
General Linear Models

with One Predictor
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• Topics:

➢ Vocabulary and broad categories of predictive linear models

➢ Special case of GLM 1: 

“(Simple) Linear Regression” with a quantitative predictor

➢ Special case of GLM 2: 

“Independent (or two-sample) 𝑡-test” with a binary predictor

➢ Foreshadowing uses of the GLM



Review: Methods to Answer 

Univariate and Bivariate Questions
• Univariate mean comparisons and what they are known as: 

➢ “One-sample 𝒛-test”: Used to test a sample mean against an expected 
population mean (the 𝐻0) using a known variance (and big enough 𝑁) 

➢ “One-sample t-test”: Used to test a sample mean against an expected 
population mean (the 𝐻0) using an unknown variance—because variance 
must be estimated, we need to correct for denominator 𝐷𝐹 remaining (𝑁)

• Bivariate association indices for different types of variables:

➢ “Pearson’s 𝒓”: Used to quantify linear relationship between two quantitative 
variables; 𝑟 is tested for significance against 𝐻0 (e.g., 0) using 𝑡-distribution

➢ “Spearman’s rho”: Pearson’s 𝑟 using rank-ordered versions of quantitative 
variables instead, which is more appropriate for quantitative variables with 
concerning extreme values or for ordinal variables (i.e., numbers are labels)

➢ “Pearson’s 𝝌𝟐”: Test if association between categorical variables is ≠ 0 using 
𝜒2 distribution; 𝜒2 must be converted to an effect size (e.g., 𝑟, risk ratio, 
odds ratio) to quantify strength of association independent of significance
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Steps in Quantitative Data Analysis
• Quantitative data analysis: the process of applying statistical 

models to a sample of data to answer your research questions 

➢ Enter, download, or otherwise acquire quantitative data

➢ Import data into statistical software and verify its accuracy

➢ Describe data using univariate statistics and bivariate measures 

of association; use these to double-check accuracy of data

• Select a family of statistical models based on the characteristics 

of the variables of interest and the questions to be answered

➢ Estimate statistical models, check results for potential problems…

➢ Estimate more statistical models, check results again…

➢ Estimate even more statistical models… interpret results!

➢ Write up the results: Btw: you did not “run analyses” or “calculate 

models”; you “conducted analyses” and “estimated models”
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Roles and Labels of Study Variables

• Reason (Explainer):

➢ In notation: 𝑥 variable

▪ Exogenous (is not explained)

➢ Predictor

▪ My preferred generic term

➢ Independent variable (IV)

▪ Used more often when variable 
is manipulated (like treatment)

➢ Covariate

▪ Used for reasons the researcher 
is not interested in (but must 
include to keep others happy); 
also used for quantitative 
predictor in ANCOVA

• What is To Be Explained:

➢ In notation: 𝑦 variable

▪ Endogenous (is explained)

➢ Outcome

▪ My preferred generic term

➢ Dependent variable (DV)

▪ Used more often in 
experimental studies

➢ Criterion

▪ Used in observational studies 
with “regression” models
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When research questions are phrased as what is the role of 

𝑥 in explaining 𝑦, below are possible synonyms of 𝑥 and 𝑦:



Roles of Variables: Some Examples
• In the following example research questions, identify which 

variables are predictors or outcomes and their likely types:

➢ To what extent does positive feedback improve performance 
speed and accuracy more than neutral feedback?

▪ Predictors:

▪ Outcomes:

➢ Is faster academic growth in elementary school related 
to more frequent reading to children when in preschool?

▪ Predictors:

▪ Outcomes: 

➢ How effective is teacher training for creating higher rates 
of positive feedback to a teacher’s students?

▪ Predictors:

▪ Outcomes:
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Types of Inferences: 2 possibilities 

in describing how 𝑥 relates to 𝑦
• 𝒙 causes 𝒚→ causal inference requires the following:

➢ 𝑥 variable had to come first (temporal precedence) 

➢ 𝑥 variable was under complete experimental control during the study 
(i.e., through random assignment and experimental manipulation)

➢ Study design eliminates all possible alternative explanations

• 𝒙 relates to 𝒚 (synonyms = associative, correlational) 
➢ We have observed a relationship, but we do not have the ability to infer 

cause given the design (i.e., it’s an observational study without control)

➢ In lieu of experimental control, we can attempt statistical control: include 
other predictors that represent alternative explanations for why 𝑥 relates to 
𝑦, and see if 𝑥 is still related to 𝑦 → many research questions try to do this 

• These 2 possibilities can only be distinguished by study design—they have 
nothing to with the type of variables collected (a common misconception)

• Because causal inference is rarely possible in studies of real people, we will 
only use associative language in describing model effects in this class
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Moving On to Predictive Linear Models
• Questions concerning more than variables at a time are best 

answered using predictive linear models, in which one must 
designate which variables are predictors and which are outcomes

• Models come in different flavors based on type of outcome variable

➢ Continu-ish quantitative outcome? 

▪ “General” Linear Models using the normal distribution—us this semester

➢ Literally any other kind of outcome variable?

▪ “Generalized” Linear Models using some other distribution and a 
transformed predicted outcome (called a “link function”) to address 
variable possible values and boundaries—here are some examples:

– Binary outcome? Use Bernoulli distribution and logit link

– Ordinal outcome? Use multinomial distribution and cumulative logit link

– Nominal outcome? Use multinomial distribution and baseline logit link

– Binomial outcome? Use binomial distribution and logit link

– Count outcome? Use Poisson-family distributions and log link

▪ Come back in Spring 2022 to learn these generalized linear models ☺
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What “Linear” in “Linear Models” Means
• Most predictive models have a “linear” form, which looks like this:

➢ 𝑦𝑖 = (constant ∗ 1) + constant ∗ Xpred1𝑖 + (constant ∗ Xpred2𝑖)…

➢ Fortunately, this does NOT mean that we can ONLY predict linear 
relationships—we can specify many nonlinear forms of relationships of 
quantitative predictors (the Xpred𝑖 variables) as needed or expected

➢ Fortunately, this also means we can include categorical 𝑥𝑖 predictors

• Historically, variants of the general linear model (for continu-ish 
outcomes) get siloed into different classes and called different 
names based on what kind of 𝒙𝒊 predictor variables are included:

➢ Called “(Linear) (Multiple) Regression” if using quantitative predictors

➢ Called “Analysis of Variance” (ANOVA) if using categorical predictors

➢ Called “Analysis of Covariance” (ANCOVA) if using both predictor kinds

➢ We are going to cover all of these as special cases of the General Linear 
Model (“the GLM”)—separating them does way more harm than good

▪ We will use SAS GLM (REG for standardized) and STATA regress for all! 
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Welcome to the GLM!
• Linear models use new notation within one equation to describe 

how all the 𝑥𝑖 predictors relate to the 𝑦𝑖 outcome(s) in your sample

➢ 1 outcome? “Univariate GLM”    2+ outcomes? “Multivariate GLM”

• Starting point for univariate GLMs is always to represent 

central tendency and dispersion of the outcome variable (𝑦𝑖)

➢ We will use mean and variance to describe the outcome because the 

GLM uses the normal distribution (in which skewness should be 0)

• Your first GLM is the “Empty” model (=no predictors):  𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊

➢ 𝒚𝒊 = “y sub i”: outcome variable for each person in your sample

➢ 𝜷𝟎 = “beta 0” (sometimes called “beta not” but not by me)

▪ More generally, betas (𝜷) will represent values to be estimated that will 

apply to the whole sample (i.e., betas are constants) = “fixed effects”

▪ The beta subscripts index each fixed effect (starting at 0)
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The “Empty” General Linear Model
• The “Empty” model (empty = no predictors):  𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊

➢ 𝜷𝟎 = “beta 0” = “the intercept” (or “the constant”, ugh) and is defined as the 

predicted (expected) value for the 𝑦𝑖 outcome when all 𝑥𝑖 predictors = 0 

(so the estimated value for 𝜷𝟎 will change as the predictors are changed)

➢ We don’t have any predictors yet, so the intercept takes on the single most likely 

value for everyone—the sample (or “grand”) mean (so in this model, 𝜷𝟎 = ഥ𝒚)

• So what would 𝜷𝟎 be for: 

➢ The blue line? the red line?

➢ But why do the red and blue

lines differ????

10
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The “Empty” General Linear Model
• The “Empty” model (“no predictors”):  𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊 (in which 𝜷𝟎 = ഥ𝒚)

➢ 𝒆𝒊 = “e sub i” or “residual” = deviation between the actual 𝒚𝒊 outcome for each 

person and 𝒚𝒊 outcome predicted by the model (through the beta fixed effects)

➢ Because the empty model predicts the same ഥ𝒚 for all 𝒚𝒊 values, the 𝒆𝒊 residual 

for each person will just be the difference between 𝒚𝒊 and 𝜷𝟎:  𝒆𝒊 = 𝒚𝒊 − 𝜷𝟎

➢ Rather than focusing on each individual 𝒆𝒊 residual, we keep track of their 

variance across persons as the estimated model parameter, denoted as 𝝈𝒆
𝟐

➢ You’ve seen this before: 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝒔𝟐 =
σ𝑖=1
𝑁 𝑦𝑖−ഥ𝑦

2

𝑁−1
=

σ𝑖=1
𝑁 𝑒𝑖

2

𝑁−1
= now 𝝈𝒆

𝟐

▪ In other words, the two parameters in the empty model give us the 𝒚𝒊 outcome 

mean (as 𝜷𝟎) and the 𝑦𝑖 variance (as 𝝈𝒆
𝟐) → right now 𝝈𝒆

𝟐 = all the 𝒚𝒊 variance 

• In describing predictive linear models, the notation refers to population 

parameters instead of sample statistics (i.e., we use 𝝈𝒆
𝟐 instead of 𝑠2)

➢ Why? Because we only ever have one sample from which to estimate parameters 

that we are trying to make inferences about with respect to some population 
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Beyond Empty GLMs: 2 Fixed Effects

• Purpose of predictive linear models (general and generalized) is to 

customize each person’s expected outcome by adding predictors

➢ Soon we will examine the unique effects of multiple predictors, but let’s 

start with just one quantitative predictor: “(simple) linear regression”

• e.g., two quantitative variables, 𝑥𝑖 and 𝑦𝑖 , that both have a mean 

(𝑀) = 0, a standard deviation (𝑆𝐷) = 1, and have a Pearson’s 𝒓 =. 𝟓

• A GLM to describe how 𝒙𝒊 predicts 𝒚𝒊:   𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊

➢ 𝜷𝟏 = slope of 𝑥𝑖 = difference in 𝑦𝑖 per one-unit difference in 𝑥𝑖

▪ 𝜷𝟏 = 𝒓
𝑺𝑫𝒚

𝑺𝑫𝒙
= 𝟎. 𝟓

𝟏

𝟏
= 𝟎. 𝟓

➢ 𝜷𝟎 = intercept = expected 𝑦𝑖 when 𝑥𝑖 = 0

▪ 𝜷𝟎 = 𝑴𝒚 − 𝜷𝟏 ∗ 𝑴𝒙 = 𝟎 − 𝟎. 𝟓 ∗ 𝟎 = 𝟎
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𝜷𝟏 is a linear slope (just like 𝒓)

𝜷𝟎 adjusts for any 

mean difference 

between 𝒙𝒊 and 𝒚𝒊



Unstandardized Intercepts and Slopes
• e.g., 𝑥𝑖 and 𝑦𝑖 both have 𝑀 = 0, 𝑆𝐷 = 1, and 𝑟 = .5

➢ 𝜷𝟏 = slope of 𝑥𝑖 = still the difference in 𝑦𝑖 per one-unit difference in 𝑥𝑖

▪ 𝜷𝟏 = 𝒓
𝑺𝑫𝒚

𝑺𝑫𝒙
= 𝟎. 𝟓

𝟏

𝟏
= 𝟎. 𝟓

➢ 𝜷𝟎 = expected 𝑦𝑖 when 𝑥𝑖 = 0

▪ 𝜷𝟎 = 𝑴𝒚 − 𝜷𝟏 ∗ 𝑴𝒙 = 𝟎 − 𝟎. 𝟓 ∗ 𝟎 = 𝟎

• What if 𝒙𝒊 has 𝑀 = 50, 𝑆𝐷 = 10 instead (but 𝑦𝑖 still has 𝑀 = 0, 𝑆𝐷 = 1)? 

➢ 𝜷𝟏 = 𝒓
𝑺𝑫𝒚

𝑺𝑫𝒙
= 𝟎. 𝟓

𝟏

𝟏𝟎
= 𝟎. 𝟎𝟓

➢ 𝜷𝟎 = 𝑴𝒚 − 𝜷𝟏 ∗ 𝑴𝒙 = 𝟎 − 𝟎. 𝟎𝟓 ∗ 𝟓𝟎 = 𝟐. 𝟓

• What if 𝒚𝒊 has 𝑀 = 50, 𝑆𝐷 = 10 instead (but 𝑥𝑖 still has 𝑀 = 0, 𝑆𝐷 = 1)? 

➢ 𝜷𝟏 = 𝒓
𝑺𝑫𝒚

𝑺𝑫𝒙
= 𝟎. 𝟓

𝟏𝟎

𝟏
= 𝟓. 𝟎

➢ 𝜷𝟎 = 𝑴𝒚 − 𝜷𝟏 ∗ 𝑴𝒙 = 𝟓𝟎 − 𝟓. 𝟎 ∗ 𝟎 = 𝟓𝟎
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𝜷𝟎 adjusts for any 

mean difference 

between 𝑥𝑖 and 𝑦𝑖

𝜷𝟏 is a linear slope (just like 𝒓)



Why the Unstandardized Fixed 

Intercept 𝜷𝟎 *Should* Be Meaningful…

14

This is a very detailed map…

But what do we need to know 

to be able to use the map at all?
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Intercept =“You are Here” Sign

15PSQF 6242: Lecture 3

Using original years of education: 

𝑥𝑖 =education, 𝑦𝑖 = income

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊
ෝ𝒚𝒊 = −𝟕. 𝟖𝟗 + 𝟏. 𝟖𝟐 𝒙𝒊

Intercept

𝜷𝟎

Using education centered at 12: 

𝑥𝑖 =educ−12, 𝑦𝑖 = income

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊
ෝ𝒚𝒊 = 𝟏𝟒. 𝟎𝟎 + 𝟏. 𝟖𝟐 𝒙𝒊

Intercept

𝜷𝟎

There is no wrong way to center, only 

weird. Center so 𝒙𝒊=0 is meaningful.



Beyond Empty GLMs: Residual Variance

• Our GLM describes how 𝑥𝑖 predicts 𝑦𝑖:   𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊

➢ Intercept: 𝜷𝟎; Slope of 𝑥𝑖 : 𝜷𝟏

• The 𝒚𝒊 expected from the predictors is called ෝ𝒚𝒊 = “y hat” 

➢ ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 → 𝒚𝒊 = ෝ𝒚𝒊 + 𝒆𝒊 → 𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊

➢ Now we can determine what the 𝒆𝒊 residual would be for each 

person, and thus what the variance of the 𝒆𝒊 residuals would be 

“residual variance”: 𝝈𝒆
𝟐 =

σ𝑖=1
𝑁 𝑦𝑖−ෝ𝒚𝒊

2

𝑁−2
=

σ𝑖=1
𝑁 𝒆𝒊

2

𝑁−2

➢ Remember testing 𝑟 against 𝐻0 using the 𝑡-distribution 

with 𝑁 − 2? Same 𝑁 − 2 here, because we had to estimate 

two fixed effects: 𝜷𝟎 and 𝜷𝟏
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𝑡 = 𝑟
𝑁−2

1−𝑟2
, 𝐷𝐹𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝑁 − 2



More on GLM Residuals
Empty Model for 𝑦𝑖 = income:

𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊

ෝ𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟕. 𝟑

𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟕. 𝟑 + 𝟒𝟏. 𝟓

Variance: 𝝈𝒆
𝟐 =

σ𝑖=1
𝑁 𝑦𝑖−ෝ𝒚𝒊

2

𝑁−1
= 190.2

→ 190.2 is all the 𝑦𝑖 variance

Add Education as Predictor:

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊

ෝ𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟒. 𝟎 + 𝟏. 𝟖 𝟖 = 𝟐𝟖. 𝟒

𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟐𝟖. 𝟒 + 𝟑𝟎. 𝟒

Variance: 𝝈𝒆
𝟐 =

σ𝑖=1
𝑁 𝑦𝑖−ෝ𝒚𝒊

2

𝑁−2
= 162.3

→ 162.3 is leftover 𝑦𝑖 variance
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The 𝜷 formulas result from the goal of 

minimizing the squared residuals across 

the sample—this is called “ordinary 

least squares estimation”—let’s see 

what happens for one example person

unexplained

explained

Empty model 

prediction

Focus: 𝑥𝑖 = 8, 𝑦𝑖 = 58.8



Significance Tests of Fixed Slopes
• Each 𝜷 fixed slope has 6 relevant characteristics to be reported:

➢ Estimate = best guess for the fixed slope from our data 

➢ Standard Error = 𝑺𝑬 = average distance of sample slope from population slope 

→ expected inconsistency of slope across samples                                      

➢ 𝒕-value = (Estimate − 𝐻0) / 𝑆𝐸 = test-statistic for fixed slope against 𝐻0(= 0)

➢ Denominator DF = 𝑁 − 𝑘 (where 𝑘 = total number of fixed effects)

➢ 𝒑-value = (two-tailed) probability of fixed slope estimate as or more extreme if 

𝐻0 is true → how unexpected our result is on a t-distribution with M=𝐻0, SD=SE

➢ (95%) Confidence Interval = 𝑪𝑰 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸 = range in which 

true (population) value of estimate is expected to fall across 95% of samples

• Compare 𝒕 test-statistic to 𝑡 critical-value at pre-chosen level of significance

(where % unexpected = alpha level): this is a “univariate Wald test”

➢ Btw, if denominator DF are not used, then 𝒕 is treated as a 𝒛 instead

➢ Because 𝜷 fixed slopes are unbounded, SEs and CIs can be obtained directly 

(instead of through a Fisher 𝑟-to-𝑧 transformation as for 𝑟)
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Significance Tests of Fixed Slopes
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• Standard Error (SE) for the 

fixed slope estimate 𝜷𝒙

in a single-predictor GLM:

• Example: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊, 𝝈𝒆
𝟐 = 𝟏𝟔𝟐. 𝟐𝟖, 

𝑁 = 734, 𝑥𝑖 = 𝐸𝑑𝑢𝑐𝑖 − 12:𝑀 = 1.81, 𝑉𝑎𝑟 = 8.46

➢ Slope for education: 𝐻0: 𝜷𝟏 = 0,HA: 𝜷𝟏 ≠ 0

𝐸𝑠𝑡 = 𝟏. 𝟖𝟐,  SE =
𝟏𝟔𝟐.𝟐𝟖

𝟖.𝟒𝟔∗ 734−2
= 0.16,  𝑡 =

𝐸𝑠𝑡−0

𝑆𝐸
=

1.82−0

0.16
= 11.28, 

𝐷𝐹𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝑁 − 𝑘 = 734 − 2 = 732, 𝑝 < .0001,
95% 𝐶𝐼 = 𝐸𝑠𝑡 ± (𝑡𝑐𝑟𝑖𝑡 ∗ 𝑆𝐸) = 1.82 ±(1.96 ∗ 0.16) = 1.51 to 2.14

➢ Interpretation: Predicted income is significantly higher by 1.82k 

for each additional year of education (so reject 𝐻0 that 𝜷𝟏 = 0)

SE𝛽𝑥 =
residual variance of Y

variance of 𝑥𝑖 ∗ 𝑁 − 𝑘
=

𝝈𝒆
𝟐

𝜎𝑥
2 ∗ 𝑁 − 𝑘



SEs and CIs for Predicted Outcomes
• The imprecision (SE) of any predicted outcome ෝ𝒚𝒊 (including the outcome 

captured by 𝜷𝟎) depends on the value of the predictor—the SE will increase 
as you move away from the predictor’s mean:

➢ SE of ෝ𝒚𝒊 | 𝑥𝑖 = 𝝈𝒆
𝟐 ∗

1

𝑁
+

𝑥𝑖− ҧ𝑥 2

𝑁−1 𝜎𝑋
2

• 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊, 𝝈𝒆
𝟐 = 𝟏𝟔𝟐. 𝟐𝟖, 

𝑁 = 734, 𝐸𝑑𝑢𝑐𝑖 − 12:𝑀 = 1.81, 𝑉𝑎𝑟 = 8.46

• SE and CI for predicted income when Education = 12?

➢ Given by 𝜷𝟎: 𝐸𝑠𝑡 = 𝟏𝟒. 𝟎𝟎, SE = 𝟏𝟔𝟐. 𝟐𝟖 ∗
1

734
+

0−1.81 2

733 8.46
= 0.55, 

95% 𝐶𝐼 = 𝐸𝑠𝑡 ± (𝑡𝑐𝑟𝑖𝑡 ∗ 𝑆𝐸) = 14.00 ±(1.96 ∗ 0.55) = 12.91 to 15.09

• You can use ESTIMATE in SAS or LINCOM in STATA to get 
predicted outcomes for any value of the model predictors…

➢ Also options within each to get predicted outcomes for each person in data
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SE (for 𝜷𝟎 or any ෝ𝒚𝒊) = 

average distance of 

sample predicted value 

from population value



CIs for Predicted Outcomes
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• The blue shading shows 
the 95% range for the 
ෝ𝒚𝒊 outcomes predicted 
by the regression line

➢ They are narrowest at 
the predictor mean, and 
widen as moving away

• The blue dashed lines 
show the 95% range for 
the actual 𝑦𝑖 outcomes 
implied by the residual 
variance (is way bigger) 

Intercept

𝜷𝟎

𝒆𝒅𝒖𝒄 − 𝟏𝟐

Blue shaded line is created by 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸; 

blue dotted line also adds in error from 𝝈𝒆
𝟐



Effect Size via Standardized Slopes
• GLM predictive equation uses the scale of the variables as entered 

directly into the model—this is the “unstandardized” solution

• e.g., 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊
➢ 𝑥𝑖 is 𝐸𝑑𝑢𝑐𝑖 − 12:𝑀 = 1.81, 𝑉𝑎𝑟 = 8.46

➢ 𝑦𝑖 is 𝐼𝑛𝑐𝑜𝑚𝑒:𝑀 = 17.30, 𝑉𝑎𝑟 = 190.21

• Unstandardized: 𝒚𝒊 = 𝟏𝟒. 𝟎𝟎 + 𝟏. 𝟖𝟐(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊
➢ Unstandardized fixed 

slopes (𝜷𝒖𝒏𝒔𝒕𝒅) can be 
standardized (𝜷𝒔𝒕𝒅) as: 

• Standardized: 𝒚𝒊 = 𝟎 + 𝟎. 𝟑𝟖(𝑬𝒅𝒖𝒄𝒊) + 𝒆𝒊
➢ Standardized solution refers variables that have been transformed 

into 𝑀 = 0, 𝑉𝑎𝑟 = 1 (i.e., as if they had been converted to z-scores)

➢ Slopes are then in a familiar correlation metric (usually from −1 to 1) 

➢ Why do this? Standardized solution makes it easier to compare the 
relative strength of the fixed effects of predictors on different scales
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𝛽𝑠𝑡𝑑 = 𝜷𝒖𝒏𝒔𝒕𝒅 ∗
𝑆𝐷𝑥
𝑆𝐷𝑦

𝑠𝑡𝑑 𝛽0 will 

always be 0



What about Categorical Predictors?
• So far we’ve seen how a Pearson’s 𝑟 between two quantitative 

variables 𝑥𝑖 and 𝑦𝑖 can be represented equivalently with a general 

linear model of 𝑥𝑖 predicting 𝑦𝑖 : 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊

➢ Fixed slope 𝜷𝟏 captures a linear effect of 𝑥𝑖 predicting 𝑦𝑖 in an 

unstandardized metric (using 𝒙𝒊 centered so intercept at 0 makes sense)

➢ For how to capture nonlinear quantitative predictor effects, stay tuned

• Now we will see how to use GLMs to predict a 

quantitative outcome from a categorical predictor

➢ General rule: predictors with 𝑪 categories need 𝑪 fixed effects 

to distinguish the outcome means across all unique categories

▪ After including the intercept 𝜷𝟎, we still need 𝐶 − 1 predictors, whose 

𝜷𝒙 slopes then capture mean differences between categories

➢ So let’s start with a binary variable, which requires a single predictor
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A GLM with a Binary Predictor

• GLM of binary 𝒙𝒊 predicting quantitative 𝑦𝑖 : 
𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊

➢ Create 𝑥𝑖 so 0 = reference category, 1 = alternative category

➢ Btw, this is called an “Independent (or two-sample) 𝒕-test” (even 
though all types of predictors use a 𝑡 test-statistic to test significance)

• For example: Family income predicted by marital status

➢ 𝑚𝑎𝑟𝑟𝑦𝑔𝑟𝑜𝑢𝑝𝑖 : 0 = no, 1 = yes → 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑴𝒂𝒓𝒓𝒚𝟎𝟏𝒊 + 𝒆𝒊

➢ 𝜷𝟎 = intercept = expected income for unmarried persons 
(𝑀𝑎𝑟𝑟𝑦01𝑖 = 0)

➢ 𝜷𝟏 = slope for 𝑀𝑎𝑟𝑟𝑦01𝑖= expected mean difference for married 
persons relative to unmarried persons 

➢ 𝒆𝒊 = residual = difference in model-predicted income (from ෝ𝒚𝒊) and 

actual income 𝒚𝒊, whose (residual) variance is estimated as 𝝈𝒆
𝟐
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A GLM with a Binary Predictor
𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑴𝒂𝒓𝒓𝒚𝟎𝟏𝒊 + 𝒆𝒊 Income–marry 𝑟 = .23, 𝑝 < .0001

• Income predicted for unmarried:

ෝ𝒚𝒊 = 𝟏𝟒. 𝟒𝟓 + 𝟔. 𝟐𝟐 𝟎 = 𝟏𝟒. 𝟒𝟓

• Income residual for unmarried:

𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊 → 𝒆𝒊 = 𝒚𝒊 − 𝟏𝟒. 𝟒𝟓

• Predicted income for married:

ෝ𝒚𝒊 = 𝟏𝟒. 𝟒𝟓 + 𝟔. 𝟐𝟐 𝟏 = 𝟐𝟎. 𝟔𝟕

• Income residual for unmarried:

𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊 → 𝒆𝒊 = 𝒚𝒊 − 𝟐𝟎. 𝟔𝟕

• A “linear” relationship is the only kind possible for binary predictors

(there is only one possible “unit difference” in a binary 𝑥𝑖 from 0 to 1)
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Effect Size for a Mean Difference: 𝑑
• For categorical predictors, an 𝒓 effect size (standardized slope) 

is less intuitive than an alternative effect size: Cohen’s 𝒅, a 
standardized mean difference between two groups (0 and 1)

➢ 𝑑 =
ത𝑦0−ത𝑦1

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
, where  𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 =

𝑆𝐷0
2+𝑆𝐷1

2

2

➢ Other variants you might see: Glass’ delta (𝛿) uses SD for only 
1 group; Hedges’ 𝑔 weights by the relative 𝑁 in each group

➢ If your GLM contains only one binary predictor, then the pooled 

SD is the same as the square root of residual variance, 𝝈𝒆
𝟐

➢ Otherwise, 𝝈𝒆
𝟐 will be smaller because of the other predictors

▪ 𝑑 can be computed from 𝑡 test-statistic for a fixed effect: 𝑑 =
2𝑡

𝐷𝐹𝑑𝑒𝑛

▪ Btw, 𝑑 and 𝑟 can be converted as:  𝑑 =
4𝑟2

1−𝑟2
, 𝑟 =

𝑑2

4+𝑑2
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𝐻0: 

effect = 0

Effect Size Continuum

(in Absolute Value)

Strongest 

Possible Effect

𝒑 ≥ 𝒂𝒍𝒑𝒉𝒂: 

“not significant”

𝒑 < 𝒂𝒍𝒑𝒉𝒂: 

“is significant”

• Role of test statistics (𝑡 and 𝐹 when using denominator DF; 𝑧 and 𝜒2 if 
not) is to standardize a parameter’s deviation from the null hypothesis

➢ When compared to reference distribution, they give you a 𝑝-value: 
probability of finding an effect ≥ obtained effect if 𝑯𝟎 is true

➢ Test statistics are a function of both effect size and sample size 𝑵

• In other words, test statistics and alpha combine to locate the blue line 
above that divides effect sizes into “not significant” and “significant” 

• Blue line moves to the right (is harder to “find” an effect) given:

➢ Lower alpha level = more conservative Type I error rate setting

➢ Smaller sample size 𝑁 → Fewer people = less power (higher Type II error)

Effect Size, Sample Size, and Test Statistics
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What Choosing the GLM Means
• The GLM uses a normal distribution to describe the model outcome 

residuals, not the model outcomes—an important distinction!

➢ That is, the GLM specifies “conditional normality” (of 𝑦𝑖 given 𝑥𝑖)

• Our example: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊
➢ ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐 , so 𝒚𝒊~𝐍(ෝ𝒚𝒊, 𝝈𝒆

𝟐)

28

Original 𝒚𝒊 is 

positively skewed 

(with outliers)

𝒆𝒊 residuals are 

relatively more 

normal than 𝒚𝒊; 
outliers are less 

extreme

𝒚𝒊 is normally distributed 

with 𝑀 = ෝ𝒚𝒊 and 𝑉𝑎𝑟 = 𝝈𝒆
𝟐



What Choosing the GLM also Means
• If conditional normality is not reasonable for your outcome, you 

may need to transform the outcome (meh, do so if you absolutely 
must) or choose a generalized linear model instead, otherwise your 
results (SEs and p-values) may be incorrect to some extent

➢ Many outcomes cannot be transformed to become “more normal”

➢ Come back in Spring 2022 for my generalized linear models class!
(for categorical, binomial, count, and skewed continuous outcomes)

• Univariate GLMs also specify independent 𝒆𝒊 residuals—that 
all the reasons why any pair of 𝑦𝑖 outcomes would be more 
related than others are already accounted for in the model

➢ Correlated (“dependent”) residuals can result from sampling over 
more than one dimension (e.g., students from multiple schools)

➢ Ignoring correlated residuals can lead to way-wrong results!

➢ Dependent residuals require a “multilevel” or “mixed-effects” version 
of the general or generalized linear model instead (my other classes)
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What Choosing the GLM also Means
• GLMs also specify equal (constant) residual variability across all 

predictor values: “homoscedasticity” = “homogeneity of variance”

30

Left image borrowed from: http://www.omidrouhani.com/research/logisticregression/html/logisticregression.htm

Right image borrowed from: https://ajh1143.github.io/HomVar/
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Otherwise, “heteroscedasticity ” 

= “heterogeneity of variance” →

model predicts differentially well 

across 𝑥𝑖 (SE will need adjusted)

“Not good” → 𝝈𝒆
𝟐 increases as the 

𝑥𝑖 predictor increases (→ fan shape) 

Solution: Add fixed effects that allow 

the variance to differ (this leaves GLM)

http://www.omidrouhani.com/research/logisticregression/html/logisticregression.htm
https://ajh1143.github.io/HomVar/


Heterogeneity of Variance in Example Data
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Left: Suspected heterogeneity 

of variance: Residual variance 

increases with education−12

Right: Apparent homogeneity of 

variance: Residual variance appears 

equivalent within married categories



Summary: Introduction to GLMs
• Predictive linear models (i.e., form as outcome = constant*predictor 

+ constant*predictor…) create expected outcomes from 1+ predictors

➢ General linear models use a normal conditional distribution

➢ Generalized linear models use some other conditional distribution

• General linear models are often called different names based on the type of 
predictor, but any kind of predictive model can be specified, for example:

➢ Empty Model: no predictors; is used to recreate outcome mean and variance as 
unconditional starting point (sample mean is predicted for all)

▪ 𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊 → 𝜷𝟎 = mean, 𝒆𝒊 residual variance = 𝝈𝒆
𝟐
→ all the variance to be explained

➢ Single Predictor Model: used to customize expected outcomes using a 
single predictor → 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 − 𝑪 + 𝒆𝒊 (𝐶 is centering constant)

▪ 𝜷𝟎 = intercept = expected 𝑦𝑖 when 𝑥𝑖 = 0

▪ 𝜷𝟏 = slope of 𝑥𝑖 = difference in 𝑦𝑖 per one-unit difference in 𝑥𝑖
▪ 𝒆𝒊 = residual = deviation between actual 𝑦𝑖 and predicted 𝑦𝑖 (= ෝ𝒚𝒊)

▪ Effect size given by standardized slope will be equal to Pearson’s 𝑟

• GLMs all specify residuals as normally distributed, independent, and with 
constant variance across predictors—otherwise, you need a new model!
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Foreshadowing… please stay tuned!
• In a GLM with a single predictor (quantitative or binary), the effect 

size given by its standardized slope will be equal to Pearson’s 𝒓

• So what’s the point of estimating a GLM??? The real utility lies 
in expanding the model for at least one of these 3 reasons:

➢ Multiple fixed slopes for a single predictor variable (in lecture 4)

▪ To examine nominal or ordinal predictors of a quantitative outcome

▪ To examine nonlinear effects of a quantitative predictor on a 
quantitative outcome (e.g., quadratic or piecewise spline predictors)

➢ Multiple predictors (each potentially using 1+ fixed slopes)

▪ To test the unique effects of correlated predictors after controlling 
for what information they have in common (coming in lecture 5)

➢ Moderation of predictor effects (via interaction terms)

▪ To test if predictor slopes depend on other predictors (lectures 6-7)
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