Example 3: General Linear Models with a Single Predictor in SAS and STATA

The data for this example were selected from the 2012 General Social Survey dataset featured in Mitchell (2015); these data were also used for examples 1 and 2. The current example will use general linear models to predict a single quantitative outcome (annual income in 1000s) from a quantitative predictor (a linear effect of years of education) and from a binary predictor (marital status: 0=unmarried and 1=married).

SAS Syntax for Importing and Preparing Data for Analysis:

```
* Paste in the folder address where "GSS Example.xlsx" is saved after = before ;
%LET filesave= \\Client\C:\Dropbox\21SP PSQF6242\PSQF6242 Example3;
* IMPORT GSS Example.xlsx data using filesave reference and exact file name;
* from the Excel workbook in DATAFILE= location from SHEET= ;
* New SAS file is in "work" library place with name "Example3";
* "GETNAMES" reads in the first row as variable names;
* DBMS=XLSX (can also use EXCEL or XLS for .xls files);
PROC IMPORT DATAFILE="&filesave.\GSS Example.xlsx"
            OUT=work.Example3 DBMS=XLSX REPLACE;
     SHEET="GSS Example";
     GETNAMES=YES;
RUN:
* Create formats: set of value labels for categorical variables;
PROC FORMAT;
     VALUE Fmarry 1="1.Unmarried" 2="2.Married";
                                                                All SAS commands and
RUN;
                                                                comments end in a semi-colon.
* DATA = create new dataset, SET = from OLD dataset;
* So DATA + SET means "save as itself" after these actions;
* All data transformations must happen inside a DATA+SET+RUN combo;
DATA work.Example3; SET work.Example3;
* Label variables and apply value formats for variables used below;
* LABEL name= "name: Descriptive Variable Label";
  LABEL marry= "marry: 2-Category Marital Status"
educ= "educ: Years of Education"
                 "educ: Years of Education"
        income= "income: Annual Income in 1000s";
* Apply value labels created above: name Format.;
  FORMAT marry Fmarry.;
* Select cases complete on variables of interest;
  IF NMISS(income,educ,marry)>0 THEN DELETE;
```

```
RUN;
```

drop if nmiss>0

<u>STATA</u> Syntax for Importing and Preparing Data for Analysis:

```
// Paste in the folder address where "GSS Example.xlsx" is saved between " "
   global filesave "C:\Dropbox\21SP_PSQF6242\PSQF6242 Example3"
// IMPORT GSS Example.xlsx data using filesave reference and exact file name
// To change all variable names to lowercase, remove "case (preserve")
   clear // Clear before means close any open data
   import excel "$filesave\GSS Example.xlsx", case(preserve) firstrow clear
// Clear after means re-import if it already exists (if need to start over)
// Create formats: set of value labels for categorical variables;
   label define Fmarry 1 "1.Unmarried" 2 "2.Married"
// Label variables and apply value formats for variables used below
// label variable name "name: Descriptive Variable Label"
  label variable marry "marry: 2-Category Marital Status"
   label variable educ
                         "educ: Years of Education"
  label variable income "income: Annual Income in 1000s"
// Apply value labels created above: name Format
  label values marry Fmarry
// Select cases complete on variables of interest
  egen nmiss = rowmiss(income educ marry)
```

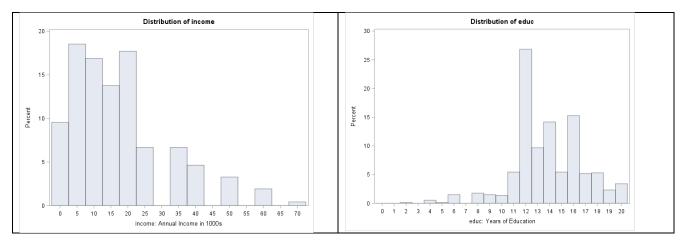
Syntax for Creating Descriptive Statistics, Histograms, and SAS Output:

	STATA Des	-	-	ntitative Varia rint three digi	bles" of statisti	l added "VAR" to th cs, I had to write all SAS PROC MEANS
summarize		duc, format de Mean	std Dev	Variance	Minimum	Maximum
Variable	N	mouri				
Variable income	N 734	17.303	13.792	190.209	0.245	68.600

* NOPRINT spares the rest of the results I do not want right now; TITLE "SAS Histograms of Quantitative Variables"; PROC UNIVARIATE NOPRINT DATA=work.Example3; VAR income educ; HISTOGRAM income / MIDPOINTS=0 TO 70 BY 5;

HISTOGRAM educ / MIDPOINTS=0 TO 20 BY 1; RUN; QUIT; TITLE;

display "STATA Histograms of Quantitative Variables" histogram income, percent discrete width(5) start(0) histogram educ, percent discrete width(1) start(0)



TITLE "SAS Descriptive Statistics for Categorical Variable";
PROC FREQ DATA=work.Example3;
 TABLE marry;
RUN; TITLE;

display "STATA Descriptive Statistics for Categorical Variable" tabulate marry

	marry: 2-Category Marital Status									
marry	Frequency	Percent	Cumulative Frequency	Cumulative Percent						
1.Unmarried	397	54.09	397	54.09						
2.Married	337	45.91	734	100.00						

Syntax and SAS Output for Pearson Correlation Matrix:

```
TITLE "SAS Pearson Correlations and CIs";
PROC CORR NOSIMPLE DATA=work.Example3 FISHER(BIASADJ=NO ALPHA=.05);
     VAR income educ marry;
RUN; TITLE;
               Pearson Correlation Coefficients, N = 734
                       Prob > |r| under HO: Rho=0
                                       income
                                                       educ
                                                                    marry
                                      1.00000
                                                    0.38471
                                                                  0.22503
income
income: Annual Income in 1000s
                                                     <.0001
                                                                   <.0001
                                      0.38471
                                                    1.00000
                                                                  0.05112
educ
educ: Years of Education
                                       <.0001
                                                                   0.1665
                                      0.22503
                                                    0.05112
                                                                  1.00000
marry
marry: 2-Category Marital Status
                                       <.0001
                                                     0.1665
```

Pearson Correlation Statistics (Fisher's z Transformation)

	With		Sample				p Value for
Variable	Variable	Ν	Correlation	Fisher's z	95% Confidence	Limits	HO:Rho=O
income	educ	734	0.38471	0.40558	0.321290	0.444696	<.0001
income	marry	734	0.22503	0.22895	0.155191	0.292629	<.0001
educ	marry	734	0.05112	0.05116	-0.021326	0.123028	0.1666

display "STATA Pearson Correlations and CIs" pwcorr income educ marry, sig

	income	educ	marry
income	1.0000		
educ	0.3847	1.0000	
marry	0.2250 0.0000	0.0511 0.1665	1.0000

// To get CI using r-to-z, need to download and run a special module
ssc install ci2
ci2 income educ, corr
ci2 income marry, corr
ci2 educ marry, corr

ci2 income educ, corr

Confidence interval for Pearson's product-moment correlation of income and educ, based on Fisher's transformation. Correlation = 0.385 on 734 observations (95% CI: 0.321 to 0.445)

. ci2 income marry, corr

Confidence interval for Pearson's product-moment correlation of income and marry, based on Fisher's transformation. Correlation = 0.225 on 734 observations (95% CI: 0.155 to 0.293)

. ci2 educ marry, corr

Confidence interval for Pearson's product-moment correlation of educ and marry, based on Fisher's transformation. Correlation = 0.051 on 734 observations (95% CI: -0.021 to 0.123)

Syntax and Selected Output for General Linear Models

Empty Model (no predictors): $Income_i = \beta_0 + e_i$

In SAS:

```
TITLE "SAS GLM Empty Model PredictingIncome";
PROC GLM DATA=work.Example3 NAMELEN=100;
    MODEL income = / SOLUTION ALPHA=.05 CLPARM;
RUN; QUIT; TITLE;
```

NAMELEN extends printing of variable names; MODEL y = x / options (no x predictors so far); CLPARM provides confidence intervals (at chosen alpha level), SOLUTION requests fixed effect solution be printed (oddly not a default)

To close the GLM procedure, you need both RUN; and QUIT; (seems redundant, but isn't)

The GLM Procedure

Dependent Variable: income income: Annual Income in 1000s

			Sum	of				
Source		DF	Squar	es Mea	in Square	F Value	Pr >	F
Model		1	219751.87	21 219	751.8721	1155.32	<.000)1
Error		733	139423.23	19	190.2090			
Uncorrected R-Square 0.000000	Total Coeff Var 79.70716	734 Root M 13.791		40 me Mean 7.30287	STATA) here. We	gives the resident of the second s	dual vari	puare Residual in ance = 190.21 rest of this altiple predictors.
			Standard		-			
Parameter	Estimate		Error	t Value	Pr > t	95%	Confide	ence Limits
Intercept	17.30287466	0.	50905834	33.99	<.000	1 16.30	348846	18.30226086 Beta0

In STATA:

display "STATA GLM Empty Model Predicting Income" regress income, level(95) // level gives (95)% CI for unstandardized solution

STATA's **regress** is general GLM routine. The first word after regress is the outcome variable. Level(95) requests 95% confidence intervals (the default). Below, MS stands for Mean Square (as in SAS above).

Source	SS	df	MS	Number of F(0, 73)		/51	
Model Residual	0 139423.232	0 733	190.209048	Prob > 1 R-square	= ed =	0.0000	
Total	139423.232	733	190.209048	Adj R-so Root MSI	-		
income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
	17.30287	.5090583	33.99	0.000	L6.30349	18.30226	Beta0

SAS and STATA's output for an empty model differ slightly: SAS counts the fixed intercept as part of the model sums of squares, whereas STATA does not... but they otherwise provide the same information.

STATA refers to the fixed intercept as _cons, which stands for constant. In models with more than one fixed effect, the fixed intercept will always be listed last (much to my dismay).

Add a linear effect of a quantitative predictor for education: $Income_i = \beta_0 + \beta_1(Educ_i) + e_i$

In SAS:

```
TITLE "SAS GLM Predicting Income from Original Education";
PROC GLM DATA=work.Example3 NAMELEN=100;
    MODEL income = educ / SOLUTION ALPHA=.05 CLPARM;
RUN; QUIT; TITLE;
```

Source Model Error			Sum of Squares 0634.9817 3788.2502	Mean Square 20634.9817 162.2790	F Value 127.16	Pr > F <.0001		
Corrected T	otal	733 139	9423.2319		no longer count	ts the fixed intercept as part		
R-Square	Coeff Var	Root MSE	income Mea	an of the	model once 1+	+ predictors are added, so the		
0.148002	73.62290	12.73888	17.3028	37 SAS r Mean	SAS results will exactly match those of STATA. Mean Square Error , the residual variance, has been reduced to 162.28 after including education.			
		Star	ndard	L				
Parameter	Estimate	-	Error t Va			Confidence Limits		
Intercept educ	-7.886678831 1.823745538	2.2827 0.1617		3.450.00.28<.00		825087 -3.405106788 Beta0 233517 2.141257559 Beta1		

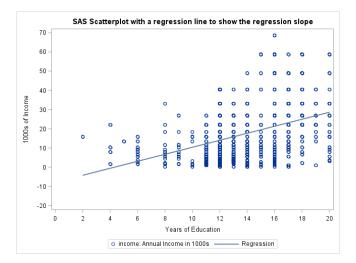
In STATA:

display "STATA GLM Predicting Income from Original Education" regress income educ, level(95)

Source	SS	df	MS	Number of obs	=	734	
Model Residual	20634.9817 118788.25	1 732		F(1, 732) Prob > F R-squared	= =	127.16 0.0000 0.1480	
+ Total	139423.232	733	190.209048	Adj R-squared Root MSE	=	0.1468 12.739	STATA lists
income	Coef.		 t P		nf.	Interval]	the fixed intercept last!
educ _cons	1.823746 -7.886679	.161731 2.282778		.000 1.50623 .001 -12.3682		2.141258	

Interpret β_0 = intercept:

Interpret β_1 = slope of education:



Given that no one had education = 0 years, let's replace the education predictor with a new centered version, in which 0 now indicates 12 years, to create a meaningful model intercept ("you are here" sign as the model reference point): $Income_i = \beta_0 + \beta_1(Educ_i - 12) + e_i$

Using Centered Education Predictor in SAS:

```
* Center education predictor so that 0 is meaningful;
DATA work.Example3; SET work.Example3;
     educ12=educ-12;
     LABEL educ12= "educ12: Education (0=12 years)";
RUN;
                                                                          PLOTS option makes all kinds
                                                                          of figures for diagnosing model
TITLE "SAS GLM Predicting Income from Centered Education (0=12)";
PROC GLM DATA=work.Example3 NAMELEN=100 PLOTS (UNPACK)=DIAGNOSTICS;
                                                                          mis-specification (stay tuned).
     MODEL income = educ12 / SOLUTION ALHPA=.05 CLPARM;
* In ESTIMATEs below, words refer to the estimated beta fixed effect,
  and values are the multiplier for the requested predictor value;
     ESTIMATE "Pred Income 8 years (educ12=-4)" intercept 1 educ12 -4;
     ESTIMATE "Pred Income 12 years (educ12= 0)" intercept 1 educ12
                                                                          0;
     ESTIMATE "Pred Income 16 years (educ12= 4)" intercept 1 educ12
                                                                           4;
     ESTIMATE "Pred Income 20 years (educ12= 8)" intercept 1 educ12
                                                                           8:
RUN; QUIT; TITLE;
                                      Sum of
Source
                           DF
                                     Squares
                                                 Mean Square
                                                                F Value
                                                                          Pr > F
                                                  20634.9817
                                                                127.16
Model
                           1
                                  20634.9817
                                                                          <.0001
                                                    162.2790
Error
                          732
                                 118788.2502
Corrected Total
                                 139423.2319
                          733
                                                        Mean Square Error, the residual variance, is still
            Coeff Var
R-Square
                           Root MSE
                                      income Mean
                                                        162.28 because centering does not change the
0.148002
                                         17.30287
             73.62290
                           12.73888
                                                        strength of prediction (but it does change beta0).
```

This is the regular table of fixed effects estimated directly by the model (WILL BE LAST):

		Standard				
Parameter	Estimate	Error	t Value	Pr > t	95% Confide	nce Limits
Intercept	13.99826762	0.55404853	25.27	<.0001	12.91055398	15.08598127 Beta0 new at 12
educ12	1.82374554	0.16173105	11.28	<.0001	1.50623352	2.14125756 Beta1 is same

The ESTIMATE commands provide an example of how to compute predicted values for the outcome given any value(s) of the predictor(s). Model: $Income_i = \beta_0 + \beta_1(Educ_i - 12) + e_i$

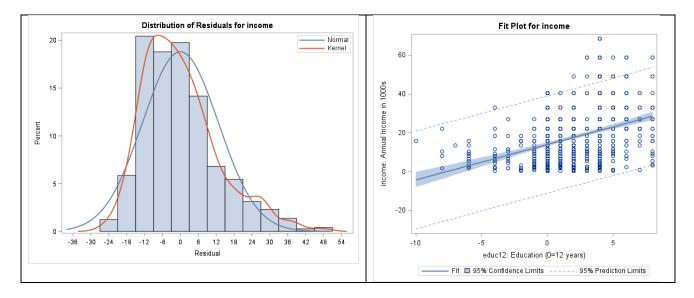
Predicted income for 8 years education: $\hat{y}_i = 14.00 + 1.82(-4) = 6.70$ Predicted income for 12 years education: $\hat{y}_i = 14.00 + 1.82(0) = 14.00$ Predicted income for 16 years education: $\hat{y}_i = 14.00 + 1.82(4) = 21.29$ Predicted income for 20 years education: $\hat{y}_i = 14.00 + 1.82(8) = 28.59$

```
ESTIMATE "Pred Income 8 years (educ12=-4)" intercept 1 educ12 -4;
ESTIMATE "Pred Income 12 years (educ12= 0)" intercept 1 educ12 0;
ESTIMATE "Pred Income 16 years (educ12= 4)" intercept 1 educ12 4;
ESTIMATE "Pred Income 20 years (educ12= 8)" intercept 1 educ12 8;
```

This is the extra table of linear combinations of the fixed effects created by SAS ESTIMATES:

		Standard				
Parameter	Estimate	Error	t Value	Pr > t	95% Confid	ence Limits
Pred Income 8 years (educ12=-4)	6.7032855	1.05102297	6.38	<.0001	4.6399066	8.7666643
Pred Income 12 years (educ12= 0)	13.9982676	0.55404853	25.27	<.0001	12.9105540	15.0859813
Pred Income 16 years (educ12= 4)	21.2932498	0.58848286	36.18	<.0001	20.1379343	22.4485652
Pred Income 20 years (educ12= 8)	28.5882319	1.10574690	25.85	<.0001	26.4174185	30.7590454

Last I checked, SPSS GLM does not have these SAS ESTIMATE commands that provide linear combinations of model parameters, which is one of the reasons I don't teach using SPSS. However, you can also estimate GLMs using SPSS MIXED, in which the /TEST subcommand works exactly liked ESTIMATE in SAS.



Part of plots from SAS PROC GLM—residuals are not yet normal with constant variance:

Using Centered Education Predictor in STATA:

```
// Center education predictor so that 0 is meaningful
gen educ12=educ-12
label variable educ12 "educ12: Education (0=12 years)"
display "STATA GLM Predicting Income from Centered Education (0=12)"
regress income educ12, level (95) // with 95% CI for unstandardized solution
// In LINCOMs below, _cons is intercept, words refer to the beta fixed effect,
// and values are the multiplier for the requested predictor value
lincom _cons*1 + educ12*-4 // Pred Income at 8 years (educ12=-4)
lincom cons*1 + educ12*0 // Pred Income at 12 years (educ12= 0)
                       // Pred Income at 16 years (educ12= 4)
lincom _cons*1 + educ12*4
lincom _cons*1 + educ12*8
                        // Pred Income at 18 years (educ12= 8)
                  SS
                              df
                                      MS
                                             Number of obs
                                                                   734
     Source |
                                             F(1, 732)
  _____
                                                                127.16
                                                            =
      Model | 20634.9817
                             1 20634.9817
                                             Prob > F
                                                                0.0000
                                                            =
                            732 162.27903
                                             R-squared
   Residual | 118788.25
                                                           =
                                                                0.1480
                                             Adj R-squared =
      _____
                                                                0.1468
      Total | 139423.232
                            733 190.209048
                                                                12.739
                                             Root MSE
```

This is the regular table of fixed effects estimated directly by the model:

income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
					1.506234 12.91055		Beta1 is same Beta0 new at 12

Interpret β_0 = intercept:

The LINCOM commands provide an example of how to compute predicted values for the outcome given any value(s) of the predictor(s). Model: $Income_i = \beta_0 + \beta_1(Educ_i - 12) + e_i$

. lincom _cons*1 + educ12*-4 // Pred Income at 8 years (educ12=-4) (1) - 4 + educ12 + cons = 0_____ income | Coef. Std. Err. t P>|t| [95% Conf. Interval] (1) | 6.703285 1.051023 6.38 0.000 4.639907 8.766664 _____ . lincom _cons*1 + educ12*0 // Pred Income at 12 years (educ12= 0) (1) _cons = 0 _____ income | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____ (1) | 13.99827 .5540485 25.27 0.000 12.91055 15.08598 _____ . lincom _cons*1 + educ12*4 // Pred Income at 16 years (educ12= 4) (1) 4 + educ12 + cons = 0_____ income | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____ ___+ (1) | 21.29325 .5884829 36.18 0.000 20.13793 22.44857 _____ . lincom cons*1 + educ12*8 // Pred Income at 18 years (educ12= 8) $(1) 8 \times educ12 + cons = 0$ _____ income | Coef. Std. Err. t P>|t| [95% Conf. Interval] ______ (1) | 28.58823 1.105747 25.85 0.000 26.41742 30.75905 _____ // To make regression plots given in SAS display as result "STATA Regression Line with CI for mean (stdp option)" graph twoway lfitci income educ12, stdp || scatter income educ12 display as result "STATA Regression Line with CI for individual (stdf option)"

graph twoway lfitci income educ12, stdf || scatter income educ12

Standardized Solution using Centered Education Predictor in SAS:

TITLE1 "SAS GLM Predicting Income from Centered Education"; TITLE2 "Using REG instead of GLM to get standardized Effects"; PROC REG DATA=work.Example3; MODEL income = educ12 / STB; * STB option gives standardized solution; RUN; QUIT; TITLE1; TITLE2; Parameter Estimates

			Parameter	Standard			Standardized
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Estimate
Intercept	Intercept	1	13.99827	0.55405	25.27	<.0001	0 Beta0
educ12	Education (0=12 years)	1	1.82375	0.16173	11.28	<.0001	0.38471 Beta1

Standardized Solution using Centered Education Predictor in STATA:

In the standardized solution, fixed slopes are given in a correlation metric (-1 to 1).

display "STATA GLM Predicting Income from Centered Education (0=12)" regress income educ12, beta // beta option gives standardized solution

income	Coef.	Std. Err.	t	P> t	 Beta
		.161731 .5540485			.3847109 Beta1 . Beta0 (=0)

Last model: Income predicted by binary marital status (1=unmarried, 2=married)...

Given that no one in this sample had marital status = 0, let's create a new centered version by subtracting 1 so that the groups = 0 or 1, which is known as "dummy coding": $Income_i = \beta_0 + \beta_1(Marry01_i) + e_i$

Using Centered (Dummy-Coded) Marry01 Predictor in SAS:

```
* Center marry predictor so that 0 is meaningful;
DATA work.Example3; SET work.Example3;
marry01=.; * Create new empty variable, then recode;
IF marry=1 THEN marry01=0;
IF marry=2 THEN marry01=1;
LABEL marry01= "marry01: 0=unmarried, 1=married";
RUN;
TITLE "SAS GLM Predicting Income from Marry01 (0=Unmarried,1=Married)";
PROC GLM DATA=work.Example3 NAMELEN=100;
MODEL income = marry01 / SOLUTION ALPHA=.05 CLPARM;
* ESTIMATEs below request predicted outcome means for each group;
ESTIMATE "Income for Unmarried (marry01=0)" intercept 1 marry01 0; * Beta0;
ESTIMATE "Income for Married (marry01=1)" intercept 1 marry01 1; * Beta0+Beta1;
RUN; QUIT; TITLE;
Sum of
```

Source		DF	Squares	Mean Square	F Value	Pr > F
Model		1	7060.1016	7060.1016	39.04	<.0001
Error		732	132363.1303	180.8239		
Corrected T	otal	733	139423.2319			
R-Square 0.050638	Coeff Var 77.71587	Root 13.44		an been redu		the residual variance, has 2 after including education.

This is the regular table of fixed effects estimated directly by the model :

		Standard			
Parameter	Estimate	Error	t Value	Pr > t	95% Confidence Limits
Intercept	14.44543451	0.67488958	21.40	<.0001	13.12048450 15.77038452 Beta0
marry01	6.22362335	0.99601482	6.25	<.0001	4.26823703 8.17900967 Beta1

Predicted income unmarried (marry01=0): $\hat{y}_i = 14.45 + 6.22(0) = 14.45$ Predicted income unmarried (marry01=1): $\hat{y}_i = 14.45 + 6.22(1) = 20.67$

* ESTIMATEs below request predicted outcome means for each group; ESTIMATE "Income for Unmarried (marry01=0)" intercept 1 marry01 0; * Beta0; ESTIMATE "Income for Married (marry01=1)" intercept 1 marry01 1; * Beta0+Beta1;

This is the extra table of linear combinations of the fixed effects created by SAS ESTIMATES:

		Standard				
Parameter	Estimate	Error	t Value	Pr > t	95% Confider	nce Limits
Income for Unmarried (marry01=0)	14.4454345	0.67488958	21.40	<.0001	13.1204845	15.7703845
Income for Married (marry01=1)	20.6690579	0.73250910	28.22	<.0001	19.2309886	22.1071271

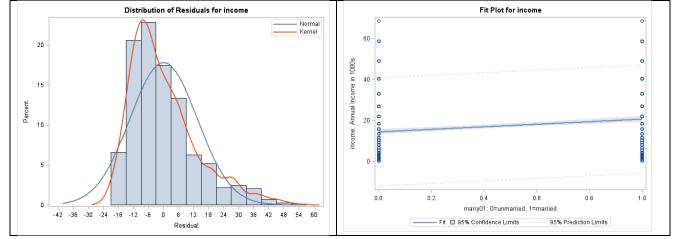
Interpret β_0 = intercept:

Interpret β_1 = slope of marry01:

To get a Cohen's *d* effect size for the mean income difference between unmarried and married persons, we can calculate *d* from the *t* test-statistic: $d = \frac{2t}{\sqrt{DF_{den}}} = \frac{2*6.25}{\sqrt{732}} = 0.46 \rightarrow$ the mean income difference is about 0.46 standard deviations higher for married than unmarried persons.

```
* Compute d effect size for marry01 from t test-statistic;
DATA work.MakeD;
d=2*6.25/SQRT(732);
RUN;
* Print results of d computation;
PROC PRINT NOOBS DATA=work.MakeD;
RUN;
The code on the left makes a new dataset, creates a new
variable d that holds the result of the formula, and then d
PROC PRINT prints that new dataset to the output. 0.46201
```

Part of plots from SAS PROC GLM-residuals are not normal, but variance appears constant



Using Centered (Dummy-Coded) Marry01 Predictor in STATA:

```
// Center marry predictor so that 0 is meaningful
gen marry01=. // Create new empty variable, then recode
replace marry01=0 if marry==1
replace marry01=1 if marry==2
label variable marry01 "marry01: 0=unmarried, 1=married"
```

```
display "STATA GLM Predict Income from Marry01 (0=Unmarried,1=Married)"
regress income marry01, level(95) // with 95% CI for unstandardized solution
lincom _cons*1 + marry01*0 // Income for Unmarried (Marry01=0) = Beta0
lincom _cons*1 + marry01*1 // Income for Married (Marry01=1) = Beta0 + Beta1
```

Source	SS	df	MS	Number of obs	=	734
+-				F(1, 732)	=	39.04
Model	7060.10161	1	7060.10161	Prob > F	=	0.0000
Residual	132363.13	732	180.823948	R-squared	=	0.0506
+-				Adj R-squared	=	0.0493
Total	139423.232	733	190.209048	Root MSE	=	13.447

This is the regular table of fixed effects estimated directly by the model:

income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
marry01	6.223623	.9960148	6.25 21.40		4.268237 13.12048	8.17901 Beta1 15.77038 Beta0

The LINCOM commands provide an example of how to compute predicted values for the outcome given any value(s) of the predictor(s). Model: $Income_i = \beta_0 + \beta_1(Marry01) + e_i$

. lincom _cons*1 (1) _cons = 0	+ marry01*	0 // Income	for Unma	rried (Mar	cry01=0) = B	eta0
income					[95% Conf.	Interval]
					13.12048	15.77038
. lincom _cons*1 (1) marry01 +	-	1 // Income	for Marr	ied (Mar	cry01=1) = B	eta0 + Beta1
income					[95% Conf.	-
					19.23099	

To get a Cohen's *d* effect size for the mean income difference between unmarried and married persons, we can calculate *d* from the *t* test-statistic: $d = \frac{2t}{\sqrt{DF_{den}}} = \frac{2*6.25}{\sqrt{732}} = 0.46 \rightarrow$ the mean income difference is about 0.46 standard deviations higher for married than unmarried persons.

// Compute d effect size for marry01 from t test-statistic display 2*6.25/sqrt(732) . display 2*6.25/sqrt(732)

```
. display 2*6.25/sqrt(7
.46201329
```

Example Results Section:

The extent to which annual income in thousands of dollars (M = 17.30, SD = 13.79) could be predicted from years of education (M = 13.81, SD = 2.91) and binary marital status (1 = unmarried 54.09%, 2 = married 45.91%) was examined in separate general linear models (i.e., simple linear regressions).

To create a meaningful model intercept, education was centered such that 0 = 12 years. Education was found to be a significant predictor of annual income: relative to the reference expected income for a person with 12 years of education provided by the model intercept of 14.00k (SE = 0.55), for every additional year of education, annual income was expected to be higher by 1.82k (SE = 0.16, p < .001), resulting in a standardized coefficient = 0.38 (i.e., the Pearson correlation between annual income and education). For example, persons with only 8 years of education were predicted to have an annual income of only 6.70k (SE = 1.05), persons with 16 years of education were predicted to have an annual income of 21.29k (SE = 0.59), and persons with 20 years of education were predicted to have an annual income of 28.59k (SE = 1.11). [Spoiler alert: we will test the adequacy of only a linear (constant) effect for years of education in example 4].

We then examine prediction of annual income by binary marital status. To create a meaningful model intercept, marital status was dummy-coded so that 0 = unmarried persons and 1 = married persons. Marital status was also a significant predictor of annual income: relative to the reference expected income for unmarried persons provided by the model intercept of 14.45k (SE = 0.67), married persons were expected to have significantly greater income by 6.22k (SE = 1.00, p < .001), resulting in a predicted income for married persons of 20.67k (SE = 0.73) and a standardized mean difference of Cohen's d = 0.46.

Note: because a GLM with a single binary predictor is also known as a "two-sample t-test" here is what the results would look like written from that angle... A two-sample *t*-test (i.e., assuming homogeneous variance across groups) was used to examine mean differences between unmarried and married persons in annual income. A significant mean difference was found, t(732) = 6.25, p < .001, such that annual income for married persons (M = 20.67k, SE = 0.73) was significantly higher than for unmarried persons (M = 14.45k, SE = 0.67).