Bivariate Association and Significance Testing

- Topics:
 - > Transforming quantitative variables (linearly or nonlinearly)
 - > Bivariate measures of association and hypothesis tests
 - Correlations for quantitative variables
 - Contingency table associations of categorical variables
 - > Decision errors in hypothesis testing
 - Type I and Type II errors
 - Power analysis and sample size planning

Review: Univariate Statistics

• What kind of **univariate summary statistics** are relevant to report depends on the <u>type of variable</u> to be described:

> Categorical variables (numbers are just labels):

- Binary (0 or 1): Mean (= proportion of 1 values); variance and skewness are then determined by the mean (i.e., they are redundant)
- Ordinal or Nominal with 3+ categories: percentage of each category; a single mean (or variance or skewness) makes no kind of sense
- You may see ordinal variables treated as quantitative, but keep in mind this assumes real distances between the numbers used as labels
- Bar graphs of the percentage in each category make a good visual

> Quantitative variables (numbers are numbers):

- If "symmetric enough": Min, Max, Mean, SD (or SD² = variance)
- If not, add median (for central tendency) and IQR (for dispersion) that are "robust" to outliers (extreme values) or general skewness
- Binned-value histograms or boxplots (or violin plots) make good visuals

Transforming Quantitative Variables

• Metric of quantitative variables can vary greatly across contexts

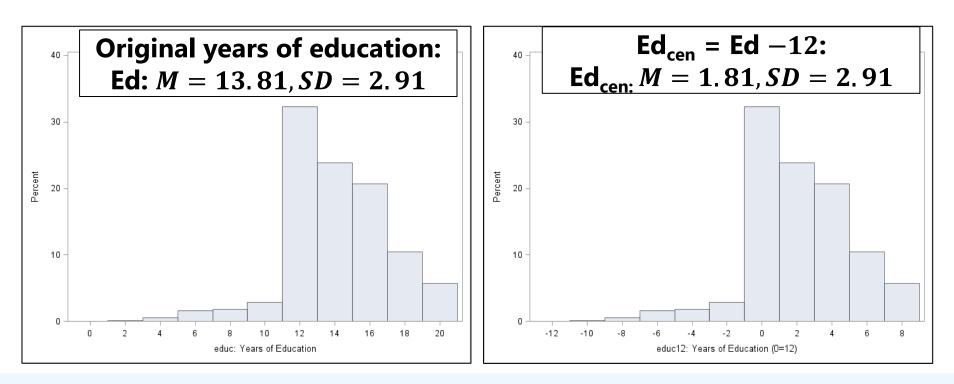
- May be familiar scales of "real" units: e.g., income in \$1000s, height in inches/centimeters, weight in pounds/kilograms
- May be frequencies: e.g., packs of cigarettes smoked weekly, length of hospital stay, number of hurricanes this year
- May be induced by the number and format of contributing items: e.g., a score on a depression screener of 31; a score on a vocabulary test of 47

Arbitrary metrics are often transformed for interpretability

- > e.g., number correct \rightarrow percent correct (to range from 0-100%)
- e.g., for 10 items, each with choices of 1-5, a sum score of 31
 item mean of 3.1 (i.e., near whatever "3" means on average)
- e.g., test scores get converted to common "standardized" scale, e.g., M=100, SD=15 (see also GRE scores with M~150, SD~10)
- These are all examples of linear transformations—transformations to the mean and/or variance of a variable that changes all of its values evenly

Linear Transformation: Centering

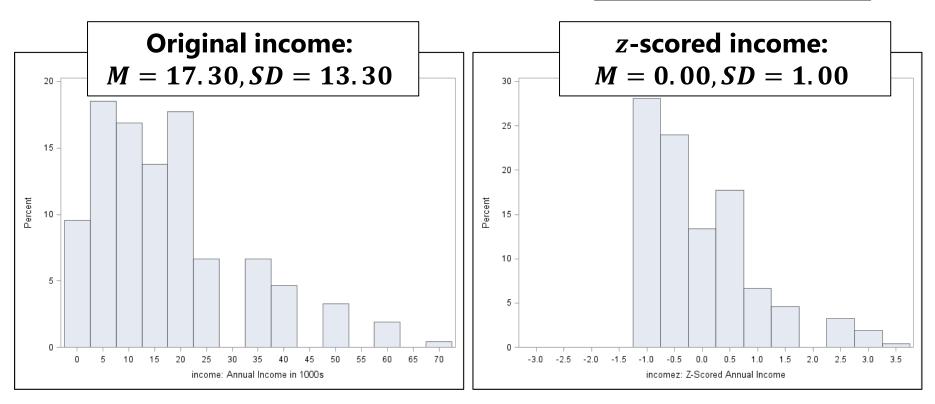
- Another example is centering → adding or subtracting a constant so that 0 is then a meaningful value for the new (centered) variable
 - If the sample mean ȳ is chosen as the centering constant, this is known as "mean-centering" (or "grand-mean-centering")
 - > Predictors will be centered when we build models (lecture 3)...



Linear Transformation: z-scoring

- Prevalent in statistics is the use of "*z*-scoring" = standardize to scale of M = 0, SD = 1 using: $z_i = \frac{y_i - \overline{y}}{s}$ To unstandardize
- Despite the name, z-scoring does NOT make a variable normally distributed!

To unstandardize back from z_i to y_i : $y_i = \overline{y} + (z_i * s)$

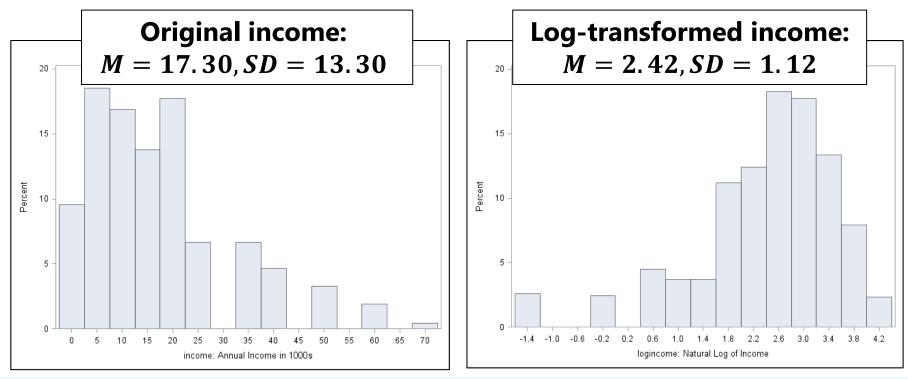


Linear vs. Nonlinear Transformations

- Primary uses of **linear transformations**:
 - > To make the variable's values more **interpretable** (0 especially)
 - To put different variables onto the same scale so the strength of their associations with other variables can be compared more easily
- In contrast, nonlinear transformations change a variable's values unevenly, often done for one of these reasons:
 - To create an unbounded version of a bounded variable (to be used when predicting variables with boundaries)
 - We will see an example of this in creating confidence intervals (stay tuned)
 - > To **reduce the impact** of extreme (positive) values—two examples:
 - Replace values with **rank-order** (also used for associations of ordinal variables)
 - Reshape values with **natural-log transformation**... let's see an example of this

Nonlinear Transformation: Natural Log

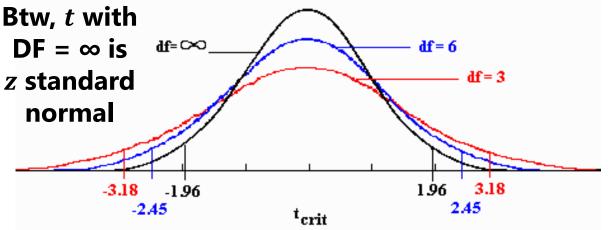
- One example of a nonlinear transformation uses the "logarithm"
 → the exponent to which the base must be raised to produce a number x: so Log_{base}(x) = y exactly if base^y = x
- The only one you will likely see in statistics is the "**Natural log**" (Log_e) that uses e (~2.718281828459) as its base: $Log_e(x) = e^x = exp(x)$
- Log_e spreads out lower values, and reels in upper values



For details, see https://en.wikipedia.org/wiki/Natural_logarithm

Review: From Sample to Population

- In lecture 1, we explored how to make inferences about a population mean (μ) from a sample mean (\overline{y}):
 - > Relies on the standard error (SE) of the mean ($SE = s/\sqrt{N}$), which is the average deviation of any sample mean from the population mean
 - > Use SE to form a **confidence interval** (CI) around the sample mean estimate
 - *Estimate* $\pm t_{critical} * SE$, where % confidence and DF_{den} (N 1) $\rightarrow t_{critical}$
 - > Use SE to form a **significance test**: How often would we see a sample mean \overline{y} so discrepant from the population mean μ if μ really was true?
 - *p*-value = probability of more extreme result (from *t*-distribution given alpha)



- *t_{critical}* values for
 alpha = .05 by
 DF shown here
- With smaller *N*, have to go farther out to **get to 5%**

From Univariate to Bivariate

- So far we've seen how to address univariate research questions involving a comparison of a sample statistic to a known population value (e.g., mean)
- But to answer questions about relationships between two variables, we need measures of bivariate association → bi = "two" variables
- Which measure of bivariate association should be used depends on the kind of variables being paired (binary, nominal, ordinal, or quantitative)
- For each measure of association, we need a **point estimate** and a test of its "**statistical significance**": the probability of observing the association we found in the sample *if the association in the population were truly 0*
 - More formally, the process of testing an association between variables against a population value (e.g., 0) is known as "Null Hypothesis Significance Testing"
 - Let's see how NHST works with a common measure of association between pairs of quantitative variables: **Pearson's correlation**...
 - Pearson correlations are available in SAS PROC CORR or STATA PWCORR

Introducing Pearson's Correlation r

- Let's say we have **two quantitative variables**, x and y
 - > To graph their relationship, we can request a **scatterplot**, in which values for *x* are shown on the x-axis and values for *y* are shown on the y-axis
 - Correspondence between x and y values will be captured by a general effect size called "correlation"; one specific type for *quantitative* variables is **Pearson's**
 - > A **population** correlation is denoted as ho ("rho"), and a **sample** correlation is r
 - > Correlations range continuously from -1 to 1 (size indicated by absolute value)
- Here are some example scatterplots and the correlations they depict, ranging from perfectly positive (r = 1), to none (r = 0), to perfectly negative (r = -1):

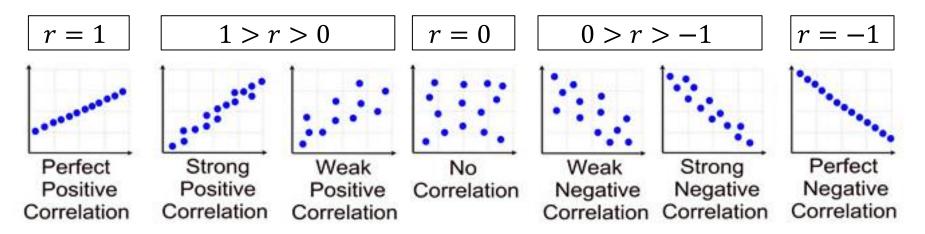


Image borrowed from: https://mathbitsnotebook.com/Algebra I/StatisticsReg/ST2CorrelationCoefficients.html

Computing Pearson's Correlation r

 To compute Pearson's r for quantitative variables x and y, we <u>first</u> need their univariate statistics of mean and variance:

Means:
$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$
, $\overline{y} = \frac{\sum_{i=1}^{N} y_i}{N}$
Variances: $s_x^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N-1}$, $s_y^2 = \frac{\sum_{i=1}^{N} (y_i - \bar{y})^2}{N-1}$

Note the change in notation: we identify to which variable the s^2 variance refers using a subscript

- <u>Second</u>, we compute their **covariance**: an unbounded measure of **association** in the **original metric** of the two variables
 - > Covariance of x and y: $Cov(x, y) = \frac{\sum_{i=1}^{N} [(x_i \bar{x})(y_i \bar{y})]}{N-1}$
- Within each variable, we have only spent 1 $DF_{den} \rightarrow \text{ so still } N-1$

- **Positive** covariance \rightarrow same-direction match
 - **High** *x* values go with **High** *y* values; **Low** *x* values go with **Low** *y* values
- > **Negative** covariance \rightarrow opposite-direction match
 - **High** *x* values go with **Low** *y* values; **Low** *x* values go with **High** *y* values
- > **Zero** covariance \rightarrow no correspondence of any kind
- Btw, the covariance of a variable with itself is its variance

Computing Pearson's Correlation r

- Covariance of x and y: $Cov(x, y) = \frac{\sum_{i=1}^{N} [(x_i \bar{x})(y_i \bar{y})]}{N-1}$
 - Although a covariance's direction is informative, its value is not directly informative because it is specific to the x and y units
 - > Example: the association between **height and weight** in N = 10 men:
 - Height in inches: $\bar{x} = 72.20$, $s_x = 6.51$, $s_x^2 = 42.40$, range = 62 82
 - Weight in pounds: $\bar{y} = 235.90$, $s_y = 20.89$, $s_y^2 = 436.54$, range = 201 269
 - Covariance: Cov(x, y) = 135.24 "inch-pounds" indicates ?????
 - It's a positive covariance, which tells us that taller men tend to be heavier, but it does not give the size of this relationship in a standardized way... we need r
- <u>Third</u>: we rescale the covariance by adjusting it for the SD of each variable, which leads to **Pearson's** r, a standardized association

>
$$r = \frac{Cov(x,y)}{s_x s_y} = \frac{135.24}{6.51 \times 20.89} = .99408$$

Positive association is almost perfect!

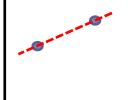
If both variables have SD=1 (e.g., they have each been z-scored so Mean=0, SD=1), then Covariance = Correlation

Adjusting* Pearson's r for Sample Size

• Note what is **not included** in the formula for Pearson's r:

> $r = \frac{Cov(x,y)}{s_x s_y}$ \rightarrow There is no reference to DF_{den} to reflect **sample size**!

> To illustrate why this is a problem, think about what would happen if we picked two points randomly and fit a line through them... perfect (r = 1)!



• To solve this problem in small samples (like our example of N = 10), one could instead choose to report an "adjusted correlation"***:

>
$$r_{adj} = \sqrt{1 - \frac{(1 - r^2)(N - 1)}{N - 2}} = \sqrt{1 - \frac{(1 - .99^2)(10 - 1)}{10 - 2}} = .99339$$
 (instead of .99408)

- r and r_{adj} will be more similar the stronger
 the correlation is, and the bigger the sample is
- *** I have never actually reported r_{adj} , but I include it here for completeness just in case Reviewer 3 asks for it someday...

Testing Pearson's r for "Significance"

- More generally, we are doing a "**Null Hypothesis Significance Test**"; in this example, we are asking "what is the probability of observing the sample r we found if the population $\rho = 0$ "?
 - > A "**hypothesis**" is a statement about a population parameter
- A "**null hypothesis**" (H_0) is a statement about the population parameter being equal to some specific (expected) value
 - > In Lecture 1 testing the sample mean \overline{y} , H_0 : $\mu = 10$
 - > In current example testing the sample correlation r, $H_0: \rho = 0$
- An "alternative hypothesis" (*H_A*) is a statement that contradicts the null hypothesis and conveys allowed directionality of deviations from value given by *H*₀
 - > In Lecture 1 with the sample mean \overline{y} , $H_A: \mu \neq 10$
 - > In current example with the sample correlation $r, H_A: \rho \neq 0$
 - > These are both "two-tailed" hypotheses (allow either direction)

Steps in Significance Testing

- Choose critical region: % alpha ("unexpected") and possible direction
 - > Two sides or just one side? Test 1 **Uses Denominator Test** >1 **Degrees of Freedom?** > Alpha (α) (1 –% confidence)? thing* thing* $\chi^2 (= z^2 \text{ if } 1)$ No: implies infinite N Distribution for test-statistic Zwill be dictated as follows: $F(=t^{2} \text{ if } 1)$ Yes: adjusts based on N t
- If the test-statistic exceeds the distribution's critical value(s), then the obtained *p*-value is less than the chosen alpha level:
 - You "reject the null hypothesis"—it is sufficiently unexpected to get a test-statistic that extreme if the null hypothesis is true; result is "significant"
- If the test-statistic does NOT exceed the distribution's critical value(s), then the *p*-value is greater than or equal to the chosen alpha level:
 - You "DO NOT reject the null hypothesis"—it is sufficiently expected to get a test-statistic that extreme *if the null hypothesis is true;* result is "not significant"
- * Thing = numerator DF for association (stay tuned)

Testing Pearson's r for "Significance"

• Sample correlation r is tested against population correlation ρ using a *t*-distribution (with denominator degrees of freedom, DF_{den})

> For
$$H_0: \rho = 0$$
, test-statistic $t = r \sqrt{\frac{N-2}{1-r^2}}$, $DF_{den} = N-2$

• Choose a **two-tailed test** (because either a negative or positive correlation would be meaningful), and **typical alpha** (α) = .05

> For $\alpha = .05$ (95% confidence) and $DF_{den} = 8$, then $t_{critical} = \pm 2.31$

• For our example, testing $H_0: \rho = 0$

Either way, **we reject** *H*₀: *r* is **"significantly"** positive

- > **Pearson's** *r*: $t = .99408 \sqrt{\frac{10-2}{1-(.99408)^2}} = 25.88, p = .00000000534 (5.34E-09)$
- > **Adjusted** *r*: $t = .99334 \sqrt{\frac{10-2}{1-(.99334)^2}} = 24.38, p = .0000000855$ (8.55E-09)
- > It's **REALLY UNLIKELY** to observe r = .99 with N = 10 if the true $\rho = 0$

Testing Pearson's r for "Significance"

• Another example using N = 10 and two random variables simulated to have no relationship in the population ($\rho = 0$)

>
$$t = r \sqrt{\frac{N-2}{1-r^2}}$$
, for $DF_{den} = N-2 = 8$ and $\alpha = .05$, $t_{critical} = \pm 2.31$

• New example, testing $H_0: \rho = 0$

Either way, we **do not reject** *H*₀: *r* is "**nonsignificantly**" negative

> **Pearson's** *r*:
$$t = -.250 \sqrt{\frac{10-2}{1-(-.250)^2}} = -0.732 \ p = .485$$

- > **Adjusted** *r*: $t = -.237 \sqrt{\frac{10-2}{1-(-.237)^2}} = -0.691, p = .498$
- > It's **sufficiently expected** to obtain $r = \pm .25$ with N = 10 if the true $\rho = 0$; a more extreme *t* test-statistic would have been found about 49% of the time
- When reporting results, 2 or 3 decimal places is sufficient
- Quantities that cannot go past 1 (like r and p) do not need leading zeros, but you should use them for everything else

Pearson correlation r: From estimate of relationship directly to significance

• To estimate the Pearson correlation r between two variables in a sample, we need their means, variances (\rightarrow SD), and covariance:

>
$$Cov(x,y) = \frac{\sum_{i=1}^{N} [(x_i - \bar{x})(y_i - \bar{y})]}{N-1} \rightarrow \text{Pearson } r = \frac{Cov(x,y)}{s_x s_y}$$

• We then **directly compute a** *t* **test-statistic** for sample correlation *r* against population correlation $\rho = 0$ **using sample size** *N*:

>
$$t = r \sqrt{\frac{N-2}{1-r^2}}$$
, $DF_{den} = N - 2$ and chosen alpha $\rightarrow t_{critical}$

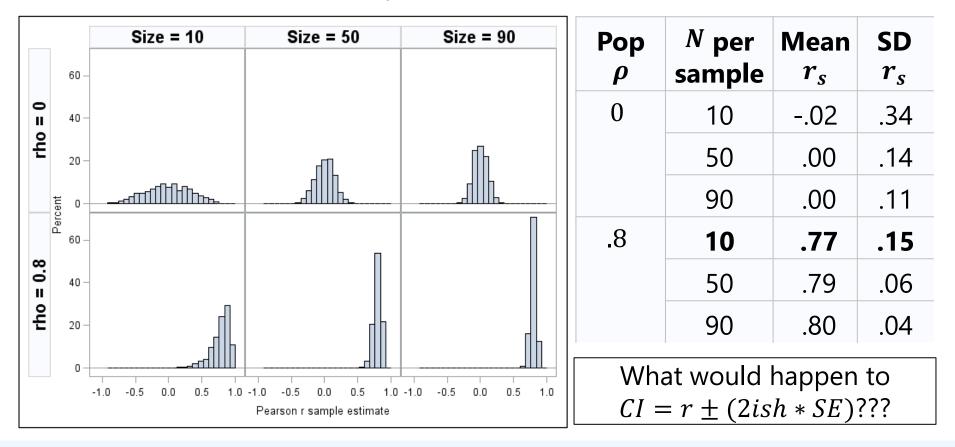
- > Note: the same r will result in a greater t test-statistic (i.e., t-value) with greater $N \rightarrow$ more people, easier to say obtained correlation r is "unexpected" if population correlation is really $\rho = 0$
- > In software, the *t*-value is generally omitted and given instead is the exact *p*-value \rightarrow probability of sample *r* if population $\rho = 0$
 - If *p*-value < alpha, reject $H_0: \rho = 0 \rightarrow r$ is "significantly" different than 0

What about a CI for correlation r?

- Knowing a correlation r is "significant" doesn't speak to its expected inconsistency across samples...
 - Remember confidence intervals? CI = range that should include the population value in chosen % of samples
 - A **symmetric interval** around any sample statistic (like correlation r here) is given by: $CI = estimate \pm (critcal * SE)$
 - critical refers to threshold value on PDF capturing the statistic's sampling distribution given chosen alpha + directionality (one side or both) and degrees of freedom (numerator and/or denominator)
 - SE refers to standard error of the correlation estimate r: the average deviation of a sample correlation from the population correlation
- Relative to the SE and CI for a sample mean previously, finding the SE and CI for a sample correlation is more complicated because r only ranges from -1 to 1

Sampling Distribution of correlation r

- Demo: I simulated two bivariate normal distributions $(\rho = 0 \text{ or } \rho = .8)$ of 100,000 fake persons for variables x_i and y_i , each in a z-score metric (so M = 0, SD = 1)
- Drew 1000 random samples each of N = 10, 50, or 80



SE and CI for Pearson's r

- Finding an SE and CI for r is more complicated because r is bounded between ±1
 - > This means that a symmetric CI (i.e., from $r \pm critical * SE$) will not work for extreme r values
- One solution is a nonlinear
 "Fisher transformation" →
 - It's called "Fisher's z", but it's not the same z as in z-score (sorry)
- A more general solution is to form a symmetric CI around the unbounded slope (implied by bounded r) in a model
 - Stay tuned...

Fisher
$$z_r = 0.5 \left[Log_e \left(\frac{1+r}{1-r} \right) \right]$$
,
SE $z_r = \frac{1}{\sqrt{N-3}}$, CI = $z_r \pm z_{crit} * SE$

Steps: convert r to z_r , compute lower and upper bounds in z-scale, back-transform bounds to r-scale

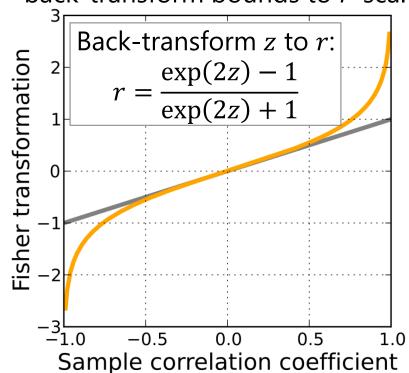
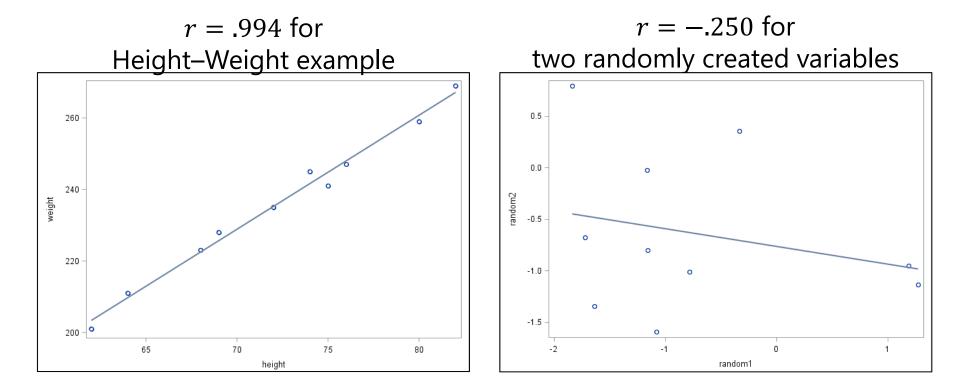


Image borrowed from: https://en.wikipedia.org/wiki/Fisher_transformation

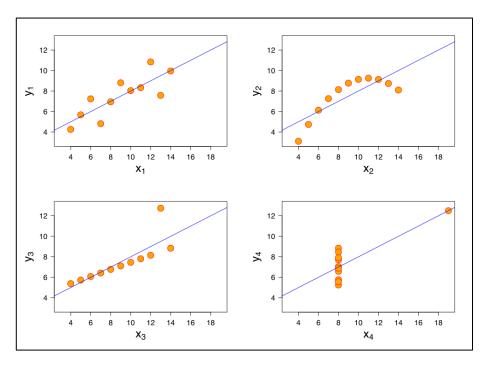
Pearson's Correlation and Linearity

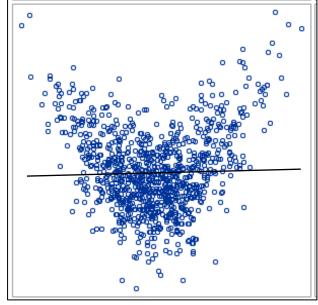
- The bivariate association between quantitative variables provided by Pearson's correlation r has a specific assumed form: **linear relationship**
- The *r* value is indicated by the slope of the prediction ("regression") line How did the regression line get determined? Stay tuned...



Pearson Correlation and Linearity

- Pearson's r will not capture any nonlinear relationships
- Right: line reflects r = .05, but it misses the real story—a U-shaped relationship
 - X and Y are negatively related up to some point, after which they are positively related





Left: Anscombe's quartet, in which r = .82 in each of 4 datasets with nearly identical statistics (but which show very different types of association)

Right image borrowed from Ryan Walters IDC 625 (Creighton University) Left image borrowed from: <u>https://en.wikipedia.org/wiki/Anscombe%27s_quartet</u> PSQF 6242: Lecture 2

Pearson's r vs. Spearman's rho (ρ)

- Computational shortcuts for Pearson's r with special names:
 - > Pearson's r for two binary variables = "**phi**" r
 - > Pearson's r for a binary and a quantitative variable = "**point-biserial**" r
- To reduce influence of "outliers" (extreme values), choose another kind of correlation: Spearman's rank correlation coefficient (or ρ , rho)
 - Sort variables by value, then do Pearson's r on the rank order of values (using same process to find SE, Cls, and t test-statistics for significance)
 - > Available in SAS PROC CORR or STATA SPEARMAN

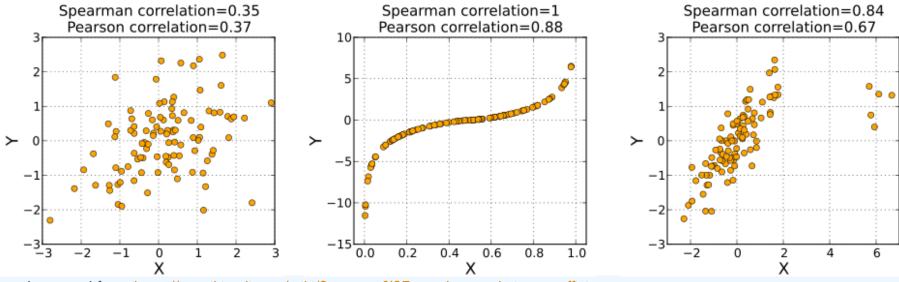


Image borrowed from: https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Pearson vs. Intraclass Correlation

- Correlations are sometimes computed to measure reliability: the extent of agreement between two or more sources (variables)
 - > e.g., **multiple raters** (y_1, y_2) each provide scores for the same set of targets
- Pearson's r is problematic for reliability, because it ignores differences in mean and variance across raters by standardizing each variable separately
- Solution: use an "Intraclass Correlation" (ICC) instead, which standardizes across all raters using a common mean and variance instead

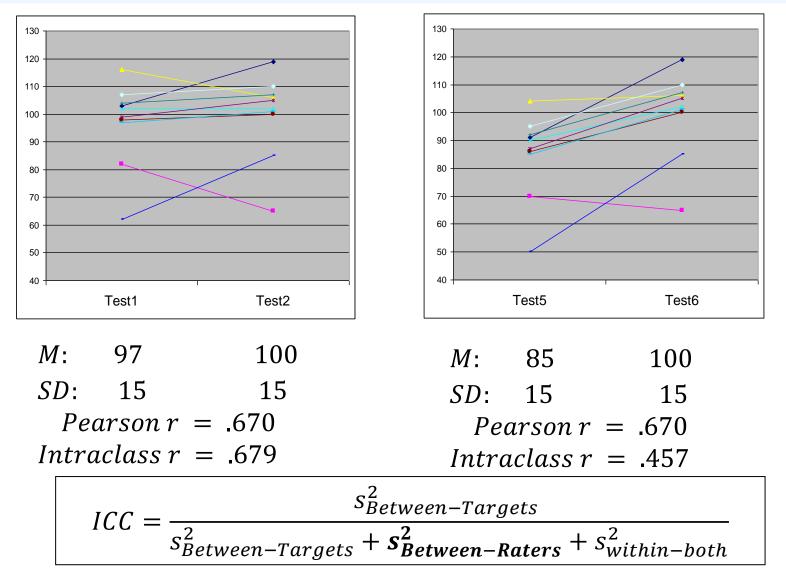
For example, for two raters: ICC(y₁, y₂) =
$$\frac{\sum_{i=1}^{N} [(y_{1i} - \overline{y})(y_{2i} - \overline{y})]}{(N-1)*s^2}$$

where $\overline{y} = \frac{\sum_{i=1}^{N} [(y_{1i} + y_{2i})]}{2N}$ and $s_y^2 = \frac{\sum_{i=1}^{N} (y_{1i} - \overline{y})^2 + \sum_{i=1}^{N} (y_{2i} - \overline{y})^2}{2N-1}$
> ICC is also a ratio of variances: $ICC = \frac{s_{Between-Targets}^2 + s_{Between-Raters}^2 + s_{within-both}^2}{s_{Between-Targets}^2 + s_{Between-Raters}^2 + s_{within-both}^2}$

- **ICCs can readily be extended** to more than two raters, as well as to quantify the effect of multiple distinct sources of systematic variance
 - > e.g., multiple raters of multiple targets across days—how much variance for each?
 - > This is the basis of "Generalizability Theory" (or G-Theory) in measurement

For more info, see: https://en.wikipedia.org/wiki/Intraclass_correlation

Intraclass Correlation Example



Correlations for Binary Variables?

- The possible **Pearson's** *r* **for binary variables will be limited** when they are not evenly split into 0/1 because their variance depends on their mean
 - > Remember: Mean = p, Variance = p * (1 p)
- If two variables (x and y) differ in p, such that $p_y > p_x$
 - > Maximum covariance: $Cov(x, y) = p_x(1 p_y)$
 - > This problem is known as "range restriction"
 - Here this means the maximum Pearson's r
 will be smaller than ±1 it should be:

$$r_{x,y} = \sqrt{\frac{p_x(1 - p_y)}{p_y(1 - p_x)}}$$

> Some examples using this formula to predict maximum Pearson r values \rightarrow

рх	ру	max r
0.1	0.2	0.67
0.1	0.5	0.33
0.1	0.8	0.17
0.5	0.6	0.82
0.5	0.7	0.65
0.5	0.9	0.33
0.6	0.7	0.80
0.6	0.8	0.61
0.6	0.9	0.41
0.7	0.8	0.76
0.7	0.9	0.51
0.8	0.9	0.67

Correlations for Binary or Ordinal Variables

- To solve this range restriction, you may want to report a different type of correlation based on the idea of a "continuous underlying variable" for the binary or ordinal variables (≠ Pearson's r)
- Here are four you will hear of in **advanced** quant classes...
 - Tetrachoric correlation: between 'underlying continuous' distributions of two actually binary variables (not = Pearson or Spearman);
 - Biserial correlation: between 'underlying continuous' (but really binary) variable and observed quantitative variable (not = Pearson or Spearman)
 - Polychoric correlation: between 'underlying continuous' distributions of two ordinal variables (not = Pearson or Spearman)
 - Polyserial correlation: between 'underlying continuous' distributions of one ordinal variable and observed quantitative variable (not = Pearson or Spearman)
- Tetrachoric and polychoric correlations are used in latent variable measurement models for categorical outcomes (Item Response Theory)

Bivariate Association for Categorical Variables

- Associations among categorical variables are more often described using test statistics from cross-tabulations (aka, contingency tables)
 - > Frequencies of each possible observed combinations across variables
 - Each combination is a "cell"; total across a row or column is a "margin"
 - > All cells must be **independent** (or else you need a different approach)
 - > Available in SAS PROC FREQ or STATA TABULATE, TAB2, and CS (for effect sizes)
- For example: relationship of defendant race to death sentence

	Death Sentence				
Defendant's Race	Yes	No	Total		
Nonwhite	33 (22.72)	251 (261.28)	284		
White	33 (43.28)	508 (497.72)	541		
Total	66	759	825		

> (Numbers) are expected cell counts for row *r* and column *c*: *E*_{rc} = ^{N_rN_c}/_N
 > For *r* = 1 and *c* = 1 → Nonwhite Yes: *E*₁₁ = ^{284*66}/₈₂₅ = 22.72
 > For *r* = 1 and *c* = 2 → Nonwhite No: *E*₁₂ = ^{284*759}/₈₂₅ = 261.28

Example borrowed from: Howell, D. C. (2010). Statistical methods for psychology (7th ed). Belmont, CA: Cengage Wadsworth.

PSQF 6242: Lecture 2

Bivariate Association for Categorical Variables

	Death	Sentence	
Defendant's Race	Yes	No	Total
Nonwhite	33 (22.72)	251 (261.28)	284
White	33 (43.28)	508 (497.72)	541
Total	66	759	825

• **Pearson's** χ^2 **test-statistic** \rightarrow how far off the expected (E_{rc}) from observed (O_{rc}) frequencies are for cell t = rc, summed over T cells:

•
$$\chi^2 = \sum_{t=1}^T \frac{(O_{rc} - E_{rc})^2}{E_{rc}} = 7.71 = \frac{(33 - 22.72)^2}{22.72} + \frac{(251 - 261.28)^2}{261.28} + \frac{(33 - 43.28)^2}{43.28} + \frac{(508 - 497.82)^2}{497.72}$$

- To get the χ^2 test-statistic's critical value ($\chi^2_{critical}$), you need to know degrees of freedom—but in this case, it is *numerator* degrees of freedom (DF_{num}) instead
 - > Based on R = # of rows and C = # of columns: $DF_{num} = (R 1)(C 1) = 1$
 - > Because χ^2 doesn't use denominator DF, the label "DF" is sufficient, but I want to distinguish each kind of DF (numerator = relationship parameters tested, denominator = "points" left over from sample size minus parameters tested)

>
$$DF_{num} = 1$$
 is written as $\chi^2(1) = 7.71$ or $\chi_1^2 = 7.71$; $\chi_{critical}^2 = 3.84$ for $\alpha = .05$

Example borrowed from: Howell, D. C. (2010). Statistical methods for psychology (7th ed). Belmont, CA: Cengage Wadsworth.

The Chi-square (χ^2) Distribution

- The expected value of the χ^2 for $H_0 =$ "no association" is its (numerator) degrees of freedom (DF_{num} , labeled "k" below)
 - > χ^2 has only positive values \rightarrow only right tail for "unexpected" area

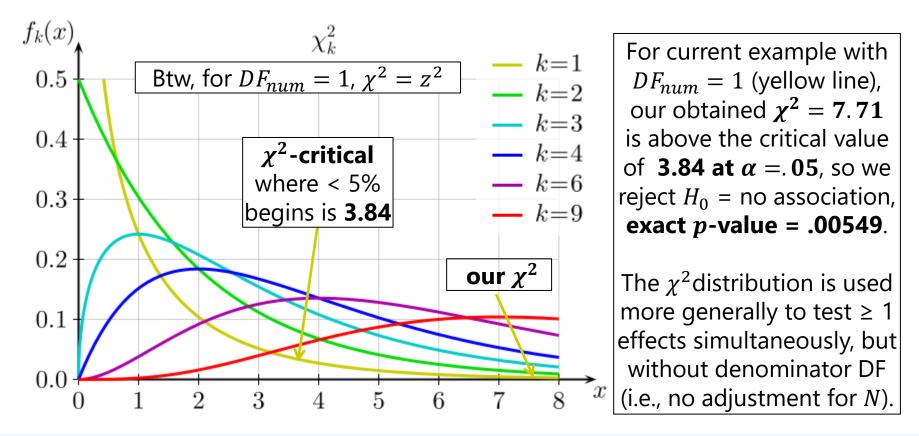


Image borrowed from: https://en.wikipedia.org/wiki/File:Chi-square_pdf.svg

Bivariate Association for Categorical Variables

	Death	Sentence	
Defendant's Race	Yes	No	Total
Nonwhite	33 (22.72)	251 (261.28)	284
White	33 (43.28)	508 (497.72)	541
Total	66	759	825

• Conclusion? Obtained $\chi_1^2 = 7.71 > \chi_{critical}^2 = 3.84$, so reject H_0

- ► From CHIDIST in excel, *p*-value = .00549 → gives the percentage of time we'd find $\chi_1^2 \ge 7.71$ if there were no association in the population (which is $\chi^2 = DF_{num}$)
- > **Conclusion in English?** We need to **determine the pattern** that created this significant result—in this case, this is straightforward to do because there is only one distinction to make across columns or rows ($DF_{num} = 1$)
- > Across columns: Among nonwhite defendants, there is a greater proportion given the death sentence than would be expected (where "expected" → based on the proportion of nonwhite defendants and the proportion of any persons given death sentences); Among white defendants, there is a smaller proportion given the death sentence than would be expected (based on the proportion of white defendants and the proportion of any persons given death sentences)
- Across rows: Among persons receiving the death penalty, more of them are nonwhite (and fewer or them are white); Among persons not receiving the death penalty, more of them are white (and fewer of them are nonwhite)

Example borrowed from: Howell, D. C. (2010). Statistical methods for psychology (7th ed). Belmont, CA: Cengage Wadsworth.

Bivariate Association for Categorical Variables

• Pearson's χ^2 can be used for variables with > 2 categories, but determining the reason for a significant result is then more challenging—for example:

Abused as Adult							
Number of Child Abuse Categories Checked	No	Yes	Total				
0	512 (494.49)	54 (71.51)	566				
1	227 (230.65)	37 (33.35)	264				
2	59 (64.65)	15 (9.35)	74				
3-4	18 (26.21)	12 (3.79)	30				
Total	816	118	934				

•
$$\chi^2 = \sum_{t=1}^T \frac{(O_{rc} - E_{rc})^2}{E_{rc}} = 29.63, DF_{numerator} = (R-1)(C-1) = 3$$

- > Obtained $\chi_3^2 = 29.63 > \chi_{critical}^2 = 7.82$; reject H_0 (exact p = 0.0000017)
- > There are 3 unique $2x^2$ ("2 by 2") combinations to consider ("unique" implies that others can be found once you know those 3)
- > You can break the analysis into $2x^2$ tables to see what the patterns are, but this situation is better handled in a general*ized* linear model...
 - Come back in a few semesters for "Applied Generalized Linear Models"! ©

Example borrowed from: Howell, D. C. (2010). Statistical methods for psychology (7th ed). Belmont, CA: Cengage Wadsworth.

PSQF 6242: Lecture 2

Other Measures of Bivariate Association You May See for Categorical Variables

- When $DF_{num} = 1$ (testing 1 thing), $z^2 = \chi^2$, and both ignore N!
- χ² p-values may not be accurate when any expected cell count < 5, and so various (non-t)"fixes" have been developed:
 - > "**Exact**" tests: use simulation (not assumed distributions) to get *p*-values
 - > Likelihood ratio test: $\chi^2 = 2 \sum_{t=1}^{T} \left[O_{rc} * Log_e \frac{O_{rc}}{E_{rc}} \right]$
 - Equivalent to Pearson's χ^2 in "big enough" samples; shows up in models for categorical outcomes (like "log-linear"; "generalized")
- What if some categories are a lot more frequent?
 - > **Kappa** (κ): χ^2 used for measuring agreement (e.g., reliability) that corrects for chance levels of agreement
 - Other ways of correcting for disproportionate numbers of people in certain categories (e.g., McNemar's test for consistency in responses)

Effect Sizes for Measures of Association

- The correlation metric r is more generally known as an index of "effect size"—a standardized metric that conveys the size of an effect, irrespective of statistical significance (and N)
 - > Another effect size is *d*: standardized mean difference (stay tuned)
- **Test-statistics** (that use both effect size and sample size *N* in significance testing) can be **converted back into effect sizes:**
 - > e.g., Pearson's χ^2 between two **binary variables** is called a "phi" correlation that is exactly the same as Pearson's r: $r = \sqrt{\chi_1^2/N}$
 - However: *p*-values may not match! This is because Pearson *r* is tested using a *t*-distribution with DF_{den} , but χ^2 (like standard normal *z*) does not account for DF_{den}
 - > e.g., convert any t test-statistic to an r effect size: $r = \frac{t}{\sqrt{(t^2 + DF_{den})}}$

• Pearson's χ^2 has other special types of effect sizes, too...

Effect Size via Risk Ratios (Relative Risk)

	Outo	come		
	Heart Attack	No Heart Attack	-	$\chi_1^2 = 25.014 >$
Aspirin	104	10,933	11,037	$\chi^2_{critical} = 3.84;$
Placebo	189	10,845	11,034	p < .0001 (5.69E-07
	293	21,778	22,071	p < 10001 (3.09E-07)

- **Risk** = single cell proportion within a row or a column
 - > e.g., aspirin: heart attack **risk** = $\frac{104}{11,037}$ = 0.94%
 - ▶ e.g., placebo: heart attack **risk** = $\frac{189}{11,034}$ = 1.71%
 - > Note that total number of each row is used as the denominator
 - Difference (= 0.77%) doesn't seem like much, but it's a bigger deal when you consider how small the base rates of heart attacks are
- **Risk ratio** (= relative risk) = $\frac{1.71\%}{0.94\%}$ = 1.819
 - Without aspirin, your risk of a heart attack is 1.819 times greater

Example borrowed from: Howell, D. C. (2010). Statistical methods for psychology (7th ed). Belmont, CA: Cengage Wadsworth.

PSQF 6242: Lecture 2

Effect Size via Odds Ratios

	Outo	ome		
	Heart Attack	No Heart Attack	-	$\chi_1^2 = 25.014 >$
Aspirin	104	10,933	11,037	$\chi^2_{critical} = 3.84;$
Placebo	189	10,845	11,034	p < .0001 (5.69E-0
	293	21,778	22,071	p < 10001 (3.07E-0)

- Odds = ratio of cell frequencies across a row or a column
 - > e.g., aspirin: heart attack **odds** = $\frac{104}{10,933} = 0.95\%$
 - > e.g., placebo: heart attack **odds** = $\frac{189}{10,845}$ = 1.74%
 - > Note that frequency of other condition in the row is used as the denominator
- Odds ratio (OR) = $\frac{1.74\%}{0.95\%}$ = 1.832
 - > Without aspirin, your risk of a heart attack is 1.832 times greater
 - > With aspirin, your risk of a heart attack is 0.546 times smaller
 - Thus, odds are not symmetric, and that drives me crazy...
 - > Odds ratios are common measures of effect size in health-related research

Example borrowed from: Howell, D. C. (2010). Statistical methods for psychology (7th ed). Belmont, CA: Cengage Wadsworth.

PSQF 6242: Lecture 2

Intermediate Summary

- Measures of **bivariate association** come in many flavors:
 - Two quantitative or binary variables: Pearson's r (which measures linear relationships only, has special names of "phi" and "point-biserial")
 - > Two ordinal variables (or quant with extreme values): Spearman's r
 - Both kinds of r can be tested for statistical significance against a null hypothesis of no correlation ($H_0: \rho = 0$) using a t test-statistic with $DF_{den} = N 2$
 - > Two **categorical** variables: **Pearson's** χ^2 (which assumes nominal variables; has many related variants to correct small sample issues)
 - Tested for statistical significance against a null hypothesis of no association using a χ^2 test-statistic with numerator degrees of freedom, such that ($H_0: \chi^2 = DF_{num}$)
 - I skipped the combination of quantitative with nominal variables that have 3+ categories, as that is best handled with a model
- In deciding whether or not to claim a result is significant (i.e., to reject H_0), we can screw this up in 2 distinct and important ways...

Significance Tests Require:

- A **distribution** (e.g., t, z, F, or χ^2) that goes with the test-statistic
- A **rejection region** = alpha (α) \rightarrow how extreme the test-statistic value must be to declare it "significant" and thus "unexpected"
 - > e.g., $\alpha = .05$ (95% confidence) implies that a result that extreme must only happen less than 5% of the time if the null hypothesis (H_0) is true
 - You also have to decide if you want the rejection region at both ends (a two-tailed test; usually) or only at one end (one-tailed test; rarely)

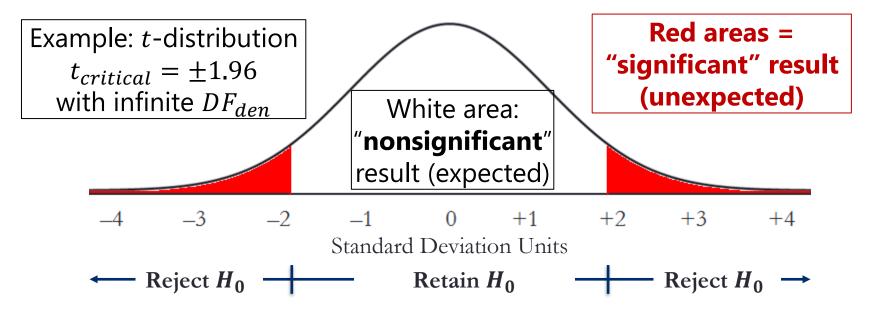


Image borrowed from Ryan Walters IDC 625 (Creighton University)

PSQF 6242: Lecture 2

Decision Errors in Hypothesis Testing

- Usually, we test a two-sided "null hypothesis":
 - > Typical null H_0 : effect = 0; alternative H_A : effect \neq 0
- 2 chances to get it right, 2 chances to get it wrong, governed by:
 - > Alpha (α) = expected percentage of Type I errors for a given H_0
 - Higher alpha \rightarrow less extreme required to be significant \rightarrow more Type I errors
 - > **Beta** (β) = expected percentage of **Type II errors** for a given effect size
 - Usually expressed as $1 \beta =$ **Power**: Probability of finding a true effect
 - More people N and/or greater effect size = more power (fewer Type II errors)!

	Truth: H ₀	Truth: <i>H</i> _A
Decision:	<u>Correct:</u>	<u>Miss:</u>
Retain <i>H</i> ₀	Really NO Effect	Type II Error
Decision:	<u>False Alarm:</u>	<u>Correct:</u>
Reject <i>H</i> ₀	Type I Error	Really IS an Effect

Decision Errors in Hypothesis Testing

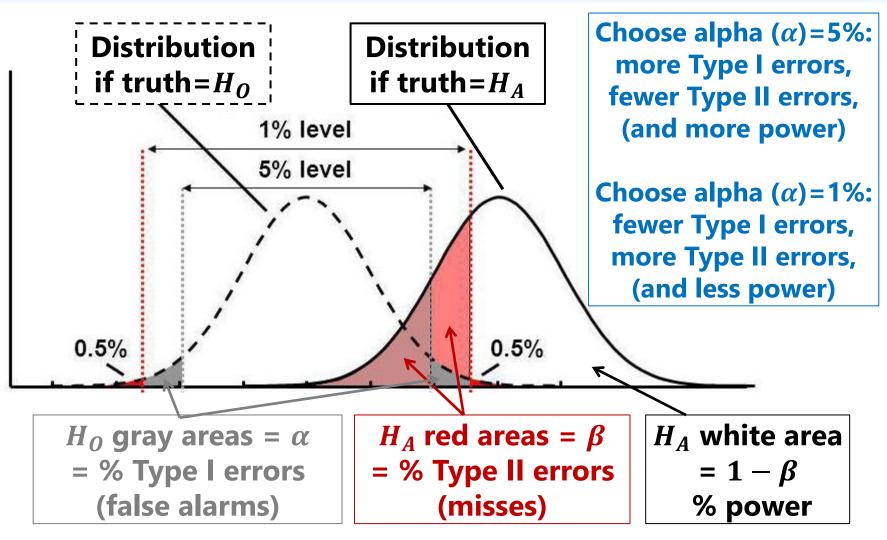
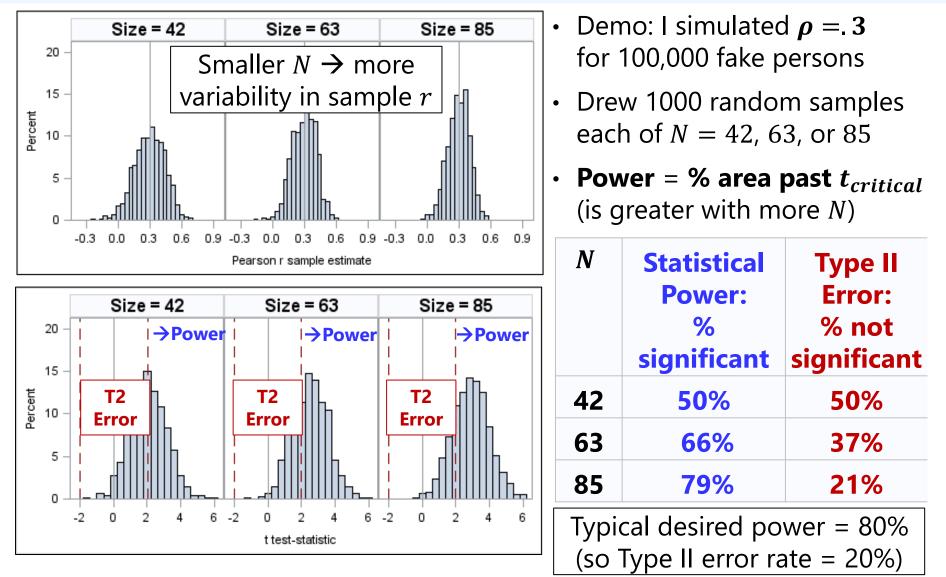


Image borrowed from: https://images.app.goo.gl/eDuhatsiyKWjrUvcA

Anticipating Statistical Power



Power Analysis for r Effect Size at $\alpha = .05$ (from Cohen, 1988 p. 102)

Power	.10	.20	.30	.40	.50	.60	.70	.80	.90
.25	167	42	20	12	8	6	5	4	3
.50	385	96	42	24	15	10	7	6	4
.60	490	122	53	29	18	12	9	6	5
2/3	570	142	63	34	21	14	10	7	5
.70	616	153	67	37	23	15	10	7	5
.75	692	172	75	41	25	17	11	8	6
.80	783	194	85	46	28	18	12	9	6
.85	895	221	97	52	32	21	14	10	6
.90	1047	259	113	62	37	24	16	11	7
.95	1294	319	139	75	46	30	19	13	8
.99	1828	450	195	105	64	40	27	18	11

- Cells give N for row's power to find column's r
- If you start with target r to find N, it's "a priori power analysis"
 - > e.g., for r = .3, 80% power is predicted for N = 85
 - > e.g., for r = .2, 80% power is predicted for N = 194
- If you start with a target N, it's "sensitivity analysis" to find a "minimum detectable effect size"
 - > e.g., for N = 30, should have power > 80% for $r \ge .5$
 - > e.g., for N = 50, should have power > 80% for $r \ge .4$

Decisions and Decision Errors: Summary

For every hypothesis test, the following will be reported in a known format:

- **Estimate** of parameter (from a model); value of obtained **test-statistic** (t, z, F, or χ^2)
- **Numerator degrees of freedom** (DF_{num}) when testing more than one relationship parameter simultaneously (used with *F* or χ^2 ; $DF_{num} = 1$ for *t* or *z*)
- **Denominator degrees of freedom** ($DF_{denominator}$) when not assuming infinite sample size (used with t or F; not used with z or χ^2)
- *p***-value**: probability of obtained test-statistic if null hypothesis H_0 is true
- **Effect size** (e.g., *r*, *d*, or odds ratio)—you have an *r* effect size already if your association is a type of correlation (or else compute it); effect size CIs are nice to include, too
- Conditional on your decision about significance, what can happen?
- If you **reject** H_0 and claim your result as "**significant**" given your chosen alpha (α):
 - > **DO** have to worry about probability of **Type I error** (given by your *p*-value): **a false alarm**
 - > DO NOT have to worry about the probability of a Type II error: a miss
 - > Power is related to replicability—a significant result with low power is less likely to replicate!
- If you **retain** H_0 and claim your result as "**nonsignificant**" given your chosen alpha (α):
 - > DO NOT have to worry about probability of Type I error (given by your p-value): a false alarm
 - > **DO** have to worry about the probability of a **Type II error: a miss** (power = 1 Type II error)
 - > In planning studies, the conventional level of power to aim for is 80% (harder to do with smaller effects)