Higher-Order Factor Models

• Topics:

- > The Big Picture
- > Identification of higher-order models
- > Measurement models for method effects
- > Equivalent models

Sequence of Steps in CFA or IFA

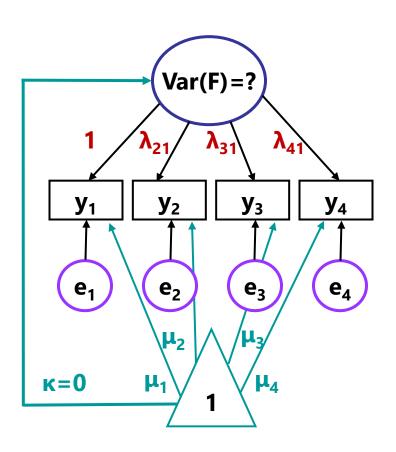
- 1. Specify your **measurement model**(s)
 - > How many factors/thetas, which items load on which factors, and whether your need any method factors or error covariances
 - > For models with large numbers of items, you should start by modeling each factor in its own analysis to make sure *each* factor fits its items
- 2. Assess model fit, per factor, when possible (if 4+ indicators)
 - Global model fit: Does a one-factor model adequately fit each set of indicators thought to measure the same latent construct?
 - Local model fit: Are any of the leftover covariances problematic? Any items not loading well (or are too redundant) that you might drop?
 - > **Reliability/Info**: Are your standardized loadings practically meaningful?

3. Once your single-factor measurement models are good, it's time to consider the (higher-order) structural model

Higher-Order Factor Models

- Purpose: What kind of higher-order factor structure best accounts for the covariance among the measurement model factors (not items)?
 - > In other words, what should the **structural model among the factors** look like?
 - ▶ Best-fitting baseline for the structural model has all possible covariances among the lower-order measurement model factors → saturated structural model
 - Just as the purpose of the measurement model factors is to predict covariance among the items, the purpose of the higher-order factors is to predict covariance among the measurement model factors themselves
 - A single higher-order factor would be suggested by similar magnitude of correlations across the measurement model factors
- Note that distinctions between CFA, IFA, and other measurement models for different item types are no longer relevant at this point
 - > Factors and thetas are all **multivariate normal latent variables**, so a higherorder model is like a CFA regardless of the measurement model for the items
 - Latent variables don't have means apart from their items, so those are irrelevant

Necessary Measurement Model Scaling to fit Higher-Order Factors



"Marker Item" for factor loadings

- → Fix 1 item loading to 1
- → **Estimate** factor variance

Because it will become "factor variance leftover" = "disturbance", factor variance can't be fixed (it must be estimated)

"Z-Score" for item intercepts or thresholds

- → Fix factor mean to 0
- → Estimate all intercepts/thresholds

All the factor means will be 0 and you generally won't need to deal with them in the structural model anyway

Identifying a 3-Factor Structural Model Option 1: 3 Correlated Factors

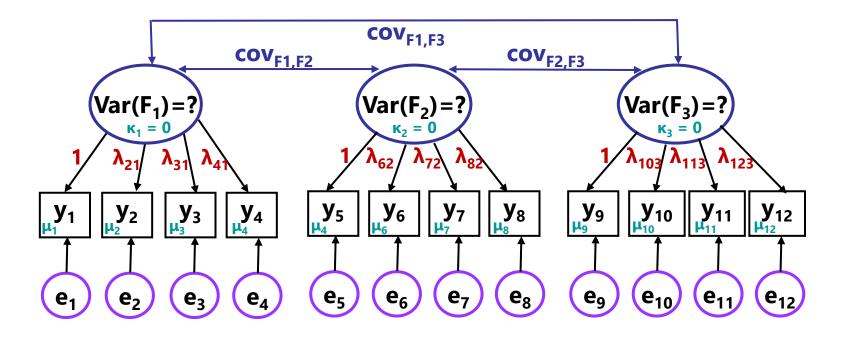
Measurement Model for <u>Items</u>: item variances, covariances, and means

Possible df = (12*13) / 2 + 12 = 90 Estimated df = $9\lambda + 12\mu + 12\sigma_e^2 = 33$ df = $90 - 33 = 57 \rightarrow \text{over-identified}$

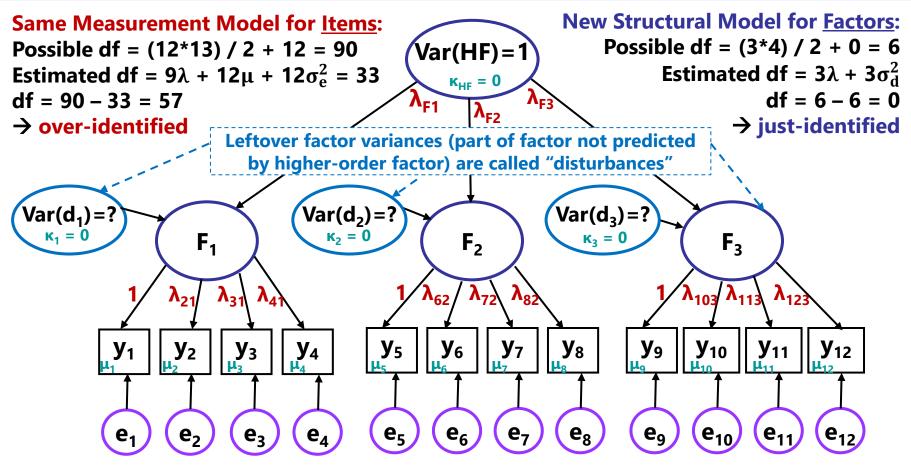
Structural Model for <u>Factors</u>: factor variances and covariances, no means

Possible df =
$$(3*4) / 2 + 0 = 6$$

Estimated df = 3 variances + 3 covariances
df = $6 - 6 = 0 \rightarrow just-identified$

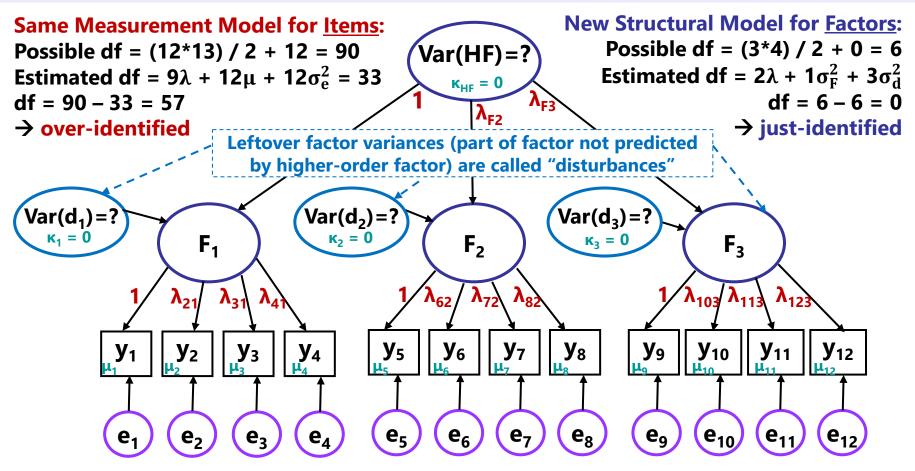


Option 2a: 3 Factor "Indicators" (Higher-Order Factor Variance = 1)



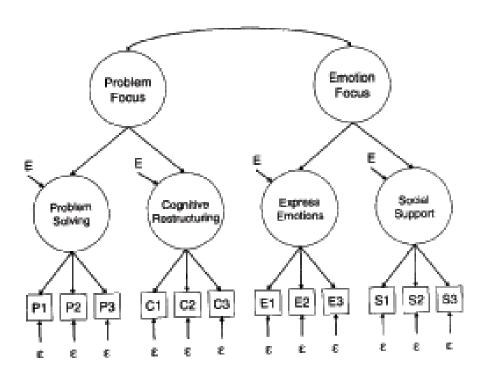
If you only have 3 factors, both models will fit the same—the structural model is just-identified, and thus the fit of a higher-order factor CANNOT be tested

Option 2b: 3 Factor "Indicators" (using Marker Lower-Order Factor)



If you only have 3 factors, both models will fit the same—the structural model is just-identified, and thus the fit of a higher-order factor CANNOT be tested

Structural Model Identification: 2 Factor "Indicators"



Measurement Model for <u>Items</u>:

Possible df = (12*13) / 2 + 12 = 90 Estimated df = $8\lambda + 12\mu + 12\sigma_e^2 = 32$ df = $90 - 32 = 58 \rightarrow over-identified$

Structural Model for Factors:

Possible df = (4*5) / 2 + 0 = 10

Estimated df =
$$4\lambda + 0\sigma_F^2 + 1\sigma_{F,F} + 4\sigma_d^2$$

— OR —

Estimated df =
$$2\lambda + 2\sigma_F^2 + 1\sigma_{F,F} + 4\sigma_d^2$$

$$df = 10 - 9 = 1 \rightarrow over-identified$$

However, this model will not be identified structurally unless there is a non-0 covariance between the higher-order factors

Higher-Order Factor Identification

 Possible structural df depends on # of measurement model factor variances and covariances (NOT # items)

> 2 measurement model factors -> Under-identified

They can be correlated, which would be just-identified... that's it

> 3 measurement model factors -> Just-identified

- They can all be correlated OR a single higher-order factor can be fit
- Some # variance/disturbances per factor (so, 3 total) in either option
- Factor variances and covariances will be perfectly reproduced

4 measurement model factors -> Can be over-identified

- They can all be correlated (6 correlations required; just-identified)
- They can have a higher-order factor (4 loadings; over-identified)

The fit of the higher-order factor can now be tested

Examples of Structural Model Hypothesis Testing

- Do I have a higher-order factor of my subscale factors?
 - > If 4 or more subscale factors: Compare fit of alternative models
 - Saturated Baseline: All 6 factor covariances estimated freely Alternative: 1 higher-order factor instead (so df=2)—is model fit WORSE?
 - > If 3 (or fewer) subscale factors: CANNOT BE DETERMINED
 - Saturated baseline and alternative models will fit equivalently
- Do I need a residual covariance, but I'm doing IFA in ML?
 - ▶ Predict those two items with a factor, fix both loadings=1 if you need a positive covariance or -1/+1 if you need a negative covariance
 - > Estimate its factor variance, which then becomes the residual covariance
- Do I have need additional "method factors"?

Some examples...

Illustrative Example: "Life Orientation"

Table 2
Means, Standard Deviations, and Correlations for E. C. Chang et al.'s (1994) Life Orientation
Test Data

Item	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7
Item 1	1.00						
Item 2	.51	1.00					
Item 3	.44	.53	1.00				
Item 4	16	22	26	1.00			
Item 5	28	38	33	.50	1.00		
Item 6	24	29	30	.51	.70	1.00	
Item 7	22	35	30	.44	.54	.52	1.00
M	2.24	2.40	2.56	1.85	1.39	1.32	1.40
SD	1.00	0.99	0.99	1.05	1.03	1.00	1.07
Skewness	-0.12	-0.35	-0.57	0.25	0.63	0.68	0.71
Kurtosis	-0.65	-0.36	-0.11	-0.72	-0.14	0.01	-0.23

Maydeu-Olivares & Coffman (Psychologicial Methods, 2006) present 4 models by which to measure a latent factor of optimism using the 3 positively and 4 negatively worded items shown below

A: Single factor
$$(df = 14)$$

B: Two wording factors (df = 13)

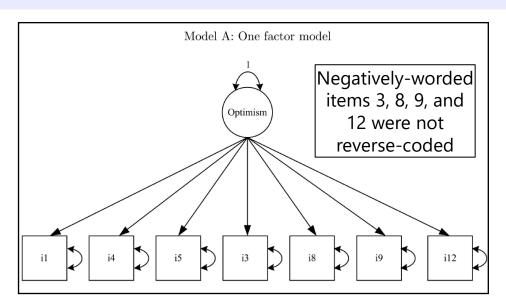
C: Three-factor
"Bifactor" model
(df = 7)

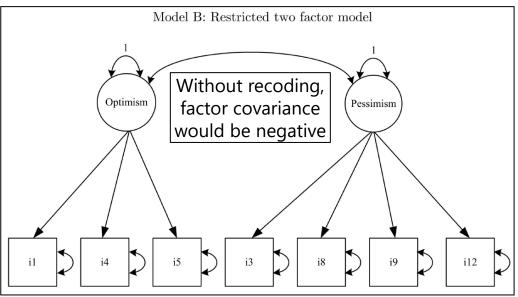
D: "Random Intercept" 2-factor model (df = 13)

Table 1
Life Orientation Test (LOT) Items (E. C. Chang et al., 1994)

Life Orientation Test (LOT) Items (L. C. Chang et al., 1994)	
Item	Original item number
1. In uncertain times, I usually expect the best. (positive)	Item 1
2. I always look on the bright side of things. (positive)	Item 4
3. I'm always optimistic about my future. (positive)	Item 5
4. If something can go wrong for me, it will. (negative)	Item 3
5. I hardly ever expect things to go my way. (negative)	Item 8
6. Things never work out the way I want them to. (negative)	Item 9
7. I rarely count on good things happening to me. (negative)	Item 12
Note. The original item number is the order in which the item appears on the	ne actual LOT questionnaire.

What to do with method effects?





Maydeu-Olivares & Coffman (2006) present 4 ways to measure a latent factor of optimism with 3 positively and 4 negatively worded items

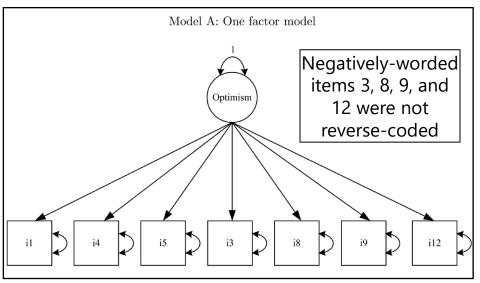
A: Single "optimism" factor (which doesn't fit well)

```
Opt BY i1* i4* i5*
i3* i8* i9* i12*;
Opt@1; [Opt@0];
```

B: "Optimism" and "Pessimism" two-factor model (fits better)

```
Opt BY i1* i4* i5*;
Pes BY i3* i8* i9* i12*;
Opt WITH Pes*;
Opt@1; [Opt@0];
Pes@1; [Pes@0];
```

One- vs. Two-Factor Models

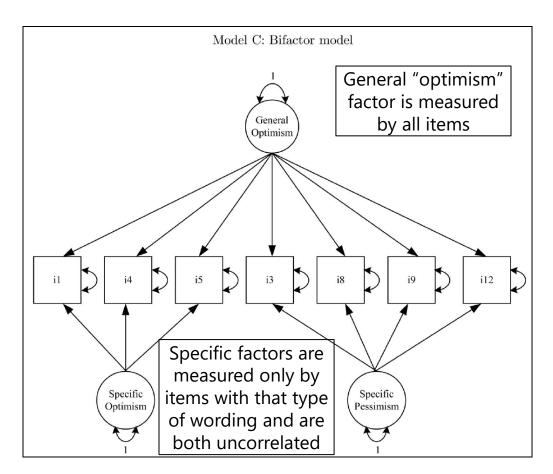


Model B: Restricted two factor model
Without recoding, factor covariance would be negative
i1 i4 i5 i3 i8 i9 i12

	One-factor model:	Two-factor model		
Item	Optimism	Optimism	Pessimism	
Item 1	0.38	0.64	0	
	(0.05)	(0.05)		
Item 2	0.48	0.78	0	
	(0.05)	(0.05)		
Item 3	0.46	0.68	0	
	(0.05)	(0.05)		
Item 4	-0.64	0	0.65	
	(0.05)		(0.05)	
Item 5	-0.86	0	0.87	
	(0.05)		0.05)	
Item 6	-0.79	0	0.82	
	(0.05)		(0.05)	
Item 7	-0.70	0	0.70	
	(0.05)		(0.05)	

Note: a higher-order factor could be included if both loadings were fixed to 1, but it would fit the same as just allowing the two wording factors to covary.

Bifactor Model Fits Well...



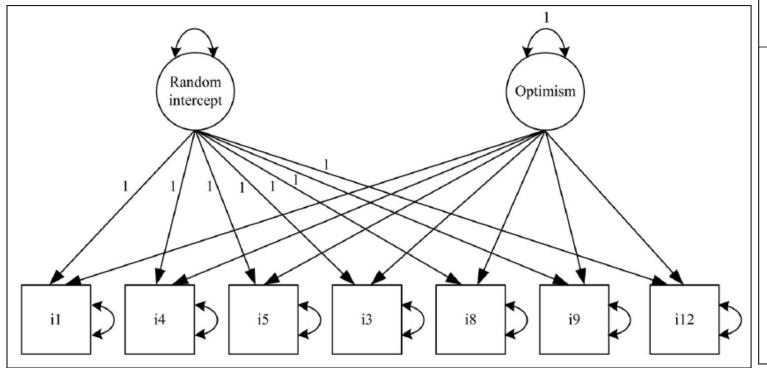
2 problems in interpreting these factors as desired:

- 1) "Specific" positive loadings > "general" loadings
- 2) Specific negative loadings are weak or non-significant (indicating model is over-parameterized)

	Bifactor model	
Overall	Specific	Specific
optimism	optimism	pessimism
0.35	0.56	0
(0.07)	(0.07)	
0.49	0.61	0
(0.08)	(0.07)	
0.44	0.51	O
(0.07)	(0.07)	
-0.59	0	0.26^{a}
(0.09)		(0.18)
-0.76	0	0.38
(0.10)		(0.23)
-0.63	0	0.64^{a}
(0.11)		(0.16)
-0.73	0	0.15^{a}
(80.0)		(0.18)

Random Intercept Factor Fits Well...

- General "optimism" factor is measured by all items (all loadings estimated)
- New "random intercept" factor allows for constant person shifts across items (e.g., due to different response scale interpretations); Variance = 0.13 here



One-factor random intercept:
Optimism
0.54
(0.05)
0.66
(0.05)
0.61
(0.05)
-0.56
(0.05)
-0.78
(0.05)
-0.71
(0.05)
-0.65
(0.05)

Heartland Forgiveness Scale (HFS)

Yamhure Thompson, L., Snyder, C.R., **Hoffman, L.,** Michael, S.T., Rasmussen, H.N., Billings, L.S., et al. (2005). Dispositional forgiveness of self, others, and situations. *Journal of Personality, 73*(2), 313-360.

Model 4. Six correlated lower-order factors for positive and negative self, other, and situation "forgiveness" and "not unforgiveness" (reverse-coded)

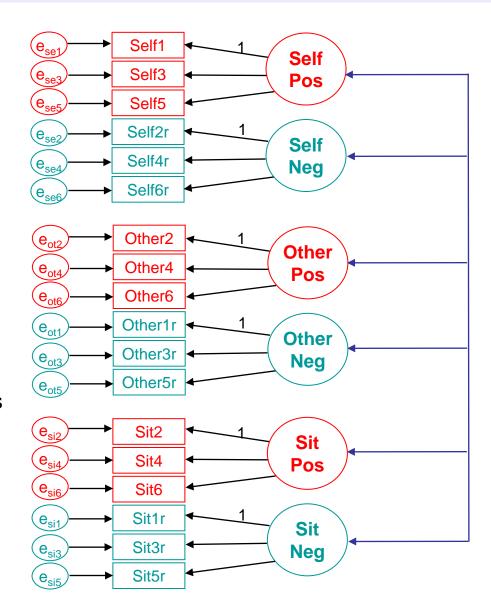
Total possible df for 18 items = 189

$$\frac{v*(v+1)}{2} + v = \frac{18*19}{2} + 18 = 189$$

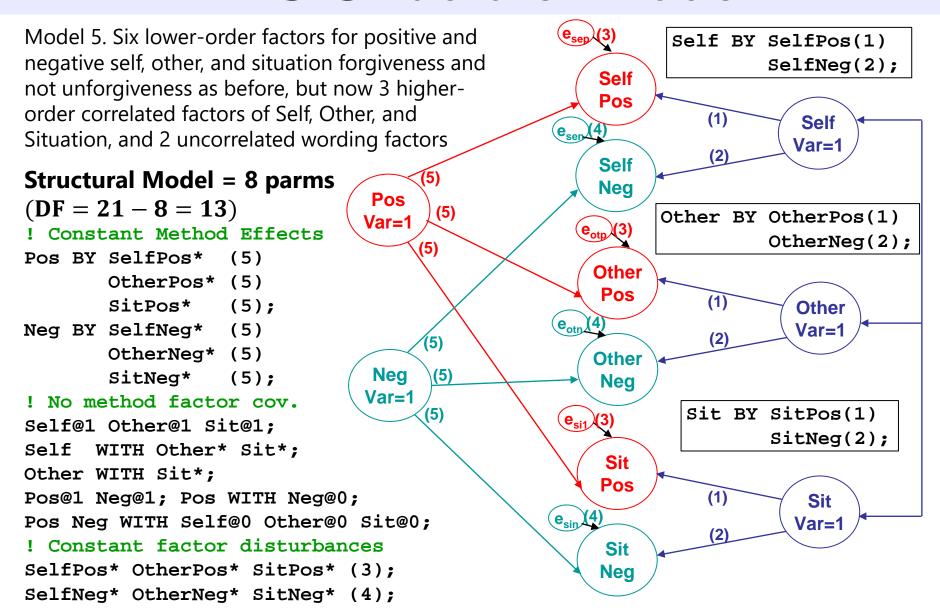
Measurement Model = 48 parameters $12\lambda + 18\mu + 18\sigma_e^2$

Structural Model = 21 parameters $6\sigma_{F}^{2}$, 15 factor covariances (all possible)

Total model df = 189 - 69 = 120

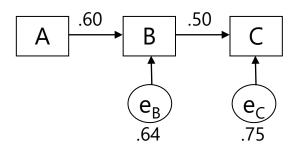


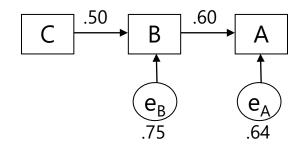
HFS Structural Model



Equivalency across Models

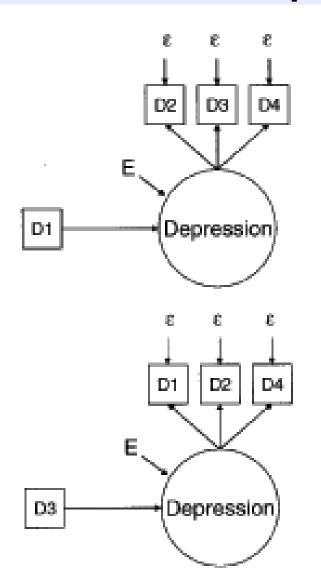
- Remember, the purpose of a measurement model is to reproduce the observed covariance matrix and means of the items
- This means that models that generate the same predicted covariance matrix and means are equivalent models
- This will often not be comforting, but it is the truth...
- Here's an example: These models make very different theoretical statements, but they will nevertheless fit equivalently

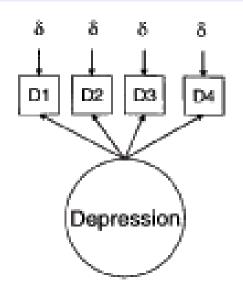




• Generally speaking, the fewer df left over (i.e., the more complicated the model), the more equivalent alternative solutions there are

More Equivalent Models...





Top: One can think these 4 items as "effects" (indicators) of depression...

Left: One can think of any one item as "causing" depression and the others as "effects" of depression...

Point of the story: CFA/SEM cannot give you TRUTH. Contrary to what it's often called, SEM is not really "causal" modeling

Wrapping Up...

- Fitting measurement and structural models are two separate issues:
 - Measurement model: Do my lower-order factors account for the observed covariances among my ITEMS?
 - > **Structural model**: Do higher-order factors account for the *estimated covariances* among my measurement model FACTORS/THETAS?
 - A higher-order factor is NOT the same thing as a 'total score' though
- Figure out the measurement models FIRST, then structural models
 - Recommend fitting measurement models separately per factor, then bringing them together once you have each factor/theta settled
 - > This will help to pinpoint the source of misfit in complex models
- Keep in mind that structural models may not be 'unique'
 - Mathematically equivalent models can make very different theoretical statements, so there's no real way to choose between them if so...