
Latent Trait Measurement 
Models for Binary Responses: 

IRT and IFA
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• Today’s topics:
 The Big Picture of Measurement Models
 1, 2, 3, and 4 Parameter IRT (and Rasch) Models
 Item and Test Information
 Item Response Models  Item Factor Models
 Model Estimation, Comparison, and Evaluation



The Big Picture of CTT
• CTT predicts the sum score: Ys = TrueScores + es
 Items are assumed exchangeable, and their properties are not 

part of the model for creating a latent trait estimate
 Because the latent trait estimate IS the sum score, it is 

problematic to make comparisons across different test forms
 Item difficulty = mean of item (is sample-dependent)
 Item discrimination = item-total correlation (is sample-dependent)

 Estimates of reliability assume (without testing) unidimensionality 
and tau-equivalence (alpha) or parallel items (Spearman-Brown)
 Measurement error is assumed constant across the trait level (one value)

• How do you make your test better?
 Get more items. What kind of items? More.
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The Big Picture of CFA
• CFA predicts the ITEM response:  𝐲𝐢𝐬 𝐢 𝐢 𝐬 𝐢𝐬

 Linear regression relating continuous item response to latent predictor F

 Both items AND subjects matter in predicting responses
 Item difficulty = intercept 𝛍𝐢 (in theory, sample independent)
 Item discrimination = factor loading 𝛌𝐢 (in theory, sample independent)

 The goal of the factor is to predict the observed covariances among items, 
so factors represent testable assumptions about the pattern of item covariance
 Items should be unrelated after controlling for factors  local independence

• Because individual item responses are included:
 Items can vary in discrimination ( Omega reliability) and difficulty 

 To make your test better, you need more BETTER items…
 With higher standardized factor loadings  with greater information = λ2/Var(e)

• Measurement error is still assumed constant across the latent trait (one value)
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From CFA to IRT and IFA…
Outcome Type 
Model Family Name

Observed 
Predictor X

Latent 
Predictor X

Continuous Y 
“General Linear Model”

Linear 
Regression

Confirmatory 
Factor Models

Discrete/categorical Y 
“Generalized Linear Model”

Logistic/Probit/
Multinomial
Regression

Item Response 
Theory and Item 
Factor Analysis
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• The basis of Item Response Theory (IRT) and Item Factor 
Analysis (IFA) lies in models for discrete outcomes, which 
are called “generalized” linear models

• Thus, IRT and IFA will be easier to understand after 
reviewing concepts from generalized linear models…



3 Parts of Generalized Linear Models

1. Non-normal conditional distribution of responses: 
how the outcome should be distributed after controlling for 
the factor given its sample space (possible values)

2. Link Function: How the conditional mean to be predicted is 
made unbounded so that the model can predict it linearly

3. Linear Predictor: How the fixed (and random) effects of 
predictors combine additively to predict a link-transformed 
(continuous) conditional mean
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3. Linear Predictor 
of Fixed (and 

Random) Effects
=2. Link 

Function

1. Non-Normal 
Conditional 

Distribution of y



Here’s how it works for binary outcomes
• Let’s say we have a single binary (0 or 1) outcome…

 Expected mean is proportion of people who have a 1, 
so the probability of having a 1 is the conditional mean 
we’re trying to predict for each person: 𝒑ሺ𝐲𝐢 ൌ 𝟏ሻ

 General linear model: 𝒑ሺ𝐲𝐢 ൌ 𝟏ሻ ൌ 𝛃𝟎 ൅ 𝛃𝟏𝐗𝐢 ൅ 𝛃𝟐𝐙𝐢 
൅ 𝐞𝐢

 𝛃𝟎 = expected probability when all predictors are 0
 𝛃’s = expected change in 𝒑ሺ𝐲𝐢 ൌ 𝟏ሻ for a one-unit Δ in predictor
 𝐞𝐢 = difference between observed and predicted binary values

 Model becomes 𝐲𝐢 ൌ  ሺ𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝟏ሻ  ൅  𝐞𝐢

 What could possibly go wrong?
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Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between X and Y??? 
• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 
• Linear relationship needs to shut off at ends  be nonlinear
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We have this… But we need this…
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Generalized Models for Binary Outcomes
• Solution to #1: Rather than predicting 𝒑ሺ𝐲𝐢 ൌ 𝟏ሻ directly, we must 

transform it into an unbounded variable with a link function:
 Transform probability into an odds ratio: ௣೔

ଵି௣೔
ൌ ୮୰୭ୠ ୷౟ୀଵ

୮୰୭ୠሺ୷౟ୀ଴ሻ
 If 𝑝 y୧ ൌ 1 ൌ .7 then Oddsሺ1ሻ  ൌ  2.33; Oddsሺ0ሻ  ൌ  .429
 But odds scale is skewed, asymmetric, and ranges from 0 to +∞  Not helpful

 Take natural log of odds ratio called “logit” link:  𝐋𝐨𝐠 𝒑𝒊
𝟏ି𝒑𝒊

 If 𝑝 y୧ ൌ 1 ൌ .7, then Logitሺ1ሻ  ൌ  .846; Logitሺ0ሻ ൌ െ.846
 Logit scale is now symmetric about 0, range is ±∞ DING
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Solution to #1:  Probability into Logits
• A Logit link is a nonlinear transformation of probability:

 Equal intervals in logits are NOT equal intervals of probability
 Logits range from ±∞ and are symmetric about prob = .5 (logit = 0)
 Now we can use a linear model  The model will be linear with respect to 

the predicted logit, which translates into a nonlinear prediction with respect to 
probability  the outcome conditional mean shuts off at 0 or 1 as needed

Probability:
𝒑ሺ𝐲iൌ 𝟏ሻ

Logit:
𝐋𝐨𝐠 𝒑𝒊

𝟏ି𝒑𝒊

Zero-point on 
each scale:

Prob = .5
Odds = 1
Logit = 0
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Odds: 𝒑𝒊
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Normal GLM for Binary Outcomes?
• General linear model:  𝒑ሺ𝐲𝐢 ൌ 𝟏ሻ ൌ 𝛃𝟎 ൅ 𝛃𝟏𝐗𝐢 ൅ 𝛃𝟐𝐙𝐢 ൅ 𝐞𝐢

• If 𝐲𝐢 is binary, then 𝐢 can only be 2 things:  𝐞𝐢 ൌ 𝐲𝐢 െ 𝐲ො𝐢

 If 𝐲𝐢 ൌ 0 then 𝐞𝐢 
= (0 − predicted probability)

 If 𝐲𝐢 ൌ 1 then 𝐞𝐢= (1 − predicted probability)

• Problem #2a: So the residuals can’t be normally distributed
• Problem #2b: The residual variance can’t be constant over X 

as in GLM because the mean and variance are dependent
 Variance of binary variable: 𝐕𝐚𝐫 𝐲𝐢 ൌ 𝒑𝒊 ∗ ሺ𝟏 െ 𝒑𝒊ሻ
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Mean (𝑝௜)
Variance

Mean and Variance of a Binary Variable



Solution to #2:  Bernoulli Distribution
• Instead of a normal residual distribution, we will use a Bernoulli

distribution a special case of a binomial for only one outcome
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Predicted Binary Outcomes
• Logit:  𝒑𝒊

𝟏ି𝒑𝒊
𝟎 𝟏 𝐢 𝟐 𝐢

 Predictor effects are linear and additive like in GLM, 
but 𝛃 = change in logit(yi) per one-unit change in predictor

• Odds:  𝒑𝒊
𝟏ି𝒑𝒊

𝟎 𝟏 𝐢 𝟐 𝐢

or 𝒑𝒊
𝟏ି𝒑𝒊

𝟎 𝟏 𝐢 𝟐 𝐢 

• Probability: 𝐢
𝐞𝐱𝐩 𝛃𝟎ା𝛃𝟏𝐗𝐢ା𝛃𝟐𝐙𝐢

𝟏ା𝐞𝐱𝐩 𝛃𝟎ା𝛃𝟏𝐗𝐢ା𝛃𝟐𝐙𝐢

or           𝐢
𝟏

𝟏ା𝐞𝐱𝐩 ି𝟏ሺ𝛃𝟎ା𝛃𝟏𝐗𝐢ା𝛃𝟐𝐙𝐢ሻ
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“Latent Responses” for Binary Data
• This model is sometimes expressed by calling the logit(y୧) a 

underlying continuous (“latent”) response of 𝐲𝐢
∗ instead:

𝐲𝐢
∗ ൌ 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 ൅  𝐲𝐨𝐮𝐫 𝐦𝐨𝐝𝐞𝐥 ൅ 𝐞𝐢

 In which 𝐲𝐢 ൌ 𝟏 if y୧
∗ ൐ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , or 𝐲𝐢 ൌ 𝟎 if y୧

∗ ൑ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

So if predicting 𝐲𝐢
∗, then

e୧ ~ Logistic 0, σୣ
ଶ ൌ  3.29

Logistic Distribution:
Mean = μ, Variance = ஠మ

ଷ
𝑠ଶ, 

where s = scale factor that 
allows for “over-dispersion” 
(must be fixed to 1 for binary 
responses for identification)

Logistic 
Distributions

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ൌ 𝛽଴ ∗ െ1 is given 
in Mplus, not the intercept
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Other Models for Binary Data
• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a Probit Regression model:

 A probit link, such that now your model predicts a different transformed y୧: 
Probit y୧ ൌ 1 ൌ Φିଵ𝑝 y୧ ൌ 1 ൌ 𝑦𝑜𝑢𝑟 𝑚𝑜𝑑𝑒𝑙

 Where 𝚽 = standard normal cumulative distribution function, so the transformed 
y୧ is the z-score that corresponds to the value of standard normal curve below 
which observed probability is found (requires integration to transform back)

 Same Bernoulli distribution for the binary e୧ residuals, in which residual 
variance cannot be separately estimated (so no e୧ in the model)
 Probit also predicts “latent” response: y୧

∗ ൌ threshold ൅  your model ൅ e୧

 But Probit says e୧ ~ Normal 0, σୣ
ଶ ൌ 1.00 , whereas Logit σୣ

ଶ = ஠
మ

ଷ
ൌ 3.29

 So given this difference in variance, probit estimates are on a different scale 
than logit estimates, and so their estimates won’t match… however…

𝐠ሺ⋅ሻ
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Probit vs. Logit:  Should you care? Pry not.

• Other fun facts about probit:
 Probit = “ogive” in the Item Response Theory (IRT) world
 Probit has no odds ratios (because it’s not based on odds)

• Both logit and probit assume symmetry of the probability 
curve, but there are other asymmetric options as well…

Probit 𝛔𝐞
𝟐 ൌ 1.00

(SD=1)

Logit 
𝝈𝒆

𝟐 ൌ 3.29
(SD=1.8)

Rescale to equate 
model coefficients: 
𝜷𝒍𝒐𝒈𝒊𝒕 ൌ
𝜷𝒑𝒓𝒐𝒃𝒊𝒕 ∗ 𝟏. 𝟕

You’d think it would 
be 1.8 to rescale, 
but it’s actually 1.7…

y୧ ൌ 0

Threshold

Pr
ob

ab
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ty
 

y୧ ൌ 1

Transformed y୧ (y୧
∗) 

Pr
ob
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Transformed y୧ (y୧
∗) 
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How IRT/IFA are the same as CFA
• NOW BACK TO YOUR REGULARLY SCHEDULED MEASUREMENT CLASS
• IRT/IFA = measurement model in which latent trait estimates depend on 

both persons’ responses and items' properties
 Like CFA, both items and persons matter, and thus properties of both are 

included in the measurement model
 Items differ in sample-independent difficulty and discrimination as in CFA 
These are represented by translatable quantities in IRT and IFA

• After controlling for a person’s latent trait score (now called Theta), 
the item responses should be uncorrelated (also called local independence)
 The ONLY reason item responses are correlated is a unidimensional Theta
 If this is unreasonable, we can fit multidimensional factor models instead, 

and then responses are independent after controlling for ALL Thetas
 Can be violated by other types unaccounted for multidimensionality or 

dependency (e.g., method factors, common stem “testlets”)
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How IRT/IFA are different from CFA
• IRT/IFA uses the same family of link functions (transformations) as in 

generalized models, it’s just that the predictor isn’t measured directly
 IRT/IFA = logistic regression instead of linear regression
 Predictor = Latent factor/trait in IRT/IFA = “Theta” and its slopes are still 

supposed to predict the covariance across item responses, just like in CFA

• IRT/IFA specifies a nonlinear relationship between binary, ordinal, or 
nominal item responses and the latent trait (now called “Theta”)
 Probability is bounded between 0 and 1, so the effect (slope) of Theta must be 

nonlinear, so it will shut off at the extremes of Theta (S-shaped curve)
 Errors cannot have constant variance across Theta or be normally distributed
 Full-information estimators use logit (σୣ∗

ଶ = 3.29) or probit (σୣ∗
ଶ = 1.00) link 

functions, but limited-information estimators only have probit (σୣ∗
ଶ = 1.00) 

 Logit = 1.7*Probit, so it’s pretty much the same result either way
 Probit in IRT models is called “ogive” (as discussed in Embretson & Reise)
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Nonlinearity in IRT/IFA
• The relationship between Theta and the probability of response=1 

is “nonlinear”  a monotonic s-shaped logistic curve whose 
shape and location are dictated by the estimated item parameters
 Linear prediction of the logit, nonlinear prediction of probability

• It may be that other kinds of non-linear relationships could be more 
appropriate and thus fit better  These are “non-parametric” IRT models

β0 ൌ 0 
βଵ ൌ 1
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Item Response Theory (IRT) “vs”
Item Factor Analysis (IFA) Models
Mplus can do ALL of these 
model/estimator combinations:

Model form with 
discrimination and 

difficulty parameters

Model form with 
loadings and 
thresholds

Full-information estimation via 
Maximum Likelihood (“Marginal ML”) 
 uses original item responses

“IRT”
(Mplus gives only for 

binary responses)

“?”
(Mplus gives 

for all models) 
Limited-information estimation via 
Weighted Least Squares (“WLSMV”) 
 uses item response summary

“?”
(Mplus gives only for 

binary responses)

“IFA”
(Mplus gives for 

all models) 

• CFA assumes normally distributed, continuous item responses, but CFA-
like models also exist for categorical responses  these are IRT and IFA

• These different names are used to reflect the combination of how the 
model is specified and how it is estimated, but it’s the same core model

CLDP 948:  Lecture 5 19



Model Format in IRT and IFA
• Item Factor Analysis (IFA) models look very similar to CFA, 

but Item Response Theory (IRT) models look very different 
• Partly due to predicting logits/probits (IFA) vs. probability (IRT):

 Logit:  𝐋𝐨𝐠 𝒑𝒊
𝟏ି𝒑𝒊

ൌ 𝛃𝟎 ൅ 𝛃𝟏𝐗𝐢 ൅ 𝛃𝟐𝐙𝐢

 Probability: 𝒑 𝐲𝐢 ൌ 𝟏 ൌ 𝐞𝐱𝐩 𝛃𝟎ା𝛃𝟏𝐗𝐢ା𝛃𝟐𝐙𝐢

𝟏ା𝐞𝐱𝐩 𝛃𝟎ା𝛃𝟏𝐗𝐢ା𝛃𝟐𝐙𝐢

• Partly due to different model formats (stay tuned)
• These two model forms are just re-arrangements of each other, 

but historically have been estimated using different methods 
(full vs. limited information) and for different purposes 

• Mplus provides both kinds of output for binary data, but only 
IFA output for categorical data (we will calculate IRT version)

• We’ll start with IRT for binary responses, then move to IFA …
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Simplest IRT Model: One-Parameter Logistic 
(1-PL or Rasch) Model for Binary Responses (0/1)

• 1PL model is written in different, but equivalent ways (Embretson & Reise):
 Logit:

 Probability:

 θs = subject ability most likely latent trait score (called Theta) for subject s 
given the pattern of item responses

 bi = item difficulty  location on latent trait 
(like an intercept, but it’s actually ‘difficulty’ now!)

• Probability of response=1 depends on person ability (theta) vs. item difficulty:
 If ability > difficulty, then logit > 0, probability > .50

 If difficulty > ability, then logit < 0, probability < .50

   
 

s i
is s

s i

   exp b
P y 1 |

1 exp b
 

  
  

 
 

is
s s i

is

p y 1
Log | b

1 p y 1
 

    
  
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Fundamentals of IRT
• Back in CTT, scores only have meaning relative to the persons 

in the same sample, and thus sample norms are needed to 
interpret a person’s score
 “I got a 12. Is that good?”

“Well, that puts you into the 90th percentile.”
“Great!”

 “I got a 12. Is that good?”
“Well, that puts you into the 10th percentile.”
“Doh!”

 Same score in both cases, but different reference group!

• In IRT, the properties of items and persons are placed along 
the same underlying latent continuum= “conjoint scaling”
 This concept can be illustrated using construct maps that order 

both persons in terms of ability and items in terms of difficulty…
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A Construct Map Example
A Latent Continuum of 

80s Pop Culture Knowledge
Person Side

Me
.

My Brother
.

Undergraduates
.

Average Adult
.

My Mom

Item Side

Home of Alf
.

WHAM
.

The Donger
.

Cosby Kids
.

Mickey

Persons are 
ordered by 

Theta 
ability/severity

Items are located 
in order by 

difficulty/severity

Person Theta and Item Difficulty share the same latent metric

Theta θs = Item 
difficulty level at 
which one has a 
50% probability 
of response=1

Theta θs is 
interpreted 
relative to item 
locations, not 
group norms
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Norm-Referenced Measurement in CTT
In CTT, the ability level of 
each person is relative to 
the abilities of the rest of 
the test sample.

Here, we would say that 
Anna is functioning 
relatively worse than 
Paul, Mary, and Vera, 
who are each above 
average (which is 0).
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Item-Referenced Measurement in IRT

Each person’s Theta 
score reflects the 
level of activity they 
can do on their own 
50% of the time.

The model predicts 
the probability of 
accomplishing each 
task given Theta.
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Interpretation of Theta
• Theta estimates are ‘sample-free’ and ‘scale-free’
 Theta estimate does not depend on who took the test with you
 Theta estimate does not depend on which items were on the test

 After calibrating all items to the same metric, can get a person’s location 
on latent ability metric regardless of which particular items were given

• However: although the Theta estimate does not depend 
on the particular items, its standard error does
 Extreme Thetas without many items of comparable difficulty will 

not be estimated that well  large SE (flat likelihood)
 Likewise, items of extreme difficulty without many persons of 

comparable ability will not be estimated that well  large SE
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Another version of the 1PL (Rasch) Model

 Logit:

 Probability: 

 𝐚 = “discrimination” = relation of item to latent trait = slope of the 
s-shape curve as it crosses probability = .50 (its max slope) 

 You’ll note that the 1-PL model has “𝐚” and not “𝐚𝐢” – that’s because 𝐚 is 
assumed constant across items (and thus, the 1 parameter that is 
estimated for each item is still difficulty 𝐛𝐢)

 If using the probit link function, the predicted outcome is the z-score for 
the area to the left under the normal curve for that predicted probability

 Previously Mplus factored out 𝟏. 𝟕 next to the 𝐚 so that the model 
parameters would be comparable regardless of using a probit or logit 
link, but the 1.7 is now embedded in the parameters instead

 
   is

s s i
is

p y 1
Log | a b

1 p y 1
 

    
  

Parameter from 
a probit (ogive) 
model will be 
smaller by a 
factor of 1.7s i

si s
s i

    exp[a( b )]P(y 1| )
1 exp[a( b )]

 
  

  
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1-PL (Rasch) Model Predictions
Item Characteristic Curves - 1-PL (Rasch) Model
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Trait ()

P(
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1 
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)

item1
item2
item3
item4

b1 = -2 b2 = -1 b3 = 0 b4 = +1

𝐛𝐢 = item difficulty
location on latent 
trait at which
probability = .50

𝐚 = discrimination
slope at prob = .50, 
(logit = 0, which is 
point of inflection)

Note: equal 𝐚 terms
means curves will 
never cross  this 
idea is called 
“Specific Objectivity”
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Can you guess what’s next?
2-Parameter Logistic Model (2PL)

• The 1-PL (Rasch) model assumes tau-equivalence  equal discrimination

• Thus, the 2-PL frees this constraint by changing “𝐚” to “𝐚𝐢”:
 Logit:

 Probability: 

 𝐚𝐢 = “discrimination” = relation of each item to latent trait = slope of 
the s-shape curve when it crossed probability = .50 (its max slope)

 𝐛𝐢 is still difficulty (location where probability = .50)
 Note that 𝐚𝐢 is a linear slope for theta θ predicting the logit of yis=1

but a nonlinear slope for theta θ predicting the probability of yis=1

i s i
si s

i s i

    exp[a ( b )]P(y 1| )
1 exp[a ( b )]

 
  

  

 
   is

s i s i
is

p y 1
Log | a b

1 p y 1
 

    
  

Parameter from 
a probit (ogive) 
model will be 
smaller by a 
factor of 1.7
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“IRT” vs. “Rasch”
• According to most IRT people, a “Rasch” model is just an IRT model with 

item discrimination 𝐚𝐢 held equal across items (a tau-equivalent model)
 Rasch = 1-PL where 𝐛𝐢 item difficulty is the only item parameter
 Slope = discrimination 𝐚𝐢 = strength of relation of item to latent trait (theta θ)
 “Items may not be equally ‘good’, so why not just let their slopes vary?”

• According to most Rasch people, the 2PL and rest of IRT is voo-doo
 Rasch models have specific properties that are lost once you allow the item 

curves to cross (by using item-varying 𝐚𝐢)  “Loss of Specific Objectivity”
 Under the Rasch model, persons are ordered the same in terms of predicted responses 

regardless of which item difficulty location you’re looking at
 Under the Rasch model, items are ordered the same in terms of predicted responses 

regardless of what level of person theta you’re looking at
 The 𝐚𝐢 represents a theta*item interaction the item curves cross, so the ordering 

of persons or items is no longer invariant, and this is “bad”
 “Items should not vary in discrimination if you know your construct.”
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Item Characteristic Curves: 2PL Model

Item Characteristic Curves - 2-PL Model
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Note: unequal 𝐚𝐢
 curves cross 
 violates Specific 
Objectivity

At Theta θ = −1:
Items 3 and 4 are 
‘harder’ than 1 and 
2 (lower prob=1)

At Theta θ = +2:
Item 1 is now 
‘harder’ than Item 
4 (lower prob=1)

b1 = −1, a1 = .5
b2 = −1, a2 =  1
b3 =  0, a3 = .5
b4 =   0, a4 =  1

𝐛𝐢 = difficulty = location on latent trait at which 𝑝 ൌ .50 (or logit = 0)
𝐚𝐢 = discrimination slope at 𝑝 ൌ .50 (at the point of curve inflection)
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“IRT” vs. “Rasch”:
What Goes into Theta

• In Rasch models, the sum score is a ‘sufficient statistic’ for Theta
 For example, given 5 items ordered in difficulty from easiest to hardest, each of 

these response patterns where 3/5 are correct would yield the same estimate 
of Theta: 

1 1 1 0 0 (most consistent)
0 1 1 1 0
0 0 1 1 1
1 0 1 0 1  (???) 
…. (and so forth)

• In 2-parameter models, items with higher discrimination (ai) count more
towards Theta (and SE will be lower for tests with higher ai items) 
 It not only matters how many items you got correct, but which ones
 Rasch people don’t like this idea, because then ordering of persons on Theta 

is dependent on the item properties
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Yet Another Model for Binary Responses:
3-Parameter Logistic Model (3PL)

• 𝐛𝐢 = item difficulty  location
 Higher values  more difficult items (lower chance of a 1)

• 𝐚𝐢 = item discrimination  slope
 Higher values = more discriminating items = better items

• 𝐜𝐢 = item lower asymptote  “guessing” (where 𝐜𝐢 ൐ 𝟎)
 Lower bound of probability independent of Theta
 e.g., would be around .25 given 4 equally guess-able multiple choice responses
 Could estimate a common c across items as an alternative

• Probability starts at guessing c୧ then depends on Theta θ and a୧, b୧
 3-PL model is available in and after Mplus 7.4; c୧ is labeled as $2

 Require 1000s of people because c୧ parameters are hard to estimate—you have to have enough 
low theta people to determine what the probability of guessing is likely to be 

i s i
si s i i

i s i

    exp[a ( b )]Probability(y 1| ) c (1 c )
1 exp[a ( b )]

 
    
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Item Characteristic Curves - 3-PL Model (a = .5)
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Item Characteristic Curves - 3-PL Model (a = 1)
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b1 = -1, c1 = .0
b2 = -1, c2 = .2

b3 =  1, c3 = .0
b4 =  1, c4 = .2

b1 = -1, c1 = .0
b2 = -1, c2 = .2

b3 =  1, c3 = .0
b4 =  1, c4 = .2

Top: Items with lower 
discrimination (𝐚𝐢 ൌ . 𝟓)

Below: Items with higher 
discrimination (𝐚𝐢 ൌ 𝟏)

Note that item difficulty 
bi values are no longer where 
prob = .50  the expected 
prob at bi is increased by the 
lower asymptote ci parameter
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One Last Model for Binary Responses:
4-Parameter Logistic Model (4PL)

• 𝐛𝐢 = item difficulty  location
• 𝐚𝐢 = item discrimination  slope
• 𝐜𝐢 = item lower asymptote  “guessing”
• 𝐝𝐢 = item upper asymptote  “carelessness” (so di ൏ 1)

 Maximum probability to be achieved independent of Theta
 Could be carelessness or unwillingness to endorse the item no matter what

• Probability starts at ‘guessing’ c୧ tops out at ‘carelessness’ d୧ then depends 
on Theta θ and ai, bi in between
 4-PL model is available in or after Mplus 7.4; c୧ and d୧ are labeled as $2 and $3
 But good luck estimating it! May need to use a common c and d instead

i s i
si s i i i

i s i

    exp[a ( b )]Probability(y 1| ) c (d c )
1 exp[a ( b )]

 
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Anchoring: Model Identification in IRT
• As in CFA, we have a latent trait (a pretend variable) without a scale, 

so we need to give Theta θ a scale (it needs a mean and a variance)
 This is called “anchoring” in IRT  CFA calls it “model identification”
 There are two equivalent options: Anchor by Persons or Anchor by Items

• Anchor by persons: Fix Theta θ mean = 0 and Theta θ variance = 1
 This is the “Z-score” approach to model identification used in CFA
 All item difficulties bi and item discriminations ai are then estimated

• Anchor by items: Fix one item difficulty bi = 0 and one item ai = 1
 “Marker item” approach to model identification 
 Mean and variance of Theta θ are estimated instead
 Fixing mean of item difficulty = 0 is another way (more common in Europe)

• Big picture: as in CFA, the numerical scale doesn’t matter, all that matters 
is that persons and items are on the same scale  “conjoint scaling”
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Information: Reliability in IRT Models
• “Information” ≈ reliability  measurement precision
• In CFA models (continuous Y), item-specific “information” is 

rarely referred to, but it is easy to compute:
 How good is my item  how much information is in it?

 How much of its variance is “true” (shared with the factor) 
relative to how much of its variance is “error”?

 Information = unstandardized loading2 / error variance
 Note that information will be constant across trait level in CFA

 Items with a greater proportion of true variance are better, the end
 “Information function” is FLAT across ability level

 How do I make my test better? 
 More items with more information (with stronger factor loadings)

 Sum of information across items = Test information function
 Test information function will also be flat across trait level in CFA
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Item Information in CFA Models

• CFA has a linear slope (factor loading) predicts the same increase in 
the yis item response for a one-unit change in F (all across levels of F)

• y1 has more information than y6 (and a higher standardized factor 
loading), so y1 is better than y6, period (for all possible factor scores)

y1 = 4.55 + 1.23(Fs) + e1
e1

2 = 1.53

y6 = 5.32 + 0.82(Fs) + e6
e6

2 = 1.67

Std y1 = 2.60 + 0.71(Fs) + e1

Std y6 = 3.48 + 0.54(Fs) + e6

Info y1 = 1.232 / 1.57 = .998

Info y6 = 0.822 / 1.67 = .401
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Test Information in IRT Models
• Test information can be converted to reliability as follows:

 Reliability = information / (information+1)
 Information of 4 converts to reliability of .80 
 information of 9 converts to reliability of .90

• This formula comes from classical test theory:
 Reliability = true var / (true var + error var)
 Reliability = 1 / (1 + error var), where error var = 1/info
 Reliability = 1 / 1 + (1/info)  info / (info+1)

• An analog of overall model-based reliability (omega) could be computed 
by summing reliabilities for each possible theta, weighted by the number of 
people at each level of Theta, but that’s missing the point…

• Because the slopes relating Theta to the probability of an item response are 
non-linear, this means that reliability must VARY over Theta
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Item Information in CFA vs. IRT
Item Characteristic Curves - 2-PL Model
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Effects of Item Parameters 
on Item Characteristic Curves

Item Characteristic Curves
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An important result of 
the non-linear slopes in 
an IRT model is that the
slope stops working
(so reliability decreases) 
as you move away from 
the item difficulty 
location. 

In the CFA model with 
linear slopes, the slope 
never stops working
(at least in theory).

2.02.01.01.00.00.0-1.0-1.0b difficulty
1.00.51.00.51.00.51.00.5a discrimination

87654321Item

2.02.01.01.00.00.0-1.0-1.0b difficulty
1.00.51.00.51.00.51.00.5a discrimination

87654321Item
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Effects of Item Parameters 
on Item Information Curves

Item Information Functions
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item discrimination 
values have greater 
absolute information.

Information (reliability) 
is maximized around 
the item difficulty 
location.

2.02.01.01.00.00.0-1.0-1.0b difficulty
1.00.51.00.51.00.51.00.5a discrimination

87654321Item
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1.00.51.00.51.00.51.00.5a discrimination
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Test Information (and SE) by Theta
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Test Information
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If you sum all the item 
information curves, you 
get a test information
curve that describes how 
reliable your test is over 
the range of Theta.

Test Information is very 
useful to know—it can tell 
you where the ‘holes’ are 
in your measurement 
precision, and guide you in 
adding/removing items.

There is no single ‘ideal’ test information function—only what is 
optimal for your purposes of measurement. Here are a few examples….

  1
SE θ =

Test Info
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Another Example of (Not-So-Good) 
Test Information
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n The goal of this test was 

to identify persons with 
deficits in the latent trait. 

Hence, it is most useful to 
have test information 
maximized over the 
lower range of Theta.

If they are high 
in ability, it 
doesn’t matter 
how high.

But test 
info only 
gets up 
to ~2…

Uh oh!
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Other Shapes of Test Information
• If the goal is to measure a trait across persons equally well, and you expect 

people to be normally distributed, then your best bet is to create a test 
with information highest in the middle (where most people are likely to be)

• If your goal is to identify individuals below or above a cut-point, however, 
your test information function should ideally look more like this:

 You’d want to maximize sensitivity 
around the cut-point region, and 
otherwise not waste time measuring 
people well who are nowhere near
the cut-point

 If classifying people is the goal of 
measurement, however, you might 
be better off with a different family 
of latent trait models in which Theta
is already categorical instead
 “Diagnostic Classification Models”

 Theta  cut-point

Test
Info
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How to Improve Your Test
• In CTT, because item properties are not part of the model, 

items are seen as exchangeable, and more items is better
 Thus, any new item is equally better for the model

• In CFA and IRT, more items is still better…
 In CFA, the question is “how much better”?

 This depends on the standardized loading; intercepts are not important 
 Specifies a linear relationship between theta and the item responses, 

so ‘for whom’ isn’t relevant—a better item is better for everyone equally

 In IRT, the question is “how much better, and for whom?”
 This depends on the discrimination (a୧ slope) and the difficulty (b୧ location), 

respectively (difficulties are important, and are always estimated)
 Because of the nonlinear relationship between theta and the item responses, 

items are only useful for thetas in the middle of their S-curves
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Effects of Item Parameters 
on Item Information Curves

Item Information Functions
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Content aside, items with 
higher ai will be more useful

In addition to a୧
item discrimination, 
though, you want to 
make sure you are 
covering the range 
of difficulty where 
you want to measure 
people best.

2.02.01.01.00.00.0-1.0-1.0b difficulty
1.00.51.00.51.00.51.00.5a discrimination

87654321Item

2.02.01.01.00.00.0-1.0-1.0b difficulty
1.00.51.00.51.00.51.00.5a discrimination

87654321Item
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IRT and Adaptive Testing:
Fewer Items Can Actually Be Better

• In a normal distribution of the 
latent trait and a comparable 
distribution of item difficulty, 
extreme people are usually 
measured less well
(higher SE).

• For fixed-item tests, more 
items is generally better, 
but one can get the same 
precision of measurement with 
fewer items by using adaptive 
tests with items of targeted 
levels of difficulty. Different 
forms across person are given 
to maximize efficiency.
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IRT (and CFA) Help Measure Change AND
Maintain Sensitivity across Samples

• Theta is scaled and interpreted relative to the items, not relative to the 
other persons in the sample (is item difficulty at prob = .50)
 This means that given a set of pre-calibrated “linking” items, you can administer 

different forms of a test and still get comparable Thetas
 “Linking items”  common set of items across forms
 Although this property is helpful when dealing with ‘accidental’ alternative forms 

(e.g., changed response options, dropped items), Linking items can be used 
advantageously as well

 Here, we ‘grow’ a test over time within a sample:

Latent Trait Time 1

1 2 3 4 5 6

Latent Trait Time 2

3 4 5 6 7
Latent Trait Time 3

4 5 6 7 8 9
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SF-36: measure of higher
physical functioning

ADL: measure of lower
physical functioning

Don’t choose: Administer a 
core set of linking items from 
both tests to a single sample

Linking items then form a 
common metric

– More precision than single test
– Allows for comparisons across 

groups or studies

See Mungas & Reed (2000) for an 
example of linking over forms

Linking Thetas 
across Tests
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Another Benefit of IRT (and CFA)
• IRT: If the model fits, the scale of Theta is linear/interval

 Supports mathematical operations that assume interval measurement
 Same ordering of persons as in raw scores, but the distances between 

persons are likely to be different, especially at the ends

• CTT: Sum scores have an ordinal relationship to the latent 
trait at best
 Does not support operations that assume interval measurement, which 

can bias tests of mean differences, regression slopes, etc.
 Spurious interactions can result in tests of mean differences if groups 

differ in how well they are measured (i.e., floor and ceiling effects)

• Bottom line: Measurement matters for testing everyday hypotheses, 
NOT just when fitting measurement models for specific issues

CLDP 948:  Lecture 5 51



Example from Mungas & Reed (2000)

Test Curve for MMSE Total

Interval Theta

The bottom and top of the 
MMSE total score (ordinal) 
are “squished” relative to the 
latent trait scale (interval).

This means that one-unit 
changes along the MMSE 
total do not really have the 
same meaning across the 
latent trait, which makes 
many kinds of comparisons 
problematic.

Δ5

Δ2SD

Δ5

Δ.5SD
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Example from Mungas & Reed (2000)
Right: They combined 3 tests to 
get better measurement, as 
shown in the test curve 

Below: Items at each trait location 
contribute to scale’s capacity to 
differentiate persons in ability at 
each point in the continuum.

There is a hole near the 
top, which explains the 
flattening of the curve 
(less information there).
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Relating Item Factor Analysis (IFA)
to Item Response Models (IRT)

• CFA is to linear regression as IRT is to logistic regression, right?

• Linear regression model and CFA model (for continuous responses):

yis ൌ β0i ൅ β1iXୱ ൅  eis yis ൌ μi ൅ λiFs ൅ eis

• Logistic regression model (for 0/1 responses, so there is no eis term):

Logitሺy୧ୱ ൌ 1ሻ ൌ β0i ൅ β1iXୱ

• 2-PL IRT model (for 0/1 responses, so there is no eis term):
Logitሺy୧ୱ ൌ 1ሻ ൌ aiሺθs– b୧ሻ Why does this IRT model look so 

different than the CFA model? 
Here’s how these all relate…
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Relating IFA and IRT
• Linear regression model and      CFA model:

yis ൌ β0i ൅ β1iXୱ ൅  eis yis ൌ μi ൅ λiFs ൅ eis

• Binary regression models and      Our new IFA models:
Logit y୧ୱ ൌ 1 ൌ β଴୧ ൅ βଵ୧Xୱ Logitሺy୧ୱ ൌ 1ሻ ൌ െτ୧ ൅ λiFs

Probitሺy୧ୱ ൌ 1ሻ ൌ β଴୧ ൅ βଵ୧Xୱ Probitሺy୧ୱ ൌ 1ሻ ൌ െτ୧ ൅ λiFs

• IRT models:
2PL:       Logit y୧ୱ ൌ 1 ൌ aiሺθs– b୧ሻ
Ogive: Probitሺy୧ୱ ൌ 1ሻ ൌ  aiሺθs– b୧ሻ

• In CFA, item loading 𝛌𝐢 = “discrimination” and item intercept 𝛍𝐢 = “difficulty”, 
but difficulty was backwards (easier or less severe items had higher means)…

• In IFA for binary items within Mplus, the intercept 𝛍𝐢 (which was really “easiness”) 
becomes a “threshold” 𝛕𝐢 that really IS “difficulty”: 𝛍𝐢 ൌ െ𝛕𝐢
 this provides continuity of direction with the IRT difficulty values

• The IRT and IFA models get re-arranged into each other as follows…
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From IFA to IRT
IFA with “easiness” intercept 𝛍𝐢:   𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝐲𝐢𝐬 ൌ  𝛍𝐢 ൅ 𝛌𝐢𝐅𝐬 𝛍𝐢 ൌ െ𝛕𝐢

IFA with “difficulty” threshold 𝛕𝐢:  𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝐲𝐢𝐬 ൌ – 𝛕𝐢 ൅ 𝛌𝐢𝐅𝐬

IFA model with “difficulty” thresholds can be written as a 2-PL IRT Model:
IRT model: IFA model:
𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝐲𝐢𝐬 ൌ 𝐚𝐢ሺ𝛉𝐬– 𝐛𝐢ሻ ൌ  – 𝐚𝐢𝐛𝐢 

൅  𝐚𝐢𝛉𝐬

Convert IFA to IRT: Convert IRT to IFA:

a୧  ൌ λ୧ ∗ Theta Variance λ୧ ൌ ୟ౟
୘୦ୣ୲ୟ ୚ୟ୰୧ୟ୬ୡୣ

b୧ ൌ த౟ିሺ஛౟∗୘୦ୣ୲ୟ ୑ୣୟ୬ሻ
஛౟∗ ୘୦ୣ୲ୟ ୚ୟ୰୧ୟ୬ୡୣ

τ୧ ൌ a୧b୧ ൅ ୟ∗୘୦ୣ୲ୟ ୑ୣୟ୬
୘୦ୣ୲ୟ ୚ୟ୰୧ୟ୬ୡୣ

𝛕𝐢 𝛌𝐢

𝐚𝐢 = discrimination
𝐛𝐢 = difficulty
𝛉𝐬 = Fs latent trait 

Note: These formulas 
rescale a୧ and b୧ so that 

theta M=0, VAR=1. 

If you don’t want to 
rescale theta, use M=0 

and VAR=1 to keep 
your current scale.
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Thus, IFA = IRT

• An item factor model for binary outcomes is the same as a 
two-parameter IRT model, so you can keep both camps happy:
 IFA loadings 𝛌𝐢  2-PL IRT discriminations 𝐚𝐢

 IFA thresholds 𝛕𝐢 ൌ െ 𝛍𝐢  2-PL IRT difficulties 𝐛𝐢

• CFA/SEM crowd?  Call it 𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝐲𝐢𝐬 ൌ – 𝛕𝐢 ൅ 𝛌𝐢𝐅𝐬

 “I did IFA”  Report item “factor loadings” 𝛌𝐢 and “thresholds” 𝛕𝐢

• IRT crowd?  Call it 𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝐲𝐢𝐬 ൌ 𝐚𝐢ሺ𝛉𝐬 െ 𝐛𝐢ሻ
 “I did IRT”  Report item “discriminations” 𝐚𝐢 and “difficulties” 𝐛𝐢

IRT: IFA:
𝐋𝐨𝐠𝐢𝐭 𝐨𝐫 𝐏𝐫𝐨𝐛𝐢𝐭 𝐲𝐢𝐬 ൌ 𝐚𝐢ሺ𝛉𝐬 െ 𝐛𝐢ሻ ൌ  – 𝐚𝐢𝐛𝐢 

൅  𝐚𝐢𝛉𝐬

𝛕𝐢 𝛌𝐢
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3 Kinds of Output in Mplus
• IFA unstandardized solution:

 Item threshold 𝛕𝐢 = expected logit or probit of y=0 when Theta=0
 Item loading 𝛌𝐢 = Δ in logit or probit of yis=1 for a 1-unit Δ in Theta
 Item residual variance is not estimated, but is 3.29 in logit or 1.00 in probit for y*

• IFA standardized solution:
 Variance of logit or probit (yis=1)  (λ୧

ଶ * Theta Variance) + (3.29 or 1)
 std. 𝛕𝐢 = unstd. 𝛌𝐢 / SD(Logit or Probit Y)  not usually interpreted
 std. 𝛌𝐢 = unstd. 𝛌𝐢 * SD(Theta) / SD(Logit or Probit Y) 

 correlation of logit/probit of item response with Theta

• IRT solution (only one type; only given for binary items):
 𝐛𝐢 = Theta at which prob(yis=1) = .50 or logit or probit = 0
 𝐚𝐢 = Δ in logit or probit of y=1 for a 1-unit Δ in Theta 

= slope of item characteristic curve at 𝐛𝐢 location

The IFA solution 
cannot be used to 
compute Omega.
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IFA model with loading and “easiness” intercept 𝛍𝐢:   𝐋𝐨𝐠𝐢𝐭 𝐲𝐢𝐬 ൌ   𝛍𝐢 ൅ 𝛌𝐢𝐅𝐬

IFA model with loading and “difficulty” threshold 𝛕𝐢:  𝐋𝐨𝐠𝐢𝐭 𝐲𝐢𝐬 ൌ – 𝛕𝐢 ൅ 𝛌𝐢𝐅𝐬

2-PL IRT model with discrimination and difficulty:    𝐋𝐨𝐠𝐢𝐭 𝐲𝐢𝐬 ൌ 𝐚𝐢ሺ𝛉𝐬– 𝐛𝐢ሻ

𝐛𝟏 ൌ െ𝟎. 𝟑𝟕𝟔= 
Theta needed for 
50% prob(y1=1)

From IRT to IFA:
λ୧ ൌ a୧
τ୧ ൌ a୧b୧

𝛍𝟏 ൌ 𝟏. 𝟔𝟐𝟗= 
Logit of prob(y1=1) 

if Theta = 0 
prob(y1=1) = .836

𝛕𝟏 ൌ െ𝟏. 𝟔𝟐𝟗= 
Logit of prob(y1=0) 

if Theta = 0 
prob(y1=0) = .164

െ𝟏 ∗

𝐚𝟏 ൌ 𝛌𝟏 ൌ
𝟒. 𝟑𝟐𝟖

slope at p=.5



Item Parameter Interpretation

• IFA and IRT item slope parameters are interpreted similarly:
 IFA loading λ୧= Δ in logit or probit of yis=1 for a 1-unit Δ in Theta
 IRT discrimination a୧ = slope of ICC at prob=.50 (logit or probit = 0)

• IFA and IRT item location parameters are interpreted differently:
 IFA intercept 𝛍𝐢= logit or probit of yis=1 when Theta = 0
 IFA threshold 𝛕𝐢= logit or probit of yis=0 when Theta = 0
 IRT difficulty 𝐛𝐢 = amount of Theta needed for logit or probit of yis=1

 So 𝐛𝐢 difficulty values are more interpretable as measures of location
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IFA model with loading and “easiness” intercept 𝛍𝐢:   𝐋𝐨𝐠𝐢𝐭 𝐲𝐢𝐬 ൌ   𝛍𝐢 ൅ 𝛌𝐢𝐅𝐬

IFA model with loading and “difficulty” threshold 𝛕𝐢:  𝐋𝐨𝐠𝐢𝐭 𝐲𝐢𝐬 ൌ – 𝛕𝐢 ൅ 𝛌𝐢𝐅𝐬

2-PL IRT model with discrimination and difficulty:    𝐋𝐨𝐠𝐢𝐭 𝐲𝐢𝐬 ൌ 𝐚𝐢ሺ𝛉𝐬 െ 𝐛𝐢ሻ



CFA vs. IRT/IFA vs. ???
• CFA assumes continuous, normally distributed item responses

 Robust ML can be used to adjust fit statistics and parameter SEs for 
non-normality, but it’s still a linear model for the Factor predicting Y

 A linear model may not be plausible for Likert item responses 
(i.e., the model-predicted responses may extend beyond the possible 
response options for possible Factor levels)

• IRT/IFA assumes categorical, binomial/multinomial item responses
 Linear model between Theta and logit/probit(y) instead
 Because Likert item responses are bounded and only ordinal, not interval, 

IRT/IFA should probably be used for this kind of data
 CFA may not be too far off given ≥ 5 normally distributed responses, but 

then you can’t see how useful your answer choices are (stay tuned) 

• For non-normal but continuous (not categorical) responses, other 
latent trait measurement models are available (stay tuned)
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Summary: Binary IRT/IFA Models
• IRT/IFA are a family of models that specify the relationship between the 

latent trait (“Theta”) and a link-transformation of probability of Y
 Linear relationship between Theta and Logit or Probit (Y=1)

 nonlinear relationship between Theta and Probability (Y=1)

• The form of the relationship depends on:
 At least the location on the latent trait (given by bi or τi)
 Perhaps the strength of relationship may vary across items (given by ai or λi)

 If not, its a “1-PL” or “Rasch model”  assumes tau-equivalence
 Also maybe lower and upper asymptotes (ci and di)  but hope not!

• Because the slopes are non-linear, this implies that reliability
(now called “test information”) must vary across levels of theta
 So items are not just “good” or “bad”, but are “good” or “bad” for whom?

• Now what about model fit??? Let’s talk estimation first…
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What all do we have to estimate?
• For example, a 7-item binary test and a 2-PL model, (assuming 

we fix the Theta distribution to mean=0 and variance=1):
 7 item discriminations (ai) and 7 item difficulties (bi) = 14 parameters

• Item parameters are FIXED effects  specific item inference
 Missing data can lead to different numbers of total items across persons

• What about the all the individual person Thetas? 
 The individual factor scores are not part of the model—in other words, 

Theta scores are modeled as RANDOM effects (= U’s in MLM)
 Thus, our inference is about the distribution of the latent traits in the 

population of persons, which we assume to be multivariate normal 
 i.e., we care about the Theta means, variances, and covariances in the 

sample, but not about the Theta scores for each individual per se
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Estimation: Items, then People
3 full-information item estimation methods:
• “Full-information”  uses individual item responses
• 3 methods differ with respect to how they handle unknown thetas
• First, two less-used and older methods:

 “Conditional” ML Theta? We don’t need no stinking theta…
 Uses total score as “Theta” (so can’t include people with all 0’s or all 1’s)
 Thus, is only possible within Rasch models (where total is sufficient for theta)
 If Rasch model holds, estimators are consistent and efficient and can be treated like 

true likelihood values (i.e., can be used in model comparisons)
 “Joint” ML Um, can we just pretend the thetas are fixed effects?

 Iterates back and forth between persons and items (each as fixed effects) until item 
parameters don’t change much—then calls it done (i.e., converged)

 Many disadvantages: estimators are biased, inconsistent, with too small SEs and 
likelihoods that can’t be used in model comparisons

 More persons  more parameters to estimate, too  so bad gets even worse
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Marginal ML Estimation 
(with Numeric Integration)

• Gold standard of estimation (and used in Mplus and SAS NLMIXED)
 This is the same idea of multivariate height, just using a different 

distribution than multivariate normal for the log-likelihood function

• Relies on two assumptions of independence:
 Item responses are independent after controlling for Theta: “local”

 This means that the joint probability (likelihood) of two item responses is just the 
probability of each multiplied together

 Persons are independent (no clustering or nesting)
 You can add random effects to handle dependence, but then the assumption is 

“independent after controlling for random effects”

• Doesn’t assume it knows the individual thetas, but it does 
assume that the distribution of theta(s) is (multivariate) normal
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Marginal ML via Numeric Integration
• Step 1: Select starting values for all item parameters (e.g., using CTT values)
• Step 2: Compute the likelihood for each person given by the current

parameter values (using start values or updated values later on)
 IRT model gives probability of response given item parameters and Theta
 To get likelihood per person, take each predicted probability and plug them into:

Likelihood (all responses) = Product over items of: py(1−p)1−y

 But we don’t have Theta yet! No worries: computing the likelihood for each set of 
possible parameters requires removing the individual Thetas from the model 
equation—by integrating across the possible Theta values for each person

 Integration is accomplished by “Gaussian Quadrature”  summing up rectangles that 
approximate the integral (the area under the curve) for each person

• Step 3: Decide if you have the right answers, which occurs when the sum 
of the log-likelihoods changes very little across iterations (i.e., it converges)

• Step 4: If you aren’t converged, choose new parameters values
 Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (Thetas =missing data)
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“Marginal” ML Estimation
• More on Step 2: Divide the Theta distribution into rectangles

 “Gaussian Quadrature” (# rectangles = # “quadrature points”)
 Divide the whole distribution into rectangles, and then take the most 

likely section for each person and rectangle that more specifically
 This is “adaptive quadrature” and is computationally more demanding, 

but gives more accurate results with fewer rectangles (Mplus uses 15)

 Unfortunately, each additional Theta or Factor adds another dimension 
of integration (so 2 factors = 15*15 rectangles to try at each iteration)

The likelihood of each person’s response 
pattern at each Theta rectangle is then 
weighted by that rectangle’s probability of 
being observed (as given by the normal 
distribution). The weighted likelihoods are 
then added together across all rectangles.

 ta da! “numeric integration”
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Example of Numeric Integration
1. Start values for item parameters (for simplicity, assume a=1): 

 Item 1: mean = .73  logit = +1, so starting b1 = −1
 Item 2: mean = .27  logit = −1, so starting b2 = +1

2. Compute per-person likelihood using item parameters and 
possible Thetas (−2,0,2) using IRT model: logitሺy୧ୱ ൌ 1ሻ ൌ  aሺθ െ biሻ

IF y=1 IF y=0 Likelihood Theta Theta Product
Theta = ‐2 Logit Prob 1‐Prob if both y=1 prob width per Theta

Item 1 b = ‐1 (‐2 ‐ ‐1) ‐1 0.27 0.73 0.0127548 0.05 2 0.001275
Item 2 b = +1 (‐2 ‐ 1) ‐3 0.05 0.95

Theta = 0 Logit Prob 1‐Prob
Item 1 b = ‐1 (0 ‐ ‐1) 1 0.73 0.27 0.1966119 0.40 2 0.15729
Item 2 b = +1 (0 ‐ 1) ‐1 0.27 0.73

Theta = +2 Logit Prob 1‐Prob
Item 1 b = ‐1 (2 ‐ ‐1) 3 0.95 0.05 0.6963875 0.05 2 0.069639
Item 2 b = +1 (2 ‐ 1) 1 0.73 0.27
Overall Likelihood (Sum of Products over All Thetas): 0.228204
(then multiply over all people)
(repeat with new values of item parameters until find highest overall likelihood)
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Once we have the items parameters, 
we need some Thetas…

• Let’s say we are searching for Theta given observed responses to 5 items 
with known difficulty values, so we try out two possible Thetas
 Step 1: Compute prob(Y) using IRT model given each possible Theta

 b1 = -2, θ = -1:  Logit(Y=1) = (-1 − -2) =  1, so p = .73
 b5 =  2, θ = -1:  Logit(Y=1) = (-1 −  2) = -3, so p = .05  1-p = .95 (for Y=0)

 Step 2: Multiple item probabilities together  product = “likelihood”
 Products get small fast, so can take the log, then add them instead

 Step 3: See which Theta has the 
highest likelihood (here, +2)
 More quadrature points 
 better estimate of Theta

 Step 4: Because people are 
independent, we can multiply
all their response likelihoods 
together and solve all at once

Item b Y Term
θ = -1 θ = +2

1 -2 1 p 0.73 0.98
2 -1 1 p 0.50 0.95
3 0 1 p 0.27 0.88
4 1 1 p 0.12 0.73
5 2 0 1-p 0.95 0.50

Product of values: 0.01 0.30

Value if…
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Theta Estimation via Newton Raphson
• We could calculate the likelihood over wide range of Thetas for each 

person and plot those likelihood values to see where the peak is…
 But we have lives to lead, so we can solve it mathematically instead by finding where the 

slope of the likelihood function (the 1st derivative, d') = 0 (its peak)

• Step 1: Start with a guess of Theta, calculate 1st derivative d' at that point
 Are we there (d' = 0) yet? Positive d' = too low, negative d' = too high

Most likely Theta is where 
slope of tangent line to 
curve (1st derivative d') = 0

Let’s say we started 
over here…
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Theta Estimation via Newton Raphson
• Step 2: Calculate the 2nd derivative (slope of slope, d'') at that point

 Tells us how far off we are, and is used to figure out how much to adjust by

 d'' will always be negative as approach top, but d' can be positive or negative

• Calculate new guess of Theta: θnew = θold – (d'/d'')
 If (d'/d'') < 0  Theta increases 

If (d'/d'') > 0  Theta decreases 
If (d'/d'') = 0 then you are done 

• 2nd derivative d'' also tells you
how good of a peak you have
 Need to know where your best

Theta is (at d'=0), as well as 
how precise it is (from d'') 

 If the function is flat, 
d'' will be smallish

 Want large d'' because
1/SQRT(d'') = Theta’s SE

F irs t‐Derivative of L og ‐L ikelihood
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d'' = Slope of d'
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Theta Estimation: ML with Help
• ML is used to come up with most likely Theta given observed response 

pattern and item parameters…
…but can’t estimate Theta if answers are all 0’s or all 1’s

• Prior distributions to the rescue!
 Multiply likelihood function for Theta with prior distribution 

(usually we assume normal)
 Contribution of the prior is minimized with increasing items, 

but allows us to get Thetas for all 0 or all 1 response patterns 

• Note the implication of this for what Theta really is for each person:
 THETA IS A DISTRIBUTION, NOT A VALUE!
 Although we can find the most likely value, we can’t ignore its probabilistic 

nature or how good of an estimate it is (how peaked)
 SE is constant for CFA factor scores, but SE is NOT constant for IRT Thetas

 THIS IS WHY YOU SHOULD AVOID OUTPUTTING THETAS
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Theta Estimation: 3 Methods
• ML: Maximum Likelihood Scoring

 Uses just item parameters to come up with Thetas
 Can’t estimate Theta if none or all are answered correctly

• MAP: Maximum a Posteriori Scoring
 Combine ML estimate with a continuous normal prior distribution
 Theta estimate is mode of combined posterior distribution
 Theta will be regressed toward mean if reliability is low
 Is used in Mplus WLSMV

• EAP: Expected A Posteriori Scoring
 Combine ML estimate with a ‘rectangled’ normal prior distribution 
 Theta estimate is mean of combined posterior distribution
 Is used in Mplus ML for CFA or IRT/IFA (and is best version)
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Model Comparisons in IRT:
Relative Model Fit via −2ΔLL Tests
• Nested models can be compared with the same −2ΔLL tests we used in 

CFA  without the “robust” part of ML, so they get simpler (scale factor=1)
 Step 1: Calculate −2ΔLL = −2(LLfewer – LLmore)
 Step 2: Calculate Δdf = dfmore – dffewer (given as “# free parms”)
 Compare −2ΔLL with df = Δdf to χ2 critical values (or excel CHIDIST)
 Add 1 parameter? −2ΔLL(1) > 3.84, add 2: −2ΔLL(2) > 5.99…

• If adding a parameter, model fit can be better or not better
• If removing a parameter, model fit can be worse or not worse
• AIC and BIC values (computed from −2LL) can be used to compare 

non-nested models (given same sample), smaller is better
• No trustable absolute global fit measures available via full information ML 

for IRT  categorical data can’t be summarized via a covariance matrix

CLDP 948:  Lecture 5 74



Local Model Fit Using ML IRT
• IRT programs (but not Mplus) provide “item fit” and “person fit” statistics

 Item fit: Predicted vs. observed ICCs—how well do they match? 
Or via inferential tests (Bock Chi-Square Index or BILOG version)

 Person fit “Z” based on predicted vs. observed response patterns
 Many require the use of outputted thetas, which makes then problematic

• Using ML in Mplus: Local item fit available with TECH10 output
 Univariate item fits: How well did the model reproduce the observed response 

proportions? (Not likely to have problems here)
 Bivariate item fits: Contingency tables for pairs of responses  Get χ2 value for 

each pair of items for their remaining dependency after controlling for Theta(s)

• Bivariate item fit is the basis of the newest absolute fit statistics discussed 
by Maydeu-Olivares (2105): M2 (analogous to χଶ test), RMSEAଶ, and SRMRଶ

 Not currently provided in Mplus; not yet standard practice
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What Goes Wrong for Absolute 
(Global) Model Fit using ML…

• ML is a full-information estimator, and it is now trying to reproduce 
the observed item response pattern, not a covariance matrix!

• Model DF is based on FULL response pattern:
 DF = # possible observed patterns – # parameters – 1
 So, for an example of 24 binary items in a 1-PL Model: 

 Max DF ൌ  224 – #a୧ – #b୧ – 1 ൌ 16,777,216 – 1 – 24 – 1 ൌ 𝟏𝟔, 𝟕𝟕𝟕, 𝟏𝟗𝟎!
 If some cells aren’t observed (Mplus deletes them from the χ2 calculation), 

then DF may be < Max DF, and thus χ2 won’t have the right distribution

• Pearson χ2 based on classic formula: (observed – expected)2 / expected
 Good luck finding enough people to fill up all possible patterns!
 Other χ2 given in output is “Likelihood Ratio” χ2 , calculated differently
 Linda Muthén suggests “if these don’t match, they should not be used”
 χ2 generally won’t work well for assessing absolute global fit in IRT
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Summary: ML for IRT Models
• Full-information Marginal ML with numeric integration for IRT models tries 

to find the item parameters that are most likely given the observed item 
response pattern IFA or IRT parameters on logit or probit scales

• Because of the integration (rectangling Theta) required at each step of 
estimation, it will not be feasible to use ML for IRT models in small samples 
or for many factors at once (too many rectangles simultaneously)

• IRT using ML does not have agreed-upon measures of absolute global fit
 Outcomes cannot be summarized by a covariance matrix anymore, only by the 

possible response patterns instead
 Usually not enough people to fill up all possible response patterns, so there’s no 

valid basis for an absolute fit comparison
 Nested models (on same items) can still have relative fit compared via −2ΔLL

• There is another game in town for IRT in Mplus, however…
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Another Alternative: WLSMV
• WLSMV: “Weighted Least Square parameter estimates use a diagonal 

weight matrix and a Mean- and Variance-adjusted χ2 test”
 Called “diagonally-weighted least squares” by non-Mplus people

• Translation: WLSMV is a limited-information estimator that uses a 
different summary of responses instead  a “linked” covariance matrix

• Fit can then be assessed in regular CFA ways, because what is trying to be 
reproduced is again a type of covariance matrix 
 Instead of the full item response pattern (as in ML)
 We can then get the typical measures of absolute fit as in CFA

• Normally CFA uses the observed covariance matrix of the items…
 But correlations among binary items will be less than 1 any time 

𝑝 differs between items, so the covariances will be restricted as well…
 What if we could fit a covariance matrix on the logit or probits instead???
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WLSMV Estimation
Data y2 = 0 y2 = 1

y1 = 0 a c

y1 = 1 b d

• WLSMV first estimates correlation matrix for probit of item responses (no logits here)
 For binary responses  “tetrachoric correlation matrix”
 For ordinal (polytomous) responses  “polychoric correlation matrix”

• The model then tries to find item parameters to predict this new correlation matrix
• The diagonal W “weight” part then tries to emphasize reproducing latent variable 

correlations that are relatively well-determined more than those that aren’t
 The full weight matrix is of order z*z, where z is number of elements to estimate
 The “diagonal” part means it only uses the preciseness of the estimates themselves, not the 

covariances among the “preciseness-es” (much easier, and not a whole lot of info lost)

• The “MV” corrects the χ2 test for bias arising from this weighting process

Use the observed 
proportions as the area 
under the curve of each 
section of the bivariate 
distribution to 
determine what the 
correlation would be 
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More about WLSMV Estimation
• Works much faster than ML when you have small samples or many factors 

to estimate (because no rectangling is required)
• Does assume missing data are missing completely at random,

whereas ML assumes only missing at random (conditionally random)
• Because a covariance matrix of the probits is used as the input data, we get 

absolute fit indices as in CFA
 People tend not to be as strict with cut-off values, though
 One new one: WRMR is “experimental”, but should be < 1 or so

• Model coefficients will be on the probit scale instead of logit scale
• Two different model variants are available via the PARAMETERIZATION IS

option on the ANALYSIS command
 “Delta” (default): variance (Y*) = factor + error = 1 = “marginal parameterization”
 “Theta”: error variance = 1 instead = “conditional parameterization”

 WE WILL USE THIS ONE TO HELP SIMPLIFY IRT CONVERSIONS
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Model Comparisons with WLSMV 
using DIFFTEST in Mplus

• Not the same process! DF is NOT calculated in usual way, and 
model fit is not compared in the usual way
 Absolute χ2 model fit values are meaningless—they are not comparable!
 Difference in model χ2 are not distributed as χ2

• Here’s how you do nested model comparisons in WLSMV:
 Step 1: Estimate model with more parameters, adding this command:

 SAVEDATA: DIFFTEST=more.dat;   Saves needed derivatives
 Step 2: Estimate model with fewer parameters, adding this command:

 ANALYSIS: DIFFTEST=fewer.dat;    Uses those derivatives to do Δχ2 test
 Step 2 model output will have a new χ2 difference test in it that you can 

use, with df difference to compare to a χ2 distribution
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Assessing Local Model Fit
• The need to check local model fit is the same in IRT/IFA as in CFA

• Using ML: Local item fit in Mplus available with TECH10 option
 Univariate item fits: How well did the model reproduce the observed response 

frequencies? (Not likely to have problems here if each item has own location)
 Bivariate item fits: Contingency tables for pairs of responses  Get χ2 value for 

each pair of items for their remaining dependency after controlling for Theta(s)

• Under WLSMV: Residual correlation matrix via the RESIDUAL option on 
OUTPUT statement (just as in CFA)
 Predicted and residual (left-over) item correlations given in correlation metric
 Look for large residual correlations in absolute value (but no significance tests)
 Will be MUCH easier to do for many items than bivariate fit in ML 
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Residual Covariances in IRT/IFA
• Additional relationships between items can be included:

 Via residual covariances (the same as in CFA) when using WLSMV
because the model is being estimated on the tetrachoric/polychoric 
correlation matrix (so the residuals of the underlying probit can covary, 
even if item residual variances are not being estimated)

 Residual covariances are not allowed when using maximum likelihood
 Instead, you can specify “method factors” (in WLSMV or ML), also 

known as a “bifactor model”

• Here is an example using WLSMV to demonstrate both ways:
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! Primary factor/theta
Trait BY item1-item5*;
[Trait@0]; Trait@1;
! Residual covariance
item2 WITH item3*;

! Primary factor/theta
Trait BY item1-item5*;
[Trait@0]; Trait@1;
! Uncorrelated factor to 
create residual covariance

ResFact BY item2@1 item3@1;
[ResFact@0]; ResFact*;
ResFact WITH Trait@0;



Residual Covariances in IRT/IFA
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! Primary factor/theta
Trait BY item1-item5*;
[Trait@0]; Trait@1;
! Uncorrelated factor to 
create residual covariance

ResFact BY item2@1 item3@1;
[ResFact@0]; ResFact*;
ResFact WITH Trait@0;

TRAIT    BY
ITEM1    0.994      0.078     12.724      0.000
ITEM2    2.138      0.148     14.459      0.000
ITEM3    1.823      0.125     14.527      0.000
ITEM4    1.106      0.090     12.311      0.000
ITEM5    0.232      0.045      5.200      0.000

RESFACT  BY
ITEM2    1.000      0.000    999.000    999.000
ITEM3    1.000      0.000    999.000    999.000

RESFACT  WITH
TRAIT    0.000      0.000    999.000    999.000

Variances
TRAIT    1.000      0.000    999.000    999.000
RESFACT  1.996      0.314      6.357      0.000

The variance of ResFact
is the positive residual 
covariance between 
items 2 and 3.

To create a negative 
residual covariance, fix 
the ResFact loadings 
to 1 and −1 instead.

For models with many method 
factors, add the ANALYSIS:
option MODEL=NOCOVARIANCES 
to made all factors uncorrelated 
by default (instead of correlated 
by default as usual)



IRT/IFA Model Estimation: Summary
• Full-information Marginal ML estimation with numeric integration provides:

 ‘Best guess’ at to the value of each item and person parameter
 SE that conveys the uncertainty of that prediction

• The ‘best guesses’ for the model parameters do not depend on the sample:
 Item estimates do not depend on the particular individuals that took the test 
 Person estimates do not depend on the particular items that were administered 
 Thus, model parameter estimates are sample-invariant

• The SEs for those model parameters DO depend on the sample 
 Item parameters will be estimated less precisely where there are fewer individuals
 Person parameters will be estimated less precisely where there are fewer items

• WLSMV in Mplus is a limited-estimation approach for IFA or IRT models
 Uses an estimated tetrachoric correlation matrix as input for the factor analysis
 Works better for many factors than ML (but can be less trustworthy overall)
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