 explained

-8 -6 -4 -2 0 2 4 6 8
Education (0=12 Years)
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Yi=PBo e
yFocus =17.3
YFocus = 17.3 +41.5

N (52
Variance: g% = Z‘“}E,y‘ Y)" _ 190.2

- 190.2 is all the y; variance

Add Education as Predictor:
yi = Bo + B1(Educ; — 12) + e;
Yrocus = 14.0 + 1.8(8) = 28.4
YFocus = 28.4 + 30.4

N (yi 9.2
Variance: o2 = Z‘”}fly_‘zy‘) = 162.3

- 162.3 is leftover y; variance




Significance Tests of Fixed Slopes

- Each B fixed slope has 6 relevant characteristics to be reported:
> Estimate = best guess for the fixed slope from our data

> Standard Error = SE = average distance of sample slope from population slope
- expected inconsistency of slope across samples

> t-value = (Estimate — H,) / SE = test-statistic for fixed slope against Hy(= 0)
> Denominator DF = N — k (where k = total number of fixed effects)

> p-value = (two-tailed) probability of fixed slope estimate as or more extreme if
H, is true = how unexpected our result is on a t-distribution with M=H,, SD=SE

> (95%) Confidence Interval = CI = Estimate =+ t.yitjcq * SE = range in which
true (population) value of estimate is expected to fall across 95% of samples

- Compare t test-statistic to t critical-value at pre-chosen level of significance
(where % unexpected = alpha level): this is a “univariate Wald test”

> Btw, if denominator DF are not used, then t is treated as a z instead

> Because B fixed slopes are unbounded, SEs and Cls can be obtained directly
(instead of through a Fisher r-to-z transformation as for r)
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Significance Tests of Fixed Slopes

fixed slope estimate £, SEp,_ =

in a single-predictor GLM: o * (N = k)

variance of x; x (N — k) B

- Standard Error (SE) for the _ _ 5
\/ residual variance of Y \/ o5

- Example: y; = Bo + f1(Educ; — 12) + e;, 6% = 162.28,
N =734,x; = Educ; —12: M = 1.81,Var = 8.46

> Slope for education: Hy: f; = 0,Ha: 8, # 0
Est = 1.82, SE = J 162.28 Est-0 _ 1.82—-0

=0.16, t = = = 11.28,
8.46%(734—2) SE 0.16

DFjonominator = N —k = 734 — 2 = 732, p < .0001,

95% CI = Est + (tzpy * SE) = 1.82 £(1.96 * 0.16) = 1.51 to 2.14

> Interpretation: Predicted income is significantly higher by 1.82k
for each additional year of education (so reject Hy that g1 = 0)
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SEs and Cls for Predicted Outcomes

- The imprecision (SE) of any predicted outcome y; (including the outcome
captured by B,) depends on the value of the predictor—the SE will increase
as you move away from the predictor’s mean:

SE (for By orany y;) =

S e 2|1, (x=%)? average distance of
» SEoty; | x; = yoe * \/N t (N-1)o% sample predicted value

from population value

- y; = Bo + f1(Educ; — 12) + e;, 6% = 162.28,
N = 734,Educ; — 12: M = 1.81,Var = 8.46

- SE and Cl for predicted income when Education = 127

: . _ . 1 (0-1.81)2
> Given by B,: Est = 14.00, SE = V162.28 * \/734 + (733846 0.55,

95% CI = Est + (tzpi * SE) = 14.00 +£(1.96 * 0.55) = 12.91 to 15.09

- You can use ESTIMATE in SAS or LINCOM in STATA to get
predicted outcomes for any value of the model predictors...

> Also options within each to get predicted outcomes for each person in data
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Cls for Predicted Outcomes

Fit Plot for income

Intercept

Bo

. - The blue shading shows
the 95% range for the
y; outcomes predicted
by the regression line

> They are narrowest at
the predictor mean, and
widen as moving away

60

o]
o
o]
[+]
o

40

oD o 0 o o s

Qo 000 O . O [+]

O oo o0 O O [+]

income: Annual Income in 1000s
=
O oMmmooo O 0 O o 9o
s}

i
|
I
1
1
|
L ]

-10 -5 0

educﬁ —12 /. The blue dashed lines
educl12: Education (0=12 years) ShOW the 95% range for
Fit O 95% Confidence Limits 95% Prediction Limits the actual yi Outcomes

Blue shaded line is created by t ,iticar * SE; imF_)“ed by the resjdual
blue dotted line also adds in error from ¢2| Variance (is way bigger)
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Effect Size via Standardized Slopes

- GLM predictive equation uses the scale of the variables as entered
directly into the model—this is the "unstandardized” solution

- eqg.Y¥i=pPo+ L1(Educ; —12) + e;
> x;j Is Educ; —12: M = 1.81,Var = 8.46
> y; 1S Income: M = 17.30,Var = 190.21
- Unstandardized: y; = 14.00 + 1.82(Educ; — 12) + ¢;

> Unstandardized fixed SD :
slopes (Bunsta) can be ﬁstd — Bunstd * e std ’BO will
standardized (B4:q) as: SD, | | always be 0

- Standardized: y; = 0 + 0.38(Educ;) + ¢;

> Standardized solution refers variables that have been transformed
intoM = 0,Var =1 (i.e, as if they had been converted to z-scores)

> Slopes are then in a familiar correlation metric (usually from —1 to 1)

> Why do this? Standardized solution makes it easier to compare the
relative strength of the fixed effects of predictors on different scales
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What about Categorical Predictors?

- So far we've seen how a Pearson'’s r between two quantitative
variables x; and y; can be represented equivalently with a general
linear model of x; predicting y;: y; = Bo + B1(x;) + e;

> Fixed slope B4 captures a linear effect of x; predicting y; in an
unstandardized metric (using x; centered so intercept at 0 makes sense)

> For how to capture nonlinear quantitative predictor effects, stay tuned

- Now we will see how to use GLMs to predict a
quantitative outcome from a categorical predictor

> General rule: predictors with C categories need C fixed effects
to distinguish the outcome means across all unique categories

= After including the intercept B, we still need C — 1 predictors, whose
B, slopes then capture mean differences between categories

> So let's start with a binary variable, which requires a single predictor

PSQF 6242: Lecture 3



A GLM with a Binary Predictor

- GLM of binary x; predicting quantitative y;:
Yi = Bo+ B1(x;) + e;
> Create x; so 0 = reference category, 1 = alternative category

> Btw, this is called an “Independent (or two-sample) t-test” (even
though all types of predictors use a t test-statistic to test significance)

- For example: Family income predicted by marital status
> marrygroup; : 0 =no, 1 =yes 2 y; = Bo + B1(Marry01;) + e;

> Bo = intercept = expected income for unmarried persons
(Marry01; = 0)

> 1 = slope for Marry01;= expected mean difference for married
persons relative to unmarried persons

> e; = residual = difference in model-predicted income (from y;) and
actual income y;, whose (residual) variance is estimated as ag
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A GLM with a Binary Predictor

y;i = Bo + f1(Marry01;) + e; Income-marry r = .23,p <.0001

- Income predicted for unmarried:
y; =14.45+6.22(0) = 14.45

- Income residual for unmarried:
e;=y;—Yyi e =y;—14.45

- Predicted income for married:
y; =14.45+6.22(1) = 20.67

- Income residual for unmarried:
e;=y;i— Yy 2>e =y;—20.67

income: Annual Income in 1000s

80 -

40 -|o

Fit Plot for income

o
o o
o

o
‘Uc
o
o

0 E

0.0

0.4 0.6

marry01: O=unmarried, 1=mar

Fit O 95% Confidence Limits

IR:]

ried

95% Prediction Limits

- A "linear” relationship is the only kind possible for binary predictors

(there is only one possible “unit difference” in a binary x; from 0 to 1)
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Effect Size for a Mean Difference: d

- For categorical predictors, an r effect size (standardized slope)
is less intuitive than an alternative effect size: Cohen'’s d, a
standardized mean difference between two groups (0 and 1)

SD§+SD?
2

> d = M’ Where SDpooled = \/

SDpooled

> Other variants you might see: Glass’ delta (§) uses SD for only
1 group; Hedges' g weights by the relative N in each group

> If your GLM contains only one binary predictor, then the pooled
SD is the same as the square root of residual variance, / o

> Otherwise, \/ a2 will be smaller because of the other predictors
2t

= d can be computed from t test-statistic for a fixed effect: d =

41?2 d?
= Btw, d and r can be converted as: d = / s, T = / -
1-r 4+d
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Effect Size, Sample Size, and Test Statistics

D e |- T T T T T T T T T T s T s s s s s s mm - — == o
|
|
p = alpha: : p < alpha:
“not significant” |  “is significant”
: —
Hy: : Effect Size Continuum Strongest
effect = 0 - (in Absolute Value) Possible Effect

* Role of test statistics (t and F when using denominator DF; z and x? if
not) is to standardize a parameter’s deviation from the null hypothesis

» When compared to reference distribution, they give you a p-value:
probability of finding an effect > obtained effect if H, is true

> Test statistics are a function of both effect size and sample size N

» In other words, test statistics and alpha combine to locate the blue line
above that divides effect sizes into “not significant” and “significant”

» Blue line moves to the right (is harder to “find” an effect) given:
> Lower alpha level = more conservative Type | error rate setting
» Smaller sample size N - Fewer people = less power (higher Type Il error)
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What Choosing the GLM Means

- The GLM uses a normal distribution to describe the model outcome
residuals, not the model outcomes—an important distinction!

> That is, the GLM specifies “conditional normality” (of y; given x;)
« Our example: y; = Bo + B1(Educ; — 12) + e;

~ ~ 2 ; 1Is normally distributed
- ¥i = Bo + B1(Educ; — 12), so y;~N(¥;, 63) <— 210 "°" yi);nd Var — g2

e

Distribution of income D

stribution of Residuals for income

N

) e; residuals are
relatively more
normal than y;;
outliers are less
- extreme

0
0 I} 10 15 20 25 30 a5 40 45 50 a5 60 65 70
income: Annual Income in 1000s

20

Marmal
Kernel

Percent
=
Percent

-36 -30 -24 18 12 -6 0 i} 12 18 24 30 36 42 48 54
Residual
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What Choosing the GLM also Means

- If conditional normality is not reasonable for your outcome, you
may need to transform the outcome (meh, do so if you absolutely
must) or choose a generalized linear model instead, otherwise your
results (SEs and p-values) may be incorrect to some extent

> Many outcomes cannot be transformed to become “more normal”

> Come back in Spring 2022 for my generalized linear models class!
(for categorical, binomial, count, and skewed continuous outcomes)

- Univariate GLMs also specify independent e; residuals—that
all the reasons why any pair of y; outcomes would be more
related than others are already accounted for in the model

> Correlated ("dependent”) residuals can result from sampling over
more than one dimension (e.g., students from multiple schools)

> Ignoring correlated residuals can lead to way-wrong results!

> Dependent residuals require a "“multilevel” or “mixed-effects” version
of the general or generalized linear model instead (my other classes)
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What Choosing the GLM also Means

- GLMs also specify equal (constant) residual variability across all
predictor values: “"homoscedasticity” = "homogeneity of variance”

o Otherwise, "heteroscedasticity "
T = "heterogeneity of variance” >

model predicts differentially well

across x; (SE will need adjusted)

o
o0 —_—
L s

o
o)
Vi

“Not good” = &% increases as the
x; predictor increases (= fan shape)

CI G
o nN BN
( L

Probability density

Solution: Add fixed effects that allow

the variance to differ (this leaves GLM) | Not Good

Left image borrowed from:
Right image borrowed from:
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http://www.omidrouhani.com/research/logisticregression/html/logisticregression.htm
https://ajh1143.github.io/HomVar/

Heterogeneity of Variance in Example Data
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Left: Suspected heterogeneity Right: Apparent homogeneity of
of variance: Residual variance variance: Residual variance appears
increases with education—12 equivalent within married categories
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Summary: Introduction to GLMs

- Predictive linear models (i.e., form as outcome = constant*predictor
+ constant*predictor...) create expected outcomes from 1+ predictors

> @General linear models use a normal conditional distribution
> G@Generalized linear models use some other conditional distribution

- General linear models are often called different names based on the type of
predictor, but any kind of predictive model can be specified, for example:

> Empty Model: no predictors; is used to recreate outcome mean and variance as
unconditional starting point (sample mean is predicted for all)
= y; = Bo+e; 2> By = mean, e; residual variance = % -> all the variance to be explained

> Single Predictor Model: used to customize expected outcomes using a
single predictor 2 y; = By + f1(x; — C) + e; (C is centering constant)

= Bo = intercept = expected y; when x; = 0
= B4 = slope of x; = difference in y; per one-unit difference in x;

e; = residual = deviation between actual y; and predicted y; (= ¥;)
Effect size given by standardized slope will be equal to Pearson’s r

- GLMs all specify residuals as normally distributed, independent, and with
constant variance across predictors—otherwise, you need a new model!
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Foreshadowing... please stay tuned!

- In a GLM with a single predictor (quantitative or binary), the effect
size given by its standardized slope will be equal to Pearson’s r

- So what's the point of estimating a GLM??? The real utility lies
in expanding the model for at least one of these 3 reasons:

> Multiple fixed slopes for a single predictor variable (in lecture 4)

= To examine nominal or ordinal predictors of a quantitative outcome

= To examine nonlinear effects of a quantitative predictor on a
quantitative outcome (e.g., quadratic or piecewise spline predictors)

> Multiple predictors (each potentially using 1+ fixed slopes)
= To test the unique effects of correlated predictors after controlling

for what information they have in common (coming in lecture 5)

> Moderation of predictor effects (via interaction terms)
= To test if predictor slopes depend on other predictors (lectures 6-7)

PSQF 6242: Lecture 3



