General Linear Models with One Predictor

- Topics:
 - > Vocabulary and broad categories of predictive linear models
 - Special case of GLM 1:
 "(Simple) Linear Regression" with a quantitative predictor
 - Special case of GLM 2: "Independent (or two-sample) *t*-test" with a binary predictor
 - Foreshadowing uses of the GLM

Review: Methods to Answer Univariate and Bivariate Questions

- Univariate mean comparisons and what they are known as:
 - > "**One-sample** *z***-test**": Used to test a sample mean against an expected population mean (the H_0) using a known variance (and big enough N)
 - "One-sample t-test": Used to test a sample mean against an expected population mean (the H₀) using an unknown variance—because variance must be estimated, we need to correct for denominator DF remaining (N)
- Bivariate association indices for different types of variables:
 - > "**Pearson's** r": Used to quantify linear relationship between two quantitative variables; r is tested for significance against H_0 (e.g., 0) using t-distribution
 - "Spearman's rho": Pearson's r using rank-ordered versions of quantitative variables instead, which is more appropriate for quantitative variables with concerning extreme values or for ordinal variables (i.e., numbers are labels)
 - > "**Pearson's** χ^2 ": Test if association between categorical variables is ≠ 0 using χ^2 distribution; χ^2 must be converted to an effect size (e.g., r, risk ratio, odds ratio) to quantify strength of association independent of significance

Steps in Quantitative Data Analysis

- **Quantitative data analysis**: the process of applying statistical models to a sample of data to answer your research questions
 - > Enter, download, or otherwise acquire quantitative data
 - > Import data into statistical software and verify its accuracy
 - Describe data using univariate statistics and bivariate measures of association; use these to double-check accuracy of data
- Select a family of statistical models based on the characteristics of the variables of interest and the questions to be answered
 - > Estimate statistical models, check results for potential problems...
 - > Estimate more statistical models, check results again...
 - > Estimate even more statistical models... interpret results!
 - > Write up the results: Btw: you did not "run analyses" or "calculate models"; you "conducted analyses" and "estimated models"

Roles and Labels of Study Variables

When research questions are phrased as *what is the role of x in explaining y*, below are possible synonyms of *x* and *y*:

- <u>Reason (Explainer):</u>
 - In notation: x variable
 - Exogenous (is not explained)

> Predictor

- My preferred generic term
- > Independent variable (IV)
 - Used more often when variable is manipulated (like treatment)

Covariate

 Used for reasons the researcher is not interested in (but must include to keep others happy); also used for quantitative predictor in ANCOVA

- What is To Be Explained:
 - > In notation: *y* variable
 - Endogenous (is explained)

> Outcome

- My preferred generic term
- Dependent variable (**DV**)
 - Used more often in experimental studies
- Criterion
 - Used in observational studies with "regression" models

Roles of Variables: Some Examples

- In the following example research questions, identify which variables are **predictors or outcomes** and their likely types:
 - To what extent does positive feedback improve performance speed and accuracy more than neutral feedback?
 - Predictors:
 - Outcomes:
 - Is faster academic growth in elementary school related to more frequent reading to children when in preschool?
 - Predictors:
 - Outcomes:
 - How effective is teacher training for creating higher rates of positive feedback to a teacher's students?
 - Predictors:
 - Outcomes:

Types of Inferences: 2 possibilities in describing how x relates to y

• x causes $y \rightarrow$ causal inference requires the following:

- > x variable had to come first (temporal precedence)
- x variable was under complete experimental control during the study (i.e., through random assignment and experimental manipulation)
- > Study design eliminates all possible alternative explanations

x relates to y (synonyms = associative, correlational)

- > We have observed a relationship, but we do not have the ability to infer cause given the design (i.e., it's an observational study without control)
- > In lieu of experimental control, we can attempt **statistical control**: include other predictors that represent alternative explanations for why x relates to y, and see if x is still related to $y \rightarrow$ many research questions try to do this
- These 2 possibilities can only be distinguished by study design—they have nothing to with the type of variables collected (a common misconception)
- Because causal inference is rarely possible in studies of real people, we will
 only use associative language in describing model effects in this class

Moving On to Predictive Linear Models

- Questions concerning more than variables at a time are best answered using predictive linear models, in which one must designate which variables are predictors and which are outcomes
- Models come in different flavors based on type of outcome variable
 - > Continu-ish quantitative outcome?
 - "General" Linear Models using the normal distribution—us this semester
 - > Literally any other kind of outcome variable?
 - "Generalized" Linear Models using some other distribution and a transformed predicted outcome (called a "link function") to address variable possible values and boundaries—here are some examples:
 - Binary outcome? Use Bernoulli distribution and logit link
 - Ordinal outcome? Use multinomial distribution and cumulative logit link
 - Nominal outcome? Use multinomial distribution and baseline logit link
 - Binomial outcome? Use binomial distribution and logit link
 - Count outcome? Use Poisson-family distributions and log link
 - Come back in Spring 2022 to learn these generalized linear models \odot

What "Linear" in "Linear Models" Means

- Most predictive models have a "linear" form, which looks like this:
 - > $y_i = (\text{constant} * 1) + (\text{constant} * \text{Xpred}1_i) + (\text{constant} * \text{Xpred}2_i)...$
 - Fortunately, this does NOT mean that we can ONLY predict linear relationships—we can specify many nonlinear forms of relationships of quantitative predictors (the Xpred_i variables) as needed or expected
 - > Fortunately, this also means we can include categorical x_i predictors
- Historically, variants of the general linear model (for continu-ish outcomes) get siloed into different classes and called different names based on what kind of x_i predictor variables are included:
 - > Called "(Linear) (Multiple) **Regression**" if using quantitative predictors
 - > Called "Analysis of Variance" (ANOVA) if using categorical predictors
 - > Called "Analysis of Covariance" (**ANCOVA**) if using both predictor kinds
 - We are going to cover all of these as special cases of the General Linear Model ("**the GLM**")—separating them does way more harm than good
 - We will use SAS GLM (REG for standardized) and STATA regress for all!

Welcome to the GLM!

- Linear models use **new notation within one equation** to describe how all the *x_i* predictors relate to the *y_i* outcome(s) in your sample
 - > 1 outcome? "Univariate GLM" 2+ outcomes? "Multivariate GLM"
- Starting point for univariate GLMs is always to represent central tendency and dispersion of the outcome variable (y_i)
 - We will use mean and variance to describe the outcome because the GLM uses the normal distribution (in which skewness should be 0)
- Your first GLM is the "**Empty**" model (=no predictors): $y_i = \beta_0 + e_i$
 - > y_i = "y sub i": outcome variable for *each person* in your sample
 - > $\beta_0 =$ "**beta 0**" (sometimes called "beta not" but not by me)
 - More generally, betas (β) will represent values to be estimated that will apply to the whole sample (i.e., betas are constants) = "fixed effects"
 - The beta **subscripts index each fixed effect** (starting at 0)

The "Empty" General Linear Model

• The "**Empty**" model (empty = no predictors): $y_i = \beta_0 + e_i$

- > β_0 = "beta 0" = "**the intercept**" (or "the constant", ugh) and is defined as the predicted (expected) value for the y_i outcome when all x_i predictors = 0 (so the estimated value for β_0 will change as the predictors are changed)
- > We don't have any predictors yet, so the intercept takes on the single most likely value for everyone—the **sample** (or "**grand**") **mean** (so in this model, $\beta_0 = \overline{y}$)
- So what would β_0 be for:
 - > The blue line? the red line?
 - But why do the red and blue lines differ????

Univariate Normal PDF:

$$f(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} * \exp\left[-\frac{1}{2} * \frac{(y_i - \mu)^2}{\sigma^2}\right]$$

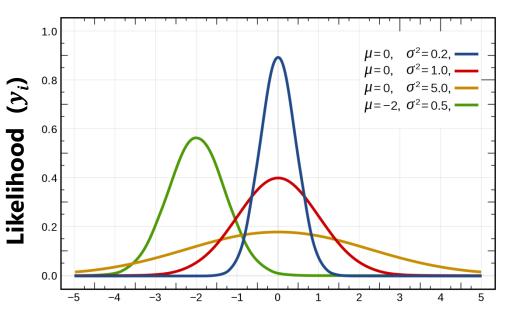


Image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution

The "Empty" General Linear Model

- The "**Empty**" model ("no predictors"): $y_i = \beta_0 + e_i$ (in which $\beta_0 = \overline{y}$)
 - > e_i = "e sub i" or "**residual**" = deviation between the actual y_i outcome for each person and y_i outcome predicted by the model (through the beta fixed effects)
 - > Because the empty model predicts the same \overline{y} for all y_i values, the e_i residual for each person will just be the difference between y_i and β_0 : $e_i = y_i \beta_0$
 - > Rather than focusing on each individual e_i residual, we keep track of their **variance across persons** as the estimated model parameter, **denoted as** σ_e^2
 - > You've seen this before: $Variance = s^2 = \frac{\sum_{i=1}^{N} (y_i \overline{y})^2}{N-1} = \frac{\sum_{i=1}^{N} (e_i)^2}{N-1} = \text{now } \sigma_e^2$
 - In other words, the two parameters in the empty model give us the y_i outcome mean (as β_0) and the y_i variance (as σ_e^2) \rightarrow right now σ_e^2 = **all the** y_i variance
- In describing predictive linear models, the **notation refers to population parameters** instead of sample statistics (i.e., we use σ_e^2 instead of s^2)
 - Why? Because we only ever have one sample from which to estimate parameters that we are trying to make inferences about with respect to some population

Beyond Empty GLMs: 2 Fixed Effects

- Purpose of predictive linear models (general and general*ized*) is to customize each person's expected outcome by adding predictors
 - Soon we will examine the unique effects of multiple predictors, but let's start with just one quantitative predictor: "(simple) linear regression"
- e.g., two quantitative variables, x_i and y_i , that both have a mean (M) = 0, a standard deviation (SD) = 1, and have a **Pearson's** r = .5
- A GLM to describe how x_i predicts y_i : $y_i = \beta_0 + \beta_1(x_i) + e_i$
 - > β_1 = **slope** of x_i = difference in y_i per one-unit difference in x_i

• $\beta_1 = r\left(\frac{SD_y}{SD_x}\right) = 0.5\left(\frac{1}{1}\right) = 0.5$ β_1 is a linear slope (just like r)

>
$$\beta_0$$
 = intercept = expected y_i when $x_i = 0$

•
$$\beta_0 = M_y - (\beta_1 * M_x) = 0 - (0.5 * 0) = 0$$

 β_0 adjusts for any mean difference between x_i and y_i

Unstandardized Intercepts and Slopes

- e.g., x_i and y_i both have M = 0, SD = 1, and r = .5
 - > β_1 = **slope** of x_i = still the difference in y_i per one-unit difference in x_i

•
$$\beta_1 = r\left(\frac{SD_y}{SD_x}\right) = 0.5\left(\frac{1}{1}\right) = 0.5$$

 $\beta_0 = \text{expected } y_i \text{ when } x_i = 0$
• $\beta_0 = M_y - (\beta_1 * M_x) = 0 - (0.5 * 0) = 0$
 $\beta_1 \text{ is a linear slope (just like } r)$
 $\beta_0 \text{ adjusts for any}$
mean difference
between x_i and y_i

• What if x_i has M = 50, SD = 10 instead (but y_i still has M = 0, SD = 1)?

>
$$\beta_1 = r \left(\frac{SD_y}{SD_x}\right) = 0.5 \left(\frac{1}{10}\right) = 0.05$$

> $\beta_0 = M_y - (\beta_1 * M_x) = 0 - (0.05 * 50) = 2.5$

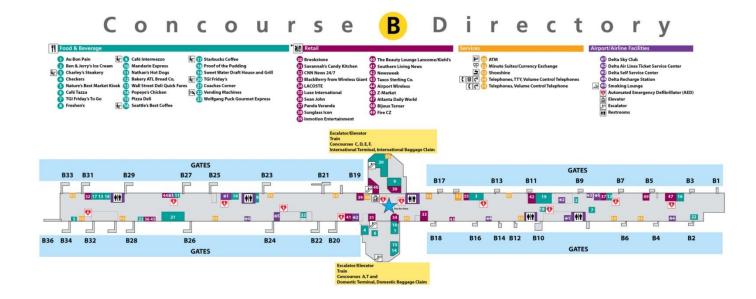
• What if y_i has M = 50, SD = 10 instead (but x_i still has M = 0, SD = 1)?

>
$$\beta_1 = r\left(\frac{SD_y}{SD_x}\right) = 0.5\left(\frac{10}{1}\right) = 5.0$$

> $\beta_0 = M_y - (\beta_1 * M_x) = 50 - (5.0 * 0) = 50$

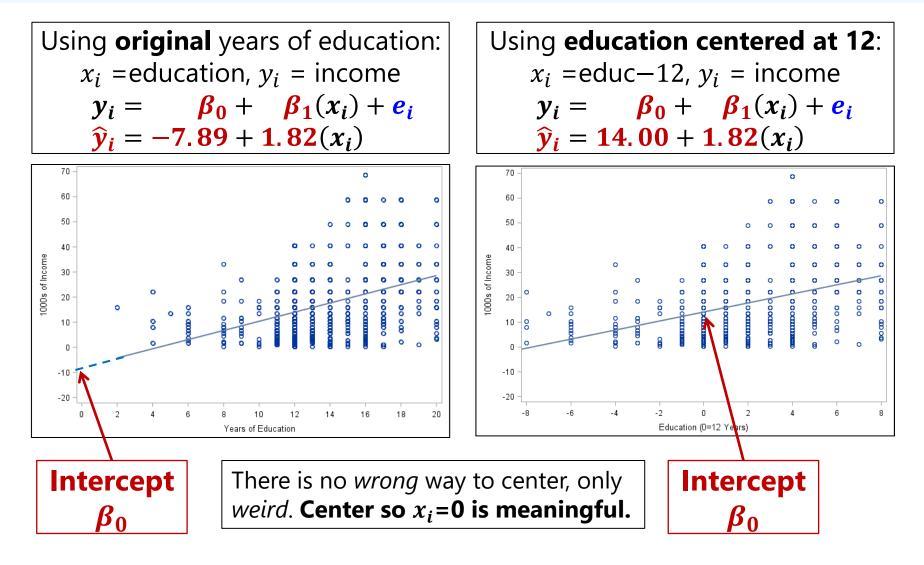
≻

Why the Unstandardized Fixed Intercept β_0 *Should* Be Meaningful...



This is a very detailed map... But what do we need to know to be able to use the map at all?

Intercept ="You are Here" Sign



Beyond Empty GLMs: Residual Variance

- Our GLM describes how x_i predicts y_i : $y_i = \beta_0 + \beta_1(x_i) + e_i$ > Intercept: β_0 ; Slope of x_i : β_1
- The y_i expected from the predictors is called $\hat{y}_i = y_i$ hat
 - $\hat{y}_i = \beta_0 + \beta_1(x_i) \rightarrow y_i = \hat{y}_i + e_i \rightarrow e_i = y_i \hat{y}_i$
 - > Now we can determine what the e_i residual would be for each person, and thus what the variance of the e_i residuals would be

"residual variance":
$$\sigma_e^2 = \frac{\sum_{i=1}^N (y_i - \hat{y}_i)^2}{N-2} = \frac{\sum_{i=1}^N (e_i)^2}{N-2}$$

> Remember testing r against H_0 using the t-distribution with N - 2? Same N - 2 here, because we had to estimate two fixed effects: β_0 and β_1

$$t = r \sqrt{\frac{N-2}{1-r^2}}$$
, $DF_{denominator} = N-2$

More on GLM Residuals

The β formulas result from the goal of **Empty Model** for y_i = income: minimizing the squared residuals across $y_i = \beta_0 + e_i$ the sample—this is called "ordinary $\hat{y}_{Focus} = 17.3$ **least squares estimation**"—let's see what happens for one example person $y_{Focus} = 17.3 + 41.5$ Variance: $\sigma_e^2 = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N-1} = 190.2$ 70 Focus: $x_i = 8, y_i = 58.8$ 60 Empty model \rightarrow 190.2 is **all** the y_i variance 50 prediction unexplained 40 1000s of Income Add Education as Predictor: 30 20 $y_i = \beta_0 + \beta_1 (Educ_i - 12) + e_i$ 10 - 9 $\hat{y}_{Focus} = 14.0 + 1.8(8) = 28.4$ $y_{Focus} = 28.4 + 30.4$ explained -10 -20 Variance: $\sigma_e^2 = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N-2} = 162.3$ 8 -6 -2 0 6 -8 -4 Education (0=12 Years)

 \rightarrow 162.3 is **leftover** y_i variance

Significance Tests of Fixed Slopes

- Each β fixed slope has 6 relevant characteristics to be reported:
 - Estimate = best guess for the fixed slope from our data
 - Standard Error = SE = average distance of sample slope from population slope

 → expected inconsistency of slope across samples
 - > **t-value** = (Estimate $-H_0$) / SE = test-statistic for fixed slope against $H_0(=0)$
 - > **Denominator DF** = N k (where k = total number of fixed effects)
 - > *p***-value** = (two-tailed) probability of fixed slope estimate *as or more extreme* if H_0 is true \rightarrow how unexpected our result is on a *t*-distribution with M= H_0 , SD=SE
 - > (95%) Confidence Interval = CI = $Estimate \pm t_{critical} * SE$ = range in which true (population) value of estimate is expected to fall across 95% of samples
- Compare t test-statistic to t critical-value at pre-chosen level of significance (where % unexpected = alpha level): this is a "univariate Wald test"
 - > Btw, if denominator DF are not used, then t is treated as a z instead
 - > Because β fixed slopes are unbounded, SEs and CIs can be obtained directly (instead of through a Fisher *r*-to-*z* transformation as for *r*)

Significance Tests of Fixed Slopes

- **Standard Error** (**SE**) for the fixed slope estimate β_x $SE_{\beta_x} = \sqrt{\frac{\text{residual variance of Y}}{\text{variance of } x_i * (N-k)}} = \sqrt{\frac{\sigma_e^2}{\sigma_x^2 * (N-k)}}$
- Example: $y_i = \beta_0 + \beta_1 (Educ_i 12) + e_i, \sigma_e^2 = 162.28$, $N = 734, x_i = Educ_i - 12: M = 1.81, Var = 8.46$
 - > Slope for education: $H_0: \beta_1 = 0, H_A: \beta_1 \neq 0$ $Est = 1.82, SE = \sqrt{\frac{162.28}{8.46*(734-2)}} = 0.16, t = \frac{Est-0}{SE} = \frac{1.82-0}{0.16} = 11.28,$ $DF_{denominator} = N - k = 734 - 2 = 732, p < .0001,$ $95\% CI = Est \pm (t_{crit} * SE) = 1.82 \pm (1.96 * 0.16) = 1.51 \text{ to } 2.14$
 - > Interpretation: Predicted income is **significantly higher** by 1.82k for each additional year of education (so reject H_0 that $\beta_1 = 0$)

SEs and CIs for Predicted Outcomes

• The imprecision (SE) of any predicted outcome \hat{y}_i (including the outcome captured by β_0) depends on the value of the predictor—the SE will increase as you move away from the predictor's mean:

> SE of
$$\hat{\boldsymbol{y}}_{\boldsymbol{i}} \mid x_{\boldsymbol{i}} = \sqrt{\sigma_{\boldsymbol{e}}^2} * \sqrt{\frac{1}{N} + \frac{(x_{\boldsymbol{i}} - \bar{x})^2}{(N-1)\sigma_X^2}}$$

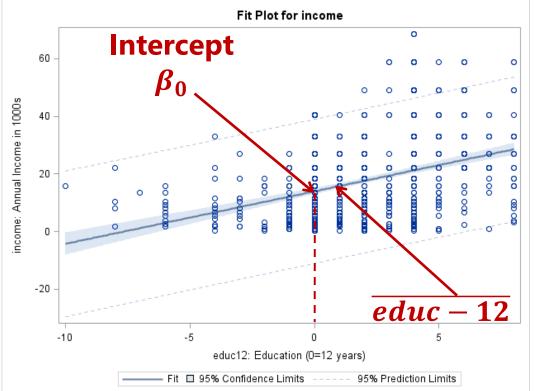
SE (for β_0 or any \hat{y}_i) = average distance of sample predicted value from population value

- $y_i = \beta_0 + \beta_1 (Educ_i 12) + e_i, \sigma_e^2 = 162.28,$ $N = 734, Educ_i - 12: M = 1.81, Var = 8.46$
- SE and CI for predicted income when Education = 12?

> Given by
$$\beta_0$$
: $Est = 14.00$, $SE = \sqrt{162.28} * \sqrt{\frac{1}{734} + \frac{(0-1.81)^2}{(733)8.46}} = 0.55$,
95% $CI = Est \pm (t_{crit} * SE) = 14.00 \pm (1.96 * 0.55) = 12.91$ to 15.09

- You can use ESTIMATE in SAS or LINCOM in STATA to get predicted outcomes for any value of the model predictors...
 - > Also options within each to get predicted outcomes for each person in data

Cls for Predicted Outcomes



Blue shaded line is created by $t_{critical} * SE$; blue dotted line also adds in error from σ_e^2

- The blue shading shows the 95% range for the ŷ_i outcomes predicted by the regression line
 - They are narrowest at the predictor mean, and widen as moving away
- The blue dashed lines show the 95% range for the actual y_i outcomes implied by the residual variance (is way bigger)

Effect Size via Standardized Slopes

- GLM predictive equation uses the scale of the variables as entered directly into the model—this is the "unstandardized" solution
- e.g., $y_i = \beta_0 + \beta_1 (Educ_i 12) + e_i$
 - > x_i is $Educ_i 12$: M = 1.81, Var = 8.46
 - > y_i is Income: M = 17.30, Var = 190.21
- Unstandardized: $y_i = 14.00 + 1.82(Educ_i 12) + e_i$
 - > Unstandardized fixed slopes (β_{unstd}) can be standardized (β_{std}) as:

$$\beta_{std} = \beta_{unstd} * \frac{SD_x}{SD_y} \quad std \ \beta_0 \text{ will} \\ always \text{ be } 0$$

• Standardized:
$$y_i = \mathbf{0} + \mathbf{0} \cdot \mathbf{38}(Educ_i) + \mathbf{e_i}$$

- > Standardized solution refers variables that have been transformed into M = 0, Var = 1 (i.e., as if they had been converted to z-scores)
- > Slopes are then in a familiar **correlation metric** (*usually* from -1 to 1)
- > Why do this? Standardized solution makes it easier to compare the **relative strength** of the fixed effects of predictors on different scales

will

What about Categorical Predictors?

- So far we've seen how a Pearson's r between two quantitative variables x_i and y_i can be represented equivalently with a general linear model of x_i predicting y_i : $y_i = \beta_0 + \beta_1(x_i) + e_i$
 - > Fixed slope β_1 captures a linear effect of x_i predicting y_i in an unstandardized metric (using x_i centered so intercept at 0 makes sense)
 - > For how to capture *nonlinear* quantitative predictor effects, stay tuned
- Now we will see how to use GLMs to predict a quantitative outcome from a categorical predictor
 - General rule: predictors with C categories need C fixed effects to distinguish the outcome means across all unique categories
 - After including the intercept β_0 , we still need C 1 predictors, whose β_x slopes then capture mean differences between categories
 - > So let's start with a **binary variable**, which requires a single predictor

A GLM with a Binary Predictor

- GLM of **binary** x_i predicting quantitative y_i : $y_i = \beta_0 + \beta_1(x_i) + e_i$
 - > Create x_i so 0 = reference category, 1 = alternative category
 - Btw, this is called an "Independent (or two-sample) t-test" (even though all types of predictors use a t test-statistic to test significance)
- For example: Family income predicted by marital status

> $marrygroup_i: 0 = no, 1 = yes \rightarrow y_i = \beta_0 + \beta_1(Marry01_i) + e_i$

>
$$\beta_0$$
 = **intercept** = expected income for unmarried persons (*Marry*01_i = 0)

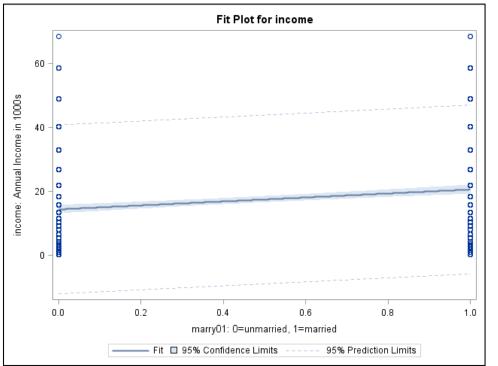
> β_1 = **slope** for $Marry01_i$ = expected mean difference for married persons relative to unmarried persons

> e_i = **residual** = difference in model-predicted income (from \hat{y}_i) and actual income y_i , whose (residual) variance is estimated as σ_e^2

A GLM with a Binary Predictor

$y_i = \beta_0 + \beta_1 (Marry01_i) + e_i$ Income-marry r = .23, p < .0001

- Income predicted for unmarried: $\hat{y}_i = 14.45 + 6.22(0) = 14.45$
- Income residual for unmarried: $e_i = y_i - \hat{y}_i \rightarrow e_i = y_i - 14.45$
- Predicted income for married:
 \$\hat{y}_i = 14.45 + 6.22(1) = 20.67\$
- Income residual for unmarried: $e_i = y_i - \hat{y}_i \rightarrow e_i = y_i - 20.67$



• A "linear" relationship is the only kind possible for binary predictors (there is only one possible "unit difference" in a binary x_i from 0 to 1)

Effect Size for a Mean Difference: d

For categorical predictors, an *r* effect size (standardized slope) is less intuitive than an alternative effect size: Cohen's *d*, a standardized mean difference between two groups (0 and 1)

>
$$d = \frac{\bar{y}_0 - \bar{y}_1}{SD_{pooled}}$$
, where $SD_{pooled} = \sqrt{\frac{SD_0^2 + SD_1^2}{2}}$

- > Other variants you might see: Glass' delta (δ) uses SD for only 1 group; Hedges' g weights by the relative N in each group
- > If your GLM contains only one binary predictor, then the pooled SD is the same as the square root of residual variance, $\sqrt{\sigma_e^2}$
- > Otherwise, $\sqrt{\sigma_e^2}$ will be smaller because of the other predictors
 - d can be computed from t test-statistic for a fixed effect: $d = \frac{2t}{\sqrt{DF_{den}}}$
 - Btw, d and r can be converted as: $d = \sqrt{\frac{4r^2}{1-r^2}}$, $r = \sqrt{\frac{d^2}{4+d^2}}$

Effect Size, Sample Size, and Test Statistics

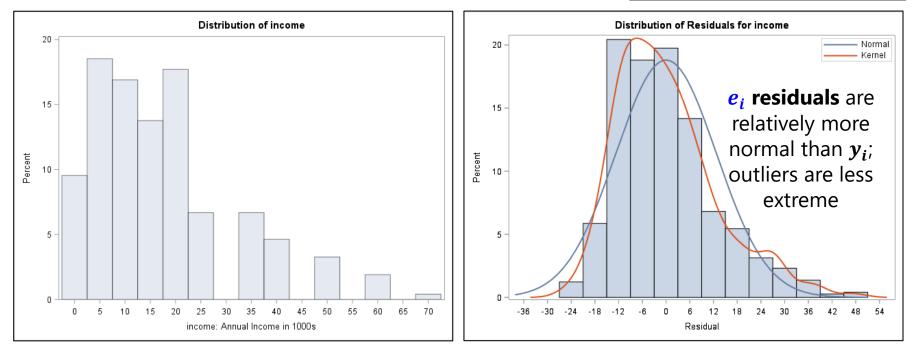
	<i>p</i> ≥ <i>alpha</i> : "not significant"	p < alpha: "is significant"	*
eff	H_0 :	Effect Size Continuum	Strongest
	ect = 0	(in Absolute Value)	Possible Effect

- Role of test statistics (t and F when using denominator DF; z and χ^2 if not) is to standardize a parameter's deviation from the null hypothesis
 - ➤ When compared to reference distribution, they give you a *p*-value: probability of finding an effect ≥ obtained effect if H_0 is true
 - Test statistics are a function of both effect size and sample size N
- In other words, test statistics and alpha combine to locate the blue line above that divides effect sizes into "not significant" and "significant"
- Blue line moves to the right (is harder to "find" an effect) given:
 - Lower alpha level = more conservative Type I error rate setting
 - > Smaller sample size $N \rightarrow$ Fewer people = less power (higher Type II error)

What Choosing the GLM Means

- The GLM uses a normal distribution to describe the model outcome residuals, not the model outcomes—an important distinction!
 - > That is, the **GLM specifies** "conditional normality" (of y_i given x_i)
- Our example: $y_i = \beta_0 + \beta_1 (Educ_i 12) + \frac{e_i}{2}$
 - $\hat{y}_i = \beta_0 + \beta_1 (Educ_i 12), \text{ so } y_i \sim \mathbb{N}(\hat{y}_i, \sigma_e^2) \leftarrow$

$$y_i$$
 is normally distributed
with $M = \hat{y}_i$ and $Var = \sigma_e^2$

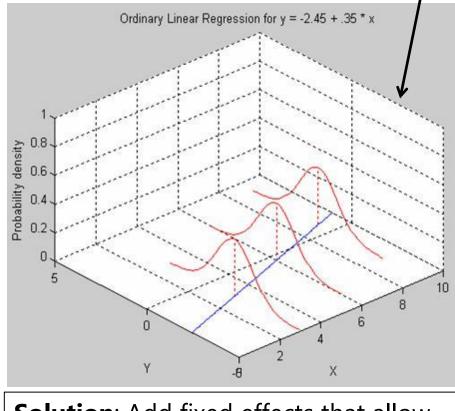


What Choosing the GLM also Means

- If conditional normality is not reasonable for your outcome, you
 may need to transform the outcome (meh, do so if you absolutely
 must) or choose a generalized linear model instead, otherwise your
 results (SEs and *p*-values) may be incorrect to some extent
 - > Many outcomes cannot be transformed to become "more normal"
 - Come back in Spring 2022 for my generalized linear models class! (for categorical, binomial, count, and skewed continuous outcomes)
- Univariate GLMs also specify **independent** e_i **residuals**—that all the reasons why any pair of y_i outcomes would be more related than others are already accounted for in the model
 - Correlated ("dependent") residuals can result from sampling over more than one dimension (e.g., students from multiple schools)
 - Ignoring correlated residuals can lead to way-wrong results!
 - Dependent residuals require a "multilevel" or "mixed-effects" version of the general or generalized linear model instead (my other classes)

What Choosing the GLM also Means

• GLMs also specify equal (constant) residual variability across all predictor values: "homoscedasticity" = "homogeneity of variance"



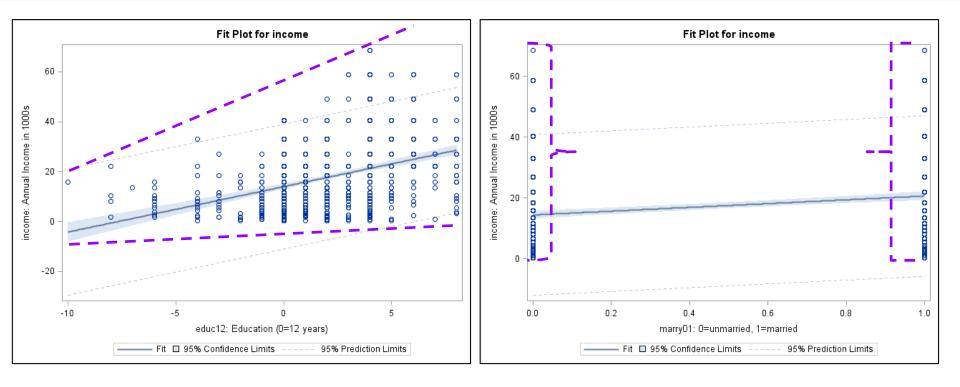
Solution: Add fixed effects that allow the variance to differ (this leaves GLM) Otherwise, "heteroscedasticity " = "heterogeneity of variance" \rightarrow model predicts differentially well across x_i (SE will need adjusted)

"Not good" $\rightarrow \sigma_e^2$ increases as the x_i predictor increases (\rightarrow fan shape)

Not Good

Left image borrowed from: http://www.omidrouhani.com/research/logisticregression/html/logisticregression.html Right image borrowed from: https://ajh1143.github.io/HomVar/ PSOF 6242: Lecture 3

Heterogeneity of Variance in Example Data



Left: Suspected heterogeneity of variance: Residual variance increases with education-12 **Right**: Apparent homogeneity of variance: Residual variance appears equivalent within married categories

Summary: Introduction to GLMs

- Predictive linear models (i.e., form as outcome = constant*predictor + constant*predictor...) create expected outcomes from 1+ predictors
 - > General linear models use a normal conditional distribution
 - Generalized linear models use some other conditional distribution
- General linear models are often called different names based on the type of predictor, but any kind of predictive model can be specified, for example:
 - Empty Model: no predictors; is used to recreate outcome mean and variance as unconditional starting point (sample mean is predicted for all)
 - $y_i = \beta_0 + e_i \rightarrow \beta_0$ = mean, e_i residual variance = $\sigma_e^2 \rightarrow$ all the variance to be explained
 - > **Single Predictor Model**: used to customize expected outcomes using a single predictor $\rightarrow y_i = \beta_0 + \beta_1(x_i C) + e_i$ (*C* is centering constant)
 - β_0 = intercept = expected y_i when $x_i = 0$
 - β_1 = slope of x_i = difference in y_i per one-unit difference in x_i
 - $e_i = residual = deviation between actual <math>y_i$ and predicted $y_i (= \hat{y}_i)$
 - Effect size given by **standardized slope** will be equal to Pearson's r
- GLMs all specify residuals as normally distributed, independent, and with constant variance across predictors—otherwise, you need a new model!

Foreshadowing... please stay tuned!

- In a GLM with a single predictor (quantitative or binary), the effect size given by its standardized slope will be equal to Pearson's r
- So what's the point of estimating a GLM??? The real utility lies in **expanding the model** for at least one of these 3 reasons:
 - > Multiple fixed slopes for a single predictor variable (in lecture 4)
 - To examine **nominal** or **ordinal predictors** of a quantitative outcome
 - To examine **nonlinear effects of a quantitative predictor** on a quantitative outcome (e.g., quadratic or piecewise spline predictors)
 - Multiple predictors (each potentially using 1+ fixed slopes)
 - To test the **unique effects** of correlated predictors after controlling for what information they have in common (coming in lecture 5)
 - Moderation of predictor effects (via interaction terms)
 - To test if predictor **slopes depend on** other predictors (lectures 6-7)