
Univariate Data Description:

One Variable at a Time

PSQF 6242: Lecture 1 1

• Topics:

➢ Summarizing categorical and quantitative variables 

▪ Calculating mean, variance, and skewness statistics

▪ Other summary measures for skewed quantitative variables

➢ Sampling distributions for sample statistics:

▪ Quantifying uncertainty in sample means

▪ Inferences from sample means to expected population means

▪ Bonus: sampling distributions of variances



Univariate Descriptors by Type of Variable
• For now we focus on the possible values of each variable given 

how it was measured, and thus by what salient features we 

should describe it univariately (“uni” = one by itself)

➢ Two main types of variables: categorical or quantitative

• Categorical (numbers are labels): Binary, Ordinal, or Nominal

➢ Just need to know frequency of each category

➢ Often reported as percent: frequency divided by total possible 

➢ Can be displayed graphically using a frequency plot (bar graph) 

➢ Value labels make this information easier to digest or present
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Example Variable for Marital Status:

Request Frequencies and Percentages
In SAS, using PROC FREQ:

PROC FREQ DATA=work.Example1; 

TABLE marital; 

RUN; 
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Marital: 5-Category Marital Status

marital Frequency Percent

Cumulative

Frequency

Cumulative

Percent

1.Married 900 45.59 900 45.59

2. Widowed 163 8.26 1063 53.85

3. Divorced 317 16.06 1380 69.91

4. Separated 68 3.44 1448 73.35

5. Never Married 526 26.65 1974 100.00

tabulate marital 

marital: 5-Category |

Marital Status |      Freq.     Percent        Cum.

---------------------+-----------------------------------

1.Married |        900       45.59 45.59

2.Widowed |        163        8.26       53.85

3.Divorced |        317       16.06       69.91

4.Separated |         68        3.44       73.35

5.Never Married |        526       26.65      100.00

---------------------+-----------------------------------

Total |      1,974      100.00

Note that in HW 1 and 2, 

these percentages will 

need to be entered as 

proportions out of 1.

For instance, 45.59% 

should be entered as 

0.4559 instead of 45.59.

In STATA, using TABULATE:



Example Variable for Marital Status:

Request a Frequency Plot (Bar Graph)
• In SAS:  PROC FREQ DATA=work.Example1;               

TABLE marital / PLOTS=FREQPLOT(TYPE=BAR SCALE=PERCENT);  

RUN; 

➢ x-axis (horizontal) 

shows each 

observed category

➢ y-axis (vertical) 

shows percentage

for each category

➢ Value labels provide

meaning of numbers 

• Also in STATA, using HISTOGRAM
histogram marital, discrete percent xla(1/5, valuelabel alternate)
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What about Quantitative Variables?
• Quantitative variable: 

numbers are numbers! 
(interval measurement)

➢ May be bounded 
(binomial, count) 
or “continu-ish”

• For quantitative variables 
with many observed 
values, a frequency list of 
each distinct value is less 
useful (interval is ignored)

➢ For instance, consider 
annual income in $1000s 
(from multiple choices, so 
it’s “continu-ish” here):
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income: Annual Income in 1000s

income Frequency Percent

Cumulative

Frequency

Cumulative

Percent

0.245 19 2.59 19 2.59

0.98 18 2.45 37 5.04

1.715 23 3.13 60 8.17

2.205 10 1.36 70 9.54

2.695 13 1.77 83 11.31

3.185 14 1.91 97 13.22

3.675 15 2.04 112 15.26

4.41 12 1.63 124 16.89

5.5125 39 5.31 163 22.21

6.7375 43 5.86 206 28.07

7.9625 24 3.27 230 31.34

9.1875 30 4.09 260 35.42

10.4125 37 5.04 297 40.46

11.6375 33 4.50 330 44.96

13.475 52 7.08 382 52.04

15.925 49 6.68 431 58.72

18.375 49 6.68 480 65.40

22.05 81 11.04 561 76.43

26.95 49 6.68 610 83.11

33.075 49 6.68 659 89.78

40.425 34 4.63 693 94.41

49 24 3.27 717 97.68

58.8 14 1.91 731 99.59

68.6 3 0.41 734 100.00



What about Quantitative Variables?

• Frequency plot: also not helpful…
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income: Annual Income in 1000s

income Frequency Percent

Cumulative

Frequency

Cumulative

Percent

0.245 19 2.59 19 2.59

0.98 18 2.45 37 5.04

1.715 23 3.13 60 8.17

2.205 10 1.36 70 9.54

2.695 13 1.77 83 11.31

3.185 14 1.91 97 13.22

3.675 15 2.04 112 15.26

4.41 12 1.63 124 16.89

5.5125 39 5.31 163 22.21

6.7375 43 5.86 206 28.07

7.9625 24 3.27 230 31.34

9.1875 30 4.09 260 35.42

10.4125 37 5.04 297 40.46

11.6375 33 4.50 330 44.96

13.475 52 7.08 382 52.04

15.925 49 6.68 431 58.72

18.375 49 6.68 480 65.40

22.05 81 11.04 561 76.43

26.95 49 6.68 610 83.11

33.075 49 6.68 659 89.78

40.425 34 4.63 693 94.41

49 24 3.27 717 97.68

58.8 14 1.91 731 99.59

68.6 3 0.41 734 100.00
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Distribution of income

The values are being treated as distinct categories 

without regard to the intervals between them…



What about Quantitative Variables?

• Instead we need a histogram, which combines observations 

on the x-axis into “bins” (that you can and should choose!)

➢ For example: income in $1000s in bins from 0 to 70 in increments of 5

• In SAS:

PROC UNIVARIATE DATA=work.Example1;

VAR income; * VAR means variable;

HISTOGRAM income / MIDPOINTS=0 TO 70 BY 5;

RUN;

• In STATA:  histogram income, percent discrete width(5) start(0) 

• Not as easy to make histograms in Excel (have to combine 

observations into bins manually first, then make bar chart)
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What about Quantitative Variables?

• Instead we need a histogram, which combines observations 

on the x-axis into “bins” (that you can and should choose!)

➢ For example: income in $1000s in bins from 0 to 70 in increments of 5

➢ Number and width

of bins will be chosen 

for you otherwise 

➢ x-axis (horizontal) 

shows bins of values 

➢ y-axis (vertical) 

shows percentage

within each bin 
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Quantitative Variables: 

3 Salient Summary Features
1. Central tendency: think “middle of distribution”; can be given by:

➢ Mean = arithmetic average (abbreviated “𝑀” in results)

➢ Also by Median = middle value if ordered from most to least

➢ Also by Mode = most frequent value

2. Dispersion: think “width of distribution”, can be given by:

➢ Standard Deviation (abbreviated “𝑆𝐷” in results) = average deviation 
of any given observation (e.g., person) from the mean

➢ Variance (abbreviated “𝑉𝐴𝑅” in results) = squared average deviation 
of any given observation (e.g., person) from the mean (so 𝑉𝐴𝑅 = 𝑆𝐷2)

➢ Also by Inter-Quartile Range = distance from 25th to 75th percentile

3. Skewness = asymmetry (more values on one side than the other)

➢ Is often caused by natural boundaries in practice (e.g., counts at 0)

➢ Is something to factor into your analysis, but is not usually reported
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Calculating the Arithmetic* Mean 

of Quantitative (or Binary) Variables
• New notation: 

➢ 𝒚𝒊= “y sub i” = outcome 𝑦 for person 𝑖

➢ 𝑵 = “big N” = number of persons in the sample

➢ 𝒚𝑵= “y sub N” = last person in the sample

➢ 𝒚 = “y bar” = sample arithmetic* mean

▪ Note the lack of an i subscript—this is because ത𝑦 is a constant, not a variable

• Using new notation, how to calculate sample mean (𝑀 in results):

𝑦 =
𝑦1 + 𝑦2 +⋯+ 𝑦𝑁

𝑁
=
σ𝑖=1
𝑁 𝑦𝑖
𝑁

* Yes, there are other kinds of means (geometric, harmonic, weighted)…
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→ “Start at 𝑖 = 1, sum over 

all the 𝑦 values ending at 𝑁, 

then divide that total by 𝑁”



Calculating the Variance 

of Quantitative Variables
• Using notation to calculate the variance (𝑉𝐴𝑅 in results):

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑠2 =
σ𝑖=1
𝑁 𝑦𝑖 − ഥ𝑦

2

𝑁 − 1

• Squaring is necessary to maintain absolute magnitudes, but because 

squared units are less interpretable than raw-data units, the standard 

deviation (SD, the square root of variance) can be more intuitive:

SD is the average distance for any given observation from the mean 

(i.e., 𝑆𝐷 in results describes a variable’s dispersion across persons)

• Btw, in the denominator of variance, 𝑵− 𝟏 is used instead of 𝑁 to adjust 

for needing the sample mean in order to calculate the sample variance; 

later on this term will be called “denominator degrees of freedom (DF)” 
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→ “Start at 𝑖 = 1, subtract ത𝑦 from 

each 𝑦 value, square that result, 

sum until 𝑁, then divide by 𝑁 − 1”



Illustrating Differences in Dispersion

(Mean = 100 in both histograms)
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Standard Deviation (SD) = 10, 

Variance (VAR) = SD*SD = 100

Standard Deviation (SD) = 15, 

Variance (VAR) = SD*SD = 225



Example Variable for Income:

Get Mean, SD, and Variance

In SAS, using PROC MEANS:

PROC MEANS NDEC=3 N MEAN STDDEV VAR MIN MAX

DATA=work.Example1;

VAR income;

RUN;
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summarize income

Variable |     Obs Mean    Std. Dev.       Min       Max

-------------+-----------------------------------------------------

income |     734    17.30287    13.79163       .245      68.6

Analysis Variable : income Annual Income in 1000s

N Mean Std Dev Variance Minimum Maximum

734 17.303 13.792 190.209 0.245 68.600

In STATA, using the command SUMMARIZE

(add option DETAIL to get variance, too):



From The Population To A Sample…
• To what population do we want to make inferences?

➢ Numeric characteristics of the population are called “parameters”

• By what process should we select our sample?

➢ Numeric characteristics of the sample are called “statistics”

14
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So far we are talking about summarizing 

a variable from just ONE sample using 

statistics for the mean and variance—but 

those statistics are supposed to reflect the 

parameters of the intended population

https://www.sigmamagic.com/blogs/online-sample-size-calculators/


Sample vs. Population Notation 

for the Mean and Variance
• Mean (𝑀) = average = central tendency = first “moment”

➢ 𝝁 (‘mu”) for the population is estimated by ഥ𝒚 (“y bar”) from a sample

• Variance (𝑉𝐴𝑅) = squared dispersion = second “moment”

➢ 𝝈𝟐 (“sigma squared”) for the population is estimated by 𝒔𝟐 from a sample

➢ Squared average deviation of any given person from the mean

➢ Squaring prevents ± deviations from mean from cancelling each other out

• Standard deviation (𝑆𝐷) = dispersion= square root of variance

➢ 𝝈 (“sigma”) for the population is approximated by 𝒔 from a sample

➢ Average deviation of any given person from the mean (in data units)

• Also sometimes reported: “coefficient of variation” = SD / mean
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Salient Feature #3 of Quantitative 

Variables: Skewness (Asymmetry)

• Skewness (third “moment”) follows a similar pattern:     

Skewness =
1

𝑁
σ𝑖=1
𝑁 𝑦𝑖−𝑦

𝑠

3

16
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→ Skewness will be 0 if the 

variable is symmetric(al)

Note: Mean, 

median, and 

mode will 

diverge in 

asymmetric 

variables, 

so which one 

you report 

then matters!

Named direction of skew is where the tail is headed!

https://www.kullabs.com/classes/subjects/units/lessons/notes/note-detail/9958


Example: Skewness in Income

• Central tendency:

➢ Mean (𝑀) = 17.31

➢ Median = 13.48

▪ Btw, = 50th percentile

➢ Mode = 22.05

• Dispersion:

➢ 𝑉𝐴𝑅 = 𝑆𝐷2 = 190.21 

➢ 𝑆𝐷 = 13.79

➢ Inter-quartile range:

▪ 𝐼𝑄𝑅 = 75th − 25th percentiles

▪ 𝐼𝑄𝑅 = 22.05 − 6.74 = 15.31
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Should also report the range: 

the minimum and maximum

values (0.245 and 68.60 here)



Summarize (Asymmetric) Quantitative 

Variables using a “Box Plot”
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Mean

“Outliers”

Median 

(50th percentile)
25th

percentile

75th

percentile

IQR

Minimum

Maximum observation below upper fence 

(where “outliers” begin)



Get These Additional Statistics:

In SAS using PROC UNIVARIATE
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PROC UNIVARIATE DATA=work.Example1; VAR income; RUN; 

Moments

N 734 Sum Weights 734

Mean 17.3028747 Sum Observations 12700.31

Std Deviation 13.7916296 Variance 190.209048

Skewness 1.16073362 Kurtosis 1.10205445

Uncorrected SS 359175.104 Corrected SS 139423.232

Coeff Variation 79.7071579 Std Error Mean 0.50905834

Basic Statistical Measures

Location Variability

Mean 17.30287 Std Deviation 13.79163

Median 13.47500 Variance 190.20905

Mode 22.05000 Range 68.35500

Interquartile Range 15.31250

Quantiles (Definition 5)

Level Quantile

100% Max 68.6000

99% 58.8000

95% 49.0000

90% 40.4250

75% Q3 22.0500

50% Median 13.4750

25% Q1 6.7375

10% 2.6950

5% 0.9800

1% 0.2450

0% Min 0.2450



Get These Additional Statistics:

In STATA using SUMMARIZE (DETAIL)
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summarize income, detail  

income: Personal Income in 1000s

-------------------------------------------------------------

Percentiles      Smallest

1%         .245           .245

5%          .98           .245

10%        2.695           .245       Obs 734

25%       6.7375           .245       Sum of Wgt.         734

50%       13.475                      Mean           17.30287

Largest       Std. Dev.      13.79163

75%        22.05           58.8

90%       40.425           68.6       Variance        190.209

95%           49           68.6       Skewness        1.15836

99%         58.8           68.6       Kurtosis       4.086398



Btw, One More Feature of 

Quantitative Variables: Kurtosis

• Kurtosis (fourth “moment”) follows a similar pattern:     

Kurtosis =
1

𝑁
σ𝑖=1
𝑁 𝑦𝑖−𝑦

𝑠

4

− 3
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→ Will be 0 if the variable 

is symmetric(al)

Note: Extent of kurtosis is 

hard to differentiate from 

variance in real data, so 

don’t worry about this one

platykurtic

leptokurtic

https://stats.stackexchange.com/a/143522/124771


Means for Categorical Variables?

• For binary variables coded 0 or 1, the mean is calculated 

the same way but it is called the “proportion” instead

• For nominal variables with >2 options, a single mean does 

not make sense!

➢ e.g., for nominal marital 

status, M = 2.74… ?!?

➢ You may see means 

calculated for ordinal 

variables but they 

should give you pause….

▪ e.g., 1=Strongly Disagree, 

2=Disagree, 3=Neutral,

4=Agree, 5=Strongly Agree…. 

could also be 1, 20, 300, 4000, 50000 
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Variances for Categorical Variables?

• For binary variables coded 0 or 1, variance and skewness are 

not separate properties (as they are in quantitative variables)

➢ If 𝒑 = proportion of 1 values, and 𝒒 = proportion of 0 values:

➢ Mean 𝒚 = 𝒑, variance 𝒔𝟐 = 𝒑 ∗ 𝒒, and skewness = 
𝟏−𝟐𝒑

𝒑∗𝒒

• For variables with >2 categories, each pair of categories 

would have its own 𝒑 and 𝒒 (and thus variance/skewness)

➢ So the percent for each category is enough to report 

(i.e., the pairwise variance and skewness values are not helpful)
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Mean (𝒑)

Variance

Mean and Variance of a Binary Variable



Intermediate Summary
• What kind of univariate summary statistics are relevant 

to report depends on the type of variable to be described:

➢ Quantitative variables (numbers are numbers):

▪ If “symmetric enough”: Min, Max, Mean, SD (or SD2 = variance)

▪ If not, add median (for central tendency) and IQR (for dispersion) 
that are “robust” to outliers (extreme values) or general skewness

▪ Binned-value histograms or boxplots (or violin plots) make good visuals 

➢ Categorical variables (numbers are just labels):

▪ Binary (0 or 1): Mean (= proportion of 1 values); variance and skewness 
are then determined by the mean (i.e., they are redundant)

▪ Ordinal or Nominal with 3+ categories: percentage of each category; 
a single mean (or variance or skewness) makes no kind of sense

▪ You may see ordinal variables treated as quantitative, but keep in mind 
this assumes real distances between the numbers used as labels

▪ Bar graphs of the percentage in each category make a good visual
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From Descriptive to Inferential Statistics
• So far we have considered examples of descriptive statistics, 

whose job is to summarize variables from a single sample

➢ “Descriptive” → used to describe, condense, or summarize one sample

• But if we want to generalize from our one sample back to the 
intended population, we then also need inferential statistics

➢ “Inferential” → used to make statements about population values

• Inferential statistics rely on Probability Distribution Functions 
(PDFs): mathematical equations that provide the likelihood of the 
possible values of a variable of that type (abbreviated “distributions”)

➢ For discrete variables (integers only), PDFs provide the probability
of any exact value (=“probability mass function” or PMF)

➢ For truly continuous variables, the probability of any one value is 
undefined, so PDFs provides the probability over a range of values 
instead; “probability” switches to “likelihood” (but is the same idea)
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A common PDF: Normal Distribution 

(or “Gaussian” or “bell curve”)
Two parameters:

• 𝝁 = “mu” = mean 

• 𝝈𝟐 = “sigma squared” 
=  variance

• Ranges from ±∞ (so is 
actually continuous)

Is symmetric, so: 

• skewness = 0

• One middle: mean 
= median = mode

26
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From Descriptive to Inferential Statistics

• For a “univariate” analysis (i.e., about one variable) to be able 

to make inferences to the population from a single sample:

➢ At a minimum, this involves indexing the inconsistency of the 

sample-specific summary statistic, e.g., of the sample mean ഥ𝒚

▪ i.e., if you repeated the same study, how close would the mean 

of the new sample be to the mean of the current sample?

▪ Index of inconsistency can be used to form an expected range 

in which the statistic would be found across repeated samples

➢ Could also involve a comparison of the sample-specific 

summary statistic to an expected population value

▪ e.g., how different is sample mean ഥ𝒚 from the population mean 𝝁?

▪ Said differently, if the population mean really were true, how likely 

are we to have observed the sample mean that we found? 
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Building Intuition about Sampling 

Distributions of Statistics (the mean for now)

• What affects how close ഥ𝒚 is to the true value of 𝝁? 

• Demo: I made my own

quantitative variable* 

𝒚𝒊 in a population of 

100,00 fake people

➢ Population mean: 𝝁 = 𝟏𝟎

➢ Population VAR: 𝝈𝟐 = 𝟐𝟓

➢ So 𝒚𝒊 is off the mean 

by 𝑺𝑫 = 𝟓 on average

* Used a “normal” distribution here to generate 𝒚𝒊 (as described earlier)
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blue line = truth, 

red line = population estimate



1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟏𝟎
(SD 𝝈 = 𝟓)

• Histograms show 

differences across 

samples in each 

sample’s mean (ഥ𝒚𝒔)

• These depict the 𝑁-

specific “sampling 

distribution” of ഥ𝒚𝒔

• More 𝑵 in each 

sample → less 

dispersion in ഥ𝒚𝒔
across samples 

(more consistency)
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Note: These bars do not show individual people! 

They are summaries for distinct samples of people.



1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟏𝟎
(SD 𝝈 = 𝟓)

• More 𝑵→ less SD 

in ഥ𝒚𝒔 across samples

30PSQF 6242: Lecture 1 

𝑵 Per 

Sample

Mean
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

5 9.97 2.17

10 9.98 1.60

15 10.00 1.28

20 10.03 1.08

30 10.03 0.89

50 9.97 0.69
Note: These bars do not show individual people! 

They are summaries for distinct samples of people.



Building Intuition about Sampling 

Distributions of Statistics (the mean for now)

• So sample size 𝑵 improves the consistency of the mean ഥ𝒚𝒔 for any sample

➢ As within-sample 𝑵 increases, sample mean ഥ𝒚 will be closer to 𝝁 on average

• What else affects precision of ഥ𝒚𝒔? How persons vary from each other!
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Mean: 𝜇 = 10
SD: 𝝈 = 𝟓 from before

Mean: 𝜇 = 10
SD: 𝝈 = 𝟑 instead



1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟏𝟎
(SD 𝝈 = 𝟑 now)

• More 𝑵→ less SD 

in ഥ𝒚𝒔 across samples
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𝑵 Per 

Sample

Mean
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

5 10.01 1.42

10 10.00 0.96

15 10.01 0.78

20 9.99 0.67

30 10.00 0.56

50 10.00 0.42
These bars still do not show individual people! 

They are summaries for distinct samples of people.



Effects of 𝑁 and 𝑆𝐷 on Precision of ഥ𝒚𝒔
Left to right:

• More 𝑵 in each 

sample → less 

dispersion in ഥ𝒚𝒔
across samples

Top to bottom:

• More 𝑺𝑫 in each 

sample → more 

dispersion in ഥ𝒚𝒔
across samples

33PSQF 6242: Lecture 1 

These bars still do not show individual people! 

They are summaries for distinct samples of people.



Anticipating Precision of Sample Mean ഥ𝒚𝒔
• In the example from the previous slides, we had a known finite 

population from which multiple random samples were selected

➢ Inconsistency of ഥ𝒚𝒔 could be indexed by standard deviation (𝑆𝐷) across 

samples → more 𝑵, less variance → smaller 𝑺𝑫 of ഥ𝒚𝒔 (more consistent)

• Given only one sample, we can still anticipate the 𝑺𝑫 of ഥ𝒚:

➢ 𝑺𝑫 of ഥ𝒚𝒔 across samples  Standard Error of the Mean = 𝑺𝑬 = 
𝝈

𝑵

▪ Note that 𝑺𝑬 includes the population SD 𝝈, which must be replaced by 

the sample-estimated SD 𝒔 when 𝝈 is unknown (i.e., most of the time)

➢ SE of the mean is the expected average deviation of any given sample 

mean ഥ𝒚 from the population mean 𝝁 (even if you do not know 𝝁)

▪ Is NOT the same as SD of 𝒚𝒊 (𝒔) which is the average deviation of any given 

observation (i.e., person) from the sample mean (that you can calculate)

▪ In general, the term “SE” refers to the SD of a statistic’s sampling distribution 

(e.g., how the variance differs across samples is also described by its SE)
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SE of Mean Predicts 𝑺𝑫 of ഥ𝒚𝒔
Population values for 𝒚𝒊 variable: Mean 𝝁 = 𝟏𝟎, SD 𝝈 = 𝟓

35PSQF 6242: Lecture 1 

𝑵 Mean 
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

Mean SE with: 

𝝈 𝒔

5 9.97 2.17 2.24 2.13

10 9.98 1.60 1.58 1.55

15 10.00 1.28 1.29 1.28

20 10.03 1.08 1.12 1.11

30 10.03 0.89 0.91 0.91

50 9.97 0.69 0.71 0.71

The greater the sample size 𝑵, the better the estimate of each sample’s SD, 

and the less it matters that SE is formed with sample SD (𝒔) instead of the 

population SD (𝝈). But this distinction will matter more in smaller samples….



What about Other Kinds of Variables?

• It turns out with more 𝑵 the sampling distribution of ഥ𝒚𝒔 becomes 

more normal no matter what the observed variable’s distribution is

➢ Btw: More 𝑁→ more normal ത𝑦 distribution → is “Central Limit Theorem”

• Demo: I simulated a count 

variable* 𝒚𝒊 in a population

of 100,00 fake people

➢ Population mean: 𝝁 = 𝟐

➢ Population 𝑉𝐴𝑅: 𝝈𝟐 = 𝟐

➢ So 𝒚𝒊 is off the mean 

by 𝑺𝑫 = 𝟐 on average

* Used a “Poisson” distribution here to generate 𝒚𝒊 (in which 𝝁 = 𝝈𝟐)
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Count variables are bounded at 

0 and typically positively skewed 

(and what I’d call “continu-ish”) 

given integer values only 



1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟐
(VAR 𝝈𝟐 = 𝟐)

• More 𝑵→ less SD 

in ഥ𝒚𝒔 across samples; 

ഥ𝒚𝒔 is also more normal 
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𝑵 Mean
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

Mean 
SE

5 1.98 0.61 0.59

10 1.99 0.42 0.43

15 1.99 0.35 0.36

20 1.99 0.31 0.31

30 1.99 0.25 0.25

50 2.01 0.20 0.20

Note: The observed SD for the sampling distribution 

for ഥ𝒚𝒔: (a) is well-approximated by the mean SE for 

ഥ𝒚𝒔, and (b) appears normal, even for a count variable



Using the SE of the Mean to Make 

Inferences Back to the Population
• SE of the mean = average difference between a given sample mean 
ഥ𝒚𝒔 and the population mean 𝝁 (i.e., SE of the mean approximates 
the SD for the mean’s distribution across repeated samples)

➢ In general, any sample statistic has an SE for the statistic’s average 
difference between a given sample value and its population value

• An SE can be used to express the range of uncertainty around 
a sample statistic (i.e., the mean here) across repeated samples 
by forming a confidence interval, which requires two decisions:

➢ What probability distribution function can be used to describe 
the expected behavior of the statistic’s sampling distribution? 

▪ Sample mean should become normally distributed, so let’s start with that

➢ Level of confidence: how often are you willing to be wrong?

▪ Typical confidence level chosen is 95%, so you’d be wrong 5% of the time

▪ Btw, wrong % will be known as “alpha level” in hypothesis tests (stay tuned)
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Standardizing the Normal Distribution… 
• Normal distribution uses 

an estimated mean and 

variance to provide the 

likelihood of any 𝒚𝒊 value

• To make it useful for 

sample statistics (like the 

mean) for variables on 

different scales, we need 

a standardized version

• The “𝒛” metric with 

𝑀 = 0 and 𝑉𝐴𝑅 = 1
𝑆𝐷 = 1 creates a new 

“standard normal 

distribution”…
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Area Under Standard Normal Curve
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y-axis created by:

𝑓 𝑧𝑖 =
1

2𝜋
exp −

𝑧𝑖
2

2

The x-axis (called 𝒛𝒊) is 

in standard deviation 

units (where 𝑺𝑫 = 𝟏)

Confidence Intervals 

using standard normal 

distribution have these

𝒛 “critical” values:

90% within 𝒛 = ±𝟏. 𝟔𝟓
95% within 𝒛 = ±𝟏. 𝟗𝟔
99% within 𝒛 = ±𝟐. 𝟓𝟖

http://my.ilstu.edu/~gjin/hsc204-hed/Module-5-Summary-Measure-2/Module-5-Summary-Measure-28.html


Confidence Interval for Sample Mean 

using 𝑧 Standard Normal Distribution
• That sample’s statistics:

➢ Mean: ത𝑦 = 10.98 (estimate)

➢ SD: 𝑠 = 4.60 (person dispersion)

➢ SE of Mean =
𝑠

𝑁
=

4.60

50
= 0.65

• Confidence Interval (CI):
𝐶𝐼 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸)

➢ 90% CI for Mean: 𝐶𝐼 = 10.98 ± 𝟏. 𝟔𝟓 ∗ 0.65 = 9.90 𝑡𝑜 12.05

➢ 95% CI for Mean: 𝐶𝐼 = 10.98 ± (𝟏. 𝟗𝟔 ∗ 0.65) = 9.70 𝑡𝑜 12.25

➢ 99% CI for Mean: 𝐶𝐼 = 10.98 ± 𝟐. 𝟓𝟖 ∗ 0.65 = 9.30 𝑡𝑜 12.66

• CI = interval that should contain the population mean 𝝁
in that % of the samples (as did occur in these CIs)
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For reporting CI: 

“lower bound” to 

“upper bound”

Draw 1 sample of 𝑵 = 𝟓𝟎 from 

the 𝒚𝒊 below with 𝝁 = 𝟏𝟎, 𝝈 = 𝟓



Using SE of the Mean to Compare the Sample 

Mean ഥ𝒚 to an Expected Population Mean 𝝁

• Besides using the SE of the mean to construct a confidence 

interval around the sample mean ത𝑦 , we can also use the SE 

to compare ഥ𝒚 to an expected population mean 𝝁

• If we use the standard normal distribution, this is known as 

a “one-sample 𝒛-test”: 𝒛 =
ഥ𝒚−𝝁

𝑺𝑬
, where 𝒛 is a “test statistic”

➢ This test locates ഥ𝒚 onto a new “𝒛” standardized distribution: with 

𝑴𝒁 = 𝟎 (deviation of ഥ𝒚 from 𝝁) and 𝑺𝑫𝒁 = 𝟏 (using SE of mean)

➢ Our example → expected: 𝜇 = 10; sample: ത𝑦 = 10.98, 𝑆𝐸 = 0.65

▪ Is a sample mean = 10.98 really that different from expected 𝜇 = 10?

▪ 𝒛 =
ഥ𝒚−𝝁

𝑺𝑬
=

𝟏𝟎.𝟗𝟖−𝟏𝟎

𝟎.𝟔𝟓
= 𝟏. 𝟓𝟎… ok, so what does 𝐳 = 𝟏. 𝟓𝟎 actually mean?
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Area Under Standard Normal Curve
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Relative to 𝝁 = 𝟏𝟎,
our ഥ𝒚 = 𝟏𝟎. 𝟗𝟖
with 𝑺𝑬 = 𝟎. 𝟔𝟓

puts us here: 

𝒛 = 𝟏. 𝟓𝟎

Exact probabilities for the area under the 

curve to the left or right of 𝒛 can be found 

by online calculators or statistical software

If 𝝁 = 𝟏𝟎 was true, we’d find a sample 

mean ഥ𝒚 > 𝟏𝟎. 𝟗𝟖 about 6.68% of the time

93.32% 6.68%

Said differently, 

𝒛 = 𝟏. 𝟓𝟎 means

our ഥ𝒚 = 𝟏𝟎. 𝟗𝟖 is 

+𝟏. 𝟓𝟎 𝑺𝑬 units 

away from 𝝁 = 𝟏𝟎

𝒛 for sample means

𝝁 = 𝟏𝟎

http://mathcenter.oxford.emory.edu/site/math117/normalDistribution/


So is our sample mean really that different 

from the population mean?
• By sampling only some persons from the population, we expect 

some fluctuation in the statistics (e.g., mean and variance) that 
summarize any one sample, but how different is “too different”?

• We define “too different” as “only be expected some small 
percentage of the time” given three choices made in advance: 

➢ What sampling distribution characterizes the statistic? 

▪ For the sample mean, let’s stay with standard normal distribution (for now)

➢ What percentage of samples defines “unexpected”? 

▪ This is known as “alpha level” and is the opposite of confidence level

▪ Typically choose alpha = .05 (or .10 to be lenient, or .01 to be conservative)

➢ Is it possible to be unexpected in either direction?

▪ If so, you need a “two-tailed test” → allocate alpha % to both sides

▪ If not, you need a “one-tailed test” → allocate alpha % to one possible side*
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More About “Expected” and “Unexpected”

• More generally, this is called a “Null Hypothesis Significance 
Test”; in this example, we are asking “what is the probability of 
the sample mean ഥ𝒚 if the population mean 𝝁 were true”?

➢ A “hypothesis” is a statement about a population parameter

• A “null hypothesis” (𝑯𝟎) is a statement about the population 
parameter being equal to some specific (expected) value 

➢ e.g., in example with sample mean ത𝑦 = 10.98, 𝑯𝟎: 𝝁 = 𝟏𝟎

• An “alternative hypothesis” (𝑯𝑨) is a statement that 
contradicts the null hypothesis and conveys allowed 
directionality of deviations from value given by 𝐻0

➢ One-tailed test would be 𝑯𝑨: 𝝁 > 𝟏𝟎 OR 𝑯𝑨: 𝝁 < 𝟏𝟎

▪ Area of unexpected result allocated to one side only

➢ Two-tailed tests for “different than”: 𝑯𝑨: 𝝁≠ 𝟏𝟎; 𝑯𝑨: 𝝁 = ! 𝟏𝟎

▪ Area of unexpected result allocated equally to both sides
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• Choices: 𝑯𝟎: 𝝁 = 𝟏𝟎; probability declared “unexpected” is alpha = 
.05 (so 95% “expected”) → two possible versions one-tailed 𝐻𝐴:

• 𝑯𝑨: 𝝁 > 𝟏𝟎→
𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = +𝟏. 𝟔𝟓

➢ Tests if ഥ𝒚 is bigger 
or not bigger

➢ If ഥ𝒚 is actually smaller, 
conclude “not bigger”

• 𝑯𝑨: 𝝁 < 𝟏𝟎→
𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = −𝟏. 𝟔𝟓

➢ Tests if ഥ𝒚 is smaller 
or not smaller

➢ If ഥ𝒚 actually bigger, 
conclude “not smaller”

Directions of “Unexpected”:

One-Tailed Tests at Work
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𝒛 for sample means

+𝟏. 𝟔𝟓

𝒛 > +𝟏. 𝟔𝟓
5%

−𝟏. 𝟔𝟓

𝒛 < 𝟏. 𝟔𝟓
5%

𝒛 ≥ −𝟏. 𝟔𝟓
95%

𝒛 ≤ +𝟏. 𝟔𝟓
95%

𝝁 = 𝟏𝟎



𝒛 for sample means

Two-Tailed Test of 𝝁 ≠ 𝟏𝟎 : 

Example Sample of 𝑁 = 50
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𝒛 > +𝟏. 𝟗𝟔: 

2.5%

𝒛 < −𝟏. 𝟗𝟔: 

2.5%

𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 defines 

95% “expected”

86.66%
𝒛 > +𝟏. 𝟓𝟎: 

6.68%

𝒛 < −𝟏. 𝟓𝟎: 

6.68%

• Choices made: at alpha = .05 for a two-tailed test, 𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = ±𝟏. 𝟗𝟔

• Sample statistics: mean ഥ𝒚 = 𝟏𝟎. 𝟗𝟖, SE of mean = 𝟎. 𝟔𝟓

• 95% CI for Mean: 𝑪𝑰 = 𝟏𝟎. 𝟗𝟖 ± (𝟏. 𝟗𝟔 ∗ 𝟎. 𝟔𝟓) = 𝟗. 𝟕𝟎 𝒕𝒐 𝟏𝟐. 𝟐𝟓 (so has 𝝁)

• One-sample 𝒛-test given 𝑯𝟎 that 𝝁 = 𝟏𝟎: 𝒛 =
ഥ𝒚−𝝁

𝑺𝑬
=

𝟏𝟎.𝟗𝟖−𝟏𝟎

𝟎.𝟔𝟓
= 𝟏. 𝟓𝟎

• Exact two-tailed 𝒑-value for 𝒛 = 𝟏. 𝟓𝟎 is 𝒑 = 𝟎. 𝟏𝟑𝟑𝟔

Two-sided 𝒑-value 

= probability of a 

more extreme

𝒛 test statistic

than was found: 

𝟔. 𝟔𝟖 ∗ 𝟐 = 𝟏𝟑. 𝟑𝟔

http://mathcenter.oxford.emory.edu/site/math117/normalDistribution/


Decision Language for Test-Statistics
• Calculation of test-statistics (like 𝑧) and their 𝑝-values are more 

informally called “significance tests” (against a null hypothesis 𝐻0)

• If the test-statistic exceeds the chosen distribution’s critical value(s), 
then the obtained 𝒑-value is less than the chosen alpha level:

➢ You “reject the null hypothesis”: it is sufficiently unexpected to get 
an observed test-statistic that extreme if the null hypothesis were true

➢ So the test result is labeled “statistically significant” 

• If the test-statistic does not exceed the distribution’s critical value(s), then 
the obtained 𝒑-value is greater than or equal to the chosen alpha level:

➢ You “do not reject* the null hypothesis”—it is sufficiently expected to get 
an observed test-statistic that extreme if the null hypothesis were true

▪ * You CANNOT SAY “accept the null hypothesis” or you will be chastised! 

▪ * I think you can say “retain the null hypothesis” but some may quibble on that

➢ So the test result is labeled “statistically nonsignificant*”

▪ * Do not say “insignificant” because that is a value judgment—instead say 
“not significant” or “nonsignificant” (conventionally written as one word)

48PSQF 6242: Lecture 1 



Decision Language for Example Sample
• Choices made: use standard normal, at alpha = .05 for a two-tailed 

test, 𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = ±𝟏. 𝟗𝟔, population mean expected to be 𝝁 = 𝟏𝟎

• Obtained 𝒛 test-statistic and 𝒑-value: 𝒛 = 𝟏. 𝟓𝟎, 𝒑 = 𝟎. 𝟏𝟑𝟑𝟔

• If 𝐻0 were true (if 𝝁 = 𝟏𝟎), we would see a sample mean of ഥ𝒚 = 𝟏𝟎. 𝟗𝟖
(SE of mean = 𝟎. 𝟔𝟓) that is more than 1.5 standard deviations away 
from the mean (either too high or too low, so beyond ± 𝒛 = 𝟏. 𝟓𝟎) 
approximately 13.36% of the time (6.68% 𝒛 > 𝟏. 𝟓𝟎; 6.68% 𝒛 < −𝟏. 𝟓𝟎)

• Because 𝐳 > 𝟏. 𝟗𝟔
and so 𝒑 > . 𝟎𝟓, 
the test result is 
nonsignificant:
ഥ𝒚 = 𝟏𝟎. 𝟗𝟖 is
nonsignificantly
greater than 
expected 
𝝁 = 𝟏𝟎
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𝒛 for sample means

86.66%
𝒛 > +𝟏. 𝟓𝟎: 

6.68%

𝒛 < −𝟏. 𝟓𝟎: 

6.68%

𝒛 > +𝟏. 𝟗𝟔: 

2.5%

𝒛 < −𝟏. 𝟗𝟔: 

2.5%

𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 defines 

95% “expected”

http://mathcenter.oxford.emory.edu/site/math117/normalDistribution/


Using the SE of the Sample Mean to 

Make Inferences to the Population Mean 
• So far we’ve seen two inferential uses of the SE of the mean:

➢ To create a confidence interval: limits of the range that should 
contain the population mean 𝝁 in chosen % of the samples

➢ To create a test statistic how obtained sample mean ഥ𝒚 differs from 
an expected population mean 𝝁 (where 𝝁 is the null hypothesis, 𝐻0)

▪ If 𝝁 is true, how often would we find a more extreme value of ഥ𝒚 ?

• We’ve seen both uses require three choices made in advance:

➢ Where “unexpected” begins: expressed as either confidence level 
(e.g., 95% expected) or alpha level (e.g., 5% unexpected) 

➢ Direction of unexpected: Either too high or too low → two-tailed

➢ Which PDF describes the statistic’s sampling distribution—provides 
the critical values to map your % unexpected onto your sample

▪ In real data we don’t know for sure which distribution is “correct”, but 
let’s see how the normal distribution worked in our simulated data…
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95% CIs for the Mean via Normal Distribution

1000 samples drawn for each 𝑁 from 𝒚𝒊 : Mean 𝝁 = 𝟏𝟎, SD 𝝈 = 𝟓
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𝑵 % of CIs

with 𝝁 = 𝟎

Mean SE with: 

𝝈 𝒔

5 88.3 2.24 2.13

10 90.8 1.58 1.55

15 93.1 1.29 1.28

20 94.3 1.12 1.11

30 94.4 0.91 0.91

50 94.1 0.71 0.71

The 95% CI for a sample mean provides the interval that should contain the 

population mean in 95% of the samples. But in reality, only 88–94% of CIs for 

these samples contained the population mean.  So what happened ???? 

Should be 95%!



Test ഥ𝒚 against 𝝁 via Normal Distribution

1000 samples drawn for each 𝑁 from 𝒚𝒊 : Mean 𝝁 = 𝟏𝟎, SD 𝝈 = 𝟓
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𝑵 % of tests 

with 𝒑 <. 𝟎𝟓

Mean SE with: 

𝝈 𝒔

5 11.7 2.24 2.13

10 9.2 1.58 1.55

15 6.9 1.29 1.28

20 5.7 1.12 1.11

30 5.6 0.91 0.91

50 5.9 0.71 0.71

If the standardized normal distribution accurately characterized the sampling 

distribution of the mean, then we would have 𝒛 test-statistics more extreme than the 

chosen critical value of ±1.96 less than 5% of the time. But in reality, up to 11.7% 

of these 𝒛 test-statistics were found to be “significant”.  So what happened ???? 

Should be 5%!



Test ഥ𝒚 against 𝝁 via Normal Distribution: 𝑠
1000 samples drawn for each 𝑁 from 𝒚𝒊 : Mean 𝝁 = 𝟏𝟎, SD 𝝈 = 𝟓
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𝑵 % of tests 

with 𝒑 <. 𝟎𝟓

Mean SE with: 

𝝈 𝒔

5 11.7 2.24 2.13

10 9.2 1.58 1.55

15 6.9 1.29 1.28

20 5.7 1.12 1.11

30 5.6 0.91 0.91

50 5.9 0.71 0.71

The SD for each of these 𝒛 test-statistics was supposed to be 1.00 (to match the 

standard normal distribution), but the observed SDs were larger as 𝑵 decreased. 

This is partially because the observed sample SD (𝒔) was used in computing the SE 

instead of the expected population SD (𝝈). What would happen if we used 𝝈 instead?

Should be 5%!

SD=1.36 SD=1.16 SD=1.08

SD=1.08 SD=1.02 SD=1.00



Test ഥ𝒚 against 𝝁 via Normal Distribution: 𝝈
1000 samples drawn for each 𝑁 from 𝒚𝒊 : Mean 𝝁 = 𝟏𝟎, SD 𝝈 = 𝟓
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𝑵 % of tests 

with 𝒑 <. 𝟎𝟓

Mean SE with: 

𝝈 𝒔

5 4.1 2.24 2.13

10 5.0 1.58 1.55

15 4.6 1.29 1.28

20 4.1 1.12 1.11

30 4.9 0.91 0.91

50 4.7 0.71 0.71

After switching from the observed sample SD (𝒔) to the expected population SD (𝝈) 

in computing the SE, the SD for each of these 𝒛 test-statistics is closer to the 1.00

it should be, and about 5% of these 𝒛 test-statistics were flagged as “unexpected” as 

they should be. But what if you don’t know 𝝈??? Beer to the rescue! No, really… 

Closer to 5% ☺

SD=0.97 SD=1.01 SD=0.99

SD=0.97 SD=0.98 SD=0.97



What Went Wrong? Beer to the Rescue!

• As we just saw, the standard normal doesn’t fit well in small samples

• True story: this discovery is credited to William S. Gosset, who 

began working for Guinness Brewery in 1899 testing batches 

of hops for acceptability relative to a target population mean

➢ Because his testing could take a whole day and it could take a full year to 

grow a crop, his sample sizes were tiny (like 3-4 batches in a sample)

➢ He computed z test-statistics for each sample, and those whose mean was 

deemed outside the target mean (“unexpected”) then had further testing

▪ But 3 times more than expected, the samples were actually ok… huh?

▪ So Guinness let him go get a graduate degree in statistics to try to figure out 

why, and he did so by hand: He drew 750 samples of N=4 by shuffling 3000 

cards (whose population mean he knew), and derived a new distribution

▪ Guinness prohibited employees from publishing anything (i.e., trade secrets), 

but Gosset convinced them to let him publish his finding as author “Student”

▪ And “student’s t” was born! Let’s compare standard normal and 𝒕 distributions…
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Source: DeVeaux, R. D., Velleman, P. F., & Bock, D. E. (2004 p. 476-477). Intro Stats (4th ed).  Boston: Pearson.
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+1.65−1.65

+1.96−1.96

+2.58−2.58

𝑧 Standard Normal ignores 𝑁…
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Image adapted from: http://my.ilstu.edu/~gjin/hsc204-hed/Module-5-Summary-Measure-2/Module-5-Summary-Measure-28.html
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Metric: 𝑴𝒁 = 𝟎 measures 

deviations of ഥ𝒚 from 𝝁 in 

SE units (as 𝑺𝑫𝒁 = 𝟏)

Confidence Intervals 

using standard normal 

distribution have these

𝒛 “critical” values:

90% within 𝒛 = ±𝟏. 𝟔𝟓
95% within 𝒛 = ±𝟏. 𝟗𝟔
99% within 𝒛 = ±𝟐. 𝟓𝟖

http://my.ilstu.edu/~gjin/hsc204-hed/Module-5-Summary-Measure-2/Module-5-Summary-Measure-28.html


Meet Student’s 𝒕 Distribution: 

Where Sample Size 𝑁 Matters!
• Both 𝒛 (standard normal) and 𝒕 distributions have the same metric: 

𝑴 = 𝟎, 𝑺𝑫 = 𝟏 (to translate ഥ𝒚→ 𝝁 given SD → SE of the mean)

• But 𝒕 is flatter than 𝒛, more so with fewer “denominator 

degrees of freedom”: DF = 𝑵− 𝟏 (for now; stay tuned) 
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Image borrowed from: http://faculty.cbu.ca/~erudiuk/IntroBook/sbk24m.htm 
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• 𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 values for 

alpha = .05 by 

DF shown here

• With smaller 𝑵,

have to go farther 

out to get to 5%

Btw, 𝒕 with 

DF = ∞ is 𝒛

http://faculty.cbu.ca/~erudiuk/IntroBook/sbk24m.htm


Critical Values for 𝑡 versus 𝑧 Distributions 

With smaller 𝑵
(fewer DF), 

greater 𝒕 test-

statistics are 

needed to declare 

ഥ𝒚 as “unexpectedly 

different” from 𝝁
(i.e., to cross the 

alpha threshold to 

be “significant”)

𝒛 doesn’t use DF
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In the olden days, one needed to refer to tables of 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 values for a given alpha 

and DF, but now statistical software can give you the exact 𝒑-value: the probability 

of a more extreme 𝑡 test-statistic than you found if the null hypothesis 𝐻0 were true



𝒕 for sample means

Using 𝑡 Distribution Instead of 𝑧:

Example Sample of 𝑁 = 50
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Image adapted from: http://mathcenter.oxford.emory.edu/site/math117/normalDistribution/ 
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𝒛 > +𝟏. 𝟗𝟔: 

2.5%

𝒛 < −𝟏. 𝟗𝟔: 

2.5%

95% is 

“expected”

86.04%
𝒛 > +𝟏. 𝟓𝟎: 

6.98%

𝒛 < −𝟏. 𝟓𝟎: 

6.98%

• Choices made: at two-tailed alpha = .05, 𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = ±𝟐. 𝟎𝟏 (not 𝐳 = 𝟏. 𝟗𝟔)

• Sample statistics: mean ഥ𝒚 = 𝟏𝟎. 𝟗𝟖, SE of mean = 𝟎. 𝟔𝟓

• 95% CI for Mean: 𝑪𝑰 = 𝟏𝟎. 𝟗𝟖 ± (𝟐. 𝟎𝟏 ∗ 𝟎. 𝟔𝟓) = 𝟗. 𝟔𝟕 𝒕𝒐 𝟏𝟐. 𝟐𝟖 (so has 𝝁)

• One-sample 𝒕-test given 𝑯𝟎 that 𝝁 = 𝟏𝟎: 𝒕 =
ഥ𝒚−𝝁

𝑺𝑬
=

𝟏𝟎.𝟗𝟖−𝟏𝟎

𝟎.𝟔𝟓
= 𝟏. 𝟓𝟎

• Exact 𝒑-value for 𝒕 = 𝟏. 𝟓𝟎 is 𝒑 = 𝟎. 𝟏𝟑𝟗𝟔

Two-sided 𝒑-value 

= probability of a 

more extreme

𝒛 test statistic

than was found: 

𝟔. 𝟗𝟖 ∗ 𝟐 = 𝟏𝟑. 𝟗𝟔

http://mathcenter.oxford.emory.edu/site/math117/normalDistribution/


Test ഥ𝒚 against 𝝁 via 𝑡 Distribution instead of 𝑧
1000 samples drawn for each 𝑁 from 𝒚𝒊 : Mean 𝝁 = 𝟏𝟎, SD 𝝈 = 𝟓
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𝑵
% of tests with 𝒑 <. 𝟎𝟓 % of CIs with 𝝁 = 𝟎 Mean SE with: 

𝒛 𝒕 𝒛 𝒕 𝝈 𝒔

5 11.7 5.3 88.3 94.7 2.24 2.13

10 9.2 4.9 90.8 95.1 1.58 1.55

15 6.9 4.9 93.1 95.1 1.29 1.28

20 5.7 4.1 94.3 95.9 1.12 1.11

30 5.6 5.0 94.4 95.0 0.91 0.91

50 5.9 4.8 94.1 95.2 0.71 0.71

Using the 𝒕 distribution, which takes into account denominator degrees of 

freedom, resulted in confidence intervals (CIs) that contained the population 

mean 𝝁 closer to the chosen 95%, or equivalently, 5% of tests that found the 

difference between the sample mean ഥ𝒚 and expected 𝝁 to be “significant” 



More About “Degrees of Freedom”
• More specifically, we are focusing for now on the denominator term

in the formulas for estimating the mean (𝑁) and variance (𝑁 − 1)

➢ “Estimate” means “find the best value”; for now we can use off-the-shelf formulas

➢ This term is known more generally as denominator degrees of freedom, 
abbreviated as 𝐷𝐹𝑑𝑒𝑛 (or DDF); it is referred to as just “DF” with 𝑡 test-statistics

• 𝐷𝐹𝑑𝑒𝑛 is based on the concept that to fully describe all values in a variable, 
we could compute up to 𝑵 statistics—this is our starting point for 𝐷𝐹𝑑𝑒𝑛

• For each statistic we estimate to describe a variable, we “spend” 1 𝐷𝐹𝑑𝑒𝑛
and reduce the denominator term accordingly to reflect the remainder

▪ Real-world analogy: Weight Watchers “points” (see also 1980’s “Deal-A-Meal”)

➢ For example: mean 𝑦 =
σ𝑖=1
𝑁 𝑦𝑖

𝑁
, variance 𝑠2 =

σ𝑖=1
𝑁 𝑦𝑖−ത𝑦 2

𝑁−1

▪ 𝐷𝐹𝑑𝑒𝑛 for the mean starts out at 𝑁, because we haven’t already
computed anything that is needed in order to estimate the mean 

▪ But 𝐷𝐹𝑑𝑒𝑛 for the variance is 𝑁 − 1 to account for having already 
spent 1 𝐷𝐹𝑑𝑒𝑛 to estimate ത𝑦 for use in estimating the variance

➢ This trend will continue as we estimate other statistics within models…
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https://www.youtube.com/watch?v=ZrY8diZKKZs


Summary: Inference for Sample Means 

of Quantitative Variables
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• SE of the mean indexes mean’s inconsistency across samples 
(is a proxy for SD of the sampling distribution for ഥ𝒚𝒔)

➢ 𝑆𝐸 =
𝝈

𝑁
if population SD is known; 𝑆𝐸 =

𝒔

𝑁
if using sample SD

➢ The means of samples with more within-sample variance and 
smaller sample sizes have larger SEs (i.e., more imprecision)

• SE is used to create confidence intervals (range expected to 
contain the population mean 𝝁 in that % of samples) and/or 
to form a test-statistic that compares sample ഥ𝒚 to expected 𝝁

➢ Safest strategy is to use a 𝒕-distribution with denominator  DF
(𝑫𝑭 = 𝑁 − 1 here) to get critical value for CI and/or exact 𝑝-value

▪ 𝐶𝐼 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± (𝒕𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 ∗ 𝑆𝐸); one-sample “𝒕-test”: 𝒕 =
ഥ𝒚−𝝁

𝑺𝑬

➢ If population SD is known or 𝑁 is “big enough”, standard normal → ok 

▪ 𝐶𝐼 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± (𝒛𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 ∗ 𝑆𝐸); one-sample “𝒛-test”: 𝒛 =
ഥ𝒚−𝝁

𝑺𝑬



Real Example: Twinning Effect*
• Twinning Effect: Developmental delay in twins relative to singletons

• Demonstrated if 95% CI for sample ഥ𝒚 was below expected 𝜇 = 100
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* Source: Rice, M. L., Zubrick, S. R., Taylor, C. L., Hoffman, L., & Gayán, J. (2018). Longitudinal study of language and speech 

of twins at 4 and 6 years: Twinning effects decrease, zygosity effects disappear, and heritability increases. Journal of 

Speech-Language-Hearing Research, 61(1), 79-93. Note: SE was from a multilevel model accounting for twin dependency.
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From Table 1 of Rice et al. (2018)

• 𝐶𝐼 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸); for 𝐷𝐹 = 770, 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ~1.96

➢ For DZ age 4, 𝟗𝟓% 𝑪𝑰 = 𝟗𝟔. 𝟕𝟖 ± 𝟏. 𝟗𝟔 ∗ 𝟎. 𝟓𝟗 = 𝟗𝟓. 𝟔𝟐 𝒕𝒐 𝟗𝟕. 𝟗𝟑

➢ Because the interval is below 𝜇 = 100, there is evidence of a twinning effect: 
significantly lower sample mean than expected (𝜇 = 100→ standardized test)

• “one-sample t-test”:  𝑡 =
ത𝑦−𝜇

𝑆𝐸
=

96.78−100

0.59
= −5.48, two-tailed 𝑝 < .0001

➢ If 𝝁 = 100, ഥ𝒚 = 96.78 (5+ SDs from the mean) would be found < 0.01% of time



Real Example: Twinning Effect*
• Twinning Effect: Developmental delay in twins relative to singletons

• Demonstrated if 95% CI for sample ഥ𝒚 was below expected 𝜇 = 100
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* Source: Rice, M. L., Zubrick, S. R., Taylor, C. L., Hoffman, L., & Gayán, J. (2018). Longitudinal study of language and speech 

of twins at 4 and 6 years: Twinning effects decrease, zygosity effects disappear, and heritability increases. Journal of 

Speech-Language-Hearing Research, 61(1), 79-93. Note: SE was from a multilevel model accounting for twin dependency.
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PPVT from Table 1 of Rice et al. (2018)
𝒕-value 2-tailed 

𝒑-value

−𝟓. 𝟒𝟖 < . 𝟎𝟎𝟎𝟏

−𝟔. 𝟔𝟗 < . 𝟎𝟎𝟎𝟏

𝟒. 𝟐𝟗 < . 𝟎𝟎𝟎𝟏

𝟎. 𝟑𝟓 = . 𝟕𝟐𝟑𝟐

• Age 4 shows evidence of significant twinning effect: if 𝝁 = 100, 
ഥ𝒚 estimates as extreme as these would be found < 0.01% of the time 

• Age 6 DZ result is also significant, but in the opposite direction 

➢ If we had used a one-tailed test for 𝝁 < 100, we would say the result is 
nonsignificant (ഥ𝒚 was not < 100), but that would mis-state the real story!

• Age 6 MZ result is nonsignificant: more extreme expected 72.32% of time



Example One-Sample 𝑡-Test in SAS: 

Is the mean years of education different than 12?
* TTEST to compare sample mean to H0=expected at alpha=.05;

* CI=equal also requests confidence interval for SD;

PROC TTEST DATA=work.Example1 HO=12 SIDES=2 ALPHA=.05

CI=EQUAL PLOTS=NONE; 

VAR educ; RUN;
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N Mean Std Dev Std Err Minimum Maximum

734 13.8120 2.9093 0.1074 2.0000 20.0000

Mean

95% CL 

Mean Std Dev

95% CL 

Std Dev

13.8120 13.6012 14.0228 2.9093 2.7677 3.0663

DF t Value Pr > |t|

733 16.87 <.0001

• ഥ𝒚 = 13.812, 𝐒𝐄 = 0.1074

➢ 𝟗𝟓% 𝑪𝑰 = 13.601 to 14.023

• 𝒕 =
13.81−12

0.11
= 𝟏𝟔. 𝟖𝟕, 𝒑 < . 𝟎𝟎𝟎𝟏

➢ If the true population mean was 

𝝁 = 𝟏𝟐 years, a more extreme 

sample mean than ഥ𝒚 = 𝟏𝟑. 𝟖𝟏
(± 16.87 SDs away) would be 

found < 0.01% of the time 

➢ 13.81 is greater than 12
(significantly because 𝑝 < .05)



Example One-Sample 𝑡-test in STATA: 

Is the mean years of education different than 12?
// TTEST to compare sample mean to H0=expected at alpha=.05

ttest educ==12, level(95)

.    ttest educ==12, level(95)

One-sample t test

------------------------------------------------------------------------------

Variable |     Obs Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

---------+--------------------------------------------------------------------

educ |     734    13.81199    .1073836    2.909282    13.60117    14.02281

------------------------------------------------------------------------------

mean = mean(educ)                                             t =  16.8740

Ho: mean = 12                                    degrees of freedom =      733

Ha: mean < 12               Ha: mean != 12                 Ha: mean > 12

Pr(T < t) = 1.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000

// CI requests confidence interval for variance separately

ci variances educ, level(95)

.    ci variances educ, level(95)

Variable |        Obs Variance       [95% Conf. Interval]

-------------+----------------------------------------------------

educ |        734      8.463922       7.660085    9.401962
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• In binary variables (0 or 1 values), ഥ𝒚 is labeled as 𝒑, the 

proportion of 1 values (and 𝒒 is the proportion of 0 values)

• 𝑵 and 𝒑 affect how close ഥ𝒚 is to true 𝝁 (because 𝑉𝐴𝑅 = 𝒑 ∗ 𝒒)

➢ 2 fake binary variables* for a population of 100,00 fake people 

➢ Mean: 𝝁 = 𝟎. 𝟔𝟎 or 𝟎. 𝟐𝟎, so VAR: 𝝈𝟐 = 𝟎. 𝟐𝟒 or 𝟎. 𝟏𝟔

* Used a “Bernoulli” distribution here to generate 𝒚𝒊 (two categories)

What about Means of Binary Variables?
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Mean: 𝝁 = 𝟎. 𝟔𝟎 Mean: 𝝁 = 𝟎. 𝟐𝟎



1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟎. 𝟔𝟎
(so VAR 𝝈𝟐 = 𝟎. 𝟐𝟒)

• More 𝑵→ less SD 

in ഥ𝒚𝒔 across samples
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𝑵 Per 

Sample

Mean
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

5 0.58 0.22

10 0.59 0.16

15 0.60 0.13

20 0.60 0.11

30 0.60 0.09

50 0.60 0.07

The sample mean of binary variables (ഥ𝒚, called“𝒑”) follows 

a binomial distribution (using only 𝑁 and 𝜇) that can be 

approximated by a normal distribution in larger samples



1000 samples each for different 𝑁…
• Population values: 

Mean 𝝁 = 𝟎. 𝟐𝟎
(so VAR 𝝈𝟐 = 𝟎. 𝟏𝟔)

• More 𝑵→ less SD 

in ഥ𝒚𝒔 across samples
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𝑵 Per 

Sample

Mean
ഥ𝒚𝒔

SD
ഥ𝒚𝒔

5 0.21 0.18

10 0.21 0.13

15 0.20 0.10

20 0.20 0.09

30 0.20 0.07

50 0.20 0.06

The sample mean of binary variables (ഥ𝒚, called“𝒑”) follows 

binomial distribution (using only 𝑁 and 𝜇) that becomes 

more skewed the farther away 𝝁 is from the midpoint 0.5



Inference for Means of Binary Variables
• The same issues with inference about the mean of quantitative variables 

occur for the mean of binary variables (ഥ𝒚, called the proportion 𝒑)

• Two conditions should be met to use 𝒛 standard normal approximation 
to binomial distribution: 𝑵𝒑 > 𝟓 and 𝑵𝒒 > 𝟓 (or > 𝟏𝟎 in some sources)

➢ In Example 1, I used this normal approximation 
to ensure consistent results across SAS and STATA

• Otherwise, numerous (non-𝒕) “fixes” have been proposed that:

➢ Ensure CI for proportion 𝒑 stays within boundaries of 0 and 1 
(CI may need to be asymmetric as a result)

➢ Account for more inconsistency with smaller 𝑁 and extreme 𝑝

➢ Include various “continuity corrections” and “exact statistics” that 
may involve resampling techniques to derive an empirical SE

• For more details in software implementation:

➢ SAS PROC FREQ documentation

➢ STATA exact tests
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For more info, ask 

The Google about 

“categorical data”

https://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=procstat_freq_details37.htm&locale=en
https://www.stata.com/features/exact-statistics/


Example One-Sample Proportion Test in SAS: 
Is the proportion of HS non-graduates different than .10?

* FREQ: compare proportion to BINOMIAL P=expected at alpha=.05;

* Specify LEVEL= to test proportion of 1 values against H0;

* CL requests confidence interval for proportion;

PROC FREQ DATA=work.Example1;

TABLE lessHS / CL BINOMIAL(LEVEL="1" P=.10) ALPHA=.05;

RUN;
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• ഥ𝒚 = 0.124, 𝐒𝐄 = 0.0122 (using 𝒔)

➢ 𝟗𝟓% 𝑪𝑰 = 0.1001 to 0.1478

• 𝒛 =
0.124−0.10

0.0111
= 𝟐. 𝟏𝟔𝟓, 𝒑 =. 𝟎𝟑𝟎𝟒

➢ If 𝝁 = 𝟎. 𝟏𝟎, a more extreme 

sample mean than ഥ𝒚 = 𝟎. 𝟏𝟐𝟒
(± 2.165 SDs away) would be 

found ~ 3.04% of the time 

➢ 0.124 is greater than 0.10
(significantly because 𝑝 < .05)

lessHS Frequency Percent

Cumulative

Frequency

Cumulative

Percent

0 643 87.60 643 87.60

1 91 12.40 734 100.00

Binomial Proportion

lessHS = 1

Proportion 0.1240

ASE 0.0122

95% Lower Conf Limit 0.1001

95% Upper Conf Limit 0.1478

Exact Conf Limits

95% Lower Conf Limit 0.1010

95% Upper Conf Limit 0.1500

Test of H0: Proportion = 0.1

ASE under H0 0.0111

Z 2.1654

One-sided Pr >  Z 0.0152

Two-sided Pr > |Z| 0.0304

SE for 𝒛-test uses 

𝝈 instead of 𝒔



Example One-Sample Proportion Test in STATA: 
Is the proportion of HS non-graduates different than .10?

// PRTEST: compare sample proportion to variable=expected at alpha=.05

// STATA always tests proportion of 1 values against H0

prtest lessHS==.10, level(95)

One-sample test of proportion                 lessHS: Number of obs =      734

------------------------------------------------------------------------------

Variable |       Mean   Std. Err.                     [95% Conf. Interval]

-------------+----------------------------------------------------------------

lessHS |   .1239782   .0121642                      .1001369    .1478195

------------------------------------------------------------------------------

p = proportion(lessHS)                                        z =   2.1654

Ho: p = 0.1

Ha: p < 0.1                 Ha: p != 0.1                   Ha: p > 0.1

Pr(Z < z) = 0.9848         Pr(|Z| > |z|) = 0.0304          Pr(Z > z) = 0.0152
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• ഥ𝒚 = 0.124, 𝐒𝐄 = 0.0122 (using 𝒔); 𝟗𝟓% 𝑪𝑰 = 0.1001 to 0.1478

• 𝒛 =
0.124−0.10

0.0111
= 𝟐. 𝟏𝟔𝟓, 𝒑 =. 𝟎𝟑𝟎𝟒

➢ If 𝝁 = 𝟎. 𝟏𝟎, a more extreme sample mean than ഥ𝒚 = 𝟎. 𝟏𝟐𝟒
(± 2.165 SDs away) would be found ~ 3.04% of the time 

➢ 0.124 is greater than 0.10 (significantly because 𝑝 < .05)



Opposite One-Sample Proportion Test in SAS: 
Is the proportion of HS graduates different than .90?
* FREQ: compare proportion to BINOMIAL P=expected at alpha=.05;

* Specify LEVEL= to test proportion of 1 values against H0;

* CL requests confidence interval for proportion;

PROC FREQ DATA=work.Example1;

TABLE gradHS / CL BINOMIAL(LEVEL="1" P=.90) ALPHA=.05;

RUN;
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• ഥ𝒚 = 0.876, 𝐒𝐄 = 0.0122 (using 𝒔)

➢ 𝟗𝟓% 𝑪𝑰 = 0.8522 to 0.8999

• 𝒛 =
0.876−0.90

0.0111
= −𝟐. 𝟏𝟔𝟓, 𝒑 =. 𝟎𝟑𝟎𝟒

➢ If 𝝁 =. 𝟗𝟎, a more extreme 

sample mean than ഥ𝒚 =. 𝟖𝟕𝟎
(± 2.165 SDs away) would be 

found ~ 3.04% of the time 

➢ 0.876 is smaller than 0.90
(significantly because 𝑝 < .05)

gradHS Frequency Percent

Cumulative

Frequency

Cumulative

Percent

0 91 12.40 91 12.40

1 643 87.60 734 100.00

Binomial Proportion

lessHS = 1

Proportion 0.8760

ASE 0.0122

95% Lower Conf Limit 0.8522

95% Upper Conf Limit 0.8999

Exact Conf Limits

95% Lower Conf Limit 0.8500

95% Upper Conf Limit 0.8990

Test of H0: Proportion = 0.9

ASE under H0 0.0111

Z -2.1654

One-sided Pr >  Z 0.0152

Two-sided Pr > |Z| 0.0304

SE for 𝒛-test uses 

𝝈 instead of 𝒔



Opposite One-Sample Proportion Test in STATA: 
Is the proportion of HS graduates different than .90?

// PRTEST: compare sample proportion to variable=expected at alpha=.05

// STATA always tests proportion of 1 values against H0

prtest gradHS==.90, level(95)

One-sample test of proportion                 gradHS: Number of obs =      734

------------------------------------------------------------------------------

Variable |       Mean   Std. Err.                     [95% Conf. Interval]

-------------+----------------------------------------------------------------

gradHS |   .8760218   .0121642                      .8521805    .8998631

------------------------------------------------------------------------------

p = proportion(gradHS)                                        z =  -2.1654

Ho: p = 0.9

Ha: p < 0.9                 Ha: p != 0.9                   Ha: p > 0.9

Pr(Z < z) = 0.0152         Pr(|Z| > |z|) = 0.0304          Pr(Z > z) = 0.9848
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• ഥ𝒚 = 0.876, 𝐒𝐄 = 0.0122 (using 𝒔); 𝟗𝟓% 𝑪𝑰 = 0.8522 to 0.8999

• 𝒛 =
0.876−0.90

0.0111
= −𝟐. 𝟏𝟔𝟓, 𝒑 =. 𝟎𝟑𝟎𝟒

➢ If 𝜇 = 𝟎. 𝟗𝟎, a more extreme sample mean than ഥ𝒚 = 𝟎. 𝟖𝟕𝟔
(± 2.165 SDs away) would be found ~ 3.04% of the time 

➢ 0.876 is smaller than 0.90 (significantly because 𝑝 < .05)



Inference via Sampling Distributions
• Two families of options for estimating the inconsistency of 

our sample mean (so far; extensions to sample variance next):

➢ Rely on “asymptotic” sampling distributions—what we just did 

▪ Asymptotic = what should happen if we had an infinite sample

▪ Means using of-the-shelf formulas to estimate standard errors

▪ A majority of quantitative methods rely on this approach

➢ Try to approximate the sampling distribution of the statistic 

through “resampling” of the values in the current data

▪ Useful when you have a small samples and/or don’t have a known 

sampling distribution that you can rely on for your statistic of interest

▪ Basis of techniques like “bootstrapping”, “jack-knifing”, “permutation 

tests”, and Markov Chain Monte Carlo (MCMC) estimation

▪ We won’t have time to cover this side (but see ch. 18 of Mitchell 2015) 
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Wrapping Up
• Salient characteristics of variables → univariate statistics:

➢ Central tendency (middle of distribution)

▪ For categorical variables , is covered by percentage per category

▪ For quantitative variables, is covered by mean (and/or median and mode)

➢ Dispersion (width of distribution)

▪ Dispersion → SD = average deviation from mean (SD2= variance); also by IQR

▪ Skewness (asymmetry) is good to note to guide reporting or analysis

• To make inferences from a sample to the population, we need to 
know how consistent the estimates of the mean and variance would 
be across samples → this is the standard error (SE) of the estimate

➢ SE for mean gets smaller (more precise) with more 𝑁 and less variance

➢ We can use 𝑡 distribution to map obtained sample mean onto expected 
population mean or create confidence intervals for sampling variation

• See videos for how to use SAS and STATA to get example results!
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Bonus Material: Estimating 

SE of Sample Variance 𝑠2

• We’ve just seen that the sample mean ത𝑦 of sample 𝑠 will become more 

normally distributed across samples: ത𝑦𝑠~N(𝜇,
𝜎

𝑁
) [where (mean, SE)] 

with increasing 𝑁 (but will be 𝑡-distributed in smaller samples)

• However, the same may not be true of the sample variance 𝑠2

➢ Why? The normal and 𝑡 distributions are continuous and extend from ±∞

… but what is the smallest number a variance can be?

➢ Here’s a hint: this picture is an 

example of what is called a 

“degenerate distribution”…

➢ This is an example distribution 

for a constant… guess what the

variance is for this distribution? 0!
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Sampling Distribution for Sample Variance 𝑠2

• Needs to take into account
that 𝑠2 must stay above 0

• Which also implies that bigger 
values of 𝑠2 lend themselves 
to more variability in what 𝑠2

could be across samples

• If the variable that 𝑠2 refers to 
is normally distributed, it turns 
out the 𝜒2 (“chi-square”) 
distribution works well for this:

𝑁−1 𝑠2

𝜎2
~𝜒2(𝑘 = 𝑁 − 1)

• The 𝜒2 distribution has one 
parameter, 𝑘, known as 
numerator degrees of freedom 
(more on this soon)
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𝜒2 Mean = 𝑘,
𝜒2 Variance = 2𝑘

𝑁 − 1 𝑠2

𝜎2

https://newonlinecourses.science.psu.edu/stat504/node/23/


Sampling Distribution for Sample Variance 𝑠2

•
𝑁−1 𝑠2

𝜎2
~𝜒2(𝑘 = 𝑁 − 1)→ really non-intuitive way to think about it!

• Let’s plot 𝑠2 directly on the x-axis instead:
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In smaller samples, the variance is 

more likely to be underestimated, 

so the lower boundary at 0 

causes skewness

In larger samples, the 

sampling distribution 

of the variance is more 

likely to be symmetric

https://www.youtube.com/watch?v=V4Rm4UQHij0
https://newonlinecourses.science.psu.edu/stat504/node/23/


SE of Sample Variance 𝑠2 (and beyond)

• The 𝜒2 distribution doesn’t hold as closely for variances 

of other types of variables, but the SE of the variance 

is not typically of concern in reports of data analysis

• In practice, here’s what happens: 

• Statistical software will provide by default the SE for the mean 

(and for the fixed effects of any model predictor, stay tuned) 

• Software will usually only provide the SE for the variance when using 

likelihood estimation instead of least squares (as in my other classes)

• Btw, I’m sure there is a way to derive or calculate SEs for 

other sample statistics (median, mode, skewness, kurtosis), 

but I’ve never once needed to do so… 

• Resampling approaches (e.g., bootstrapping) are likely your best bet
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