# General Linear Models with One Predictor

- Topics:
  - > Vocabulary and broad categories of predictive linear models
  - Special case of GLM 1:
     "(Simple) Linear Regression" with a quantitative predictor
  - Special case of GLM 2: "Independent (or two-sample) *t*-test" with a binary predictor
  - Foreshadowing uses of the GLM

# Review: Methods to Answer Univariate and Bivariate Questions

- Univariate mean comparisons and what they are known as:
  - > "**One-sample** *z***-test**": Used to test a sample mean against an expected population mean (the  $H_0$ ) using a known variance (and big enough N)
  - "One-sample t-test": Used to test a sample mean against an expected population mean (the H<sub>0</sub>) using an unknown variance—because variance must be estimated, we need to correct for denominator DF remaining (N)
- Bivariate association indices for different types of variables:
  - > "**Pearson's** r": Used to quantify linear relationship between two quantitative variables; r is tested for significance against  $H_0$  (e.g., 0) using t-distribution
  - "Spearman's rho": Pearson's r using rank-ordered versions of quantitative variables instead, which is more appropriate for quantitative variables with concerning extreme values or for ordinal variables (i.e., numbers are labels)
  - > "**Pearson's**  $\chi^2$ ": Test if association between categorical variables is ≠ 0 using  $\chi^2$  distribution;  $\chi^2$  must be converted to an effect size (e.g., r, risk ratio, odds ratio) to quantify strength of association independent of significance

## Steps in Quantitative Data Analysis

- **Quantitative data analysis**: the process of applying statistical models to a sample of data to answer your research questions
  - > Enter, download, or otherwise acquire quantitative data
  - > Import data into statistical software and verify its accuracy
  - Describe data using univariate statistics and bivariate measures of association; use these to double-check accuracy of data
- Select a family of statistical models based on the characteristics of the variables of interest and the questions to be answered
  - > Estimate statistical models, check results for potential problems...
  - > Estimate more statistical models, check results again...
  - > Estimate even more statistical models... interpret results!
  - > Write up the results: Btw: you did not "run analyses" or "calculate models"; you "conducted analyses" and "estimated models"

# Roles and Labels of Study Variables

When research questions are phrased as *what is the role of x in explaining y*, below are possible synonyms of *x* and *y*:

- <u>Reason (Explainer):</u>
  - In notation: x variable
    - Exogenous (is not explained)

#### > Predictor

- My preferred generic term
- > Independent variable (IV)
  - Used more often when variable is manipulated (like treatment)

#### Covariate

 Used for reasons the researcher is not interested in (but must include to keep others happy); also used for quantitative predictor in ANCOVA

- What is To Be Explained:
  - > In notation: *y* variable
    - Endogenous (is explained)

#### > Outcome

- My preferred generic term
- Dependent variable (**DV**)
  - Used more often in experimental studies
- Criterion
  - Used in observational studies with "regression" models

## Roles of Variables: Some Examples

- In the following example research questions, identify which variables are **predictors or outcomes** and their likely types:
  - To what extent does positive feedback improve performance speed and accuracy more than neutral feedback?
    - Predictors:
    - Outcomes:
  - Is faster academic growth in elementary school related to more frequent reading to children when in preschool?
    - Predictors:
    - Outcomes:
  - How effective is teacher training for creating higher rates of positive feedback to a teacher's students?
    - Predictors:
    - Outcomes:

# Types of Inferences: 2 possibilities in describing how x relates to y

#### • x causes $y \rightarrow$ causal inference requires the following:

- > x variable had to come first (temporal precedence)
- x variable was under complete experimental control during the study (i.e., through random assignment and experimental manipulation)
- > Study design eliminates all possible alternative explanations

#### x relates to y (synonyms = associative, correlational)

- > We have observed a relationship, but we do not have the ability to infer cause given the design (i.e., it's an observational study without control)
- > In lieu of experimental control, we can attempt **statistical control**: include other predictors that represent alternative explanations for why x relates to y, and see if x is still related to  $y \rightarrow$  many research questions try to do this
- These 2 possibilities can only be distinguished by study design—they have nothing to with the type of variables collected (a common misconception)
- Because causal inference is rarely possible in studies of real people, we will
  only use associative language in describing model effects in this class

## Moving On to Predictive Linear Models

- Questions concerning more than variables at a time are best answered using predictive linear models, in which one must designate which variables are predictors and which are outcomes
- Models come in different flavors based on type of outcome variable
  - > Continu-ish quantitative outcome?
    - "General" Linear Models using the normal distribution—us this semester
  - > Literally any other kind of outcome variable?
    - "Generalized" Linear Models using some other distribution and a transformed predicted outcome (called a "link function") to address variable possible values and boundaries—here are some examples:
      - Binary outcome? Use Bernoulli distribution and logit link
      - Ordinal outcome? Use multinomial distribution and cumulative logit link
      - Nominal outcome? Use multinomial distribution and baseline logit link
      - Binomial outcome? Use binomial distribution and logit link
      - Count outcome? Use Poisson-family distributions and log link
    - Come back in Spring 2022 to learn these generalized linear models  $\odot$

### What "Linear" in "Linear Models" Means

- Most predictive models have a "linear" form, which looks like this:
  - >  $y_i = (\text{constant} * 1) + (\text{constant} * \text{Xpred}1_i) + (\text{constant} * \text{Xpred}2_i)...$
  - Fortunately, this does NOT mean that we can ONLY predict linear relationships—we can specify many nonlinear forms of relationships of quantitative predictors (the Xpred<sub>i</sub> variables) as needed or expected
  - > Fortunately, this also means we can include categorical  $x_i$  predictors
- Historically, variants of the general linear model (for continu-ish outcomes) get siloed into different classes and called different names based on what kind of x<sub>i</sub> predictor variables are included:
  - > Called "(Linear) (Multiple) **Regression**" if using quantitative predictors
  - > Called "Analysis of Variance" (ANOVA) if using categorical predictors
  - > Called "Analysis of Covariance" (**ANCOVA**) if using both predictor kinds
  - We are going to cover all of these as special cases of the General Linear Model ("**the GLM**")—separating them does way more harm than good
    - We will use SAS GLM (REG for standardized) and STATA regress for all!

## Welcome to the GLM!

- Linear models use **new notation within one equation** to describe how all the *x<sub>i</sub>* predictors relate to the *y<sub>i</sub>* outcome(s) in your sample
  - > 1 outcome? "Univariate GLM" 2+ outcomes? "Multivariate GLM"
- Starting point for univariate GLMs is always to represent central tendency and dispersion of the outcome variable  $(y_i)$ 
  - We will use mean and variance to describe the outcome because the GLM uses the normal distribution (in which skewness should be 0)
- Your first GLM is the "**Empty**" model (=no predictors):  $y_i = \beta_0 + e_i$ 
  - >  $y_i$  = "y sub i": outcome variable for *each person* in your sample
  - >  $\beta_0 =$ "**beta 0**" (sometimes called "beta not" but not by me)
    - More generally, betas (β) will represent values to be estimated that will apply to the whole sample (i.e., betas are constants) = "fixed effects"
    - The beta **subscripts index each fixed effect** (starting at 0)

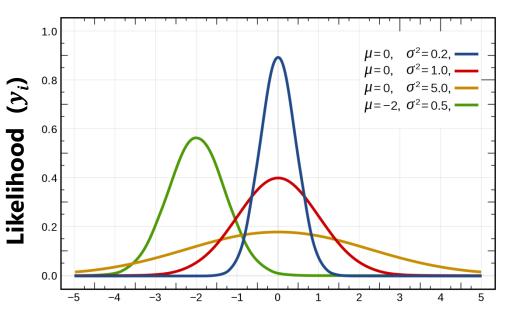
# The "Empty" General Linear Model

#### • The "**Empty**" model (empty = no predictors): $y_i = \beta_0 + e_i$

- >  $\beta_0$  = "beta 0" = "**the intercept**" (or "the constant", ugh) and is defined as the predicted (expected) value for the  $y_i$  outcome when all  $x_i$  predictors = 0 (so the estimated value for  $\beta_0$  will change as the predictors are changed)
- > We don't have any predictors yet, so the intercept takes on the single most likely value for everyone—the **sample** (or "**grand**") **mean** (so in this model,  $\beta_0 = \overline{y}$ )
- So what would  $\beta_0$  be for:
  - > The blue line? the red line?
  - But why do the red and blue lines differ????

Univariate Normal PDF:  

$$f(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} * \exp\left[-\frac{1}{2} * \frac{(y_i - \mu)^2}{\sigma^2}\right]$$



#### Image borrowed from: https://en.wikipedia.org/wiki/Normal\_distribution

# The "Empty" General Linear Model

- The "**Empty**" model ("no predictors"):  $y_i = \beta_0 + e_i$  (in which  $\beta_0 = \overline{y}$ )
  - >  $e_i$  = "e sub i" or "**residual**" = deviation between the actual  $y_i$  outcome for each person and  $y_i$  outcome predicted by the model (through the beta fixed effects)
  - > Because the empty model predicts the same  $\overline{y}$  for all  $y_i$  values, the  $e_i$  residual for each person will just be the difference between  $y_i$  and  $\beta_0$ :  $e_i = y_i \beta_0$
  - > Rather than focusing on each individual  $e_i$  residual, we keep track of their **variance across persons** as the estimated model parameter, **denoted as**  $\sigma_e^2$
  - > You've seen this before:  $Variance = s^2 = \frac{\sum_{i=1}^{N} (y_i \overline{y})^2}{N-1} = \frac{\sum_{i=1}^{N} (e_i)^2}{N-1} = \text{now } \sigma_e^2$ 
    - In other words, the two parameters in the empty model give us the  $y_i$  outcome mean (as  $\beta_0$ ) and the  $y_i$  variance (as  $\sigma_e^2$ )  $\rightarrow$  right now  $\sigma_e^2$  = **all the**  $y_i$  variance
- In describing predictive linear models, the **notation refers to population parameters** instead of sample statistics (i.e., we use  $\sigma_e^2$  instead of  $s^2$ )
  - Why? Because we only ever have one sample from which to estimate parameters that we are trying to make inferences about with respect to some population

## Beyond Empty GLMs: 2 Fixed Effects

- Purpose of predictive linear models (general and general*ized*) is to customize each person's expected outcome by adding predictors
  - Soon we will examine the unique effects of multiple predictors, but let's start with just one quantitative predictor: "(simple) linear regression"
- e.g., two quantitative variables,  $x_i$  and  $y_i$ , that both have a mean (M) = 0, a standard deviation (SD) = 1, and have a **Pearson's** r = .5
- A GLM to describe how  $x_i$  predicts  $y_i$ :  $y_i = \beta_0 + \beta_1(x_i) + e_i$ 
  - >  $\beta_1$  = **slope** of  $x_i$  = difference in  $y_i$  per one-unit difference in  $x_i$

•  $\beta_1 = r\left(\frac{SD_y}{SD_x}\right) = 0.5\left(\frac{1}{1}\right) = 0.5$   $\beta_1$  is a linear slope (just like r)

> 
$$\beta_0$$
 = intercept = expected  $y_i$  when  $x_i = 0$ 

• 
$$\beta_0 = M_y - (\beta_1 * M_x) = 0 - (0.5 * 0) = 0$$

 $\beta_0$  adjusts for any mean difference between  $x_i$  and  $y_i$ 

#### Unstandardized Intercepts and Slopes

- e.g.,  $x_i$  and  $y_i$  both have M = 0, SD = 1, and r = .5
  - >  $\beta_1$  = **slope** of  $x_i$  = still the difference in  $y_i$  per one-unit difference in  $x_i$

• 
$$\beta_1 = r\left(\frac{SD_y}{SD_x}\right) = 0.5\left(\frac{1}{1}\right) = 0.5$$
  
 $\beta_0 = \text{expected } y_i \text{ when } x_i = 0$   
•  $\beta_0 = M_y - (\beta_1 * M_x) = 0 - (0.5 * 0) = 0$   
 $\beta_1 \text{ is a linear slope (just like } r)$   
 $\beta_0 \text{ adjusts for any}$   
mean difference  
between  $x_i$  and  $y_i$ 

• What if  $x_i$  has M = 50, SD = 10 instead (but  $y_i$  still has M = 0, SD = 1)?

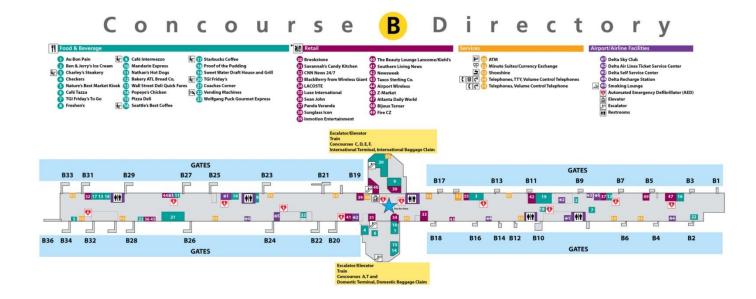
> 
$$\beta_1 = r \left(\frac{SD_y}{SD_x}\right) = 0.5 \left(\frac{1}{10}\right) = 0.05$$
  
>  $\beta_0 = M_y - (\beta_1 * M_x) = 0 - (0.05 * 50) = 2.5$ 

• What if  $y_i$  has M = 50, SD = 10 instead (but  $x_i$  still has M = 0, SD = 1)?

> 
$$\beta_1 = r\left(\frac{SD_y}{SD_x}\right) = 0.5\left(\frac{10}{1}\right) = 5.0$$
  
>  $\beta_0 = M_y - (\beta_1 * M_x) = 50 - (5.0 * 0) = 50$ 

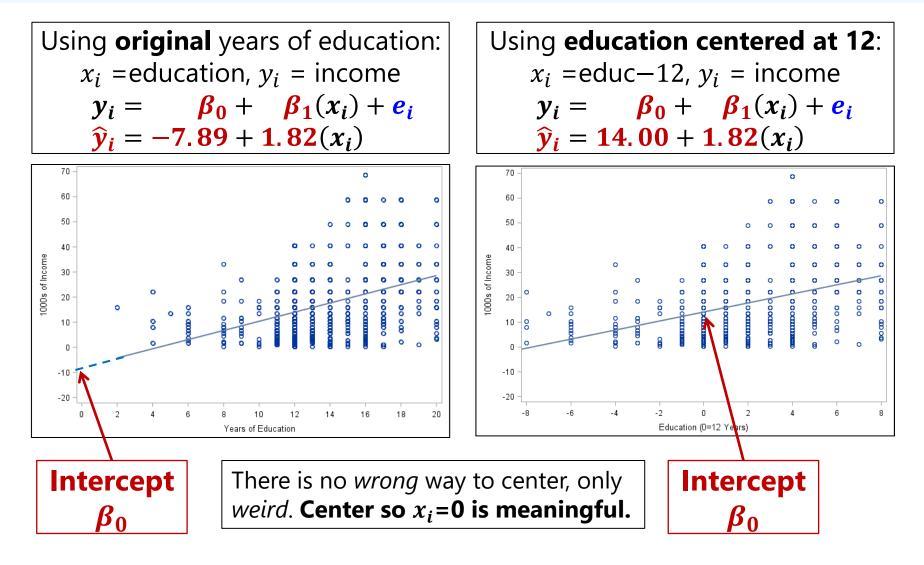
≻

# Why the Unstandardized Fixed Intercept $\beta_0$ \*Should\* Be Meaningful...



#### This is a very detailed map... But what do we need to know to be able to use the map at all?

## Intercept ="You are Here" Sign



#### Beyond Empty GLMs: Residual Variance

- Our GLM describes how  $x_i$  predicts  $y_i$ :  $y_i = \beta_0 + \beta_1(x_i) + e_i$ > Intercept:  $\beta_0$ ; Slope of  $x_i$ :  $\beta_1$
- The  $y_i$  expected from the predictors is called  $\hat{y}_i = y_i$  hat
  - $\hat{y}_i = \beta_0 + \beta_1(x_i) \rightarrow y_i = \hat{y}_i + e_i \rightarrow e_i = y_i \hat{y}_i$
  - > Now we can determine what the  $e_i$  residual would be for each person, and thus what the variance of the  $e_i$  residuals would be

"residual variance": 
$$\sigma_e^2 = \frac{\sum_{i=1}^N (y_i - \hat{y}_i)^2}{N-2} = \frac{\sum_{i=1}^N (e_i)^2}{N-2}$$

> Remember testing r against  $H_0$  using the t-distribution with N - 2? Same N - 2 here, because we had to estimate two fixed effects:  $\beta_0$  and  $\beta_1$ 

$$t = r \sqrt{\frac{N-2}{1-r^2}}$$
,  $DF_{denominator} = N-2$ 

#### More on GLM Residuals

The  $\beta$  formulas result from the goal of **Empty Model** for  $y_i$  = income: minimizing the squared residuals across  $y_i = \beta_0 + e_i$ the sample—this is called "ordinary  $\hat{y}_{Focus} = 17.3$ **least squares estimation**"—let's see what happens for one example person  $y_{Focus} = 17.3 + 41.5$ Variance:  $\sigma_e^2 = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N-1} = 190.2$ 70 Focus:  $x_i = 8, y_i = 58.8$ 60 Empty model  $\rightarrow$  190.2 is **all** the  $y_i$  variance 50 prediction unexplained 40 1000s of Income Add Education as Predictor: 30 20  $y_i = \beta_0 + \beta_1 (Educ_i - 12) + e_i$ 10 - 9  $\hat{y}_{Focus} = 14.0 + 1.8(8) = 28.4$  $y_{Focus} = 28.4 + 30.4$ explained -10 -20 Variance:  $\sigma_e^2 = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N-2} = 162.3$ 8 -6 -2 0 6 -8 -4 Education (0=12 Years)

 $\rightarrow$  162.3 is **leftover**  $y_i$  variance

# Significance Tests of Fixed Slopes

- Each  $\beta$  fixed slope has 6 relevant characteristics to be reported:
  - Estimate = best guess for the fixed slope from our data
  - Standard Error = SE = average distance of sample slope from population slope

     → expected inconsistency of slope across samples
  - > **t-value** = (Estimate  $-H_0$ ) / SE = test-statistic for fixed slope against  $H_0(=0)$
  - > **Denominator DF** = N k (where k = total number of fixed effects)
  - > *p***-value** = (two-tailed) probability of fixed slope estimate *as or more extreme* if  $H_0$  is true  $\rightarrow$  how unexpected our result is on a *t*-distribution with M= $H_0$ , SD=SE
  - > (95%) Confidence Interval = CI =  $Estimate \pm t_{critical} * SE$  = range in which true (population) value of estimate is expected to fall across 95% of samples
- Compare t test-statistic to t critical-value at pre-chosen level of significance (where % unexpected = alpha level): this is a "univariate Wald test"
  - > Btw, if denominator DF are not used, then t is treated as a z instead
  - > Because  $\beta$  fixed slopes are unbounded, SEs and CIs can be obtained directly (instead of through a Fisher *r*-to-*z* transformation as for *r*)

# Significance Tests of Fixed Slopes

- **Standard Error** (**SE**) for the fixed slope estimate  $\beta_x$   $SE_{\beta_x} = \sqrt{\frac{\text{residual variance of Y}}{\text{variance of } x_i * (N-k)}} = \sqrt{\frac{\sigma_e^2}{\sigma_x^2 * (N-k)}}$
- Example:  $y_i = \beta_0 + \beta_1 (Educ_i 12) + e_i, \sigma_e^2 = 162.28$ ,  $N = 734, x_i = Educ_i - 12: M = 1.81, Var = 8.46$ 
  - > Slope for education:  $H_0: \beta_1 = 0, H_A: \beta_1 \neq 0$   $Est = 1.82, SE = \sqrt{\frac{162.28}{8.46*(734-2)}} = 0.16, t = \frac{Est-0}{SE} = \frac{1.82-0}{0.16} = 11.28,$   $DF_{denominator} = N - k = 734 - 2 = 732, p < .0001,$  $95\% CI = Est \pm (t_{crit} * SE) = 1.82 \pm (1.96 * 0.16) = 1.51 \text{ to } 2.14$
  - > Interpretation: Predicted income is **significantly higher** by 1.82k for each additional year of education (so reject  $H_0$  that  $\beta_1 = 0$ )

## SEs and CIs for Predicted Outcomes

• The imprecision (SE) of any predicted outcome  $\hat{y}_i$  (including the outcome captured by  $\beta_0$ ) depends on the value of the predictor—the SE will increase as you move away from the predictor's mean:

> SE of 
$$\hat{\boldsymbol{y}}_{\boldsymbol{i}} \mid x_{\boldsymbol{i}} = \sqrt{\sigma_{\boldsymbol{e}}^2} * \sqrt{\frac{1}{N} + \frac{(x_{\boldsymbol{i}} - \bar{x})^2}{(N-1)\sigma_X^2}}$$

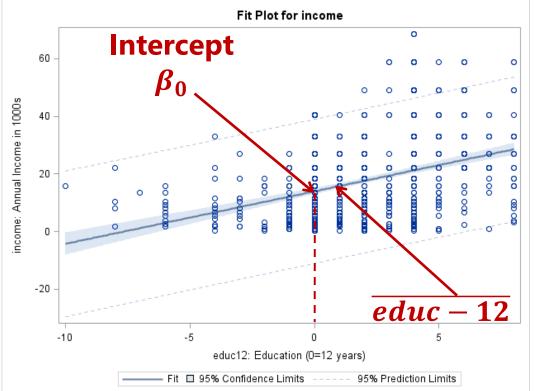
SE (for  $\beta_0$  or any  $\hat{y}_i$ ) = average distance of sample predicted value from population value

- $y_i = \beta_0 + \beta_1 (Educ_i 12) + e_i, \sigma_e^2 = 162.28,$  $N = 734, Educ_i - 12: M = 1.81, Var = 8.46$
- SE and CI for predicted income when Education = 12?

> Given by 
$$\beta_0$$
:  $Est = 14.00$ ,  $SE = \sqrt{162.28} * \sqrt{\frac{1}{734} + \frac{(0-1.81)^2}{(733)8.46}} = 0.55$ ,  
95%  $CI = Est \pm (t_{crit} * SE) = 14.00 \pm (1.96 * 0.55) = 12.91$  to 15.09

- You can use ESTIMATE in SAS or LINCOM in STATA to get predicted outcomes for any value of the model predictors...
  - > Also options within each to get predicted outcomes for each person in data

#### **Cls for Predicted Outcomes**



Blue shaded line is created by  $t_{critical} * SE$ ; blue dotted line also adds in error from  $\sigma_e^2$ 

- The blue shading shows the 95% range for the ŷ<sub>i</sub> outcomes predicted by the regression line
  - They are narrowest at the predictor mean, and widen as moving away
- The blue dashed lines show the 95% range for the actual y<sub>i</sub> outcomes implied by the residual variance (is way bigger)

## Effect Size via Standardized Slopes

- GLM predictive equation uses the scale of the variables as entered directly into the model—this is the "unstandardized" solution
- e.g.,  $y_i = \beta_0 + \beta_1 (Educ_i 12) + e_i$ 
  - >  $x_i$  is  $Educ_i 12$ : M = 1.81, Var = 8.46
  - >  $y_i$  is Income: M = 17.30, Var = 190.21
- Unstandardized:  $y_i = 14.00 + 1.82(Educ_i 12) + e_i$ 
  - > Unstandardized fixed slopes ( $\beta_{unstd}$ ) can be standardized ( $\beta_{std}$ ) as:

$$\beta_{std} = \beta_{unstd} * \frac{SD_x}{SD_y} \quad std \ \beta_0 \text{ will} \\ always \text{ be } 0$$

• Standardized: 
$$y_i = \mathbf{0} + \mathbf{0} \cdot \mathbf{38}(Educ_i) + \mathbf{e_i}$$

- > Standardized solution refers variables that have been transformed into M = 0, Var = 1 (i.e., as if they had been converted to z-scores)
- > Slopes are then in a familiar **correlation metric** (*usually* from -1 to 1)
- > Why do this? Standardized solution makes it easier to compare the **relative strength** of the fixed effects of predictors on different scales

will

# What about Categorical Predictors?

- So far we've seen how a Pearson's r between two quantitative variables  $x_i$  and  $y_i$  can be represented equivalently with a general linear model of  $x_i$  predicting  $y_i$ :  $y_i = \beta_0 + \beta_1(x_i) + e_i$ 
  - > Fixed slope  $\beta_1$  captures a linear effect of  $x_i$  predicting  $y_i$  in an unstandardized metric (using  $x_i$  centered so intercept at 0 makes sense)
  - > For how to capture *nonlinear* quantitative predictor effects, stay tuned
- Now we will see how to use GLMs to predict a quantitative outcome from a categorical predictor
  - General rule: predictors with C categories need C fixed effects to distinguish the outcome means across all unique categories
    - After including the intercept  $\beta_0$ , we still need C 1 predictors, whose  $\beta_x$  slopes then capture mean differences between categories
  - > So let's start with a **binary variable**, which requires a single predictor

## A GLM with a Binary Predictor

- GLM of **binary**  $x_i$  predicting quantitative  $y_i$ :  $y_i = \beta_0 + \beta_1(x_i) + e_i$ 
  - > Create  $x_i$  so 0 = reference category, 1 = alternative category
  - Btw, this is called an "Independent (or two-sample) t-test" (even though all types of predictors use a t test-statistic to test significance)
- For example: Family income predicted by marital status

>  $marrygroup_i: 0 = no, 1 = yes \rightarrow y_i = \beta_0 + \beta_1(Marry01_i) + e_i$ 

> 
$$\beta_0$$
 = **intercept** = expected income for unmarried persons (*Marry*01<sub>i</sub> = 0)

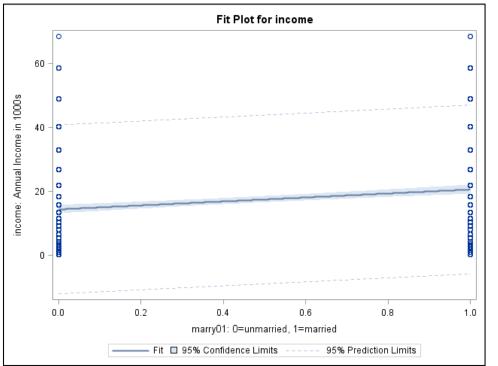
>  $\beta_1$  = **slope** for  $Marry01_i$  = expected mean difference for married persons relative to unmarried persons

>  $e_i$  = **residual** = difference in model-predicted income (from  $\hat{y}_i$ ) and actual income  $y_i$ , whose (residual) variance is estimated as  $\sigma_e^2$ 

#### A GLM with a Binary Predictor

#### $y_i = \beta_0 + \beta_1 (Marry01_i) + e_i$ Income-marry r = .23, p < .0001

- Income predicted for unmarried:  $\hat{y}_i = 14.45 + 6.22(0) = 14.45$
- Income residual for unmarried:  $e_i = y_i - \hat{y}_i \rightarrow e_i = y_i - 14.45$
- Predicted income for married:
   \$\hat{y}\_i = 14.45 + 6.22(1) = 20.67\$
- Income residual for unmarried:  $e_i = y_i - \hat{y}_i \rightarrow e_i = y_i - 20.67$



• A "linear" relationship is the only kind possible for binary predictors (there is only one possible "unit difference" in a binary  $x_i$  from 0 to 1)

## Effect Size for a Mean Difference: d

For categorical predictors, an *r* effect size (standardized slope) is less intuitive than an alternative effect size: Cohen's *d*, a standardized mean difference between two groups (0 and 1)

> 
$$d = \frac{\bar{y}_0 - \bar{y}_1}{SD_{pooled}}$$
, where  $SD_{pooled} = \sqrt{\frac{SD_0^2 + SD_1^2}{2}}$ 

- > Other variants you might see: Glass' delta ( $\delta$ ) uses SD for only 1 group; Hedges' g weights by the relative N in each group
- > If your GLM contains only one binary predictor, then the pooled SD is the same as the square root of residual variance,  $\sqrt{\sigma_e^2}$
- > Otherwise,  $\sqrt{\sigma_e^2}$  will be smaller because of the other predictors
  - d can be computed from t test-statistic for a fixed effect:  $d = \frac{2t}{\sqrt{DF_{den}}}$
  - Btw, d and r can be converted as:  $d = \sqrt{\frac{4r^2}{1-r^2}}$ ,  $r = \sqrt{\frac{d^2}{4+d^2}}$

#### Effect Size, Sample Size, and Test Statistics

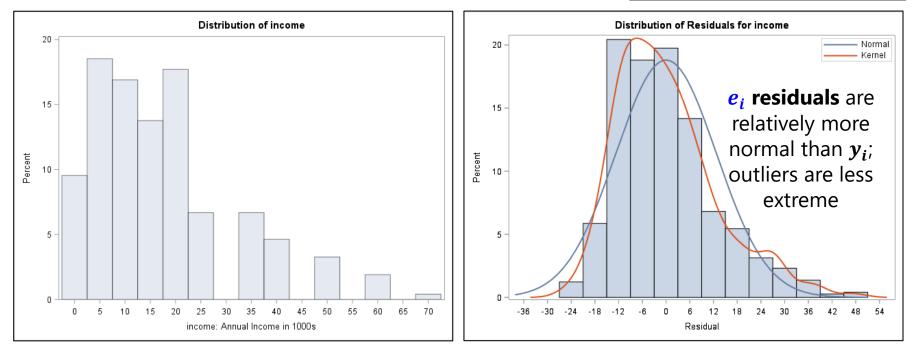
|     | <i>p</i> ≥ <i>alpha</i> :<br>"not significant" | p < alpha:<br>"is significant" | *               |
|-----|------------------------------------------------|--------------------------------|-----------------|
| eff | $H_0$ :                                        | Effect Size Continuum          | Strongest       |
|     | ect = 0                                        | (in Absolute Value)            | Possible Effect |

- Role of test statistics (t and F when using denominator DF; z and  $\chi^2$  if not) is to standardize a parameter's deviation from the null hypothesis
  - ➤ When compared to reference distribution, they give you a *p*-value: probability of finding an effect ≥ obtained effect if  $H_0$  is true
  - Test statistics are a function of both effect size and sample size N
- In other words, test statistics and alpha combine to locate the blue line above that divides effect sizes into "not significant" and "significant"
- Blue line moves to the right (is harder to "find" an effect) given:
  - Lower alpha level = more conservative Type I error rate setting
  - > Smaller sample size  $N \rightarrow$  Fewer people = less power (higher Type II error)

# What Choosing the GLM Means

- The GLM uses a normal distribution to describe the model outcome residuals, not the model outcomes—an important distinction!
  - > That is, the **GLM specifies** "conditional normality" (of  $y_i$  given  $x_i$ )
- Our example:  $y_i = \beta_0 + \beta_1 (Educ_i 12) + \frac{e_i}{2}$ 
  - $\hat{y}_i = \beta_0 + \beta_1 (Educ_i 12), \text{ so } y_i \sim \mathbb{N}(\hat{y}_i, \sigma_e^2) \leftarrow$

$$y_i$$
 is normally distributed  
with  $M = \hat{y}_i$  and  $Var = \sigma_e^2$ 

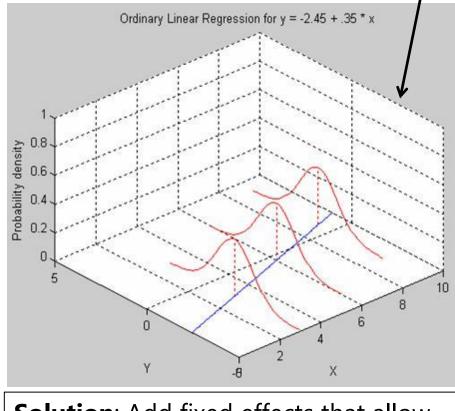


# What Choosing the GLM also Means

- If conditional normality is not reasonable for your outcome, you
  may need to transform the outcome (meh, do so if you absolutely
  must) or choose a generalized linear model instead, otherwise your
  results (SEs and *p*-values) may be incorrect to some extent
  - > Many outcomes cannot be transformed to become "more normal"
  - Come back in Spring 2022 for my generalized linear models class! (for categorical, binomial, count, and skewed continuous outcomes)
- Univariate GLMs also specify **independent**  $e_i$  **residuals**—that all the reasons why any pair of  $y_i$  outcomes would be more related than others are already accounted for in the model
  - Correlated ("dependent") residuals can result from sampling over more than one dimension (e.g., students from multiple schools)
  - Ignoring correlated residuals can lead to way-wrong results!
  - Dependent residuals require a "multilevel" or "mixed-effects" version of the general or generalized linear model instead (my other classes)

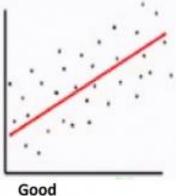
# What Choosing the GLM also Means

• GLMs also specify equal (constant) residual variability across all predictor values: "homoscedasticity" = "homogeneity of variance"



**Solution**: Add fixed effects that allow the variance to differ (this leaves GLM) Otherwise, "heteroscedasticity " = "heterogeneity of variance"  $\rightarrow$ model predicts differentially well across  $x_i$  (SE will need adjusted)

"Not good"  $\rightarrow \sigma_e^2$  increases as the  $x_i$  predictor increases ( $\rightarrow$  fan shape)

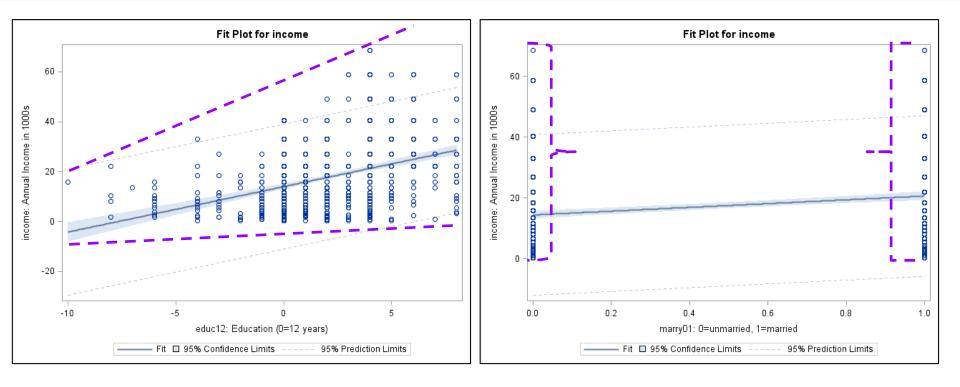




Not Good

Left image borrowed from: http://www.omidrouhani.com/research/logisticregression/html/logisticregression.html Right image borrowed from: https://ajh1143.github.io/HomVar/ PSOF 6242: Lecture 3

#### Heterogeneity of Variance in Example Data



**Left**: Suspected heterogeneity of variance: Residual variance increases with education-12 **Right**: Apparent homogeneity of variance: Residual variance appears equivalent within married categories

## Summary: Introduction to GLMs

- Predictive linear models (i.e., form as outcome = constant\*predictor + constant\*predictor...) create expected outcomes from 1+ predictors
  - > General linear models use a normal conditional distribution
  - Generalized linear models use some other conditional distribution
- General linear models are often called different names based on the type of predictor, but any kind of predictive model can be specified, for example:
  - Empty Model: no predictors; is used to recreate outcome mean and variance as unconditional starting point (sample mean is predicted for all)
    - $y_i = \beta_0 + e_i \rightarrow \beta_0$  = mean,  $e_i$  residual variance =  $\sigma_e^2 \rightarrow$  all the variance to be explained
  - > **Single Predictor Model**: used to customize expected outcomes using a single predictor  $\rightarrow y_i = \beta_0 + \beta_1(x_i C) + e_i$  (*C* is centering constant)
    - $\beta_0$  = intercept = expected  $y_i$  when  $x_i = 0$
    - $\beta_1$  = slope of  $x_i$  = difference in  $y_i$  per one-unit difference in  $x_i$
    - $e_i = residual = deviation between actual <math>y_i$  and predicted  $y_i (= \hat{y}_i)$
    - Effect size given by **standardized slope** will be equal to Pearson's r
- GLMs all specify residuals as normally distributed, independent, and with constant variance across predictors—otherwise, you need a new model!

## Foreshadowing... please stay tuned!

- In a GLM with a single predictor (quantitative or binary), the effect size given by its standardized slope will be equal to Pearson's r
- So what's the point of estimating a GLM??? The real utility lies in **expanding the model** for at least one of these 3 reasons:
  - > Multiple fixed slopes for a single predictor variable (in lecture 4)
    - To examine **nominal** or **ordinal predictors** of a quantitative outcome
    - To examine **nonlinear effects of a quantitative predictor** on a quantitative outcome (e.g., quadratic or piecewise spline predictors)
  - Multiple predictors (each potentially using 1+ fixed slopes)
    - To test the **unique effects** of correlated predictors after controlling for what information they have in common (coming in lecture 5)
  - Moderation of predictor effects (via interaction terms)
    - To test if predictor **slopes depend on** other predictors (lectures 6-7)