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• Topics:

➢ Transforming quantitative variables (linearly or nonlinearly)

➢ Bivariate measures of association and hypothesis tests

▪ Correlations for quantitative variables

▪ Contingency table associations of categorical variables

➢ Decision errors in hypothesis testing

▪ Type I and Type II errors 

▪ Power analysis and sample size planning



Review: Univariate Statistics
• What kind of univariate summary statistics are relevant 

to report depends on the type of variable to be described:

➢ Categorical variables (numbers are just labels):

▪ Binary (0 or 1): Mean (= proportion of 1 values); variance and skewness 
are then determined by the mean (i.e., they are redundant)

▪ Ordinal or Nominal with 3+ categories: percentage of each category; 
a single mean (or variance or skewness) makes no kind of sense

▪ You may see ordinal variables treated as quantitative, but keep in mind 
this assumes real distances between the numbers used as labels

▪ Bar graphs of the percentage in each category make a good visual

➢ Quantitative variables (numbers are numbers):

▪ If “symmetric enough”: Min, Max, Mean, SD (or SD2 = variance)

▪ If not, add median (for central tendency) and IQR (for dispersion) 
that are “robust” to outliers (extreme values) or general skewness

▪ Binned-value histograms or boxplots (or violin plots) make good visuals 
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Transforming Quantitative Variables
• Metric of quantitative variables can vary greatly across contexts

➢ May be familiar scales of “real” units: e.g., income in $1000s, 
height in inches/centimeters, weight in pounds/kilograms

➢ May be frequencies: e.g., packs of cigarettes smoked weekly, 
length of hospital stay, number of hurricanes this year

➢ May be induced by the number and format of contributing items: e.g., 
a score on a depression screener of 31; a score on a vocabulary test of 47

• Arbitrary metrics are often transformed for interpretability

➢ e.g., number correct → percent correct (to range from 0-100%)

➢ e.g., for 10 items, each with choices of 1-5, a sum score of 31
→ item mean of 3.1 (i.e., near whatever “3” means on average)

➢ e.g., test scores get converted to common “standardized” scale, 
e.g., M=100, SD=15 (see also GRE scores with M~150, SD~10)

➢ These are all examples of linear transformations—transformations to the 
mean and/or variance of a variable that changes all of its values evenly 
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Linear Transformation: Centering
• Another example is centering → adding or subtracting a constant 

so that 0 is then a meaningful value for the new (centered) variable

➢ If the sample mean ഥ𝒚 is chosen as the centering constant, 

this is known as “mean-centering” (or “grand-mean-centering”)

➢ Predictors will be centered when we build models (lecture 3)…
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Original years of education:

Ed: 𝑴 = 𝟏𝟑. 𝟖𝟏, 𝑺𝑫 = 𝟐. 𝟗𝟏

Edcen = Ed −𝟏𝟐:

Edcen: 𝑴 = 𝟏. 𝟖𝟏, 𝑺𝑫 = 𝟐. 𝟗𝟏



Linear Transformation: 𝑧-scoring
• Prevalent in statistics is the use of “𝒛-scoring” = standardize to 

scale of 𝑴 = 𝟎, 𝑺𝑫 = 𝟏 using:  𝒛𝒊 =
𝒚𝒊−ഥ𝒚

𝒔

• Despite the name, 𝑧-scoring does NOT 

make a variable normally distributed!
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Original income: 

𝑴 = 𝟏𝟕. 𝟑𝟎, 𝑺𝑫 = 𝟏𝟑. 𝟑𝟎

To unstandardize 

back from 𝑧𝑖 to 𝑦𝑖 :
𝑦𝑖 = ത𝑦 + (𝑧𝑖 ∗ 𝑠)

𝒛-scored income: 

𝑴 = 𝟎. 𝟎𝟎, 𝑺𝑫 = 𝟏. 𝟎𝟎



Linear vs. Nonlinear Transformations

• Primary uses of linear transformations:

➢ To make the variable’s values more interpretable (0 especially)

➢ To put different variables onto the same scale so the strength of 

their associations with other variables can be compared more easily

• In contrast, nonlinear transformations change a variable’s 

values unevenly, often done for one of these reasons:

➢ To create an unbounded version of a bounded variable

(to be used when predicting variables with boundaries)

▪ We will see an example of this in creating confidence intervals (stay tuned)

➢ To reduce the impact of extreme (positive) values—two examples:

▪ Replace values with rank-order (also used for associations of ordinal variables)

▪ Reshape values with natural-log transformation… let’s see an example of this
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Nonlinear Transformation: Natural Log 
• One example of a nonlinear transformation uses the “logarithm”
→ the exponent to which the base must be raised to produce 

a number 𝑥: so 𝐿𝑜𝑔𝑏𝑎𝑠𝑒 𝑥 = 𝑦 exactly if 𝑏𝑎𝑠𝑒𝑦 = 𝑥

• The only one you will likely see in statistics is the “Natural log” (𝐿𝑜𝑔𝑒)
that uses 𝒆 (~2.718281828459) as its base: 𝐿𝑜𝑔𝑒 𝑥 = 𝑒𝑥 = 𝑒𝑥𝑝(𝑥)

• 𝐿𝑜𝑔𝑒 spreads out lower values, and reels in upper values
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For details, see https://en.wikipedia.org/wiki/Natural_logarithm
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Original income: 

𝑴 = 𝟏𝟕. 𝟑𝟎, 𝑺𝑫 = 𝟏𝟑. 𝟑𝟎
Log-transformed income: 

𝑴 = 𝟐. 𝟒𝟐, 𝑺𝑫 = 𝟏. 𝟏𝟐

https://en.wikipedia.org/wiki/Natural_logarithm


Review: From Sample to Population
• In lecture 1, we explored how to make inferences about 

a population mean (𝜇) from a sample mean (ത𝑦):

➢ Relies on the standard error (SE) of the mean (𝑺𝑬 = 𝒔/ 𝑵), which 
is the average deviation of any sample mean from the population mean

➢ Use SE to form a confidence interval (CI) around the sample mean estimate

▪ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸, where % confidence and 𝐷𝐹𝑑𝑒𝑛 (𝑁 − 1) → 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

➢ Use SE to form a significance test: How often would we see a sample 
mean ത𝑦 so discrepant from the population mean 𝜇 if 𝜇 really was true?

▪ 𝒑-value = probability of more extreme result (from 𝑡-distribution given alpha)

8PSQF 6242: Lecture 2

• 𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 values for 

alpha = .05 by 

DF shown here

• With smaller 𝑵,

have to go farther 

out to get to 5%

Btw, 𝒕 with 

DF = ∞ is 

𝒛 standard 

normal 



From Univariate to Bivariate
• So far we’ve seen how to address univariate research questions involving 

a comparison of a sample statistic to a known population value (e.g., mean)

• But to answer questions about relationships between two variables, 

we need measures of bivariate association → bi =“two” variables

• Which measure of bivariate association should be used depends on the 

kind of variables being paired (binary, nominal, ordinal, or quantitative)

• For each measure of association, we need a point estimate and a test of 

its “statistical significance”: the probability of observing the association 

we found in the sample if the association in the population were truly 0

➢ More formally, the process of testing an association between variables against 

a population value (e.g., 0) is known as “Null Hypothesis Significance Testing”

➢ Let’s see how NHST works with a common measure of association 

between pairs of quantitative variables: Pearson’s correlation…

▪ Pearson correlations are available in SAS PROC CORR or STATA PWCORR
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Introducing Pearson’s Correlation 𝑟
• Let’s say we have two quantitative variables, 𝑥 and 𝑦

➢ To graph their relationship, we can request a scatterplot, in which values 
for 𝑥 are shown on the x-axis and values for 𝑦 are shown on the y-axis

➢ Correspondence between 𝑥 and 𝑦 values will be captured by a general effect size 
called “correlation”; one specific type for quantitative variables is Pearson’s

➢ A population correlation is denoted as 𝝆 (“rho”), and a sample correlation is 𝒓

➢ Correlations range continuously from −𝟏 to 𝟏 (size indicated by absolute value)

• Here are some example scatterplots and the correlations they depict, ranging 
from perfectly positive (𝑟 = 1), to none (𝑟 = 0), to perfectly negative (𝑟 = −1):
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Image borrowed from: https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2CorrelationCoefficients.html 
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𝑟 = 1 𝑟 = 0 𝑟 = −11 > 𝑟 > 0 0 > 𝑟 > −1

https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2CorrelationCoefficients.html


Computing Pearson’s Correlation 𝑟
• To compute Pearson’s 𝑟 for quantitative variables 𝑥 and 𝑦, 

we first need their univariate statistics of mean and variance:

➢ Means:  𝑥 =
σ𝑖=1
𝑁 𝑥𝑖

𝑁
, 𝑦 =

σ𝑖=1
𝑁 𝑦𝑖

𝑁

➢ Variances:  𝑠𝑥
2 =

σ𝑖=1
𝑁 𝑥𝑖− ҧ𝑥 2

𝑁−1
, 𝑠𝑦

2 =
σ𝑖=1
𝑁 𝑦𝑖−ത𝑦 2

𝑁−1

• Second, we compute their covariance: an unbounded measure 
of association in the original metric of the two variables

➢ Covariance of 𝑥 and 𝑦: 𝐶𝑜𝑣 𝑥, 𝑦 =
σ𝑖=1
𝑁 𝑥𝑖− ҧ𝑥 y𝑖−ഥy

𝑁−1

➢ Positive covariance → same-direction match

▪ High 𝑥 values go with High 𝑦 values; Low 𝑥 values go with Low 𝑦 values

➢ Negative covariance → opposite-direction match

▪ High 𝑥 values go with Low 𝑦 values; Low 𝑥 values go with High 𝑦 values

➢ Zero covariance → no correspondence of any kind

➢ Btw, the covariance of a variable with itself is its variance
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Note the change in notation: we 

identify to which variable the 𝑠2

variance refers using a subscript

Within each variable, 

we have only spent 1 

𝐷𝐹𝑑𝑒𝑛 → so still 𝑁 − 1



Computing Pearson’s Correlation 𝑟
• Covariance of 𝑥 and 𝑦: 𝐶𝑜𝑣 𝑥, 𝑦 =

σ𝑖=1
𝑁 𝑥𝑖− ҧ𝑥 y𝑖−ഥy

𝑁−1

➢ Although a covariance’s direction is informative, its value is not 
directly informative because it is specific to the 𝒙 and 𝒚 units

➢ Example: the association between height and weight in 𝑁 = 10 men:

▪ Height in inches: ҧ𝑥 = 72.20, 𝑠𝑥 = 6.51, 𝑠𝑥
2 = 42.40, 𝑟𝑎𝑛𝑔𝑒 = 62 − 82

▪ Weight in pounds: ത𝑦 = 235.90, 𝑠𝑦 = 20.89, 𝑠𝑦
2 = 436.54, 𝑟𝑎𝑛𝑔𝑒 = 201 − 269

▪ Covariance: 𝐶𝑜𝑣 𝑥, 𝑦 = 135.24 “inch–pounds” indicates ?????

▪ It’s a positive covariance, which tells us that taller men tend to be heavier, but 
it does not give the size of this relationship in a standardized way… we need 𝒓

• Third: we rescale the covariance by adjusting it for the SD of each 
variable, which leads to Pearson’s 𝒓, a standardized association

➢ 𝑟 =
𝐶𝑜𝑣(𝑥,𝑦)

𝑠𝑥𝑠𝑦
=

135.24

6.51∗20.89
= .99408

➢ Positive association is almost perfect! 
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If both variables have SD=1 (e.g., they 

have each been z-scored so Mean=0, 

SD=1), then Covariance = Correlation



Adjusting* Pearson’s 𝑟 for Sample Size

• Note what is not included in the formula for Pearson’s 𝑟:

➢ 𝑟 =
𝐶𝑜𝑣(𝑥,𝑦)

𝑠𝑥𝑠𝑦
→ There is no reference to 𝐷𝐹𝑑𝑒𝑛 to reflect sample size!

➢ To illustrate why this is a problem, think about what 

would happen if we picked two points randomly and 

fit a line through them… perfect (𝑟 = 1)!

• To solve this problem in small samples (like our example of 𝑁 = 10), 

one could instead choose to report an “adjusted correlation”***:

➢ 𝑟𝑎𝑑𝑗 = 1 −
(1−𝑟2)(𝑁−1)

𝑁−2
= 1 −

(1−.992)(10−1)

10−2
= .99339 (instead of .99408)

➢ 𝑟 and 𝑟𝑎𝑑𝑗 will be more similar the stronger 

the correlation is, and the bigger the sample is

*** I have never actually reported 𝑟𝑎𝑑𝑗, but I include it here for 

completeness just in case Reviewer 3 asks for it someday…
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Testing Pearson’s 𝑟 for “Significance”
• More generally, we are doing a “Null Hypothesis Significance 

Test”; in this example, we are asking “what is the probability of 
observing the sample 𝑟 we found if the population 𝜌 = 0”?

➢ A “hypothesis” is a statement about a population parameter

• A “null hypothesis” (𝑯𝟎) is a statement about the population 
parameter being equal to some specific (expected) value 

➢ In Lecture 1 testing the sample mean ത𝑦, 𝐻0: 𝜇 = 10

➢ In current example testing the sample correlation 𝑟, 𝐻0: 𝜌 = 0

• An “alternative hypothesis” (𝑯𝑨) is a statement that 
contradicts the null hypothesis and conveys allowed 
directionality of deviations from value given by 𝐻0
➢ In Lecture 1 with the sample mean ത𝑦, 𝐻𝐴: 𝜇 ≠ 10

➢ In current example with the sample correlation 𝑟, 𝐻𝐴: 𝜌 ≠ 0

➢ These are both “two-tailed” hypotheses (allow either direction)
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Steps in Significance Testing
• Choose critical region: % alpha (“unexpected”) and possible direction

➢ Two sides or just one side?

➢ Alpha (𝛼) (1 −% confidence)?

➢ Distribution for test-statistic

will be dictated as follows: 

• If the test-statistic exceeds the distribution’s critical value(s), 

then the obtained 𝒑-value is less than the chosen alpha level:

➢ You “reject the null hypothesis”—it is sufficiently unexpected to get a 

test-statistic that extreme if the null hypothesis is true; result is “significant”

• If the test-statistic does NOT exceed the distribution’s critical value(s), 

then the 𝒑-value is greater than or equal to the chosen alpha level:

➢ You “DO NOT reject the null hypothesis”—it is sufficiently expected to get a 

test-statistic that extreme if the null hypothesis is true; result is “not significant”

* Thing = numerator DF for association (stay tuned)
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Uses Denominator 

Degrees of Freedom?

Test 1 

thing*

Test >1 

thing*

No: implies infinite 𝑁 𝑧 𝜒2(= 𝑧2 if 1)

Yes: adjusts based on 𝑁 𝒕 𝐹(= 𝑡2 if 1)



Testing Pearson’s 𝑟 for “Significance”
• Sample correlation 𝒓 is tested against population correlation 𝝆 using 

a 𝒕-distribution (with denominator degrees of freedom, 𝐷𝐹𝑑𝑒𝑛)

➢ For 𝐻0: 𝜌 = 0, test-statistic 𝑡 = 𝑟
𝑁−2

1−𝑟2
, 𝐷𝐹𝑑𝑒𝑛 = 𝑁 − 2

• Choose a two-tailed test (because either a negative or positive 

correlation would be meaningful), and typical alpha (𝜶) = .05

➢ For 𝜶 =. 𝟎𝟓 (95% confidence) and 𝑫𝑭𝒅𝒆𝒏 = 𝟖, then 𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = ±𝟐. 𝟑𝟏

• For our example, testing 𝐻0: 𝜌 = 0

➢ Pearson’s 𝒓:  𝑡 =. 𝟗𝟗𝟒𝟎𝟖
10−2

1−(.99408)2
= 25.88, 𝑝 = .00000000534 (5.34E-09)

➢ Adjusted 𝒓:  𝑡 =. 𝟗𝟗𝟑𝟑𝟒
10−2

1−(.99334)2
= 24.38, 𝑝 = .00000000855 (8.55E-09)

➢ It’s REALLY UNLIKELY to observe 𝑟 = .99 with 𝑁 = 10 if the true 𝜌 = 0
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Either way, we reject 𝑯𝟎: 

𝒓 is “significantly” positive



Testing Pearson’s 𝑟 for “Significance”
• Another example using 𝑁 = 10 and two random variables 

simulated to have no relationship in the population (𝜌 = 0)

➢ 𝑡 = 𝑟
𝑁−2

1−𝑟2
,  for 𝐷𝐹𝑑𝑒𝑛 = 𝑁 − 2 = 8 and 𝛼 = .05, 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = ±2.31

• New example, testing 𝐻0: 𝜌 = 0

➢ Pearson’s 𝒓:  𝑡 = −. 𝟐𝟓𝟎
10−2

1− −.250 2 = −0.732 𝑝 = .485

➢ Adjusted 𝒓:  𝑡 = −. 𝟐𝟑𝟕
10−2

1− −.237 2 = −0.691, 𝑝 = .498

➢ It’s sufficiently expected to obtain 𝑟 = ± .25 with 𝑁 = 10 if the true 𝜌 = 0; 
a more extreme 𝑡 test-statistic would have been found about 49% of the time

• When reporting results, 2 or 3 decimal places is sufficient

• Quantities that cannot go past 1 (like 𝑟 and 𝑝) do not need 
leading zeros, but you should use them for everything else
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Either way, we do not reject 𝑯𝟎: 

𝒓 is “nonsignificantly” negative



Pearson correlation 𝑟: From estimate of 

relationship directly to significance
• To estimate the Pearson correlation 𝑟 between two variables in a 

sample, we need their means, variances (→SD), and covariance: 

➢ 𝐶𝑜𝑣 𝑥, 𝑦 =
σ𝑖=1
𝑁 𝑥𝑖− ҧ𝑥 y𝑖−ഥy

𝑁−1
→ Pearson 𝑟 =

𝐶𝑜𝑣(𝑥,𝑦)

𝑠𝑥𝑠𝑦

• We then directly compute a 𝒕 test-statistic for sample correlation 𝑟
against population correlation 𝜌 = 0 using sample size 𝑵:

➢ 𝒕 = 𝑟
𝑁−2

1−𝑟2
,  𝐷𝐹𝑑𝑒𝑛 = 𝑁 − 2 and chosen alpha → 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

➢ Note: the same 𝑟 will result in a greater 𝑡 test-statistic (i.e., 𝑡-value) 
with greater 𝑁 → more people, easier to say obtained correlation 𝑟
is “unexpected” if population correlation is really 𝜌 = 0

➢ In software, the 𝑡-value is generally omitted and given instead is 
the exact 𝒑-value → probability of sample 𝒓 if population 𝝆 = 𝟎

▪ If 𝑝-value < alpha, reject 𝐻0: 𝜌 = 0→ 𝑟 is “significantly” different than 0
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What about a CI for correlation 𝑟?
• Knowing a correlation 𝑟 is “significant” doesn’t speak 

to its expected inconsistency across samples…

➢ Remember confidence intervals? CI = range that should include the 

population value in chosen % of samples 

▪ A symmetric interval around any sample statistic (like correlation 𝑟 here) 

is given by: 𝐶𝐼 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± (𝑐𝑟𝑖𝑡𝑐𝑎𝑙 ∗ 𝑆𝐸)

▪ 𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 refers to threshold value on PDF capturing the statistic’s 

sampling distribution given chosen alpha + directionality (one side 

or both) and degrees of freedom (numerator and/or denominator)

▪ 𝑺𝑬 refers to standard error of the correlation estimate 𝑟: the average 

deviation of a sample correlation from the population correlation

• Relative to the SE and CI for a sample mean previously, 

finding the SE and CI for a sample correlation is more 

complicated because 𝑟 only ranges from −1 to 1
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Sampling Distribution of correlation 𝑟
• Demo: I simulated two bivariate normal distributions 

(𝜌 = 0 or 𝜌 = .8) of 100,000 fake persons for variables 
𝑥𝑖 and 𝑦𝑖, each in a 𝑧-score metric (so 𝑀 = 0, 𝑆𝐷 = 1) 

• Drew 1000 random samples each of 𝑁 = 10, 50, or 80
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Pop
𝝆

𝑵 per

sample

Mean
𝒓𝒔

SD
𝒓𝒔

0 10 -.02 .34

50 .00 .14

90 .00 .11

.8 10 .77 .15

50 .79 .06

90 .80 .04

What would happen to 

𝐶𝐼 = 𝑟 ± (2𝑖𝑠ℎ ∗ 𝑆𝐸)???



SE and CI for Pearson’s 𝑟
• Finding an SE and CI for 𝑟

is more complicated because
𝒓 is bounded between ±1

➢ This means that a symmetric CI 
(i.e., from 𝑟 ± 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸) will 
not work for extreme 𝑟 values

• One solution is a nonlinear
“Fisher transformation” →

➢ It’s called “Fisher’s 𝒛”, but it’s not 
the same 𝑧 as in 𝑧-score (sorry)

• A more general solution is to 
form a symmetric CI around the 
unbounded slope (implied by 
bounded 𝒓) in a model

➢ Stay tuned…
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Image borrowed from: https://en.wikipedia.org/wiki/Fisher_transformation
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Fisher 𝒛𝒓 = 0.5 𝐿𝑜𝑔𝑒
1+𝑟

1−𝑟
, 

𝑆𝐸 𝑧𝑟 =
1

𝑁−3
, 𝐶𝐼 = 𝑧𝑟 ± 𝑧𝑐𝑟𝑖𝑡 ∗ 𝑆𝐸

Steps: convert 𝒓 to 𝒛𝒓, compute 

lower and upper bounds in 𝑧-scale, 

back-transform bounds to 𝑟-scale

Back-transform 𝑧 to 𝑟:

𝑟 =
exp 2𝑧 − 1

exp 2𝑧 + 1

https://en.wikipedia.org/wiki/Fisher_transformation


Pearson’s Correlation and Linearity
• The bivariate association between quantitative variables provided by 

Pearson’s correlation 𝑟 has a specific assumed form: linear relationship 

• The 𝒓 value is indicated by the slope of the prediction (“regression”) line

How did the regression line get determined? Stay tuned…
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𝑟 = .994 for 

Height–Weight example

𝑟 = −.250 for 

two randomly created variables



Pearson Correlation and Linearity
• Pearson’s 𝒓 will not capture any nonlinear relationships

• Right: line reflects 𝑟 = .05, but it misses

the real story—a U-shaped relationship

➢ X and Y are negatively related up to some

point, after which they are positively related
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Left: Anscombe’s quartet, in 

which 𝑟 = .82 in each of 4 

datasets with nearly identical 

statistics (but which show very 

different types of association)

https://en.wikipedia.org/wiki/Anscombe's_quartet


Pearson’s 𝑟 vs. Spearman’s rho (𝜌) 
• Computational shortcuts for Pearson’s 𝑟 with special names:

➢ Pearson’s 𝑟 for two binary variables = “phi” 𝒓

➢ Pearson’s 𝑟 for a binary and a quantitative variable = “point-biserial” 𝒓

• To reduce influence of “outliers” (extreme values), choose another kind 
of correlation: Spearman’s rank correlation coefficient (or 𝝆, rho)

➢ Sort variables by value, then do Pearson’s 𝒓 on the rank order of values
(using same process to find SE, CIs, and 𝑡 test-statistics for significance)

➢ Available in SAS PROC CORR or STATA SPEARMAN
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Pearson vs. Intraclass Correlation
• Correlations are sometimes computed to measure reliability: 

the extent of agreement between two or more sources (variables)

➢ e.g., multiple raters (𝑦1, 𝑦2) each provide scores for the same set of targets

• Pearson’s 𝒓 is problematic for reliability, because it ignores differences in 
mean and variance across raters by standardizing each variable separately

• Solution: use an “Intraclass Correlation” (ICC) instead, which standardizes 
across all raters using a common mean and variance instead

➢ For example, for two raters:  ICC 𝑦1, 𝑦2 =
σ𝑖=1
𝑁 𝑦1𝑖−ഥy y2𝑖−ഥy

(𝑁−1)∗𝑠2

where ത𝑦 =
σ𝑖=1
𝑁 𝑦1𝑖+y2𝑖

2𝑁
and 𝑠𝑦

2 =
σ𝑖=1
𝑁 𝑦1𝑖−ത𝑦

2+σ𝑖=1
𝑁 𝑦2𝑖−ത𝑦

2

2𝑁−1

➢ ICC is also a ratio of variances: 𝐼𝐶𝐶 =
𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑠
2

𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑠
2 +𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑅𝑎𝑡𝑒𝑟𝑠

2 +𝑠𝑤𝑖𝑡ℎ𝑖𝑛−𝑏𝑜𝑡ℎ
2

• ICCs can readily be extended to more than two raters, as well as to 
quantify the effect of multiple distinct sources of systematic variance

➢ e.g., multiple raters of multiple targets across days—how much variance for each?

➢ This is the basis of “Generalizability Theory” (or G-Theory) in measurement
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Intraclass Correlation Example
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Test1 Test2

40
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70
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90

100

110

120

130

Test5 Test6

𝑀: 97 100

𝑆𝐷: 15 15
𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑟 = .670

𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 𝑟 = .679

𝑀: 85 100

𝑆𝐷: 15 15
𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑟 = .670

𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 𝑟 = .457

𝐼𝐶𝐶 =
𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑠
2

𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑠
2 + 𝒔𝑩𝒆𝒕𝒘𝒆𝒆𝒏−𝑹𝒂𝒕𝒆𝒓𝒔

𝟐 + 𝑠𝑤𝑖𝑡ℎ𝑖𝑛−𝑏𝑜𝑡ℎ
2
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Correlations for Binary Variables?
• The possible Pearson’s 𝒓 for binary variables will be limited when they 

are not evenly split into 0/1 because their variance depends on their mean

➢ Remember: Mean = 𝑝, Variance = 𝑝 ∗ (1 − 𝑝)

• If two variables (𝑥 and 𝑦) differ in 𝑝, such that 𝑝𝑦 > 𝑝𝑥

➢ Maximum covariance: 𝐶𝑜𝑣(𝑥, 𝑦) = 𝑝𝑥(1 − 𝑝𝑦)

➢ This problem is known as “range restriction”

➢ Here this means the maximum Pearson’s 𝒓
will be smaller than ±𝟏 it should be:

➢ Some examples using this formula 

to predict maximum Pearson 𝑟 values →
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,

(1 )

(1 )

x y

x y

y x

p p
r

p p

−
=

−

px py max r

0.1 0.2 0.67

0.1 0.5 0.33

0.1 0.8 0.17

0.5 0.6 0.82

0.5 0.7 0.65

0.5 0.9 0.33

0.6 0.7 0.80

0.6 0.8 0.61

0.6 0.9 0.41

0.7 0.8 0.76

0.7 0.9 0.51

0.8 0.9 0.67



Correlations for Binary or Ordinal Variables

• To solve this range restriction, you may want to report a different 

type of correlation based on the idea of a “continuous underlying 

variable” for the binary or ordinal variables (≠ Pearson’s 𝑟)

• Here are four you will hear of in advanced quant classes…

➢ Tetrachoric correlation: between ‘underlying continuous’ distributions 

of two actually binary variables (not = Pearson or Spearman); 

➢ Biserial correlation: between ‘underlying continuous’ (but really binary) 

variable and observed quantitative variable (not = Pearson or Spearman)

➢ Polychoric correlation: between ‘underlying continuous’ distributions 

of two ordinal variables (not = Pearson or Spearman)

➢ Polyserial correlation: between ‘underlying continuous’ distributions of one 

ordinal variable and observed quantitative variable (not = Pearson or Spearman)

• Tetrachoric and polychoric correlations are used in latent variable 

measurement models for categorical outcomes (Item Response Theory)
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Bivariate Association for Categorical Variables
• Associations among categorical variables are more often described 

using test statistics from cross-tabulations (aka, contingency tables)

➢ Frequencies of each possible observed combinations across variables

➢ Each combination is a “cell”; total across a row or column is a “margin”

➢ All cells must be independent (or else you need a different approach) 

➢ Available in SAS PROC FREQ or STATA TABULATE, TAB2, and CS (for effect sizes)

• For example: relationship of defendant race to death sentence

➢ (Numbers) are expected cell counts
for row 𝑟 and column 𝑐: 𝐸𝑟𝑐 =

𝑁𝑟𝑁𝑐

𝑁

➢ For 𝑟 = 1 and 𝑐 = 1→ Nonwhite Yes: 𝐸11 =
284∗66

825
= 22.72

➢ For 𝑟 = 1 and 𝑐 = 2→ Nonwhite No: 𝐸12 =
284∗759

825
= 261.28
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𝑁𝑟= row total

𝑁𝑐= column total



Bivariate Association for Categorical Variables

• Pearson’s 𝝌𝟐 test-statistic → how far off the expected (𝐸𝑟𝑐) from observed 

(𝑂𝑟𝑐) frequencies are for cell 𝑡 = 𝑟𝑐, summed over 𝑇 cells:

• 𝜒2 = σ𝑡=1
𝑇 𝑂𝑟𝑐−𝐸𝑟𝑐

2

𝐸𝑟𝑐
= 7.71

• To get the 𝜒2 test-statistic’s critical value (𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 ), you need to know degrees of 

freedom—but in this case, it is numerator degrees of freedom (𝐷𝐹𝑛𝑢𝑚) instead

➢ Based on 𝑅 = # of rows and 𝐶 = # of columns: 𝐷𝐹𝑛𝑢𝑚 = 𝑅 − 1 𝐶 − 1 = 1

➢ Because 𝜒2 doesn’t use denominator DF , the label “DF” is sufficient, but I want 

to distinguish each kind of DF (numerator = relationship parameters tested, 

denominator = “points” left over from sample size minus parameters tested)

➢ 𝐷𝐹𝑛𝑢𝑚 = 1 is written as 𝜒2 1 = 7.71 or 𝜒1
2 = 7.71; 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

2 = 3.84 for 𝛼 = .05
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The Chi-square (𝜒2) Distribution
• The expected value of the 𝜒2 for 𝐻0 = “no association” is its 

(numerator) degrees of freedom (𝐷𝐹𝑛𝑢𝑚, labeled “𝑘” below)

➢ 𝜒2 has only positive values → only right tail for “unexpected” area 
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For current example with 

𝐷𝐹𝑛𝑢𝑚 = 1 (yellow line), 

our obtained 𝝌𝟐 = 𝟕. 𝟕𝟏
is above the critical value 

of  3.84 at 𝜶 =. 𝟎𝟓, so we 

reject 𝐻0 = no association, 

exact 𝒑-value = .00549. 

The 𝜒2distribution is used 

more generally to test ≥ 1 

effects simultaneously, but 

without denominator DF 

(i.e., no adjustment for 𝑁).

Btw, for 𝐷𝐹𝑛𝑢𝑚 = 1, 𝜒2 = 𝑧2

𝝌𝟐-critical 

where < 5% 

begins is 3.84

our 𝝌𝟐

https://en.wikipedia.org/wiki/File:Chi-square_pdf.svg


Bivariate Association for Categorical Variables

• Conclusion? Obtained 𝜒1
2 = 7.71 > 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

2 = 3.84, so reject 𝑯𝑶

➢ From CHIDIST in excel, 𝑝-value = .00549 → gives the percentage of time we’d find 
𝜒1
2 ≥ 7.71 if there were no association in the population (which is 𝜒2 = 𝐷𝐹𝑛𝑢𝑚)

➢ Conclusion in English? We need to determine the pattern that created
this significant result—in this case, this is straightforward to do because 
there is only one distinction to make across columns or rows (𝐷𝐹𝑛𝑢𝑚 = 1)

➢ Across columns: Among nonwhite defendants, there is a greater proportion 
given the death sentence than would be expected (where “expected” → based 
on the proportion of nonwhite defendants and the proportion of any persons 
given death sentences); Among white defendants, there is a smaller proportion 
given the death sentence than would be expected (based on the proportion of 
white defendants and the proportion of any persons given death sentences)

➢ Across rows: Among persons receiving the death penalty, more of them are 
nonwhite (and fewer or them are white);  Among persons not receiving the 
death penalty, more of them are white (and fewer of them are nonwhite)
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Bivariate Association for Categorical Variables
• Pearson’s 𝜒2 can be used for variables with > 2 categories, but determining 

the reason for a significant result is then more challenging—for example:

• 𝜒2 = σ𝑡=1
𝑇 𝑂𝑟𝑐−𝐸𝑟𝑐

2

𝐸𝑟𝑐
= 29.63, 𝐷𝐹𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑅 − 1 𝐶 − 1 = 3

➢ Obtained 𝜒3
2 = 29.63 > 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

2 = 7.82; reject 𝐻𝑂 (exact 𝑝 = 0.0000017)

➢ There are 3 unique 2𝑥2 (“2 by 2”) combinations to consider 
(“unique” implies that others can be found once you know those 3)

➢ You can break the analysis into 2𝑥2 tables to see what the patterns are, 
but this situation is better handled in a generalized linear model…

▪ Come back in a few semesters for “Applied Generalized Linear Models”! ☺
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Other Measures of Bivariate Association

You May See for Categorical Variables
• When 𝐷𝐹𝑛𝑢𝑚 = 1 (testing 1 thing), 𝑧2 = 𝜒2, and both ignore 𝑁! 

• 𝝌𝟐 𝒑-values may not be accurate when any expected cell count < 5, 

and so various (non-𝑡)“fixes” have been developed:

➢ “Exact” tests: use simulation (not assumed distributions) to get 𝑝-values

➢ Likelihood ratio test: 𝜒2 = 2σ𝑡=1
𝑇 𝑂𝑟𝑐 ∗ 𝐿𝑜𝑔𝑒

𝑂𝑟𝑐

𝐸𝑟𝑐

▪ Equivalent to Pearson’s 𝜒2 in “big enough” samples; shows up in 

models for categorical outcomes (like “log-linear”; “generalized”)

• What if some categories are a lot more frequent?

➢ Kappa (𝜅): 𝜒2 used for measuring agreement (e.g., reliability) 

that corrects for chance levels of agreement

➢ Other ways of correcting for disproportionate numbers of people in 

certain categories (e.g., McNemar’s test for consistency in responses)
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Effect Sizes for Measures of Association
• The correlation metric 𝒓 is more generally known as an 

index of “effect size”—a standardized metric that conveys 

the size of an effect, irrespective of statistical significance (and 𝑁)

➢ Another effect size is 𝒅: standardized mean difference (stay tuned)

• Test-statistics (that use both effect size and sample size 𝑁 in 

significance testing) can be converted back into effect sizes:

➢ e.g., Pearson’s 𝜒2 between two binary variables is called a “phi” 

correlation that is exactly the same as Pearson’s 𝑟:   𝑟 = 𝜒1
2/𝑁

▪ However: 𝑝-values may not match!  This is because Pearson 𝑟 is tested using a 𝑡-
distribution with 𝐷𝐹𝑑𝑒𝑛 , but 𝜒2 (like standard normal 𝑧) does not account for 𝐷𝐹𝑑𝑒𝑛

➢ e.g., convert any 𝑡 test-statistic to an 𝑟 effect size:  𝑟 =
𝑡

(𝑡2+𝐷𝐹𝑑𝑒𝑛)

• Pearson’s 𝝌𝟐 has other special types of effect sizes, too…
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Effect Size via Risk Ratios (Relative Risk)

• Risk = single cell proportion within a row or a column

➢ e.g., aspirin: heart attack risk =
104

11,037
= 0.94%

➢ e.g., placebo: heart attack risk =
189

11,034
= 1.71%

➢ Note that total number of each row is used as the denominator

➢ Difference (= 0.77%) doesn’t seem like much, but it’s a bigger deal 

when you consider how small the base rates of heart attacks are

• Risk ratio (= relative risk) = 
1.71%

0.94%
= 1.819

➢ Without aspirin, your risk of a heart attack is 1.819 times greater
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𝜒1
2 = 25.014 >

𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 = 3.84;
𝑝 < .0001 (5.69E-07)



Effect Size via Odds Ratios

• Odds = ratio of cell frequencies across a row or a column

➢ e.g., aspirin: heart attack odds =
104

10,933
= 0.95%

➢ e.g., placebo: heart attack odds =
189

10,845
= 1.74%

➢ Note that frequency of other condition in the row is used as the denominator

• Odds ratio (OR) = 
1.74%

0.95%
= 1.832

➢ Without aspirin, your risk of a heart attack is 1.832 times greater

➢ With aspirin, your risk of a heart attack is 0.546 times smaller

▪ Thus, odds are not symmetric, and that drives me crazy…

➢ Odds ratios are common measures of effect size in health-related research
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𝜒1
2 = 25.014 >

𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 = 3.84;
𝑝 < .0001 (5.69E-07)



Intermediate Summary

• Measures of bivariate association come in many flavors:

➢ Two quantitative or binary variables: Pearson’s 𝒓 (which measures 

linear relationships only, has special names of “phi” and “point-biserial”) 

➢ Two ordinal variables (or quant with extreme values): Spearman’s 𝒓

▪ Both kinds of 𝑟 can be tested for statistical significance against a null hypothesis 

of no correlation (𝐻0: 𝜌 = 0) using a 𝑡 test-statistic with 𝐷𝐹𝑑𝑒𝑛 = 𝑁 − 2

➢ Two categorical variables: Pearson’s 𝝌𝟐 (which assumes nominal 

variables; has many related variants to correct small sample issues)

▪ Tested for statistical significance against a null hypothesis of no association using 

a 𝜒2 test-statistic with numerator degrees of freedom, such that (𝐻0: 𝜒
2 = 𝐷𝐹𝑛𝑢𝑚) 

➢ I skipped the combination of quantitative with nominal variables 

that have 3+ categories, as that is best handled with a model

• In deciding whether or not to claim a result is significant (i.e., to 

reject 𝐻0), we can screw this up in 2 distinct and important ways…
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Significance Tests Require:
• A distribution (e.g., 𝑡, 𝑧, 𝐹, or 𝜒2) that goes with the test-statistic

• A rejection region = alpha (𝛼)→ how extreme the test-statistic 
value must be to declare it “significant” and thus “unexpected”

➢ e.g., 𝛼 = .05 (95% confidence) implies that a result that extreme must 
only happen less than 5% of the time if the null hypothesis (𝐻0) is true

➢ You also have to decide if you want the rejection region at both ends 
(a two-tailed test; usually)  or only at one end (one-tailed test; rarely)
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Retain 𝑯𝟎Reject 𝑯𝟎 Reject 𝑯𝟎

Standard Deviation Units

Example: 𝑡-distribution  

𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = ±1.96
with infinite 𝐷𝐹𝑑𝑒𝑛

Red areas = 

“significant” result

(unexpected)White area:

“nonsignificant” 

result (expected)



Decision Errors in Hypothesis Testing
• Usually, we test a two-sided “null hypothesis”:

➢ Typical null 𝐻0: effect = 0; alternative 𝐻𝐴: effect ≠ 0

• 2 chances to get it right, 2 chances to get it wrong, governed by:

➢ Alpha (𝛼) = expected percentage of Type I errors for a given 𝐻0
▪ Higher alpha → less extreme required to be significant → more Type I errors

➢ Beta (𝛽) = expected percentage of Type II errors for a given effect size

▪ Usually expressed as 1 − 𝛽 = Power: Probability of finding a true effect

▪ More people 𝑁 and/or greater effect size = more power (fewer Type II errors)!
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Truth: 𝑯𝟎 Truth: 𝑯𝑨

Decision: 

Retain 𝑯𝟎

Correct:

Really NO Effect

Miss:

Type II Error

Decision:

Reject 𝑯𝟎

False Alarm:

Type I Error

Correct:

Really IS an Effect
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Decision Errors in Hypothesis Testing

𝑯𝑨 white area 

= 𝟏 − 𝜷
% power

Distribution 

if truth=𝑯𝑶

Distribution 

if truth=𝑯𝑨

𝑯𝑨 red areas = 𝜷
= % Type II errors 

(misses)

𝑯𝑶 gray areas = 𝜶
= % Type I errors 

(false alarms)

Choose alpha (𝜶)=5%:

more Type I errors, 

fewer Type II errors, 

(and more power)

Choose alpha (𝜶)=1%:

fewer Type I errors, 

more Type II errors, 

(and less power)
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Anticipating Statistical Power
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• Demo: I simulated 𝝆 =. 𝟑
for 100,000 fake persons

• Drew 1000 random samples 

each of 𝑁 = 42, 63, or 85

• Power = % area past 𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍
(is greater with more 𝑁)

𝑵 Statistical 

Power: 

%

significant

Type II 

Error: 

% not 

significant

42 50% 50%

63 66% 37%

85 79% 21%

Smaller 𝑁→ more 

variability in sample 𝑟

→Power→Power→Power

T2

Error

T2

Error

T2

Error

Typical desired power = 80%

(so Type II error rate = 20%)



Power Analysis for 𝑟 Effect Size at 

𝛼 = .05 (from Cohen, 1988 p. 102) 

• Cells give 𝑁 for 
row’s power to 
find column’s 𝑟

• If you start with 
target 𝑟 to find 
𝑁, it’s “a priori 
power analysis”

➢ e.g., for 𝑟 = .3, 
80% power is 
predicted for 
𝑁 = 85

➢ e.g., for 𝑟 = .2, 
80% power is 
predicted for 
𝑁 = 194
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• If you start with a target 𝑁, it’s “sensitivity analysis”

to find a “minimum detectable effect size”

➢ e.g., for 𝑁 = 30, should have power > 80% for 𝑟 ≥ .5

➢ e.g., for 𝑁 = 50, should have power > 80% for 𝑟 ≥ .4



Decisions and Decision Errors: Summary
For every hypothesis test, the following will be reported in a known format:

• Estimate of parameter (from a model); value of obtained test-statistic (𝑡, 𝑧, 𝐹, or 𝜒2)

• Numerator degrees of freedom (𝐷𝐹𝑛𝑢𝑚) when testing more than one 
relationship parameter simultaneously (used with 𝐹 or 𝜒2; 𝐷𝐹𝑛𝑢𝑚 = 1 for 𝑡 or 𝑧)

• Denominator degrees of freedom (𝐷𝐹𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) when not assuming 
infinite sample size (used with 𝑡 or 𝐹; not used with 𝑧 or 𝜒2)

• 𝒑-value: probability of obtained test-statistic if null hypothesis 𝐻0 is true

• Effect size (e.g., 𝑟, 𝑑, or odds ratio )—you have an 𝑟 effect size already if your association 
is a type of correlation (or else compute it); effect size CIs are nice to include, too

Conditional on your decision about significance, what can happen?

• If you reject 𝑯𝟎 and claim your result as “significant” given your chosen alpha (𝛼):

➢ DO have to worry about probability of Type I error (given by your 𝑝-value): a false alarm

➢ DO NOT have to worry about the probability of a Type II error: a miss

➢ Power is related to replicability—a significant result with low power is less likely to replicate!

• If you retain 𝑯𝟎 and claim your result as “nonsignificant” given your chosen alpha (𝛼):

➢ DO NOT have to worry about probability of Type I error (given by your 𝑝-value): a false alarm

➢ DO have to worry about the probability of a Type II error: a miss (power = 1 – Type II error)

➢ In planning studies, the conventional level of power to aim for is 80% (harder to do with smaller effects) 
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