
Latent Trait Measurement Models 
for Other (not Binary) Responses

Today’s Topics:
 Review of generalized models for categorical outcomes
 Ordered Categories  Graded Response
 Maybe Ordered Categories  Partial Credit
 Unordered Categories  Nominal Response
 Count Outcomes  Poisson and Negative Binomial
 Too many Zeros Outcomes  Zero-Inflated/Hurdle/Two-Part
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Too Logit to Quit… https://www.youtube.com/watch?v=Yc43R8QnCXY

• The logit is also the basis for many other generalized models 
for predicting categorical outcomes

• Next we’ll see how ܥ possible response categories can be 
predicted using ܥ െ 1 binary “submodels” that involve carving 
up the categories in different ways, in which each binary 
submodel uses a logit link to predict its outcome

• Types of categorical outcomes:
 Definitely ordered categories: “cumulative logit”

 Maybe ordered categories: “adjacent category logit” 

 Definitely NOT ordered categories: “generalized logit”
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Logit-Based Models for C Ordinal Categories
• Known as “cumulative logit” or “proportional odds” model in generalized 

models; will be known as “graded response model” in IRT
 e.g., LINK=CLOGIT, DIST=MULT in SAS GLIMMIX (for non-latent-trait models)

• Models the probability of lower vs. higher cumulative categories via ܥ െ 1
submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1, 2,3 0,1 vs. 2,3 0,1,2 vs. 3

• In SAS, what the binary submodels predict depends on whether the model 
is predicting DOWN ܑܡ) ൌ ૙, the default) or UP (ܑܡ ൌ ૚) cumulatively

• Example predicting UP in an empty model (subscripts=parm,submodel)

• Submodel 1: Logit y୧ ൐ 0 ൌ β଴ଵ 	݌ y୧ ൐ 0 ൌ exp β଴ଵ / 1 ൅ exp β଴ଵ
• Submodel 2: Logit y୧ ൐ 1 ൌ β଴ଶ  ݌ y୧ ൐ 1 ൌ exp β଴ଶ / 1 ൅ exp β଴ଶ
• Submodel 3: Logit y୧ ൐ 2 ൌ β଴ଷ    	݌ y୧ ൐ 2 ൌ exp β଴ଷ / 1 ൅ exp β଴ଷ

Submodel3Submodel2Submodel1

I’ve named these submodels 
based on what they predict, 
but programs will use their 
own names in the output.
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Logit-Based Models for C Ordinal Categories
• Models the probability of lower vs. higher cumulative categories via ܥ െ 1

submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1,2,3 0,1 vs. 2,3 0,1,2 vs. 3

• What the binary submodels predict depends on whether the model is 
predicting DOWN ܑܡ) ൌ ૙, the default) or UP (ܑܡ ൌ ૚) cumulatively
 Either way, the model predicts the middle category responses indirectly

• Example if predicting UP with an empty model:

 Probability of 0 =       1 – Prob1
Probability of 1 = Prob1– Prob2
Probability of 2 = Prob2– Prob3
Probability of 3 = Prob3– 0

Submodel3
 Prob3

Submodel2
 Prob2

Submodel1
 Prob1

The cumulative submodels that create these 
probabilities are each estimated using all the 
data (good, especially for categories not chosen 
often), but assume order in doing so (may be 
bad or ok, depending on your response format).

Logit y୧ ൐ 2 ൌ β଴ଷ

	݌ y୧ ൐ 2 ൌ ୣ୶୮ ஒబయ
ଵାୣ୶୮ ஒబయ
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Logit-Based Models for C Categories
• Uses multinomial distribution for residuals, whose PDF for 
ܥ ൌ 4 categories of ܿ ൌ 0,1,2,3, an observed ݕ௜ ൌ ܿ, and 
indicators ܫ if ܿ ൌ ௜ݕ

݂ y୧ ൌ c ൌ ୧଴݌
୍ሾ୷౟ୀ଴ሿ݌୧ଵ

୍ሾ୷౟ୀଵሿ݌୧ଶ
୍ሾ୷౟ୀଶሿ݌୧ଷ

୍ሾ୷౟ୀଷሿ

 Maximum likelihood is then used to find the most likely parameters in 
the model to predict the probability of each response through the 
(usually logit) link function; the probabilities sum to 1: ∑ ୧ୡେ݌

ୡୀଵ ൌ 1

• Other models for categorical data that use the multinomial:
 Adjacent category logit (partial credit): Models the probability of 

each next highest category via ܥ െ 1 submodels (e.g., if ܥ ൌ 4): 
0 vs. 1 1 vs. 2 2 vs. 3

 Baseline category logit (nominal): Models the probability of reference 
vs. other category via ܥ െ 1 submodels (e.g., if ܥ ൌ 4 and 0 ൌ ref): 

0 vs. 1 0 vs. 2 0 vs. 3

Only ݌௜௖ for the response 
௜ݕ ൌ ܿ	 gets used
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In nominal models, all 
parameters are estimated 
separately per submodel



Polytomous Items = Categorical Outcomes
• Polytomous = more than 2 options
• Polytomous models are not numbered like binary models, 

but instead get called different names (acronyms)
 Most have a 1-PL vs. 2-PL version that also go by different names

 Within each, different constraints on what to do with multiple options

• Three main kinds of polytomous models:
 Response options are ordered for sure  Cumulative Logit

 Graded Response or Modified Graded Response Model

 Response options may be ordered Adjacent Category Logit
 (Generalized) Partial Credit Model or Rating Scale Model

 No way are these response options ordered  Baseline Category Logit
 Nominal Response Model: Notably, this can be constrained to fit combo of 

partial credit and nominal responses (e.g., for “not applicable” responses)
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The Threshold Concept

• Each categorical variable is really the chopped-up version of a pretend 
underlying continuous variable (ܡ∗) with mean = 0 (variance = 1.00 or 3.29)

• Polytomous models will differ in how they make use of multiple thresholds 
per item in which C = # categories, so # thresholds per item = k = C−1

Probit ો܍૛ ൌ 1.00
(SD=1)

Logit 
ો܍૛ ൌ 3.29
(SD=1.8)

y୧ ൌ 0

Threshold

Pr
ob
ab
ili
ty
	

y୧ ൌ 1

Transformed	y୧ (y୧∗) 
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y୧ ൌ 0 y୧ ൌ 2y୧ ൌ 1

∗ܑܡ ൌ ࢊ࢒࢕ࢎ࢙ࢋ࢘ࢎ࢚ ൅ ܔ܍܌ܗܕ	ܚܝܗܡ	܎ܗ	ܜܛ܍ܚ ൅ ܑ܍

Threshold 1 Threshold 2

Transformed	y୧ (y୧∗) 



Graded Response Model for Ordinal Categories
• Ideal for items with clear underlying response continuum (e.g., Likert)

• # response options don’t have to be the same across items

• GRM is an “indirect” or “difference” model 
 Compute difference between models to get probability of each response

• Estimate 1 ai per item and ݇ ൌ C െ 1 difficulties (4 options  3 difficulties)

• Models the probability of lower vs. higher cumulative categories via 
݇ submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1, 2,3 0,1 vs. 2,3 0,1,2 vs. 3

• Each submodel is estimated using all the data cumulatively (assumes order)

• As with binary items, Mplus estimates the IFA model directly (loadings and 
thresholds), but unlike binary items, it won’t do the IRT conversion into 
discriminations and difficulties (but you can write NEW parameters or see 
my spreadsheet for help)

Submodel3Submodel2Submodel1

Mplus will refer to these 
thresholds using $1, $2, 
$3 after the item name
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Example Graded Response Model (GRM)
IRT version of the GRM: Note that ܑ܉ is the same across submodels…

• 0 vs. 1,2,3: Logit y୧ୱ ൐ 0 ൌ a୧ θୱ െ bଵ୧  1݌	 y୧ୱ ൐ 0 ൌ 						ୣ୶୮ ୟ౟ ஘౩ିୠభ౟
ଵାୣ୶୮ ୟ౟ ஘౩ିୠభ౟

• 0,1 vs. 2,3: Logit y୧ୱ ൐ 1 ൌ a୧ θୱ െ bଶ୧ 		2݌ y୧ୱ ൐ 1 ൌ 					ୣ୶୮ ୟ౟ ஘౩ିୠమ౟
ଵାୣ୶୮ ୟ౟ ஘౩ିୠమ౟

• 0,1,2 vs. 3: Logit y୧ୱ ൐ 2 ൌ a୧ θୱ െ bଷ୧ 		3݌ y୧ୱ ൐ 2 ൌ 						ୣ୶୮ ୟ౟ ஘౩ିୠయ౟
ଵାୣ୶୮ ୟ౟ ஘౩ିୠయ౟

IFA version of the GRM—what is directly estimated in Mplus:

• 0 vs. 1,2,3: Logit y୧ୱ ൐ 0 ൌ െτଵ୧ ൅ λ୧Fୱ  1݌	 y୧ୱ ൐ 0 ൌ 						ୣ୶୮ ିதభ౟ା஛౟୊౩
ଵାୣ୶୮ ିதభ౟ା஛౟୊౩

• 0,1 vs. 2,3: Logit y୧ୱ ൐ 1 ൌ െτଶ୧ ൅ λ୧Fୱ 		2݌ y୧ୱ ൐ 1 ൌ 				ୣ୶୮ ିதమ౟ା஛౟୊౩
ଵାୣ୶୮ ିதమ౟ା஛౟୊౩

• 0,1,2 vs. 3: Logit y୧ୱ ൐ 2 ൌ െτଷ୧ ൅ λ୧Fୱ 		3݌ y୧ୱ ൐ 2 ൌ 					ୣ୶୮ ିதయ౟ା஛౟୊౩
ଵାୣ୶୮ ିதయ౟ା஛౟୊౩

GRM indirectly predicts probability of each category

 ݌ y୧ୱ ൌ 0 ൌ 		1 െ 1݌
݌ y୧ୱ ൌ 1 ൌ 1݌ െ 2݌
݌ y୧ୱ ൌ 2 ൌ 2݌ െ 3݌
݌ y୧ୱ ൌ 3 ൌ 3݌ െ 0
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IRT ܑܓ܊ = trait level needed for a 50% probability 
(logit =0) of the higher binary category

IFA ૌܑܓ = logit of the probability of the 
lower binary category when Factor = 0



Cumulative Item Response Curves:
GRM for 4-Category (0123) Item, ai=1

b1 = -2 b3 = 2b2 = 0

ai = 1  all 
curves have 
same slope
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Cumulative Item Response Curves:
GRM for 4-Category (0123) Item, ai=2

b1 = -2 b3 = 2b2 = 0

ai = 2 
slope is 
steeper
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Category Response Curves:
GRM for 4-Category (0123) Item, ai=2

GRM indirectly 
predicts the 
probability of each 
category response 
across Theta:

݌ y୧ୱ ൌ 0 ൌ 		1 െ 1݌
݌ y୧ୱ ൌ 1 ൌ 1݌ െ 2݌
݌ y୧ୱ ൌ 2 ൌ 2݌ െ 3݌
݌ y୧ୱ ൌ 3 ൌ 3݌ െ 0

Mplus will make this 
type of Plot for you 
under the title “Item 
Characteristic Curve”
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Category Response Curves:
GRM for 4-Category (0123) Item, ai=.5

This is exactly 
what you do NOT 
want to see. 

Although they are 
ordered, the 
middle categories 
are worthless (not 
differentiated).
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Top Panel: Red bars display item discriminations.

Bottom Panel: Item locations for 4 response options:
Never, Seldom, Sometimes, and Often 

The location of y > 
sometimes ranges 
from ~0 to .5 across 
items, creating lower 
reliability for traits>.5

Being able to select a 
higher option (e.g., 
almost always) would 
improve reliability for 
high-trait respondents.



“Modified” (“Rating Scale”)
Graded Response Model (MGRM)

• More parsimonious version of GRM for items with same response options
• In GRM, k*#items difficulties + 1 discrimination are estimated per item
• In MGRM, each item gets own slope and own overall ‘location’ parameter, 

but the differences between categories around that location are 
constrained to be equal across items (get a “c” shift for each threshold)
 So, different ai and bi per item, but same c1, c2, and c3 across items (one c = 0)
 Not directly available within Mplus, but can be done using threshold constraints

• 0 vs. 1,2,3: Logit y୧ୱ ൐ 0 ൌ a୧ θୱ െ b୧ ൅ cଵ  1݌	 y୧ୱ ൐ 0 ൌ 						ୣ୶୮ ୟ౟ ஘౩ିୠ౟ାୡభ
ଵାୣ୶୮ ୟ౟ ஘౩ିୠ౟ାୡభ

• 0,1 vs. 2,3: Logit y୧ୱ ൐ 1 ൌ a୧ θୱ െ b୧ ൅ cଶ 		2݌ y୧ୱ ൐ 1 ൌ 						ୣ୶୮ ୟ౟ ஘౩ିୠ౟ାୡమ
ଵାୣ୶୮ ୟ౟ ஘౩ିୠ౟ାୡమ

• 0,1,2 vs. 3: Logit y୧ୱ ൐ 2 ൌ a୧ θୱ െ b୧ ൅ cଷ 		3݌ y୧ୱ ൐ 2 ൌ 						ୣ୶୮ ୟ౟ ஘౩ିୠ౟ାୡయ
ଵାୣ୶୮ ୟ౟ ஘౩ିୠ౟ାୡయ
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Modified vs. Regular GRM
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Modified GRM
k “shift” c terms: All 
category distances 
are same across 
items, and each item 
gets its own “bi”
overall location

Original GRM
k locations per 
item: All category 
distances differ 
across items

b3

b2

b1

c1
c2 c3

b11 b12 b13

b21 b22 b23

b31 b32 b33



Summary of Models for
Ordered Categorical Responses

Some of these in Mplus 
via “CATEGORICAL ARE”

Difficulty Per Item 
Only (category 

distances equal)

Difficulty
Per Category 

Per Item
Equal discrimination 
across items (1-PLish)?

(possible, but no 
special name)

(possible, but no 
special name)

Unequal discriminations 
(2-PLish)?

“Modified GRM” or 
“Rating Scale GRM” 
(same response options)

“Graded Response 
Model”

“Cumulative Logit”

• GRM and Modified GRM are reliable models for ordered categorical data
 Commonly used in real-world testing; most stable to use in practice

 Least data demand because all data get used in estimating each bki
 Only major deviations from the model will end up causing problems such that 

categories should be allowed to be unordered (perhaps bimodal distributions) 
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(Generalized) Partial Credit Model (PCM)
• When you want to test an assumption of an ordered underlying continuum

• # response options doesn’t have to be same across items, but there is 
no guarantee that every category will be most likely at some point 

• Is a “direct, divide-by-total” model (prob of each category is given directly) 

• Estimate k difficulty-like ઼ܑܓ	“step” parameters, which are the Theta values 
at which the next category becomes more likely (not necessarily 50%)

• Models the probability of adjacent categories (“adjacent category logit”)
 Divide item into a series of binary items, but without order constraints beyond 

adjacent categories because it only uses those 2 categories (ܿ ൌ 0,1,2,3):

IRT for PCM (now in Mplus): Is “generalized” if ܑ܉ is used instead of ܉

• If 0 or 1: Logit y୧ୱ ൌ 1 ൌ a୧ θୱ െ δଵ୧  1݌	 y୧ୱ ൌ 1 ൌ 						ୣ୶୮ ୟ౟ ஘౩ିஔభ౟
ଵାୣ୶୮ ୟ౟ ஘౩ିஔభ౟

• If 1 or 2: Logit y୧ୱ ൌ 2 ൌ a୧ θୱ െ δଶ୧ 		2݌ y୧ୱ ൌ 2 ൌ 					ୣ୶୮ ୟ౟ ஘౩ିஔమ౟
ଵାୣ୶୮ ୟ౟ ஘౩ିஔమ౟

• If 2 or 3: Logit y୧ୱ ൌ 3 ൌ a୧ θୱ െ δଷ୧ 		3݌ y୧ୱ ൌ 3 ൌ 						ୣ୶୮ ୟ౟ ஘౩ିஔయ౟
ଵାୣ୶୮ ୟ౟ ஘౩ିஔయ౟

CLDP 948:  Lecture 6 18



Category Response Curves:
PCM for 4-Category (0123) Item, ai=1

PCM directly predicts 
the probability of each 
category response 
across Theta:

݌ y୧ୱ ൌ 0 ൌ 1 െ 1݌
݌ y୧ୱ ൌ 1 ൌ 1݌
݌ y୧ୱ ൌ 2 ൌ 2݌
݌ y୧ୱ ൌ 3 ൌ 3݌

These curves look 
similar to the GRM, but 
the location parameters 
are interpreted differently 
because they are NOT 
cumulative, they are only 
adjacent…
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Category Response Curves:
PCM for 4-Category (0123) Item, ai=1

δ01δ12

δ23

The ઼ܑܓ terms are 
the location where 
the next category 
response becomes 
more likely (not 
necessarily 50%).
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Category Response Curves:
PCM for 4-Category (0123) Item, ai=1

δ01δ12

δ23

…a score of 2 instead of 
1 requires less Theta than 
1 instead of 0 …
This is called a ‘reversal’

But here, this likely 
happens because of a 
lower frequency of y = 1 
(relative to y = 0)
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Response Categories
0 = green = Time-Out
1 = pink   = 30 – 45 s
2 = blue   = 15 – 30 s
3 = black  = < 15 s

*Misfit (p < .05)

More of what 
you don’t want 
to see… category 
response curves 
from a PCM 
where reversals 
are a plenty… 

…and the middle 
categories are 
fairly useless. 
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-3 -2 -1 0 1 2 3

Latent Trait Score

Generalized Partial 
Credit Model Example: 
General Intrusive 
Thoughts (5 options)

Note that the 4 thresholds cover a wide 
range of the latent trait, and what the 
distribution of Theta looks like as a 
result...

But the middle 3 categories are used 
infrequently and/or are not differentiable
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-3 -2 -1 0 1 2 3
Latent Trait Score

Generalized Partial 
Credit Model Example: 
Event-Specific 
Intrusive Thoughts 
(4 options)

Note that the 3 thresholds do 
not cover a wide range of 
the latent trait, and what the 
distribution of theta looks like 
as a result…
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Rating Scale Model (RSM)
• More parsimonious version of PCM for items with same response format

• In PCM, k*#items step parameters +1 discrimination are estimated per item

• In RSM, each item gets own slope and own overall ‘location’ parameter, but 
the differences between categories around that location are constrained to 
be equal across items (get a “c” shift for each threshold; one c = 0)
 So, different bi (and possibly ai) per item, but same c1, c2, and c3 across items

 Also not available within Mplus

• If 0 or 1: Logit y୧ୱ ൌ 1 ൌ a θୱ െ δ୧ ൅ cଵ  1݌	 y୧ୱ ൌ 1 ൌ 						ୣ୶୮ ୟ ஘౩ିஔ౟ାୡభ
ଵାୣ୶୮ ୟ ஘౩ିஔ౟ାୡభ

• If 1 or 2: Logit y୧ୱ ൌ 2 ൌ a θୱ െ δ୧ ൅ cଵ 		2݌ y୧ୱ ൌ 2 ൌ 						ୣ୶୮ ୟ ஘౩ିஔ౟ାୡమ
ଵାୣ୶୮ ୟ ஘౩ିஔ౟ାୡమ

• If 2 or 3: Logit y୧ୱ ൌ 3 ൌ a θୱ െ δ୧ ൅ cଵ 		3݌ y୧ୱ ൌ 3 ൌ 						ୣ୶୮ ୟ ஘౩ିஔ౟ାୡయ
ଵାୣ୶୮ ୟ ஘౩ିஔ౟ାୡయ

CLDP 948:  Lecture 6 25



Rating Scale vs. Regular PCM
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Rating Scale
k “shift” c terms: All 
category distances 
are same across 
items, and each item 
gets its own “઼i”
overall location

Original PCM
k locations per 
item: All category 
distances differ 
across items

઼3

઼2

઼1

c1
c2 c3

઼11 ઼12 ઼13

઼21 ઼22 ઼23

઼31 ઼32 ઼33



Summary of Models for Maybe-
Ordered Categorical Responses

Not directly available in 
Mplus

Difficulty Per Item 
Only (category 

distances equal)

Difficulty
Per Category 

Per Item
Equal discrimination 
across items (1-PLish)?

“Rating Scale PCM” “Partial Credit 
Model”

Unequal discriminations 
(2-PLish)?

“Generalized Rating 
Scale PCM”?? 

(same response options)

“Generalized PCM”
“Adjacent Category 

Logit”

• Partial Credit Models test the assumption of ordered categories
 This can be useful for item screening, but perhaps not for actual analysis

• These models have additional data demands relative to GRM
 Only data from that threshold get used (i.e., for 1 vs. 2, 0 and 3 don’t contribute)

 So larger sample sizes are needed to identify all model parameters

 Sometimes categories have to be consolidated to get the model to not blow up

CLDP 948:  Lecture 6 27



Nominal Response Model for Unordered Categories

• Ideal for items with no ordering of any kind (e.g., favorite color)

• # response options don’t have to be the same across items
• NRM is a “direct” model  prob of each category given directly

• Estimate ݇ ai per item and ݇ “intercepts” per item

• Models the probability of each category relative to a baseline category 
(sort of like dummy-coding the outcome variable, here baseline = 0):

0 vs. 1 0 vs. 2 0 vs. 3

• Available in Mplus with NOMINAL ARE option (estimated as an IFA model)

• Can be useful to examine utility of distractors in multiple choice tests

• Can also be constrained to become the GPCM for Likert-scale responses 
and stay nominal for unordered responses (like “not applicable”)

Submodel3Submodel2Submodel1

Mplus will refer to these 
“intercepts” using #1, #2, 
#3 after the item name
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Example Nominal Response Model (NRM)
IRT version of the NRM: Note that ܑ܉ is NOT the same across submodels…

• If 0 or 1: Logit y୧ୱ ൌ 1 ൌ aଵ୧ θୱ െ bଵ୧  1݌	 y୧ୱ ൌ 1 ൌ 						ୣ୶୮ ୟభ౟ ஘౩ାୠభ౟
ଵାୣ୶୮ ୟభ౟ ஘౩ାୠభ౟

• If 0 or 2: Logit y୧ୱ ൌ 2 ൌ aଶ୧ θୱ െ bଶ୧ 		2݌ y୧ୱ ൌ 2 ൌ 					ୣ୶୮ ୟమ౟ ஘౩ାୠమ౟
ଵାୣ୶୮ ୟమ౟ ஘౩ାୠమ౟

• If 0 or 3: Logit y୧ୱ ൌ 3 ൌ aଷ୧ θୱ െ bଷ୧ 		3݌ y୧ୱ ൌ 3 ൌ 						ୣ୶୮ ୟయ౟ ஘౩ାୠయ౟
ଵାୣ୶୮ ୟయ౟ ஘౩ାୠయ౟

IFA version of the GRM—what is estimated in Mplus (with intercepts):

• If 0 or 1: Logit y୧ୱ ൌ 1 ൌ െτଵ୧ ൅ λଵ୧Fୱ  1݌	 y୧ୱ ൌ 1 ൌ 					ୣ୶୮ ஜభ౟ା஛భ౟୊౩
ଵାୣ୶୮ ஜభ౟ା஛భ౟୊౩

• If 0 or 2: Logit y୧ୱ ൌ 2 ൌ െτଶ୧ ൅ λଶ୧Fୱ 		2݌ y୧ୱ ൌ 2 ൌ 				ୣ୶୮ ஜమ౟ା஛మ౟୊౩
ଵାୣ୶୮ ஜమ౟ା஛మ౟୊౩

• If 0 or 3: Logit y୧ୱ ൌ 3 ൌ െτଷ୧ ൅ λଷ୧Fୱ 		3݌ y୧ୱ ൌ 3 ൌ 					ୣ୶୮ ஜయ౟ା஛య౟୊౩
ଵାୣ୶୮ ஜయ౟ା஛య౟୊౩

GRM directly predicts probability of each category

 ݌ y୧ୱ ൌ 0 ൌ 1 െ 1݌ ൅ 2݌ ൅ 3݌
݌ y୧ୱ ൌ 1 ൌ 1݌
݌ y୧ୱ ൌ 2 ൌ 2݌
݌ y୧ୱ ൌ 3 ൌ 3݌
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IRT ܑܓ܊ = trait level needed for a 50% prob
(logit =0) of the lower binary category
IFA ૄܑܓ = logit of the probability of the 
higher binary category when Factor = 0



Category Response Curves
(NRM for 5-Category Item)

Nominal Response Item Response Function
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Example Analysis 
of Multiple Choice 
Distractors: 

People low in Theta 
are most likely to 
pick d, but c is their 
second choice

People high in Theta 
are most likely to 
pick a, but b is their 
second choice
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Summary:  Polytomous Models
Many kinds of polytomous IRT/IFA models…
• Some assume order of response options… 

 Graded Response Model Family “cumulative logit model”
 Models cumulative change in categories using all data for each submodel

• Some allow you to test order of response options…
 (Generalized) Partial Credit Model Family “adjacent category logit model”

 Models adjacent category thresholds only, so they allow you to see reversals 
(empirical mis-ordering of your response options with respect to Theta)

 (G)PCM useful for identifying separability and adequacy of categories

• Some assume no order of response options… 
 Nominal Model “baseline category logit model”

 Useful to examine probability of each response option or semi-ordered options
 Can be hard to estimate all parameters (especially separate ܽ or ߣ per submodel)
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Models for Count Outcomes
• Counts: non-negative integer unbounded responses

 e.g., how many cigarettes did you smoke this week?

 Traditionally uses natural log link so that predicted outcomes stay ≥ 0

• ܏ ⦁ Log E y୧ ൌ Log μ୧ ൌ model predicts mean of y୧
• ૚ି܏ ⦁ Eሺy୧ሻ ൌ expሺmodel)  to un-log it, use expሺmodelሻ

• IFA model (no IRT analog): ܏ܗۺ ܛܑܡ ൌ ૄܑ ൅ ܛ۴ܑૃ	 ൅ ሺܛܑ܍ሻ
 Model has intercepts and loadings, just predicting log(yis) instead

 In Mplus, identify outcomes as COUNT = in VARIABLE: section

• What about an estimated residual variance? It depends…
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Poisson Conditional Distribution
• Poisson distribution has one parameter, ߣ, which is both its 

mean and its variance (so ߣ = mean = variance in Poisson)

• ݂ y୧|λ ൌ Prob y୧ ൌ y ൌ ஛౯∗ୣ୶୮ ି஛
୷!

• PDF: Prob y୧ ൌ y|β଴, βଵ, βଶ ൌ ஜ౟
౯∗ୣ୶୮ ିஜ౟

୷!

!ݕ is factorial of ݕ

The dots indicate that only 
integer values are observed.

Distributions with a small 
expected value (mean or ߣ) are 
predicted to have a lot of 0’s.

Once ߣ ൐ 6 or so, the shape of 
the distribution is close to a that 
of a normal distribution.ݕ
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3 potential problems for Poisson…
• The standard Poisson distribution is rarely sufficient, though

• Problem #1: When mean ≠ variance
 If variance < mean, this leads to “under-dispersion” (not that likely)
 If variance > mean, this leads to “over-dispersion” (happens frequently)

• Problem #2: When there are no 0 values
 Some 0 values are expected from count models, but in some contexts 
y୧ ൐ 0 always (but subtracting 1 won’t fix it; need to adjust the model)

• Problem #3: When there are too many 0 values
 Some 0 values are expected from the Poisson and Negative Binomial models 

already, but many times there are even more 0 values observed than that
 To fix it, there are two main options, depending on what you do to the 0’s

• Each of these problems requires a model adjustment to fix it…
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Problem #1: Variance > mean = over-dispersion

• To fix it, we must add a parameter that allows the variance to 
exceed the mean  a Negative Binomial (NB) distribution
 Says residuals are a mixture of Poisson and gamma distributions, 

such that ߣ itself is a random variable with a gamma distribution

 So expected mean is still given by ߣ, but the variance will be > Poisson

• IFA Model:  ܏ܗۺ ୧ୱܡ ൌ ૄܑ ൅ ૃ୧۴ܛ ൅ ۵ܛܑ܍

 NB has a ݇ dispersion parameter, such that: Var y୧ୱ ൌ ݇ሺ1 ൅ ݇αሻ
 Poisson is nested within negative binomial (can do –2∆LL test of α ≠ 0)

• In Mplus, specify which residual distribution you want:
 COUNT = y1 (p) y2 (nb);  y1 is Poisson; y2 is negative binomial
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Negative Binomial (NB) = “Stretchy” Poisson…

• Because its ݇ dispersion parameter is fixed to 0, the Poisson model is 
nested within the Negative Binomial model—to test improvement in fit:

• Is െ2 ௉௢௜௦௦௢௡ܮܮ െ ே௘௚஻௜௡ܮܮ ൐ 3.84	for	݂݀ ൌ 1? Then ݌	 ൏ 	 .05, keep NB

Mean ൌ λ
Dispersion	ൌ	k
Var y୧ୱ ൌ ݇ሺ1 ൅ ݇αሻ

A Negative Binomial 
model can be useful 
for count residuals 
with extra skewness, 
but otherwise follow 
a Poisson distribution.
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Problem #2: There are no 0 values
• “Zero-Altered” or “Zero-Truncated” Poisson or Negative 

Binomial: ZAP/ZANB or ZTP/ZTNB (used in hurdle models)
 Is usual NB distribution, just not allowing any 0 values

 In Mplus, COUNT = var1 (nbt);   Negative Binomial Truncated

 It does NOT work to just subtract 1 and use a usual count distribution

• Poisson PDF was:  Prob y୧ ൌ y|μ୧	 ൌ
ஜ౟
౯∗ୣ୶୮ ିஜ౟

୷!

• Zero-Truncated Poisson PDF is: 

 Prob y୧ ൌ y|μ୧,y୧ ൐ 0 ൌ ஜ౟
౯∗ୣ୶୮ ିஜ౟

୷! ଵିୣ୶୮ ିஜ౟

 Prob y୧ ൌ 0 ൌ exp െμ୧ , so Prob y୧ ൐ 0 ൌ 1 െ exp െμ୧
 Divides by probability of non-0 outcomes so probability still sums to 1
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Problem #3: Too many 0 values, Option #1
• “Zero-Inflated” Poisson (pi) or Negative Binomial (nbi); 

available within Mplus using COUNT =
 Distinguishes two kinds of 0 values: expected and inflated

(“structural”) through a mixture of distributions (Bernoulli + Poisson/NB)

 Creates two submodels to predict “if extra 0” and “if not, how much”?
 Does not readily map onto most hypotheses (in my opinion)
 But a ZIP example would look like this… (ZINB would add k dispersion, too)

• Submodel 1: Logit y୧ୱ ൌ extra	0 ൌ െτ୧ଵ ൅ λ୧ଵFୱଵ
 Predict being an extra 0 using Link = Logit, Distribution = Bernoulli

 Don’t have to specify a factor model for this part, can simply allow a threshold 
that says your data have extra 0 values relative to the usual count distribution

• Submodel 2: Log y୧ୱ ൌ μ୧ଶ ൅ λ୧ଶFୱଶ
 Predict rest of counts (including 0’s expected from count distribution)
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Example of Zero-Inflated Outcomes
Zero-inflated distributions 
have extra “structural 
zeros” not expected from 
Poisson or NB (“stretched 
Poisson”) distributions.

This can be tricky to 
estimate and interpret 
because the model 
distinguishes between 
kinds of zeros rather than 
zero or not...

Image borrowed 
from Atkins & 
Gallop, 2007
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Poisson or Neg Bin



Problem #3: Too many 0 values, Option #2

• “Hurdle” models for Poisson or Negative Binomial
 PH (not in Mplus) or NBH: Explicitly separates 0 from non-0 values 

through a mixture of distributions (Bernoulli + Zero-Altered Poisson/NB)
 Creates two submodels to predict “if any 0” and “if not 0, how much”?

 Easier to think about in terms of prediction (in my opinion)

• Submodel 1: Logit y୧ୱ ൌ 0 ൌ െτ୧ଵ ൅ λ୧ଵFୱଵ
 Predict being any 0 using Link = Logit, Distribution = Bernoulli
 Don’t have to specify predictors for this part, can simply allow it to exist

• Submodel 2: Log y୧ୱ|y୧ୱ ൐ 0 ൌ μ୧ଶ ൅ λ୧ଶFୱଶ
 Predict rest of positive counts via Link = Log, Distribution = ZAP/ZANB 

• These models are for discrete outcomes, but there is an 
analogous version for continuous outcomes
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Two-Part Models for Continuous Outcomes
• A two-part model is an analog to hurdle models for zero-inflated 

count outcomes (and could be used with count outcomes, too)
 Explicitly separates 0 from non-0 values through a mixture of distributions 

(Bernoulli + Normal or LogNormal)  usually much easier to explain!

• Submodel 1: Logit y୧ ൐ 0 ൌ െτ୧ଵ ൅ λ୧ଵFୱଵ  predict being NOT 0

• Submodel 2: y୧|y୧ ൐ 0 ൌ μ୧ଶ ൅ λ୧ଶFୱଶ  predicts non-0 using 
normal or lognormal residuals

 Two-part model uses Mplus DATA TWOPART: command
 NAMES ARE y1-y4;  list outcomes to be split into 2 parts
 CUTPOINT IS 0;                   where to split observed outcomes
 BINARY ARE b1-b4;             create names for “0 or not” part
 CONTINUOUS ARE c1-c4;   create names for “how much” part
 TRANSFORM IS LOG;          transformation of continuous part
 0 or not: predicted by logit of being NOT 0 (“something” is the 1)
 How much: predicted by transformed normal distribution (like log)
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Two-Part Measurement Model Example
• Two-part model for a 

sensation-seeking task: 
7 driving trials in which 
light turns yellow…

• Two outcomes:
 Go through light?

 Latency to break if
not going through?

• Created two latent factors, 
each of which then 
predicted other outcomes
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Pile of 0’s Taxonomy
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• What kind of amount do you want to predict?
 Discrete: Count  Poisson, Stretchy Count  Negative Binomial
 Continuous: Normal, Log-Normal, Gamma (not in Mplus)

• What kind of If 0 do you want to predict?
 Discrete: Extra 0 beyond predicted by amount?
 Zero-inflated Poisson or Zero-inflated Negative Binomial

 Discrete: Any 0 at all?
 Hurdle Poisson or Hurdle Negative Binomial

 Continuous: Any 0 at all?
 Two-Part with Continuous Amount (see above)

 Note: Given the same amount distribution, these alternative 
ways of predicting 0 will result in the same empty model fit



Wrapping Up…
• When fitting latent factor models (or when just predicting 

observed outcomes from observed predictors instead), you 
have many options to fit non-normal distributions
 CFA: Continuous outcomes with normal residuals, X  Y is linear

 If residuals may not be normal but a linear X Y relationship is still plausible, 
you can use MLR estimation instead of ML to control for that

 IRT and IFA: Categorical or ordinal outcomes with Bernoulli/multinomial 
residuals, X  transformed Y is linear; X  original Y is nonlinear
 Full information MML traditionally paired with IRT version of model; limited 

information WLSMV traditionally paired with IFA version of model instead

 Count family: Non-negative integer outcomes, X  Log(Y) is linear
 Residuals can be Poisson (where mean = variance) or negative binomial 

(where variance > mean); either can be zero-inflated or zero-truncated
 Hurdle or two-part may be more direct way to predict/interpret excess zeros 

(predict zero or not and how much rather than two kinds of zeros)
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