
Measurement Invariance (MI)
in CFA and Differential Item 
Functioning (DIF) in IRT/IFA
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• Topics:
 What are MI and DIF?
 Testing measurement invariance in CFA
 Testing differential item functioning in IRT/IFA



The Big Picture
• In CFA, we can assess “measurement invariance” (MI), also 

known as “factorial invariance” or “measurement equivalence”

• Concerns the extent to which the psychometric properties of 
the observed indicators are transportable or generalizable 
across groups (e.g., gender, country) or over time/conditions
 In other words, we are testing whether the indicators measure the same 

construct in the same way in different groups or over time/conditions
 If so, then indicator responses should depend only on latent trait scores, 

and not on group membership or time/conditions, such that observed 
response differences are only caused by TRUE differences in the trait

• In IRT/IFA, lack of measurement invariance is known as 
“differential item functioning” (DIF), but it’s the same idea
 But note the inversion:  Measurement Invariance = Non-DIF

Measurement Non-Invariance = DIF
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2 Distinct Types of Invariance
• Measurement Invariance concerns how the indicators (items) 

measure the latent trait across groups or time/conditions
 An invariant measurement model has the same factor loadings, 

item intercepts/thresholds, and residual variances (and covariances)

 Measurement model invariance is a precursor to ANY group or 
time/condition comparison (whether it is explicitly tested or not)

 It’s NOT ok if you don’t have at least partial measurement invariance 
to make subsequent comparisons across groups or time/condition

• Structural Invariance concerns how the latent traits are 
distributed and related across groups or time/condition
 An invariant structural model has the same factor variances, factor 

covariances (or same higher-order structure) and factor means

 Given (at least partial) measurement invariance, it IS ok if you don’t 
have structural invariance, because trait differences may be real
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Model Options for Testing Invariance
• Invariance testing in CFA (or DIF testing in IRT/IFA) proceeds 

differently depending on the type of groups to be compared

• Independent groups? Use a “multiple-group” model
 Test separate group-specific factor models simultaneously
 Use GROUP= or KNOWNCLASS= in Mplus and separate MODEL: per group
 An alternative approach of MIMIC models, in which the grouping variable is 

entered as a predictor, does not allow testing of equality of factor loadings 
or factor variances (so MIMIC is less useful than a full multiple-group model)

• Dependent (longitudinal, repeated, dyadic) groups? 
 All indicator responses go into SAME model, with separate factors per 

occasion/condition (allowing all factor covariances by default)
 Usually, the same indicators also have residual covariances by default
 Given measurement invariance, growth modeling of the latent traits can 

serve as a specific type of structural invariance testing
 It is INCORRECT to use a multiple-group model if the groups are dependent
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Longitudinal Invariance Model
Residual covariances for 
same indicators across 
different occasions are 
usually included by 
default when possible

Separate factors are 
estimated for each 
occasion; covariances 
are always estimated to 
capture dependency of 
traits over time

FYI: A structural model in which all factor means, variances, and 
covariances are estimated is analogous to a “saturated means, 
unstructured variance model” for observed variables in MLM terms
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Measurement Model 
for Items:
λ’s = factor loadings
e’s = residual variances
μ’s = intercepts

Remember the CFA model?
Let’s start MI testing here….
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Steps of Testing Invariance across Groups
• Step 0: Omnibus test of equality of the overall indicator 

(item) covariance matrix across groups
 Do the covariances matrices differ between groups, on the whole?

 If not, game over. You are done. You have invariance. Congratulations.

 Many people disagree with the necessity or usefulness of this test to 
begin testing invariance… why might that be?

 People also differ in whether invariance should go from top-down 
or bottom-up directions… I favor bottom-up for the same reason.

• Let’s proceed with an example with 2 factors, 6 indicators 
(3 per factor), and 2 groups…

 Total possible # parameters = ௩ ௩ାଵ
ଶ

൅ ݒ ൌ ଺ ଺ାଵ
ଶ

൅ 6 ൌ 27 per group

 So our COMBINED possible DF = 54 across 2 groups
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Step 1:  Test “Configural” Invariance
• Do the groups have the same general factor structure?
• Same number of factors, same pattern of free/0 loadings 
 same conceptual definition of latent constructs

• In practice, begin by testing the factor structure within 
each group separately, hoping they are “close enough”

• Then estimate separate group-specific models simultaneously, 
but allow all model parameters to differ across groups 
 This will be the baseline model for further comparisons

 Absolute fit χ2 and df will be additive across groups (different group 
sample sizes will result in differential weighting of χ2 across groups)

• This is as good fit as it gets! From here forward, our goal is to 
make model fit NOT WORSE by constraining parameters equal
 That means if the configural model fits badly, game over…
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Testing Invariance Constraints
• As before, we will test whether subtracting parameters 

worsens model fit via likelihood ratio (aka, െ2∆LL, χ2) tests
 Implemented via a direct difference in H0 model χ2 values most often, 

but this is only appropriate when using regular ML estimation

• MLR requires a modified version of this െ2∆LL test (see 
Mplus website): http://www.statmodel.com/chidiff.shtml
 Is called a “rescaled likelihood ratio test” when you explain it
 Includes extra steps to incorporate scaling factors (1.00 = regular ML)
 I built you a spreadsheet for this…you’re still welcome 

• If removing parameters (e.g., in invariance testing), H0 model fit can get 
worse OR not worse (as indicated by smaller LL OR by larger െ2LL and χ2)
 This is what we are doing in testing invariance!

• If adding parameters (e.g., in adding factors), H0 model fit can get 
better OR not better (as indicated by larger LL OR by smaller െ2LL and χ2)
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Testing Nested Models via −2∆LL
• Comparing nested models via a “likelihood ratio test” 
െ2∆LL (MLR rescaled version)
 1. Calculate െ2∆LL = െ2*(LLfewer – LLmore)

 2. Calculate difference scaling correction =
(#parmsfewer*scalefewer) – (#parmsmore*scalemore) 

(#parmsfewer – #parmsmore) 

 3. Calculate rescaled difference = −2∆LL / scaling correction 

 4. Calculate ∆df = #parmsmore – #parmsfewer

 5. Compare rescaled difference to χ2 with df = ∆df

 Add 1 parameter? LLdiff > 3.84, add 2 parameters: LLdiff > 5.99…

 Absolute values of LL are meaningless (is relative fit only)

 Process generalizes to any other model estimated using maximum 
likelihood (such as IRT/IFA) that provides an H0 LL
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Note: Your LL will always 
be listed as the H0
(H1 is for the saturated, 
perfectly fitting model)

Fewer = simpler model
More = more parameters
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1. Configural Invariance Model: 
Same Factor Structure;  All Parameters Separate

Group 1 (subscript = item, group):

• y11	 ൌ 	μ11	 ൅ 	λ11F1	 ൅ 	e11
• y21	 ൌ 	μ21	 ൅ 	λ21F1	 ൅ 	e21
• y31	 ൌ 	μ31	 ൅ 	λ31F1	 ൅ 	e31
• y41	 ൌ 	μ41	 ൅ 	λ41F2	 ൅ 	e41
• y51	 ൌ 	μ51	 ൅ 	λ51F2	 ൅ 	e51
• y61	 ൌ 	μ61	 ൅ 	λ61F2	 ൅ 	e61
• Estimated factor covariance, 

but both factor means = 0 
and both factor variances = 1

Group 2 (subscript = item, group):

• y12	 ൌ 	μ12	 ൅ 	λ12F1	 ൅ 	e12
• y22	 ൌ 	μ22	 ൅ 	λ22F1	 ൅ 	e22
• y32	 ൌ 	μ32	 ൅ 	λ32F1	 ൅ 	e32
• y42	 ൌ 	μ42	 ൅ 	λ42F2	 ൅ 	e42
• y52	 ൌ 	μ52	 ൅ 	λ52F2	 ൅ 	e52
• y62	 ൌ 	μ62	 ൅ 	λ62F2	 ൅ 	e62
• Estimated factor covariance, 

but both factor means = 0 
and both factor variances = 1

Total DF across groups = 54 – 38 = 16 ൌ
	54 െ 12μ ൅ 12σୣଶ ൅ 12λ ൅ 0σ୊ଶ ൅ 2σ୊ଵଶ ൅ 0κ୊ ൌ 16
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Step 2:  Test “Metric” Invariance 
• Also called “weak factorial invariance”
• Do the groups have the same factor loadings?

 Each indicator is still allowed to have a different loading within a group
(i.e., this is not a tau-equivalent model)

 Loadings for same indicator are constrained equal across groups

• Estimate all newly constrained factor loadings, but 
fix all factor variances to 1 in the reference group 
(freely estimate all factor variances in other group)
 Why? Loadings for marker items (fixed=1 for identification) would be 

assumed invariant, and thus they could not be tested

 This alternative specification allows us to evaluate ALL loadings and 
still identify the model (see Yoon & Millsap, 2007), which is BETTER
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2. Metric Invariance Model: 
Same Factor Loadings Only (saves 4 df)

Group 1 (subscript = item, group):

• y11	 ൌ 	μ11	 ൅ 		ૃ૚۴૚	 ൅ 	e11
• y21	 ൌ 	μ21	 ൅ 		ૃ૛۴૚	 ൅ 	e21
• y31	 ൌ 	μ31	 ൅ 		ૃ૜۴૚	 ൅ 	e31
• y41	 ൌ 	μ41	 ൅ 		ૃ૝۴૛	 ൅ 	e41
• y51	 ൌ 	μ51	 ൅ 		ૃ૞۴૛	 ൅ 	e51
• y61	 ൌ 	μ61	 ൅ 		ૃ૟۴૛	 ൅ 	e61
• Both factor variances = 1 for 

identification, factor covariance 
is estimated, but both factor 
means are STILL = 0

Group 2 (subscript = item, group):

• y12	 ൌ 	μ12	 ൅ 	ૃ૚۴૚	 ൅ 	e12
• y22	 ൌ 	μ22	 ൅ 	ૃ૛۴૚	 ൅ 	e22
• y32	 ൌ 	μ32	 ൅ 	ૃ૜۴૚	 ൅ 	e32
• y42	 ൌ 	μ42	 ൅ 	ૃ૝۴૛	 ൅ 	e42
• y52	 ൌ 	μ52	 ൅ 	ૃ૞۴૛	 ൅ 	e52
• y62	 ൌ 	μ62	 ൅ 	ૃ૟۴૛	 ൅ 	e62
• Both factor variances are now 

estimated, factor covariance is 
still estimated, but both factor 
means are STILL = 0

Total DF across groups = 54 – 34 = 20 ൌ
	54 െ 12μ ൅ 12σୣଶ ൅ ૟ૃ ൅ ૛ો۴૛ ൅ 2σ୊ଵଶ ൅ 0κ୊ ൌ 20
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2. Metric Invariance Model
• Compare metric invariance to configural invariance model: 

Is the model fit not worse (െ2∆LL not significant)?
 Check that factor variances are fixed to 1 in reference group only: 

they should be freely estimated in the other group, otherwise you are 
imposing a structural constraint (that groups have same variability) too 

 Otherwise, inspect the modification indices (voo-doo) to see if there 
are any indicators whose loadings want to differ across groups

 Retest the model as needed after releasing one loading at a time, 
starting with the largest modification index, and continue until your 
partial metric invariance model is not worse than the configural model

• Do you have partial metric invariance (1+ loading per factor)?
 Your trait is (sort of) measured in the same way across groups
 If not, it doesn’t make sense to evaluate how relationships involving 

the factor differ across groups (because the factor itself differs)
 Even if full invariance holds, check the modification indices anyway
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Step 3:  Test “Scalar” Invariance 
• Also called “strong factorial invariance”
• Do the groups have the same indicator intercepts?
 Each indicator is still allowed to have a different intercept, but 

intercepts for same indicator are constrained equal across groups
 Indicators that failed metric invariance traditionally do not get 

tested for scalar invariance, but they can be 
 Scalar invariance is required for factor mean comparisons!

• Previous (partial) metric invariance model is starting point 
• Estimate all newly constrained intercepts, but fix the 

factor means to 0 in reference group (free the factor 
means in the other group)
 Why? Intercepts for marker items (if fixed=0 for identification) 

would be assumed invariant, and thus they could not be tested
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3. Scalar Invariance Model: 
Same Factor Loadings + Same Intercepts (saves +4 df)

Group 1 (subscript = item, group):

• y11	 ൌ 	ૄ૚	 ൅ 		λ1F1	 ൅ 	e11
• y21	 ൌ 	ૄ૛	 ൅ 		λ2F1	 ൅ 	e21
• y31	 ൌ 	ૄ૜	 ൅ 		λ3F1	 ൅ 	e31
• y41	 ൌ 	ૄ૝	 ൅ 		λ4F2	 ൅ 	e41
• y51	 ൌ 	ૄ૞	 ൅ 		λ5F2	 ൅ 	e51
• y61	 ൌ 	ૄ૟	 ൅ 		λ6F2	 ൅ 	e61
• Both factor variances fixed to 1, 

both factor means fixed to 0 for 
identification, factor covariance is 
still estimated 

Group 2 (subscript = item, group):

• y12	 ൌ 	ૄ૚	 ൅ 	λ1F1	 ൅ 	e12
• y22	 ൌ 	ૄ૛	 ൅ 	λ2F1	 ൅ 	e22
• y32	 ൌ 	ૄ૜	 ൅ 	λ3F1	 ൅ 	e32
• y42	 ൌ 	ૄ૝	 ൅ 	λ4F2	 ൅ 	e42
• y52	 ൌ 	ૄ૞	 ൅ 	λ5F2	 ൅ 	e52
• y62	 ൌ 	ૄ૟	 ൅ 	λ6F2	 ൅ 	e62
• Both factor variances estimated, 

both factor means estimated to 
become mean differences, and 
factor covariance is still estimated

Total DF across groups = 54 – 30 = 24 ൌ
54 െ ૟ૄ ൅ 12σୣଶ ൅ 6λ ൅ 2σ୊ଶ ൅ 2σ୊ଵଶ ൅ ૛ૂ۴ ൌ 24
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Implications of Non-Invariance
Yes Metric 
Yes Scalar

Yes Metric 
No Scalar

No Metric 
Yes Scalar

No Metric 
No Scalar

Latent Factor Latent Factor

Without metric 
invariance: 
Because unequal 
loadings implies 
non-parallel slopes, 
the intercept will 
differ as a result. 
The size of the 
difference depends 
on where trait=0. 

This is why scalar 
invariance is often 
not tested if metric 
invariance fails for 
a given indicator.
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3. Scalar Invariance Model
• Compare scalar invariance to last metric invariance model: 

Is the model fit not worse (െ2∆LL not significant)?
 Check that factor means are fixed to 0 in reference group only: 

they should be freely estimated in the other group, otherwise you are 
imposing a structural constraint (groups have same means) too 

 Otherwise, inspect the modification indices (voo-doo) to see if there 
are any indicators whose intercepts want to differ across groups

 Retest the model as needed after releasing one intercept at a time, 
starting with the largest modification index, and continue until your 
partial scalar invariance model is not worse than last metric model

• Do you have partial scalar invariance (1+ intercept per factor)?
 Your trait is (sort of) responsible for mean differences across groups
 If not, it doesn’t make sense to evaluate factor means differs across 

groups (because something else is causing those differences)
 Even if full invariance holds, check the modification indices anyway
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Step 4:  Test Residual Variance Invariance 
• Also called “strict factorial invariance”
• Do the groups have the same residual variances?
 Each indicator is still allowed to have a different residual variance 

(i.e., this is not a parallel items model), but residual variances for 
same indicator are constrained equal across groups 

 Indicators that failed scalar invariance traditionally do not get 
tested for residual variance invariance (although they could be)

 Residual invariance is of debatable importance, because it means 
that whatever causes “not the factor” does not differ by group

 Equal residual variances are commonly misinterpreted to mean 
“equal reliabilities”—this is ONLY the case if the factor variances 
are the same across groups, too (stay tuned)

• This is the last step of “measurement invariance”
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4. Residual Invariance Model: 
+ Same Residual Variances (saves +6 df)

Group 1 (subscript = item, group):

• y11	 ൌ 	μ1	 ൅ 		λ1F1	 ൅ ૚܍	
• y21	 ൌ 	μ2	 ൅ 		λ2F1	 ൅ ૛܍	
• y31	 ൌ 	μ3	 ൅ 		λ3F1	 ൅ ૜܍	
• y41	 ൌ 	μ4	 ൅ 		λ4F2	 ൅ ૝܍	
• y51	 ൌ 	μ5	 ൅ 		λ5F2	 ൅ ૞܍	
• y61	 ൌ 	μ6	 ൅ 		λ6F2	 ൅ ૟܍	
• Both factor variances fixed to 1, 

both factor means fixed to 0 for 
identification, factor covariance is 
still estimated 

Group 2 (subscript = item, group):

• y12	 ൌ 	μ1	 ൅ 	λ1F1	 ൅ ૚܍	
• y22	 ൌ 	μ2	 ൅ 	λ2F1	 ൅ ૛܍	
• y32	 ൌ 	μ3	 ൅ 	λ3F1	 ൅ ૜܍	
• y42	 ൌ 	μ4	 ൅ 	λ4F2	 ൅ ૝܍	
• y52	 ൌ 	μ5	 ൅ 	λ5F2	 ൅ ૞܍	
• y62	 ൌ 	μ6	 ൅ 	λ6F2	 ൅ ૟܍	
• Both factor variances estimated, 

both factor means estimated to 
become mean differences, and 
factor covariance is still estimated

Total DF across groups = 54 – 24 = 30 ൌ
54 െ 6μ ൅ ૟ો܍૛ ൅ 6λ ൅ 2σ୊ଶ ൅ 2σ୊ଵଶ ൅ 2κ୊ ൌ 30
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4. Residual Variance Invariance Model
• Compare residual invariance to last scalar invariance model: 

Is the model fit not worse (െ2∆LL not significant)?
 Otherwise, inspect the modification indices (voo-doo) to see if there 

are any indicators whose residual variances want to differ across groups
 Retest the model after releasing one residual variance at a time, starting 

with the largest modification index, and continue until your partial 
residual invariance model is not worse than last scalar model

• Do you have partial residual variance invariance 
(1+ residual variance per factor)?
 Your groups have the same amount of “not the factor” in each item (???)
 Even if full invariance holds, check the modification indices anyway
 Also assess any residual covariances across groups if you have those

• Your (partial) residual invariance model is the new baseline for 
assessing structural invariance…
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Testing Structural Invariance
• Are the factor variances the same across groups? (+1 df per factor)

 Fix each factor variance in the alternative group to 1 (as in the ref group)
 Is model fit worse? If so, the groups differ in their factor variances

• Is the factor covariance the same across groups? (+1 df per pair)
 Fix each factor covariances equal across groups, is model fit worse?
 Factor correlation will only be the same across groups if the factor variances 

are the same, too (if factor variances differ, then factor covariance will, too)

• Are the factor means the same across groups? (+1 df per factor)
 Fix each factor mean in the alternative group to 0 (as in the ref group)
 Is model fit worse? If so, the groups differ in their factor means

• It is not problematic if structural invariance doesn’t hold
 Given measurement invariance, this is a substantive issue about differences 

in the amounts and relations of the latent traits (and that’s ok)
 Might stop at measurement invariance for testing RQs involving the traits
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Summary:  Invariance Testing in CFA
• In CFA: Testing invariance has two distinct parts:
 Measurement invariance: Is your construct being measured 

in the same way by the indicators across groups/time? 
 Hope for at least “partial” invariance… otherwise, game over

 Structural invariance: Do your groups/times differ in their 
distribution and/or means of the construct? Let’s find out!
 Structural differences are real and interpretable differences

given measurement invariance of the constructs

• In IFA:  Still called “testing invariance” 
 Conducted similarly (but not exactly the same) in Mplus

• In IRT:  Now called testing “differential item functioning” 
 With different names and rules, not directly tested in Mplus
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Differential Item Functioning (DIF)
• In IRT (model with ୧ discrimination and ୧ difficulty), 

measurement NON-invariance = DIF
 Note the inversion:  Measurement Invariance = Non-DIF

Measurement Non-Invariance = DIF
 An item has “DIF” when persons with equal amounts of the traits, 

but from different groups, have different expected item responses
 An item has “non-DIF” if persons with the same amount of the 

trait have the same expected item response, regardless of group
 DIF can be examined across groups, over time, over conditions, 

etc., the same as in CFA/IFA
 Independent groups? Multiple-group model
 Dependent “groups”? One factor per “group” in same model
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2 Types of DIF (as described in IRT)
• “Uniform DIF”  Analogous to scalar NON-invariance

 IRT bi parameters differ across groups
 Item is systematically more difficult/severe for members of one group, 

even for persons with the same amount of the theta trait
 Example: “I cry a lot” Would men and women with the same amount 

of depression have the same expected item response?

• “Non-Uniform DIF”  Analogous to metric NON-invariance
 IRT ai (and possibly bi) parameters differ across groups
 Item is systematically more related to theta for members of one group 
 higher discrimination (item “works better”) 

 Group-related shift in item difficulty is not consistent across the trait

• What about residual variance invariance? It depends:
 Doesn’t exist in ML: no estimated error variance  (is logit=3.29 or probit=1.00)
 Will exist in WLSMV after constraining loadings and thresholds, but not before…
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Testing Measurement Invariance
in Categorical Outcomes

• 2 versions of model for polytomous outcomes in Mplus:
 IRT:  Logit	or	Probit ykis ൌ 1 ൌ a୧ሺθୱ െ b୩୧ሻ

 IFA:  Logit	or	Probitሺykis ൌ 1ሻ ൌ	– τki ൅ λiθs	
 Logit or Probit in ML; only Probit in WLSMV

• Mplus estimates the IFA τki	and λi	parameters, then converts to the IRT a୧
and b୩୧ parameters for binary outcomes after rescaling trait (M=0, SD=1)
 Tests of measurement invariance are thus specifically for τki	and λi	, not a୧ and b୩୧
 So Mplus does not directly allow examination of “DIF” for ai and bi directly

• IFA ૌܑܓ	and ૃܑ	are held directly invariant, not IRT ܑ܉ and ܑ܊
 So even if λi	factor loadings are invariant across groups, the Mplus IRT ai

discriminations will still differ across groups due to differences in their theta variances 
(but you can calculate the invariant ai parameters yourself via MODEL CONSTRAINT)

 Likewise, even if τki	thresholds are invariant across groups/time, Mplus IRT bi difficulty 
parameters will still differ due to their rescaling of the trait (but you can fix this)

The ݇ thresholds divide the 
ܥ item responses into ܥ െ 1
cumulative binary submodels 
ݕ) ൌ 0 if lower, ݕ ൌ 1 if higher)
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Review:  From IFA to IRT
IFA with “easiness” intercept ܛܑܡ	ܜܑ܊ܗܚ۾	ܚܗ	ܜܑ܏ܗۺ   :ܑૄ ൌ 	ૄܑ ൅ ܛ۴ܑૃ ૄܑ ൌ െૌܑ
IFA with “difficulty” threshold ૌܑ:  ܜܑ܏ܗۺ	ܚܗ	ܜܑ܊ܗܚ۾	ܛܑܡ ൌ	– ૌܑ ൅ ܛ۴ܑૃ

IFA model with “difficulty” thresholds can be written as a 2-PL IRT Model:

IRT model: IFA model:
ܛܑܡ	ܜܑ܊ܗܚ۾	ܚܗ	ܜܑ܏ܗۺ ൌ –ܛሺીܑ܉ ሻܑ܊ ൌ		– 	ܑ܊ܑ܉ ൅ ܛીܑ܉	

Convert IFA to IRT: Convert IRT to IFA:

a୧ 	ൌ λ୧ ∗ Theta	Variance λ୧ ൌ
ୟ౟

୘୦ୣ୲ୟ	୚ୟ୰୧ୟ୬ୡୣ

b୧ ൌ
த౟ିሺ஛౟∗୘୦ୣ୲ୟ	୑ୣୟ୬ሻ
஛౟∗ ୘୦ୣ୲ୟ	୚ୟ୰୧ୟ୬ୡୣ

τ୧ ൌ a୧b୧ ൅
ୟ∗୘୦ୣ୲ୟ	୑ୣୟ୬
୘୦ୣ୲ୟ	୚ୟ୰୧ୟ୬ୡୣ

ૌܑ ૃܑ

ܑ܉ = discrimination
ܑ܊ = difficulty
ીܛ = Fs latent trait 
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Note: These 
formulas rescale a୧

and b୧ so that 
theta M=0, VAR=1. 

Use M=0 and 
VAR=1 to keep 

invariant a୧ and b୧.



Invariance Testing in Mplus
• IFA using Full-Information MML: Multiple group models are not permitted, 

but you can trick Mplus into doing it (e.g., here, by group):
 VARIABLE: CLASSES=group(2); KNOWNCLASS = group (female=0 1); 
 ANALYSIS: TYPE = MIXTURE; ESTIMATOR = ML; ALGORITHM = INTEGRATION;
 MODEL:   %OVERALL% (… model for reference group listed here)

%group#2%  (… model for alternative group goes here)

• IFA using Limited-Information WLSMV: Mplus does allow multiple group 
models, with a few useful other benefits
 Faster estimation if you have multiple factors/thetas (but assumes MCAR)
 DIFFTEST does nested model comparisons for you (still going for “not worse”)
 Can get modification indices (voo-doo) to troubleshoot non-invariance
 Can test differences in residual variances (in THETA parameterization)

• In WLSMV, the same category responses must be observed for 
each group, otherwise you cannot test the item thresholds
 This is not the case in MML, in which you can estimate more thresholds in one group
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Configural Invariance Baseline Model 
for Categorical Outcomes (2 Groups)

• Factor variances: fixed to 1 in both groups

• Factor covariances: if any, free in both groups

• Factor means: fixed to 0 in both groups

• Factor loadings: all freely estimated (so each can be tested later)
 Remember: the IRT ai parameters Mplus gives you will still vary across groups even after 

loadings are constrained because of group differences in theta variance

• Item Thresholds: all freely estimated (so each can be tested later)
 Remember: the IRT bki parameters Mplus gives you will still vary across groups even after 

thresholds are constrained because of group differences in theta mean and theta variance

• Fix all residual variances=1 in all groups if using WLSMV
 Groups will eventually be allowed to differ in both factor variance and “error 

variance” (proxy for total variation in WLSMV models; is a “slop” parameter)

We use the same configural 
model identification as in 
CFA for simplicity (but it 
doesn’t really matter how 
it’s identified here

CLDP 948:  Lecture 7 31



Sequential Invariance Models 
Note: In WLSMV, save for DIFFTEST at each step!

• Step 1: Fit baseline configural invariance model across groups
 Should be “close enough” factor structures, otherwise game over

 Alternative group is allowed different loadings and thresholds

• Step 2 (Metric-ish): Constrain all loadings equal but free factor variances in 
alternative group—is fit worse than the configural model?
 If using WLSMV, check MODINDICES to see misfit of constraints; release problematic constrained 

loadings one at a time; check fit against configural model to see if it’s not worse yet

• Step 3 (Scalar-ish): Constrain thresholds equal for items (that passed metric) 
but free factor means in alternative group—is fit worse than the metric model?
 If using WLSMV, check MODINDICES to see misfit of constraints; release problematic constrained 

thresholds one item at a time; check fit against metric model to see if it’s not worse yet

 If using WLSMV, MODINDICES may want the “intercept” free, but this is not possible to do in 
IRT/IFA, so focus on problematic (non-invariant) item thresholds instead

 Reasonable people disagree: Mplus recommends doing steps 2 and 3 in one step because 
loadings and thresholds are dependent; others disagree (e.g., Millsap’s 2011 book; all of IRT)
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Sequential Invariance Models 
Note: In WLSMV, save for DIFFTEST at each step!

• Step 4: WLSMV only: Test if residual variances for items (that passed scalar) in 
alternative group ≠1  differ from reference group (of residual variance = 1)
 Differences in residual variances between groups are not identified until you have at least some 

of the loadings and thresholds constrained across groups

 Consequently, this test proceeds backwards: first estimated is the “bigger” non-invariant residual 
variance model, second estimated is the “smaller” original scalar invariance model (in which 
residual variances were fixed to 1 for all items for all groups)

 Differential residual variances can be a proxy for group differences in overall variability or slop, 
but this model may not always converge (if it doesn’t, just skip this step, but note doing so)

• Steps 5, 6, 7: Test Structural Invariance (just like before in CFA): 
 Constrain equal across groups in sequential models: factor variances, then factor covariances, 

and then factor means (equal to 0) to test for “real” group differences

 Same story as in CFA: Only if you have at least partial measurement invariance can structural 
group/time/condition differences be meaningfully interpreted

• Factors/Thetas all should have a multivariate normal distribution no matter 
what measurement model was used to create them… so now we can do SEM!
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