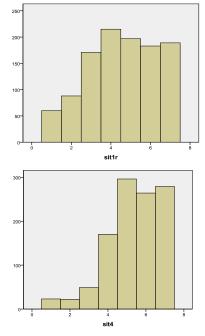
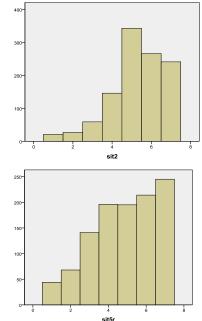
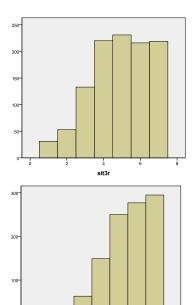
CLDP 948 Example 4 page 1

Example 4: CFA Using Forgiveness of Situations (N = 1103)

This example comes from the Heartland Forgiveness Scale (Yamhure Thompson et al., 2005). Here we focus on the Forgiveness of Situations Subscale includes 6 items, 3 of which are reverse-coded, on a 7-point scale:


- 1. When things go wrong for reasons that can't be controlled, I get stuck in negative thoughts about it. (R)
- 2. With time I can be understanding of bad circumstances in my life.
- 3. If I am disappointed by uncontrollable circumstances in my life, I continue to think negatively about them. (R)
- 4. I eventually make peace with bad situations in my life.
- 5. It's really hard for me to accept negative situations that aren't anybody's fault. (R)
- 6. Eventually I let go of negative thoughts about bad circumstances that are beyond anyone's control.


Response Anchors: 1 = Almost Always False of Me, 2=?, 3 = More Often False of Me, 4 = ?, 5 = More Often True of Me, 6 = 2, 7 = Almost Always True of Me, 4 = ?,


5 = More Often True of Me, $6 = ?$, $7 =$ Almost Always True of Me						
Observed Correlation Matrix	R1	2	R3	4	R5	6
R1	1.000					
2	0.240	1.000				
R3	0.647	0.317	1.000			
4	0.300	0.570	0.369	1.000		
R5	0.453	0.255	0.482	0.289	1.000	
6	0.297	0.457	0.356	0.448	0.304	1.000
Means	4.547	5.289	4.896	5.359	4.860	5.321
Variances	3.049	1.903	2.543	1.967	2.945	2.341
Observed Covariance Matrix	R1	2	R3	4	R5	6
R1	3.049					
2	0.577	1.903				
R3	1.802	0.697	2.543			
4	0.734	1.103	0.824	1.967		
R5	1.358	0.604	1.319	0.695	2.945	
6	0.795	0.965	0.868	0.962	0.798	2.341

To do CFA analysis, you only really need means, variances, and either correlations or covariances among items: **Covariance**_{y1,y2} = **Correlation**_{y1,y2} * **SD**(**Y**₁) ***SD**(**Y**₂) OR **Correlation**_{y1,y2} = **Covariance**_{y1,y2} / **SD**(**Y**₁) ***SD**(**Y**₂)

Distributions of item responses - do these look "normal enough" to you?

sit6

Mplus Code to Read in Data:

TITLE: DATA:	CFA of Situation Factor FILE = Study2.dat; ! Don't need pat FORMAT = free; ! Default TYPE = INDIVIDUAL; ! Default	ch if in same directory
VARIABLE:	NAMES = PersonID Self1 Self2r Self3 Self4r Other1r Other2 Other3r Other4 Other Sit1r Sit2 Sit3r Sit4 Sit5r Sit6 Selfsub Othsub Sitsub HFSsum;	er5r Other6
		· LVCI / VALIANCE IN MINDAL
	USEVARIABLES = Sit1r Sit2 Sit3r Sit4 Sit5r MISSING = ALL (99999); IDVARIABLE = PersonID;	Sit6; ! Every variable in MODEL ! Identify missing values ! Identify person ID variable
ANALYSIS:	TYPE = GENERAL;! DefaultESTIMATOR = MLR;! Robust ML	
SAVEDATA:	SAVE = FSCORES; FILE = FactorScores.dat;	! To save factor scores (optional)
PLOT:	TYPE = PLOT1 PLOT2 PLOT3; ! To get all plo	ts (e.g., factor score distributions)
OUTPUT:		
MODEL:	(model syntax goes here, to be changed for	each model as shown below)

Model 1. Fully Z-Scored Factor Model Identification (Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated)

The following code refers to EVERY model parameter for completeness:

```
!Model 1 - Fully Z-Scored Factor Identification Approach
! Item factor loadings --> @=fixed, *=free → * REQUIRED for first item if free
    Sit BY Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
! Item intercepts --> [ ] indicates means or intercepts, @=fixed, *=free
    [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*];
! Item error variances --> just list item by itself, @=fixed, *=free
    Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
! Factor variance --> just list factor by itself, @=fixed, *=free
    Sit@1;
! Factor mean --> [ ] indicates means or intercepts, @=fixed, *=free
    [Sit@0];
```

In reality, all you'd need to write to define this model is:

```
! Item factor loadings --> @=fixed, *=free → * REQUIRED for first item if free
    sit BY Sit1r* Sit2 Sit3r Sit4 Sit5r Sit6;
! Factor variance --> just list factor by itself, @=fixed, *=free
    Sit@1;
```

By default, all intercepts are estimated separately and the factor mean is fixed at 0. By default, all residual variances for the items are estimated separately, too. By default, factor variances and covariances are estimated freely.

Model 1. Fully Z-Scored Identification Approach for a Single Factor Model (Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated)

UNSTANDARDIZED MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
	(regression slop	es of ite	em response	on factor)
SIT BY				
SIT1R	1.234	0.069	17.906	0.000
SIT2	0.702	0.074		
SIT3R	1.241			
SIT4	0.784			
SIT5R	1.023			0.000
SIT6	0.819	0.069	11.942	0.000
Means (of Factor	r)			
999 = "cannot be	e computed" - her	e, becaus	se the para	meter is fixed to 0 already
SIT	0.000	0.000	999.000	999.000
Intercepts (of]	Items) - HERE, AR			BECAUSE FACTOR MEAN IS ZERO
SIT1R	4.547		86.474	
SIT2	5.289			
SIT3R	4.896		101.959	
SIT4	5.359		126.895	
SIT5R	4.860	0.052	94.060	0.000
SIT6	5.321	0.046	115.493	0.000
Variances (of Fa	actor)			
999 = "cannot be	e computed" - here	e, becaus	se the para	meter is fixed to 1 already
SIT	1.000	0.000	999.000	999.000
	nces (variance of	•	10 015	0.000
SIT1R	1.526	0.149		
SIT2	1.409	0.128		
SIT3R	1.004			
SIT4	1.352			
SIT5R	1.899	0.118		
SIT6	1.671	0.159	10.517	0.000

Making use of the unstandardized model estimates:

Writing out the model-individual predicted values:

$$\begin{split} Y_1 &= \mu_1 + \lambda_1 F + e_1 \\ Y_1 &= 4.547 + 1.234 F + e_1 \end{split}$$

Writing out the model-predicted item variances and covariances:

 $Var(Y_1) = (\lambda_1^2) Var(F) + Var(e_1)$ Var(Y_1) = (1.234²)*(1) + 1.526 = 3.049 (= original item variance)

 $Cov(Y_1, Y_2) = \lambda_1^* Var(F)^* \lambda_2$ $Cov(Y_1, Y_2) = (1.234)^* (1)^* (.702) = .866$

(actual covariance = .577, so the model over-predicted how related items 1 and 2 should be)

STDYX STANDARDIZED MODEL RESULTS (FULLY STANDARDIZED WITH RESPECT TO X & Y)

Es	timate	S.E. E		Wo-Tailed P-Value
FACTOR LOADINGS (corre	lations of :	item respo	onse with f	actor)
Square these to get re	liability ()	proportion	n "true var	iance") per item
SIT BY				
SIT1R	0.707	0.035	19.983	0.000
SIT2	0.509	0.053	9.545	0.000
SIT3R	0.778	0.034	22.655	0.000
SIT4	0.559	0.048	11.641	0.000
SIT5R	0.596	0.029	20.528	0.000
SIT6	0.535	0.047	11.392	0.000
Means (of Factor)				
SIT	0.000	0.000	999.000	999.000
Intercepts (of Items)	→ is inter	cept / SD)(Y) → not	usually reported
SIT1R	2.604	0.057	45.888	0.000
SIT2	3.834	0.111	34.394	0.000
SIT3R	3.070	0.072	42.921	0.000
SIT4	3.821	0.111	34.441	0.000
SIT5R	2.832	0.066	43.095	0.000
SIT6	3.477	0.101	34.573	0.000
Variances (of Factor)	→ will alw	avs be 1	in a stand	ardized solution
SIT	1.000	0.000	999.000	999.000
DII	1.000	0.000		555.000
Residual Variances (s	tandardized	variance	of e's)	
SIT1R	0.500	0.050	10.009	0.000
SIT2	0.741	0.054	13.628	0.000
SIT3R	0.395	0.053	7.388	0.000
SIT4	0.687	0.054	12.786	0.000
SIT5R	0.645	0.035	18.619	0.000
SIT6	0.714	0.050	14.187	0.000
R-SQUARE (equals 1-res	idual waria	DOD OP Sta	andardized	loading squared)
SIT1R	0.500	0.050	9.991	0.000
		0.054	9.991 4.772	
SIT2	0.259			0.000
SIT3R	0.605	0.053	11.327	0.000
SIT4	0.313	0.054	5.821	0.000
SIT5R	0.355	0.035	10.264	0.000
SIT6	0.286	0.050	5.696	0.000

The standardized solution will look identical across methods of model identification with respect to the factor loadings, error variances, and R-square values for the items. The standardized intercepts will change because they depend on the unstandardized intercepts (but nobody reports them anyway).

Making use of the standardized model estimates:

Writing out the model - predicted item correlations:

 $\operatorname{Corr}(Y_1, Y_2) = \lambda_1^* \operatorname{Var}(F)^* \lambda_2$

 $Corr(Y_1, Y_2) = (.707)^*(1)^*(.509) = .360$

(actual correlation = .240, so the model over-predicted how related 1 and 2 should be)

Next up: two equivalent ways of getting the same model, but with different scaling (i.e., <u>illustrating</u> the results of different methods of identification...)

Now let's see the model parameters when using the marker item for model identification instead... Model 2. Marker Item Loading = 1, Factor Mean = 0 (Factor Variance, All Intercepts Estimated)

				0 - MOST COMMON APPROACH AND DEFAULT IN MPLUS
Sit BY Sit1r@1	L Sit2* Sit3r*	Sit4* Sit	5r* Sit6*;	! Loadings (#1 fixed=1)
	Sit3r* Sit4* S			! Intercepts (all free)
	Sit3r* Sit4* S	Sit5r* Sit	:6*;	! Residual variances (all free)
Sit*;				! Factor variance (free)
[Sit@0];				! Factor mean (fixed=0)
UNSTANDARDIZED M	ODEL RESULTS			
				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
FACTOR LOADINGS (1				
Here, loading for	SIT1R is not t	ested bec	ause it is	fixed=1
SIT BY				
SIT1R	1.000	0.000	999.000	999.000
SIT2	0.569	0.083	6.830	0.000
SIT3R	1.005	0.035	28.555	0.000
SIT4	0.636	0.082	7.741	0.000
SIT5R	0.829	0.053	15.698	0.000
SIT6	0.664	0.081	8.143	0.000
Means (of Factor))			
SIT	0.000	0.000	999.000	999.000
Intercepts (of It	ems) - EXPECTE	ED Y WHEN	FACTOR = 0	, or for mean of factor in sample
SIT1R	4.547	0.053	86.474	0.000
SIT2	5.289	0.042	127.347	0.000
SIT3R	4.896	0.048	101.960	0.000
SIT4	5.359	0.042	126.896	0.000
SIT5R	4.860	0.052	94.060	0.000
SIT6	5.321	0.046	115.492	0.000
Variances (of Fac	ctor)			
SIT	1.523	0.170	8.954	0.000
Residual Variance	es (variances d	of e's)		
SIT1R	1.526	0.149	10.217	0.000
SIT2	1.409	0.128	11.014	0.000
SIT3R	1.004	0.135	7.456	0.000
SIT4	1.352	0.127	10.673	0.000
SIT5R	1.899	0.118	16.026	0.000
SIT6	1.671	0.159	10.517	0.000
Yet another equiva	alent alternativ	e method	for scaling	the factor
-			•	actor Variance and Mean Estimated)

! Model 3 -- Marker Item Loading and Intercept Sit BY Sitlr@l Sit2* Sit3r* Sit4* Sit5r* Sit6*; [Sitlr@O Sit2* Sit3r* Sit4* Sit5r* Sit6*]; Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; Sit*; [Sit*];
! Loadings (1 fixed=1)
! Intercepts (1 fixed=0)
! Residual variances (all free)
! Factor variance (free)
! Factor mean (free)
! Factor mean (free)
! SIT 4.547 0.053 86.474 0.000

 Intercepts (of Items) - EXPECTED Y WHEN FACTOR = 0

 HERE, WHICH IS WHEN ITEM 1 = 0 → beyond scale of item, so values are very low

 SIT1R
 0.000
 0.900
 999.000

 SIT2
 2.701
 0.383
 7.046
 0.000

 SIT3R
 0.325
 0.171
 1.899
 0.058

 SIT4
 2.469
 0.380
 6.504
 0.000

 SIT5R
 1.092
 0.246
 4.431
 0.000

 SIT6
 2.304
 0.369
 6.250
 0.000

Calculating model degrees of freedom:

 $(n^* = (n + 2) / 24)$

Total df = [v(v+1) / 2] + v = 27Spent by model = 18 Leftover df = 9

Model fit information for a single-factor model (same regardless of factor scaling method):

Number of Free Parameters 18 \rightarrow is # of estimated parameters ("free" to be not 0) Loglikelihood - use for testing differences in model fit across nested models H0 Value -11536.404 \rightarrow this is for your specified model H0 Scaling Correction Factor 1.4158 \rightarrow indicates how far off from normal=1 for MLR -11322.435 \rightarrow this is for a saturated (perfect) model H1 Value 1.4073 \rightarrow indicates how far off from normal=1 H1 Scaling Correction Factor for MLR Information Criteria → "smaller is better" - use for nested or non-nested model comparisons Akaike (AIC) 23108.808 \rightarrow AIC = (-2*LL_{H0}) + (2*estimated parameters) Bayesian (BIC) 23198.912 \rightarrow BIC = (-2*LL_{H0}) + (LN N*estimated parameters) Sample-Size Adjusted BIC 23141.739 \rightarrow BIC replacing N with (N + 2) / 24

Chi-Square Test of Model Fit (Significance is bad here) \rightarrow for your specified model

Value	307.799
Degrees of Freedom	9 $ ightarrow$ leftover after estimating our one-factor model
P-Value	0.0000
Scaling Correction Factor	1.3903 \rightarrow indicates how far off from normal=1
for MLR	<pre>> 1 = leptokurtic distribution (too-fat tails)</pre>
	< 1 = platykurtotic distribution (too-thin tails)

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

Where does this χ^2 value for "model fit" come from? A rescaled -2LL model comparison of this one-factor model (H0) against the saturated model (H1) that perfectly reproduces the data covariances:

Step 1: Original $-2\Delta LL = -2^*(LL_{fewer} - LL_{more}) = -2(-11,536.404 + 11,322.435) = 427.938$

Step 2: Scaling correction = [($\# parms_{fewer} * scale_{fewer}$) - ($\# parms_{more} * scale_{more}$)]/ ($\# parms_{fewer} - \# parms_{more}$) = [(18 * 1.4158) - (27 * 1.4073)]/ (18 - 27) = -12.501 / -9 = 1.3903

Step 3: Rescaled $-2\Delta LL = -2\Delta LL$ / scaling correction = 427.938 / 1.903 = **307.803** \rightarrow ~matches model χ^2 Step 4: Difference in df = #parms_{more} - #parms_{fewer} = 27 - 18 = **9**

As an FYI: Here is how to fit the saturated (Unstructured) Baseline Model: Item means, variances, and covariances in original data

```
! Saturated Model
! Item means --> [ ] indicates means or intercepts, @=fixed, *=free
    [Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*];
! Item variances --> just list item by itself, @=fixed, *=free
    Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
! Item covariances --> just list all by all, @=fixed, *=free
    Sitlr Sit2 Sit3r Sit4 Sit5r Sit6 WITH
    Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
```

Model fit information for the saturated model: illustrating what the χ^2 test of global model fit means

27 \rightarrow all possible means, variances, covariances Number of Free Parameters Loglikelihood H0 Value -11322.435H0 Scaling Correction Factor 1.4073 for MLR Note that H0 and H1 are now the same! -11322.435 H1 Value Our H0 model IS the H1 saturated model. H1 Scaling Correction Factor 1.4073 for MLR Information Criteria Akaike (AIC) 22698.870 Bayesian (BIC) 22834.027 22748.268 Sample-Size Adjusted BIC $(n^* = (n + 2) / 24)$ Chi-Square Test of Model Fit 0.000* Value Degrees of Freedom 0 0.0000 P-Value 1.0000 Scaling Correction Factor for MLR

Now back to the rest of the one-factor model fit statistics:

RMSEA (Root Mean Square Error Of Approximation) (want close to 0 = saturated model) Estimate 0.173 90 Percent C.I. 0.157 0.190 Probability RMSEA <= .05 $0.000 \rightarrow$ so RMSEA does NOT overlap .05 (is signif > .05) CFI/TLI (want close to 1 = saturated model) CFI 0.732 TTT 0.553 SRMR (Standardized Root Mean Square Residual)(want close to 0 = saturated model) Value 0.086 Chi-Square Test of Model Fit for the Baseline Model \rightarrow for the "no covariances" model Value 1128.693 Degrees of Freedom 15 0.0000 P-Value

Where does this χ^2 value for "fit of the baseline model" come from? A rescaled -2LL model comparison of the independence model with NO covariances to the saturated model:

Step 1: Original $-2\Delta LL = -2^*(LL_{fewer} - LL_{more}) = -2(-12,312.952 + 11,322.435) = 1,981.034$

Step 2: Scaling correction = [($\# parms_{fewer} * scale_{fewer}$) - ($\# parms_{more} * scale_{more}$)] / ($\# parms_{fewer} - \# parms_{more}$) = [(12 * 0.9725) - (27 * 1.4073)] / (12 - 27) = -26.372 / -15 = 1.7551

Step 3: Rescaled $-2\Delta LL = -2\Delta LL$ / scaling correction = 1,981.034 / 1.7551 = **1,128.704** \rightarrow ~matches baseline χ^2 Step 4: Difference in df = #parms_{more} - #parms_{fewer} = 27 - 12 = **15**

What's the point? This baseline model fit test tells us whether there are any covariances at all (i.e., whether it even makes sense to try to fit latent factors to predict them).

As an FYI: Here is how to fit the Independence (Null) Baseline Model: Item means and variances, but NO covariances

```
! Independence Model
 ! Item means --> [ ] indicates means or intercepts, @=fixed, *=free
    [Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*];
 ! Item variances --> just list item by itself, @=fixed, *=free
    Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
 ! NO Item covariances --> just list all by all, @=fixed to 0
    Sitlr Sit2 Sit3r Sit4 Sit5r Sit6 WITH
    Sitlr@0 Sit2@0 Sit3r@0 Sit4@0 Sit5r@0 Sit6@0;
```

Model fit information for the independence model: illustrating what RMSEA, CFI, and TLI mean

Number of Free Parameters	12	
Loglikelihood		
H0 Value	-12312.952	
H0 Scaling Correction Factor for MLR	0.9725	
H1 Value	-11322.435	
H1 Scaling Correction Factor for MLR	1.4073	
Information Criteria		
Akaike (AIC)	24649.904	
Bayesian (BIC)	24709.974	
Sample-Size Adjusted BIC (n* = (n + 2) / 24)	24671.859	
Chi-Square Test of Model Fit		
Value	1128.692*	Nets that the model fit is the same as
Degrees of Freedom	15	Note that the model fit is the same as
P-Value	0.0000	the "baseline" model fit given before.
Scaling Correction Factor for MLR	1.7552	

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Appro:	ximation)	Although not 0, this is the worst possible
Estimate	0.259	RMSEA while still allowing separate
90 Percent C.I.	0.247 0.272	means and variances per item in these
Probability RMSEA <= .05	0.000	data. RMSEA is a parsimony-corrected
CFI/TLI		absolute fit index (so, its fit is relative to
CFI	0.000	the saturated model).
TLI	0.000	,
Chi-Square Test of Model Fit for the B	aseline Model	CFI and TLI are 0 because they are
Value	1128.693	"incremental fit" indices relative to the
Degrees of Freedom	15	independence model (which this is).
P-Value	0.0000	SRMR is also an absolute fit index
SRMR (Standardized Root Mean Square Re	sidual)	(relative to saturated model), so this is
Value	0.300	the worst it gets for these data, too.

So global fit for the one-factor model is not so good... (RMSEA = .173, CFI = .732) What do the voo-doo modification indices suggest we do to fix it?

MODEL MODIFICATION INDICES Minimum M.I. value for printing the modification index 6.635 EPC = EXPECTED PARAMETER CHANGE					
		M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
WITH Sta	tements (SUGGESTED)	ERROR COVARIANC	ES for unk	nown multidin	mensionality)
SIT2	WITH SIT1R	49.618	-0.464	-0.464	-0.316
SIT3R	WITH SIT1R	143.624	1.023	1.023	0.827
SIT3R	WITH SIT2	34.877	-0.357	-0.357	-0.300
SIT4	WITH SIT1R	36.280	-0.403	-0.403	-0.280
SIT4	WITH SIT2	161.318	0.702	0.702	0.509
SIT4	WITH SIT3R	29.202	-0.336	-0.336	-0.288
SIT6	WITH SIT1R	24.079	-0.358	-0.358	-0.224
SIT6	WITH SIT2	63.893	0.486	0.486	0.317
SIT6	WITH SIT3R	22.386	-0.319	-0.319	-0.246
SIT6	WITH SIT4	46.541	0.415	0.415	0.276

Another approach—how about we examine local fit and see where the problems seem to be? The means and variances of the items will be perfectly reproduced, so that's not an issue... *misfit results from the difference between the observed and model-predicted covariances.*

Mplus gives us the "residual" (defined as observed – predicted) or "leftover" covariance matrix, but it is scale dependent and thus not so helpful. We can calculate the residual correlation matrix (see spreadsheet):

Residual Correlation Matrix	R1	2	R3	4	R5	6
R1						
2	-0.120					
R3	0.097	-0.079				
4	-0.095	0.285	-0.066			
R5	0.032	-0.048	0.018	-0.044		
6	-0.081	0.185	-0.060	0.149	-0.015	

Mplus also gives us "normalized" residuals, which can be thought of as z-scores for how large the residual leftover covariance is in absolute terms. Because the denominator decreases with sample size, however, these values may be inflated in large samples, so look for *relatively* large values.

"Normalized" Residuals for Inter-Item Covariances = (observed – predicted) / SD(observed)

Normalized	Residuals for C	ovariances/Co	rrelations/Res	idual Correlat	ions	
	SIT1R	SIT2	SIT3R	SIT4	SIT5R	SIT6
SIT1R	0.000					
SIT2	-3.503	0.000				
SIT3R	2.977	-2.253	0.000			
SIT4	-2.928	6.560	-1.959	0.000		
SIT5R	0.960	-1.434	0.548	-1.372	0.000	
SIT6	-2.345	4.721	-1.756	3.925	-0.444	0.000

NEGATIVE NORMALIZED RESIDUAL \rightarrow Less related than you predicted (don't want to be together) **POSITIVE** NORMALIZED RESIDUAL \rightarrow More related than you predicted (want to be more together)

Why might the normalized residuals (leftover correlations) for the positive-worded items be larger than for the negatively-worded items?

These results suggest that wording valence is playing a larger role in the pattern of covariance across items than what the one-factor model predicts. Rather than adding voo-doo covariances among the residuals for specific items, how about a two-factor model based on wording instead?

Model 4. Model with Two Fully Z-Scored Factors

```
! Model 4 -- Fully Z-Scored 2-Factor Model
    SitP BY Sit2* Sit4* Sit6*;
                                                ! SitP loadings (all free)
    sitN BY Sit1r* Sit3r* Sit5r*;
                                               ! SitN loadings (all free)
    [Sit2* Sit4* Sit6*];
                                               ! SitP intercepts (all free)
    [Sit1r* Sit3r* Sit5r*];
                                              ! SitN intercepts (all free)
    sit2* Sit4* Sit6*;
                                              ! SitP residual variances (all free)
    Sit1r* Sit3r* Sit5r*;
                                              ! SitN residual variances (all free)
    SitP@1; SitN@1;
                                               ! Factor variances (fixed=1)
    SitP WITH SitN*;
                                               ! Factor covariance (free)
    [SitP@0 SitN@0];
                                               ! Factor means (fixed=0)
MODEL FIT INFORMATION
                                               Is the 2-factor model better than the 1-factor
                                               model? How do we know?
Number of Free Parameters
                                          19
                                                Rescaled likelihood ratio test
Loglikelihood
   H0 Value
                                  -11340.140
                                                (-2LL rescaled difference test):
                                    1.4017
   H0 Scaling Correction Factor
        for MLR
                                                1. -2\Delta LL = -2^* difference in LL:
                                  -11322.435
   H1 Value
                                                  -2^{*}(-11,536.404 + 11,340.140) = 392.528
    H1 Scaling Correction Factor 1.4073
         for MLR
                                               2. difference scaling correction:
Information Criteria
                                                 (parms_1*scale_1) - (parms_2*scale_2) / (parms_1 - parms_2)
                                  22718.281
    Akaike (AIC)
                                  22813.391
                                                  (18*1.4158) - (19*1.4017) / (18 - 19) = 1.1479
    Bayesian (BIC)
    Sample-Size Adjusted BIC
                                  22753.042
       (n^* = (n + 2) / 24)
                                                3. rescaled difference = -2\Delta LL / scaling correction:
                                                  392.528 / 1.1479 = 341.953
Chi-Square Test of Model Fit
   Value
                                      24.924*
                                               4. compare rescaled difference to \chi^2 with df = \Deltadf :
   Degrees of Freedom
                                        8
                                      0.0016
    P-Value
                                                  critical \chi^2 for df =1 is 3.84, so because 341.953
                                      1.4207
    Scaling Correction Factor
                                                  is > 3.84, the model fit significantly improved
         for MLR
   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
    for chi-square difference testing in the regular way. MLM, MLR and WLSM
    chi-square difference testing is described on the Mplus website. MLMV, WLSMV,
    and ULSMV difference testing is done using the DIFFTEST option.
RMSEA (Root Mean Square Error Of Approximation)
   Estimate
                                      0.044
    90 Percent C.I.
                               0.025 0.064
    Probability RMSEA <= .05
                                      0.667
CFI/TLI
                                       0.985
    CFT
    TLI
                                       0.972
```

Chi-Square Test of Model Fit for the Baseline Model Value 1128.693 Degrees of Freedom 15 P-Value 0.0000

SRMR (Standardized Root Mean Square Residual) Value 0.029

UNSTANDARDIZED	RESULTS

UNSTANDARDIZED	RESULTS				
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	<u>Omega</u> =
SITP BY	ESLIMATE	D.E.	ESL./D.E.	r-value	
SIT2	1.007	0.052	19.487	0.000	$\lambda = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) + \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^2 $
SIT4	1.064	0.052	21.195	0.000	Var(Factor) * (Sum of loadings) ² /
SIT6	0.956	0.053	18.203	0.000	Var(Factor)* (Sum of loadings) ² +
SITN BY	0.550	0.055	10.205	0.000	Sum of error variances +
SITIR	1.325	0.048	27.698	0.000	2* Sum of error covariances
SIT3R	1.349	0.044	30.514	0.000	
SIT5R SIT5R	1.009	0.055	18.358	0.000	
biibh	1.000	0.055	10.330	0.000	Omega for Positive Factor = .744
SITP WITH SITN =	factor covaria	nce (= cc	rrelation if	E variances=1)	$1.0^{*}(1.007+1.064+0.956)^{2}$ /
	0.564	0.041	13.776	0.000	$1.0*(1.007+1.064+0.956)^2 +$
Means					(0.888+0.835+1.428) + 2*0
SITP	0.000	0.000	999.000	999.000	(0.000+0.000+1.420) + 2.0
SITN	0.000	0.000	999.000	999.000	
0111	0.000	0.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(alpha was .746)
Intercepts					
SIT1R	4.547	0.053	86.474	0.000	Omega for Negative Factor = .775
SIT2	5.289	0.042	127.347	0.000	$\frac{Offiega for Negative ractor = .775}{4.046 \times 4.000 \times 2.1}$
SIT2 SIT3R	4.896	0.048	101.959	0.000	1.0*(1.325+1.349+1.009) ² /
SIT4	5.359	0.043	126.896	0.000	$1.0^{*}(1.325+1.349+1.009)^{2} +$
SIT5R	4.860	0.042	94.060	0.000	(1.294+0.724+1.926) + 2 [*] 0
	4.860 5.321	0.052		0.000	
SIT6	5.321	0.040	115.492	0.000	L
Variances					
SITP	1.000	0.000	999.000	999.000	
SITN	1.000	0.000	999.000	999.000	
Residual Variance	~ 7				
		0 1 0 2	10 547	0 000	
SIT1R	1.294	0.103	12.547	0.000	
SIT2	0.888	0.097	9.173	0.000	
SIT3R	0.724	0.092	7.857	0.000	
SIT4	0.835	0.093	9.003	0.000	
SIT5R	1.926	0.119	16.128	0.000	
SIT6	1.428	0.134	10.684	0.000	
STDYX STANDARDI	ZED RESULTS				
				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
SITP BY	0 500		00 504	0.000	
SIT2	0.730	0.032	22.794	0.000	
SIT4	0.759	0.029	25.995	0.000	
SIT6	0.625	0.035	17.949	0.000	
SITN BY					
SIT1R	0.759	0.022	34.072	0.000	
SIT3R	0.846	0.021	39.657	0.000	
SIT5R	0.588	0.030	19.651	0.000	
SITP WITH					
SITN	0.564	0.041	13.776	0.000	
Dealds I mill					
Residual Variance		0 001	10 575	0 000	
SIT1R	0.425	0.034	12.567	0.000	
SIT2	0.467	0.047	9.976	0.000	
SIT3R	0.285	0.036	7.895	0.000	
SIT4	0.425	0.044	9.589	0.000	
SIT5R	0.654	0.035	18.576	0.000	
SIT6	0.610	0.043	14.029	0.000	
R-SQUARE					
SIT1R	0.575	0.034	17.036	0.000	
SIT2	0.533	0.047	11.397	0.000	
SIT3R	0.715	0.036	19.829	0.000	
SIT4	0.575	0.044	12.998	0.000	
SIT5R	0.346	0.035	9.826	0.000	
SIT6	0.390	0.043	8.974	0.000	

Wouldn't it be nice if Mplus would compute Omegas for you? It can, if you (a) label the parameters it needs to do the math, and (b) create new terms for the Omega estimates via MODEL CONSTRAINT:

Model 4. Fully Z-Scored, 2-Factor Model again, now with parameter labels

```
! Model 4 -- Fully Z-Scored 2-Factor Model with all parameters labeled for reference
SitP BY Sit2* Sit4* Sit6* (L1-L3); ! SitP loadings (all free)
SitN BY SitIr* Sit3r* Sit5r* (L4-L6); ! SitN loadings (all free)
[Sit2* Sit4* Sit6*] (I1-I3); ! SitP intercepts (all free)
[Sit1r* Sit3r* Sit5r*] (I4-I6); ! SitN intercepts (all free)
Sit2* Sit4* Sit6* (E1-E3); ! SitP residual variances (all free)
Sit1r* Sit3r* Sit5r* (E4-E6); ! SitN residual variances (all free)
SitP@l (VarP); SitN@l (VarN); ! Factor variances (fixed=1)
SitP WITH SitN* (FactCov); ! Factor covariance (free)
[SitP@O SitN@0] (MeanP MeanN); ! Factor means (fixed=0)
```

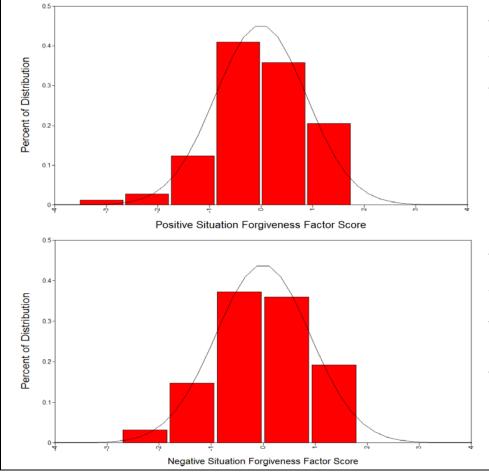
 $\begin{aligned} \text{OmegaP} &= (1*(L1+L2+L3)**2) \ / \ ((1*(L1+L2+L3)**2) \ + \ (E1+E2+E3));\\ \text{OmegaN} &= (1*(L4+L5+L6)**2) \ / \ ((1*(L4+L5+L6)**2) \ + \ (E4+E5+E6)); \end{aligned}$

Output now provided in unstandardized solution:

New/Additional	Parameters			
OMEGAP	0.744	0.020	37.956	0.000
OMEGAN	0.775	0.014	56.803	0.000

Any more local fit problems? Let's see...

of covariance n	natrix (so unsta	andardized est	imate of how fa	ar off each cov	ariance is):
SIT1R	SIT2	SIT3R	SIT4	SIT5R	SIT6
0.000					
-0.176	0.000				
0.016	-0.069	0.000			
-0.062	0.031	0.015	0.000		
0.021	0.030	-0.042	0.089	0.000	
0.080	0.003	0.140	-0.055	0.254	0.000
d" residuals (z	-like statistic fo	or how far off e	ach covariance	s is).	
SIT1R	SIT2	SIT3R	SIT4	SIT5R	SIT6
0.000					
-2.125	0.000				
0.172	-0.896	0.000			
-0.768	0.370	0.192	0.000		
0.212	0.382	-0.464	1.128	0.000	
0.869	0.031	1.658	-0.676	2.847	0.000
	SIT1R 0.000 -0.176 0.016 -0.062 0.021 0.080 d" residuals (z SIT1R 0.000 -2.125 0.172 -0.768 0.212	SIT1R SIT2 0.000 - -0.176 0.000 0.016 -0.069 -0.062 0.031 0.021 0.030 0.080 0.003 d" residuals (z-like statistic for SIT1R SIT1R SIT2 0.000 - -2.125 0.000 0.172 -0.896 -0.768 0.370 0.212 0.382	SIT1R SIT2 SIT3R 0.000 -0.176 0.000 0.016 -0.069 0.000 0.021 0.030 -0.042 0.080 0.003 0.140 d" residuals (z-like statistic for how far off e SIT2 SIT3R 0.000 -2.125 0.000 0.000 0.172 -0.896 0.000 -0.768 0.370 0.192 0.212 0.382 -0.464	SIT1R SIT2 SIT3R SIT4 0.000 -0.176 0.000 -0.000 0.016 -0.069 0.000 -0.000 0.021 0.030 -0.042 0.089 0.080 0.003 0.140 -0.055 d" residuals (z-like statistic for how far off each covariance SIT1R SIT2 SIT3R SIT4 0.000 -2.125 0.000 0.000 -0.000 -0.000 0.172 -0.896 0.000 0.000 0.192 0.000 0.212 0.382 -0.464 1.128	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Any suggested voo-doo? (only available when not using MODEL CONSTRAINT, though)

	DIFICATION INDICES M.I. value for pri		modificat	tion index	6.635	
		M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.	
BY State	ments - these are	cross-load	ings			
SITN	BY SIT2	9.775	-0.224	-0.224	-0.162	
SITN	BY SIT6	10.828	0.245	0.245	0.160	
WITH Sta	tements - these ar	e error co	variances	s		
SIT4	WITH SIT2	10.830	0.332	0.332	0.386	
SIT6	WITH SIT4	9.773	-0.273	-0.273	-0.250	

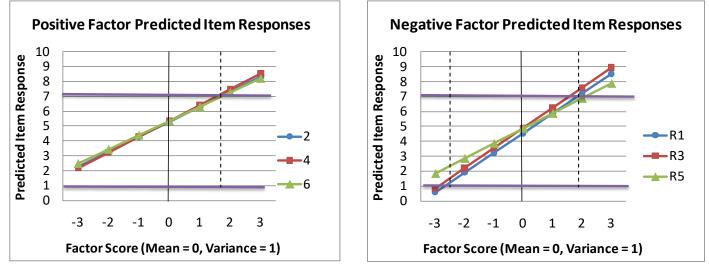
Because we have no real theoretical or defendable reason to fit any of these suggested parameters, we will not add any new parameters. This will be about as good as it gets.

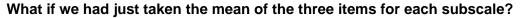
Let's examine the estimated distribution of the factor scores for each factor:

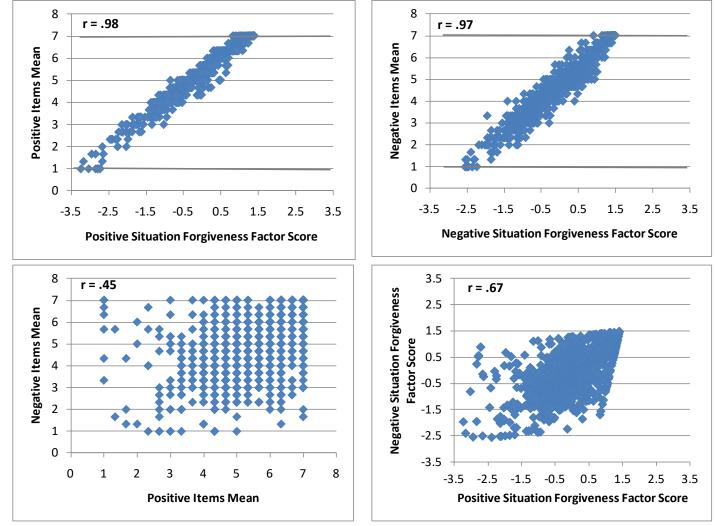
	F FACTOR SCORES OR SCORE INFORMA FACTOR DETERMI SITP 0.8 SITN 0.9	82	between t scores, is	r determinacy, the correlation he estimated and true factor .882 for the positive factor for the negative factor.	
	ATISTICS FOR EST LE STATISTICS Means	IMATED FACTOR	SCORES		actor score SE = 0.472 factor score SE = 0.418
	SITP	SITP_SE	SITN	SITN_SE	
1	0.000 Covariances	0.472	0.000	0.418	
	SITP	SITP_SE	SITN	SITN_SE	
SITP	0.777				
SITP_SE	0.000	0.000			
SITN	0.533	0.000	0.825		
SITN_SE	0.000	0.000	0.000	0.000	
	Correlations				
	SITP	SITP_SE	SITN	SITN_SE	Although the correlation between the factors was originally .56,
SITP	1.000				3
SITP_SE	999.000	1.000			the correlation between the
SITN	0.665	999.000	1.000		estimated factor scores is .67
SITN_SE	999.000	999.000	999.000	1.000	instead due to shrinkage.

The positive factor scores have an estimated mean of 0 with a variance of 0.78 instead of 1.00.

The SE for each person's factor score is .472. Treating factor scores as observed variables is like saying SE = 0.


Positive factor score = Score ± 2*.472 = Score ± .944!


The negative factor scores have an estimated mean of 0 with a variance of 0.825 instead of 1.00.


The SE for each person's factor score is .418, so \pm .836!

The negative factor scores retain more variance (and have a smaller SE) because there is more information in them, due to higher factor loadings (greater reliability) of their items.

Model-predicted item responses by factor scores with dashed lines for floor and ceiling effects:

There are problems with either of these observed variable approaches: The **mean of the items** appears to have less variability (i.e., fewer possible scores) and assumes that all items should be weighted equally and have no error. The **estimated factor scores** do not have the same properties as estimated for the factor in the model (i.e., less variance for each factor, higher correlation among the factors).

What to do instead of either of these? Stay tuned for how to use plausible values.

Another example: Formal Tests of CTT Assumptions

We will test the CTT assumption of tau-equivalence (equal factor loadings), one factor at a time. If those hold, we can then test the assumption of parallel items (equal error variances, too).

First, tau-equivalence of the negative factor only:

```
! Model 5 -- Tau-Equivalent Negative Items Only 2-Factor Model
SitP BY Sit2* Sit4* Sit6*; ! SitP loadings (all free)
SitN BY SitIr* Sit3r* Sit5r* (NegLoad); ! SitN loadings (all held equal)
[Sit2* Sit4* Sit6*]; ! SitP intercepts (all free)
[SitIr* Sit3r* Sit5r*]; ! SitN intercepts (all free)
Sit2* Sit4* Sit6*; ! SitP residual variances (all free)
SitIr* Sit3r* Sit5r*; ! SitN residual variances (all free)
SitP@l; SitN@l; ! Factor variances (fixed=1)
[SitP@0 SitN@0]; ! Factor means (fixed=0)
```

_ _ . . .

UNSTANDARDIZED MODEL RESULTS

					Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
SITP	BY				
SIT2		1.007	0.052	19.491	0.000
SIT4		1.063	0.050	21.202	0.000
SIT6		0.957	0.052	18.257	0.000
SITN	BY				
		1 054	0 0 2 2		0 000
SITI		1.254	0.032	38.957	0.000
SIT3	ર	1.254	0.032	38.957	0.000
SIT5	2	1.254	0.032	38.957	0.000
SITP	WITH				
SITN		0.575	0.041	13.855	0.000
Residua	l Variances				
SIT1		1.335	0.083	16.150	0.000
SIT2	-	0.889	0.096	9.217	0.000
SIT3	ર	0.857	0.069	12.337	0.000
SIT4		0.837	0.092	9.045	0.000
SIT5	ર	1.806	0.115	15.716	0.000
SIT6		1.425	0.134	10.630	0.000

STANDARDIZED STYDX MODEL RESULTS

Tailed Value
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Why are the standardized factor loadings for the negative factor not held equal like the unstandardized loadings are?

Fit of previous 2-factor model:	Fit of tau-equivalent negative items 2-factor model:
Number of Free Parameters 19	Number of Free Parameters 17
Loglikelihood H0 Value -11340.140 H0 Scaling Correction Factor 1.4017 for MLR H1 Value -11322.435 H1 Scaling Correction Factor 1.4073 for MLR	Loglikelihood H0 Value -11357.612 H0 Scaling Correction Factor 1.4474 for MLR H1 Value -11322.435 H1 Scaling Correction Factor 1.4073 for MLR
RMSEA (Root Mean Square Error Of Approximation)Estimate0.04490 Percent C.I.0.025Probability RMSEA <= .05	RMSEA (Root Mean Square Error Of Approximation)Estimate0.06290 Percent C.I.0.0460.0460.079Probability RMSEA <= .05
CFI/TLI CFI 0.985 TLI 0.972	CFI/TLI CFI 0.962 TLI 0.943

Does the assumption of tau-equivalence hold for the negative items? How do we know?

Second, tau-equivalence of the factor loadings for the positive factor only:

```
! Model 6 -- Tau-Equivalent Positive Items Only 2-Factor Model
    SitP BY Sit2* Sit4* Sit6* (PosLoad); ! SitP loadings (all held equal)
    SitN BY Sit1r* Sit3r* Sit5r*;
                                               ! SitN loadings (all free)
    [Sit2* Sit4* Sit6*];
                                               ! SitP intercepts (all free)
   sit4* Sit6* (E1-E3);
Sit1r* Sit3r* Sit5r*;
SitP@1; Si+N@1-
    [Sit1r* Sit3r* Sit5r*];
                                               ! SitN intercepts (all free)
                                              ! SitP residual variances (all free)
                                              ! SitN residual variances (all free)
                                               ! Factor variances (fixed=1)
    SitP WITH SitN*;
                                              ! Factor covariance (free)
    [SitP@0 SitN@0];
                                              ! Factor means (fixed=0)
MODEL CONSTRAINT:
                  ! This is now equivalent to alpha
   NEW(AlphaP);
   AlphaP = (1*(Posload*3)**2) / ((1*(Posload*3)**2) + (E1+E2+E3));
Number of Free Parameters
                                          17
Loglikelihood
   H0 Value
                                  -11341.773
                                    1.4187
   H0 Scaling Correction Factor
                                                   Does the assumption of tau-equivalence hold
          for MLR
                                                   for the positive items? How do we know?
   H1 Value
                                  -11322.435
   H1 Scaling Correction Factor
                                   1.4073
          for MLR
RMSEA (Root Mean Square Error Of Approximation)
    Estimate
                                       0.040
                                0.023 0.058
    90 Percent C.I.
    Probability RMSEA <= .05
                                       0.797
CFI/TLI
    CFI
                                       0.984
    TLI
                                       0.976
```

UNSTANDARDIZED MODEL RESULTS

		KEDOLID			The Tailed
		R	0 1		Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
	ВҮ				
SIT2		1.014	0.036	28.389	0.000
SIT4		1.014	0.036	28.389	0.000
SIT6		1.014	0.036	28.389	0.000
SITN	BY				
SIT1R		1.325	0.048	27.727	0.000
SIT3R		1.349	0.044	30.531	0.000
SIT5R		1.010	0.055	18.370	0.000
DIIJK		1.010	0.055	10.570	0.000
SITP	WITH				
	WIII	0 5 6 7	0 040	1/ 101	0 000
SITN		0.567	0.040	14.131	0.000
	Variances				
SIT1R		1.295	0.103	12.580	0.000
SIT2		0.881	0.083	10.587	0.000
SIT3R		0.725	0.092	7.873	0.000
SIT4		0.886	0.075	11.767	0.000
SIT5R		1.925	0.119	16.117	0.000
SIT6		1.384	0.118	11.737	0.000
0110		1.001	0.110		0.000
New/Addit	ional Param	atera			
ALPHA					0 0 0 0
		0 7/16	0 020		
ALPHA	P	0.746	0.020	38.200	0.000
				38.200	0.000
		0.746 DDEL RESULTS		38.200	
	ZED STDYX M	ODEL RESULTS			Two-Tailed
STANDARDI	ZED STDYX M			38.200 Est./S.E.	
STANDARDI	ZED STDYX M	DDEL RESULTS Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
STANDARDI	ZED STDYX M	DDEL RESULTS Estimate 0.734	S.E. 0.023	Est./S.E. 32.593	Two-Tailed
STANDARDI	ZED STDYX M	DDEL RESULTS Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
STANDARDI SITP SIT2	ZED STDYX M	DDEL RESULTS Estimate 0.734	S.E. 0.023	Est./S.E. 32.593	Two-Tailed P-Value 0.000
STANDARDI SITP SIT2 SIT4	ZED STDYX M	DDEL RESULTS Estimate 0.734 0.733	S.E. 0.023 0.021	Est./S.E. 32.593 35.611	Two-Tailed P-Value 0.000 0.000
STANDARDI SITP SIT2 SIT4	ZED STDYX M	DDEL RESULTS Estimate 0.734 0.733	S.E. 0.023 0.021	Est./S.E. 32.593 35.611	Two-Tailed P-Value 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN	ZED STDYX M BY BY	DDEL RESULTS Estimate 0.734 0.733 0.653	S.E. 0.023 0.021 0.022	Est./S.E. 32.593 35.611 29.743	Two-Tailed P-Value 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R	ZED STDYX M BY BY	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759	S.E. 0.023 0.021 0.022 0.022	Est./S.E. 32.593 35.611 29.743 34.139	Two-Tailed P-Value 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R	ZED STDYX M BY BY	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846	S.E. 0.023 0.021 0.022 0.022 0.021	Est./S.E. 32.593 35.611 29.743 34.139 39.706	Two-Tailed P-Value 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R	ZED STDYX M BY BY	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759	S.E. 0.023 0.021 0.022 0.022	Est./S.E. 32.593 35.611 29.743 34.139	Two-Tailed P-Value 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R	ZED STDYX M BY BY	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846	S.E. 0.023 0.021 0.022 0.022 0.021	Est./S.E. 32.593 35.611 29.743 34.139 39.706	Two-Tailed P-Value 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R	ZED STDYX M BY BY	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588	S.E. 0.023 0.021 0.022 0.022 0.021 0.030	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R	ZED STDYX M BY BY	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846	S.E. 0.023 0.021 0.022 0.022 0.021	Est./S.E. 32.593 35.611 29.743 34.139 39.706	Two-Tailed P-Value 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN	ZED STDYX M BY BY WITH	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588	S.E. 0.023 0.021 0.022 0.022 0.021 0.030	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual	ZED STDYX M BY BY WITH Variances	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588 0.567	S.E. 0.023 0.021 0.022 0.022 0.021 0.030 0.040	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663 14.131	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R	ZED STDYX M BY BY WITH Variances	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588 0.567 0.425	S.E. 0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual	ZED STDYX M BY BY WITH Variances	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588 0.567	S.E. 0.023 0.021 0.022 0.022 0.021 0.030 0.040	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663 14.131	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R	ZED STDYX M BY BY WITH Variances	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588 0.567 0.425	S.E. 0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R SIT2	ZED STDYX M BY BY WITH Variances	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588 0.567 0.425 0.461	S.E. 0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034 0.033	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598 13.965	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R SIT2 SIT3R	ZED STDYX M BY BY WITH Variances	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588 0.567 0.425 0.461 0.285	S.E. 0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034 0.033 0.036	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598 13.965 7.910	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
STANDARDI SITP SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R SIT2 SIT3R SIT4	ZED STDYX M BY BY WITH Variances	DDEL RESULTS Estimate 0.734 0.733 0.653 0.759 0.846 0.588 0.567 0.425 0.461 0.285 0.463	S.E. 0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034 0.033 0.036 0.030	Est./S.E. 32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598 13.965 7.910 15.350	Two-Tailed P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Given that tau-equivalence held for the positive factor, we can also test the assumption of parallel items as equal residual variances (in addition to equal factor loadings):

```
! Model 7 -- Parallel Items on Positive Only 2-Factor Model
SitP BY Sit2* Sit4* Sit6* (PosLoad); ! SitP loadings (all held equal)
SitN BY SitIr* Sit3r* Sit5r*; ! SitN loadings (all free)
[Sit2* Sit4* Sit6*]; ! SitP intercepts (all free)
[Sit1r* Sit3r* Sit5r*]; ! SitN intercepts (all free)
Sit2* Sit4* Sit6* (PosError); ! SitP residual variances (all held equal)
SitIr* Sit3r* Sit5r*; ! SitN residual variances (all free)
SitP@1; SitN@1; ! Factor variances (fixed=1)
SitP@1 SitN@0]; ! Factor means (fixed=0)
MODEL CONSTRAINT:
NEW(SpearP); ! This is now Spearman-Brown reliability
SpearP = (1*(PosLoad*3)**2) / ((1*(PosLoad*3)**2) + (PosError*3));
```

Loglikelihood	
H0 Value	-11361.960
H0 Scaling Correction Factor	1.3443
for MLR	
H1 Value	-11322.435
H1 Scaling Correction Factor	1.4073
for MLR	

RMSEA (Root Mean Square Error Of	Approximation)
Estimate	0.056
90 Percent C.I.	0.041 0.072
Probability RMSEA <= .(0.244
CFI/TLI	
CFI	0.963
TLI	0.954

60 43	Does the assumption of parallel items hold for the positive items? How do we know?
35	
73	
56	
72	
44	

UNSTANDARDIZED MODEL RESULTS

E	stimate	S.E.	Est./S.E.	Two-Tailed P-Value
SITP BY				
SIT2	1.005	0.035	28.455	0.000
SIT4	1.005	0.035	28.455	0.000
SIT6	1.005	0.035	28.455	0.000
SITN BY				
SIT1R	1.325	0.048	27.816	0.000
SIT3R	1.347	0.044	30.623	0.000
SIT5R	1.011	0.055	18.408	0.000
SITP WITH				
SITN	0.581	0.040	14.581	0.000
Residual Variances				
SIT1R	1.294	0.102	12.645	0.000
SIT2	1.060	0.061	17.452	0.000
SIT3R	0.728	0.091	7.992	0.000
SIT4	1.060	0.061	17.452	0.000
SIT5R	1.922	0.119	16.095	0.000
SIT6	1.060	0.061	17.452	0.000
STANDARDIZED STDYX MO	DEL RESILLTS			

STANDARDIZED STDYX MODEL RESULTS

SITP	BY				
SIT2		0.698	0.019	37.365	0.000
SIT4		0.698	0.019	37.365	0.000
SIT6		0.698	0.019	37.365	0.000
SITN	BY				
SIT1R		0.759	0.022	34.339	0.000
SIT3R		0.845	0.021	40.011	0.000
SIT5R		0.589	0.030	19.713	0.000
SITP	WITH				
SITN		0.581	0.040	14.581	0.000
Residual	Variances				
SIT1R		0.424	0.034	12.652	0.000
SIT2		0.512	0.026	19.616	0.000
SIT3R		0.286	0.036	8.024	0.000
SIT4		0.512	0.026	19.616	0.000
SIT5R		0.653	0.035	18.520	0.000
SIT6		0.512	0.026	19.616	0.000

Example write-up describing these analyses...

(Note: You may borrow the phrasing contained in this example to describe various aspects of your analyses, but your own results sections will not mimic this example exactly—they should be <u>customized</u> to describe the how and the why of what <u>you</u> did, specifically).

(Descriptive information for the sample and items would have already been given in the method section...)

The reliability and dimensionality of six items each assessing forgiveness of situations was assessed in a sample of 1,103 persons with a confirmatory factor analysis using robust maximum likelihood estimation (MLR) in M*plus* v. 8.1 (Muthén & Muthén, 1998–2017). All models were identified by setting any latent factor means to 0 and latent factor variances to 1, such that all item intercepts, item factor loadings, and item residual variances were then estimated. The six items utilized a seven-point response scale, and three items were reverse-coded prior to analysis such that higher values then indicated greater levels of situation forgiveness for all items. As reported in Table 1, model fit statistics include the obtained model χ^2 , its scaling factor (in which values different than 1.000 indicate deviations from normality), its degrees of freedom, and its *p*-value (in which non-significance is desirable for good fit), CFI, or Comparative Fit Index (in which values higher than .95 are desirable for good fit), and the RMSEA, or Root Mean Square Error of Approximation, point estimate and 90% confidence interval (in which values lower than .06 are desirable for good fit). As reported in Table 2, nested model comparisons were conducted using the rescaled $-2\Delta LL$ with degrees of freedom equal to the rescaled difference in the number of parameters between models (i.e., a rescaled likelihood ratio test). The specific models examined are described in detail below.

Although a one-factor model was initially posited to account for the pattern of covariance across these six items, it resulted in poor fit, as shown in Table 1. Although each item had a significant factor loading (with standardized loadings ranging from .509 to .778), a single latent factor did not adequately describe the pattern of relationship across these six items as initially hypothesized. Sources of local misfit were identified using the normalized residual covariance matrix, available via the RESIDUAL output option in M*plus*, in which individual values were calculated as: (observed covariance – expected covariance) / SD(observed covariance). Relatively large positive residual covariances were observed among items 2, 4, and 6 (the positively-worded items), indicating that these items were more related than was predicted by the single-factor model. Modification indices, available via the MODINDICES output option in M*plus*, corroborated this pattern, further suggesting additional remaining relationships among the negatively-worded items as well.

The necessity of separate latent factors for the positively-worded and negatively-worded items was tested by specifying a two-factor model in which the positively-worded items 2, 4, and 6 indicated a *forgiveness* factor, and in which negatively-worded items 1, 3, and 5 indicated a *not unforgiveness* factor, and in which the two factors were allowed to correlate. The two-factor model fit was acceptable by every criterion except the significant χ^2 , likely due to the large sample. In addition, the two-factor model fit significantly better than the one-factor model, as reported in Table 2, indicating that the estimated correlation between the two factors of .564 was significantly less than 1.000. Thus, the six items appeared to measure two separate but related constructs. Further examination of local fit via normalized residual covariances and modification indices yielded no interpretable remaining relationships, and thus this two-factor model was retained.

Table 3 provides the estimates and their standard errors for the item factor loadings, intercepts, and residual variances from both the unstandardized and standardized solutions. All factor loadings and the factor covariance were statistically significant. As shown in Table 3, standardized loadings for the forgiveness factor items ranged from .625 to .759 (with R² values for the amount of item variance accounted for by the factor ranging from .390 to .575), and standardized loadings for the not unforgiveness factor ranged from .588 to .846 (with R² values of .346 to .715), suggesting the factor loadings were practically significant as well. Omega model-based reliability was calculated for the sum scores of each factor as described in Brown (2006) as the squared sum of the factor loadings divided by the squared sum of the error variances plus twice the sum of the error covariances (although no error covariances were included here). Omega was .744 for the forgiveness factor and .775 for the not unforgiveness factor, suggesting marginal reliability for both of the three-item scales.

The resulting distribution of the factors was examined by requesting empirical Bayes estimates of the individual scores for each factor, as shown in Figure 1. Factor determinacy estimates, available via the FSDETERMINACY output option in Mplus, were .882 and .908, respectively, for the forgiveness and not unforgiveness factors (with standard errors for the factor scores of .472 and .418), indicating that the estimated factor scores were strongly related to their model-based counterparts. In addition, Figure 2 shows the predicted response for each item as a linear function of the latent factor based on the estimated model parameters. As shown, the predicted item response goes above the highest response option just before a latent factor score of 2 (i.e., 2 SDs above the mean), resulting in a ceiling effect for both sets of factor scores, as also shown in Figure 1. In addition, for the not unforgiveness factor, the predicted item response goes below the lowest response option just before a latent factor score of -3 (i.e., 3 SDs below the mean), resulting in a floor effect for the not unforgiveness factor, as also shown in Figure 1.

The extent to which the items within each factor could be seen as exchangeable was then examined via an additional set of nested model comparisons, as reported in Table 1 (for fit) and Table 2 (for comparisons of fit). First, the assumption of tau-equivalence (i.e., true-score equivalence, equal discrimination across items) was examined by constraining the factor loadings to be equal within a factor. For the not unforgiveness factor, the tau-equivalent model fit was acceptable but was significantly worse than the original two-factor model fit (i.e., in which all loadings were estimated freely). For the forgiveness factor, however, the tau-equivalent model fit was acceptable and was not significantly worse than the original two-factor model fit. Thus, the assumption of tau-equivalence held for the forgiveness factor items only. Finally, the assumption of parallel items (i.e., equal factor loadings and equal residual variances, or equal reliability across items) was examined for the forgiveness factor items only, and the resulting model fit was acceptable but was significantly worse than the tau-equivalent forgiveness factor model fit. Thus, the assumption of parallel items did not hold for the forgiveness factor items. In summary, while the not unforgiveness factor items were not exchangeable, the forgiveness factor items were exchangeable with respect to their factor loadings only (i.e., equal discrimination, but not equal item residual variances or item reliability).

Tables would be built as seen in the excel workbook:

Table 1 \rightarrow "Model Fit Table 1" worksheet Table 2 \rightarrow "MLR Comparisons Table 2" worksheet Table 3 \rightarrow "Model Estimates Table 3" worksheet

Figures would be built as seen in this example:

Figure 1 \rightarrow Can be built in Mplus Figure 2 \rightarrow Can be built using "Factor Model Predictions" worksheet

References:

Muthén, L. K., & Muthén, B.O. (1998–2017). *Mplus User's Guide*. Eighth Edition. Los Angeles, CA: Muthén & Muthén.

```
Example 4 Continued: CFA Using Forgiveness of Situations (N = 1103) using SAS MIXED
```

SAS Code to Read in Mplus Data:

```
* Import data from Mplus, becomes var1-var23 without names at top;
PROC IMPORT OUT=work.Situation DATAFILE= "&example.\Study2.dat" DBMS=TAB REPLACE;
     GETNAMES=NO; DATAROW=1; RUN;
* Rename variables, remove missing values;
DATA Situation; SET Situation;
      ARRAY old(23) var1-var23;
      ARRAY new(23) PersonID Self1 Self2r Self3 Self4r Self5 Self6r
                    Other1r Other2 Other3r Other4 Other5r Other6
                    Sit1r Sit2 Sit3r Sit4 Sit5r Sit6
                    Selfsub Othsub Sitsub HFSsum;
      DO i=1 TO 23; new(i)=old(i); IF new(i)=99999 THEN new(i)=.; END;
      DROP i var1-var23; RUN;
* Stack situation items;
DATA SituationStacked; SET Situation;
      ARRAY aitem(6) Sit1r Sit2 Sit3r Sit4 Sit5r Sit6;
      DO i=1 TO 6; itemnum=i; response=aitem(i); OUTPUT; END; DROP i; RUN;
```

Independence (Null) Baseline Model: Item means and variances, but NO covariances

PROC MI	XED DATA=Si	e (Null) CFA tuationStack NID itemnum;	ced NOITPR		RINT COVTE	ST IC NA	AMEL	EN=100 METHOD=ML;
	-	nse = itemnu emnum / TYPE			-	; RUN;	diag	PE=TOEPH(1) predicts a gonal matrix (would be the
		Estimated R	Matrix for	PersonID	1		san	ne as TYPE=UN(1).
Row	Col1	Col2	Col3	Col4	Col5	Co	016	
1	3.0493							
2		1.9028						
3			2.5431					
4				1.9672				The R matrix shows the
5					2.9451			unconditional variances per
6						2.34	412	item—repeated in the next
								piece of output as Var(item).
	Cova	ariance Param	eter Estima	tes				Note that this independence
Cov			Standard	Z				model predicts NO
Parm	Subject	Estimate	Error	Value	Pr > Z			covariances between items.
Var(1)	PersonID	3.0493	0.1298	23.48	<.0001			
Var(2)	PersonID	1.9028	0.08102	23.48	<.0001			
Var(3)	PersonID	2.5431	0.1083	23.48	<.0001			
Var(4)	PersonID	1.9672	0.08377	23.48	<.0001			
Var(5)	PersonID	2.9451	0.1254	23.48	<.0001			
Var(6)	PersonID	2.3412	0.09969	23.48	<.0001			
							Г	Madal fit is given as 211
	ile Berne		mation Crit		DIO	0.4.7		Model fit is given as -2LL
Neg2LogL		AIC	AICC	HQIC	BIC	CAI		rather than LL (but otherwise is
2462	5.9 12	24649.9	24650.0	24672.6	24710.0	24722.	·• [the same as given from Mplus).
		Solution	for Fixed E	ffects				
			Standard				Г	The first offerste show the
Effect	itemnum	Estimate	Error	DF	t Value	Pr > t	1 1	The fixed effects show the
itemnum	1	4.5467	0.05258	5509	86.47	<.000		unconditional means per item.
itemnum	2	5.2892	0.04153	5509	127.35	<.0001	1 -	
itemnum	3	4.8957	0.04802	5509	101.96	<.0001	1	
itemnum	4	5.3590	0.04223	5509	126.90	<.0001	1	
itemnum	5	4.8604	0.05167	5509	94.06	<.0001	1	
itemnum	6	5.3209	0.04607	5509	115.49	<.0001	1	

CLDP 948 Example 4 page 22 Saturated (Unstructured) Baseline Model: Item means, variances, and covariances in original data

CL MO	ASS Person	ID itemnum;					EN=100 METHOD=ML;
RE Row	-	se = itemnu					
Row	PEATED ite		m / SOLUTI		-		TYPE=UN(6) predicts a fully-
		mnum / TYPE	=UN(6) SUB	JECT=Pers	SONID R RCC	RR; RUN;	estimated matrix with no
		Estimated B	Matrix for	PersonID	1		constraints whatsoever.
	Col1	Col2	Col3	Col4	Col5	Col6	
	3.0493	0.5772	1.8022	0.7339	1.3583	0.7946	The R matrix shows the
2	0.5772	1.9028	0.6974	1.1029	0.6043	0.9652	unconditional variances and
3	1.8022	0.6974	2.5431	0.8244	1.3191	0.8676	covariances for the items.
4	0.7339	1.1029	0.8244	1.9672	0.6947	0.9618	
5	1.3583	0.6043	1.3191	0.6947	2.9451	0.7982	RCORR is the unconditional
6	0.7946	0.9652	0.8676	0.9618	0.7982	2.3412	correlation matrix.
	Eatim	ated R Corre	lation Matri	y fon Don	conto 1		Note THIS IS THE DATA—
Row	Col1	Col2	Col3	Col4	Col5	Col6	the only discrepancies you'd
1	1.0000	0.2396	0.6472	0.2997	0.4533	0.2974	see relative to descriptive
2	0.2396	1.0000	0.0472	0.2997	0.4553	0.2974	statistics would be from
2 3	0.2396	0.3170	1.0000	0.3686	0.2553	0.4573	missing data, as these are ML
3	0.6472	0.3170	0.3686	1.0000	0.4820	0.3555	estimates (that assume MAR
				0.2886		0.4482	rather than MCAR as in
5 6	0.4533 0.2974	0.2553 0.4573	0.4820 0.3555	0.2886	1.0000 0.3040	1.0000	listwise deletion).
U		ariance Para			0.3040	1.0000	
	000		Standard	Z			
Cov Parm	Subject	Estimate	Error	Value	Pr Z	,	
UN(1,1)	PersonID	3.0493	0.1298	23.48	<.0001		
UN(2,1)	PersonID	0.5772	0.07458	7.74	<.0001		
UN(2,2)	PersonID	1.9028	0.08102	23.48	<.0001		
UN(3,1)	PersonID	1.8022	0.09988	18.04	<.0001		
UN(3,2)	PersonID	0.6974	0.06948	10.04	<.0001		
UN(3,3)	PersonID	2.5431	0.1083	23.48	<.0001		
UN(4,1)	PersonID	0.7339	0.07699	9.53	<.0001		
UN(4,2)	PersonID	1.1029	0.06705	16.45	<.0001		
UN(4,3)	PersonID	0.8244	0.07178	11.49	<.0001		
UN(4,4)	PersonID	1.9672	0.08377	23.48			
UN(5,1)	PersonID	1.3583	0.09907	13.71	<.0001		
UN(5,2)	PersonID	0.6043	0.07356	8.21	<.0001		
UN(5,3)	PersonID	1.3191	0.09148	14.42	<.0001		
UN(5,4)	PersonID	0.6947	0.07543	9.21	<.0001		
UN(5,5)	PersonID	2.9451	0.1254	23.48	<.0001		
UN(6,1)	PersonID	0.7946	0.08393	9.47	<.0001		
UN(6,2)	PersonID	0.9652	0.06988	13.81	<.0001		
UN(6,3)	PersonID	0.8676	0.07798	11.13	<.0001		
UN(6,4)	PersonID	0.9618	0.07081	13.58	<.0001		
UN(6,5)	PersonID	0.7982	0.08264	9.66	<.0001		
UN(6,6)	PersonID	2.3412	0.09969	23.48	<.0001		
		Infor	mation Crite	ria			
Neg2LogLik	ke Parms	AIC	AICC	HQIC	BIC	CAIC	
22644.		22698.9	22699.1	22750.0	22834.0	22861.0	
		Solution	for Fixed Ef	fects			
Effoot	itomoum	Ectimete	Standard	DE	+ Volue	Pn > +	
Effect	itemnum 1	Estimate	Error	DF		Pr > t	
itemnum itemnum	1	4.5467	0.05258	5509	86.47	<.0001 TI	he fixed effects again show the
itemnum itemnum	2	5.2892 4 8057	0.04153	5509 5509	127.35		nconditional means per item.
itemnum itemnum	3 4	4.8957 5.3590	0.04802	5509 5509	101.96	<.0001	
itemnum itemnum	4 5		0.04223		126.90	<.0001 <.0001	
itemnum itemnum	5 6	4.8604 5.3209	0.05167 0.04607	5509 5509	94.06 115.49	<.0001 <.0001	

Model 1. Single Factor with Fully Z-Scored Factor Model Identification (Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated)

					, Factor Mea RINT COVTEST		IIXED"; EN=100 METHOD=ML;
C M	LASS Person ODEL respon	NID itemnum; nse = itemnu	; 1m / SOLUTI	ON NOINT		T	YPE=FA(1) creates the covariance atrix that would be predicted by a
RUN;							ngle-factor model.
		Estimated F	A Matrix for	PersonID 1	I		
Row	Col1	Col2	Col3	Col4	Col5	Col6	
1	3.0493	0.8670	1.5313	0.9682	1.2626	1.0108	The R matrix shows the
2	0.8670	1.9028	0.8716	0.5511	0.7187	0.5753	predicted variances and
3	1.5313	0.8716	2.5431	0.9733	1.2692	1.0161	covariances for the items.
4	0.9682	0.5511	0.9733	1.9672	0.8025	0.6424	
5	1.2626	0.7187	1.2692	0.8025	2.9451	0.8378	RCORR is the single-factor
6	1.0108	0.5753	1.0161	0.6424	0.8378	2.3412	predicted correlation matrix.
	Estir	nated R Corre	elation Matri	ix for Pers	sonID 1		THIS IS NO LONGER THE
Row	Col1	Col2	Col3	Col4	Col5	Col6	DATA. So the objective is to
1	1.0000	0.3600	0.5499	0.3953	0.4213	0.3783	see how close this predicted
2	0.3600	1.0000	0.3962	0.2848	0.3036	0.2726	covariance matrix is from the
3	0.5499	0.3962	1.0000	0.4351	0.4638	0.4164	one given by the saturated
4	0.3953	0.2848	0.4351	1.0000	0.3334	0.2994	model (which was the data).
5	0.4213	0.3036	0.4638	0.3334	1.0000	0.3191	
6	0.3783	0.2726	0.4164	0.2994	0.3191	1.0000	
	Cov	variance Para	umeter Estima	ates			
			Standard	Z			
Cov Parm	Subject	Estimate	Error	Value	Pr Z	The FA(item) terms are the item residual variances. The FA(item, factor) terms are	
FA(1)	PersonID	1.5259	0.09440	16.16	<.0001	the item f	factor loadings.
FA(2)	PersonID	1.4093	0.07096	19.86	<.0001		
FA(3)	PersonID	1.0038	0.07755	12.94	<.0001	So the to	tal variance per item is given by:
FA(4)	PersonID	1.3518	0.07071	19.12	<.0001		1) + error variance, as shown in
FA(5)	PersonID	1.8986	0.09312	20.39	<.0001		trix above.
FA(6)	PersonID	1.6706	0.08330	20.05	<.0001		
FA(1,1)	PersonID	1.2342	0.05332	23.15	<.0001	Item 1 =	1.2342^2 + 1.5259 = 3.0493
FA(2,1)	PersonID	0.7025	0.04720	14.88	<.0001		vience between items is given
FA(3,1)	PersonID	1.2407	0.04783	25.94	<.0001		iriance between items is given
FA(4,1)	PersonID	0.7845	0.04679	16.76	<.0001		badings multiplied together.
FA(5,1)	PersonID	1.0230	0.05202	19.67	<.0001	tor 1 ar	d 0 april 1 0040*0 7005
FA(6,1)	PersonID	0.8190	0.05019	16.32	<.0001	0.8670	nd 2 cov = 1.2342*0.7025 =
		Infor	mation Crite	eria			
Neg2LogLi	ike Parms	AIC	AICC	HQIC	BIC	CAIC	
23072		23108.8	23108.9	23142.9	23198.9 2	23216.9	
		Solution	for Fixed E1 Standard	ffects			
Effect	itemnum	Estimate	Error	DF	t Value Pr	> t	
itemnum	1	4.5467	0.05258	5509			ne fixed effects now show the
itemnum	2	5.2892	0.04153	5509			tercepts per item conditional on
itemnum	3	4.8957	0.04802	5509			ctor = 0 (which then are equal
itemnum	4	5.3590	0.04223	5509			the original item means).
itemnum	5	4.8604	0.05167	5509		<.0001	
itemnum	6	5.3209	0.04607	5509		<.0001	
	-						

Tau-Equivalent Items Single-Factor Model with Marker Item Factor Model Identification (Factor Variance = ?, Factor Mean = 0, All Loadings Equal at 1)

TITLE "Tau-Equivalent Items Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED"; PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; CLASS PersonID itemnum; MODEL response = itemnum / SOLUTION NOINT NOTEST; A random intercept creates a constant

	MODEL respon RANDOM INTER	nse = itemnu			-		andom intercept creates a constant urce of covariance across all items.
	REPEATED ite					- 100	
		Estimated R	Matrix for	PersonID 1			The R matrix shows the item
Row 1	Col1 2.0017	Col2	Col3	Col4	Col5	Col	
2		1.1357					The C metrix shows the
3			1.4550				The G matrix shows the
4				1.0866			variance due to the factor for all items.
5					2.0552		an nems.
6						1.456	5 Vie the predicted coverience
	Estimated	G Matrix					V is the predicted covariance
		Person					matrix from putting G and R
Row	Effect	ID	Col1				back together, and VCORR is
1	Intercept	1	0.9127				the predicted correlation
		Estimated V	Matrix for	PersonID 1			matrix.
Row	Col1	Col2	Col3	Col4	Col5	Col	6
1	2.9143	0.9127	0.9127	0.9127	0.9127	0.912	7
2	0.9127	2.0483	0.9127	0.9127	0.9127	0.912	7
3	0.9127	0.9127	2.3677	0.9127	0.9127	0.912	7
4	0.9127	0.9127	0.9127	1.9993	0.9127	0.912	7
5	0.9127	0.9127	0.9127	0.9127	2.9679	0.912	7
6	0.9127	0.9127	0.9127	0.9127	0.9127	2.369	1
	Esti	mated V Corre	lation Matri	x for Pers	sonID 1		
Row	Col1	Col2	Col3	Col4	Col5	Col	6
1	1.0000	0.3735	0.3474	0.3781	0.3103	0.347	3
2	0.3735	1.0000	0.4144	0.4510	0.3702	0.414	3
3	0.3474	0.4144	1.0000	0.4195	0.3443	0.385	3
4	0.3781	0.4510	0.4195	1.0000	0.3747	0.419	4
5	0.3103	0.3702	0.3443	0.3747	1.0000	0.344	2
6	0.3473	0.4143	0.3853	0.4194	0.3442	1.000	0
	Co	variance Para	meter Estima	ites			
			Standard	Z			
Cov Par	rm Subject	Estimate	Error	Value	Pr > Z		
UN(1,1)) PersonID	0.9127	0.04938	18.48	<.0001		
Var(1)	PersonID	2.0017	0.09613	20.82	<.0001		
Var(2)	PersonID	1.1357	0.05929	19.15	<.0001		
Var(3)	PersonID	1.4550	0.07304	19.92	<.0001		
Var(4)	PersonID	1.0866	0.05703	19.05	<.0001		
Var(5)	PersonID	2.0552	0.09729	21.13	<.0001		
Var(6)	PersonID	1.4565	0.07161	20.34	<.0001		
			mation Crite				
Neg2Log		AIC	AICC	HQIC	BIC	CAIC	
231	131.1 13	23157.1	23157.1	23181.7	23222.2	23235.2	
		Solution	for Fixed Ef Standard	fects			
Effect	itemnum	Estimate	Error	DF	t Value	Pr > t	
					88.45	<.0001	
itemnum		4.5467	0.05140	5510	00.45		
	n 1		0.05140 0.04309	5510 5510		<.0001	The fixed effects still show the
itemnum	n 1 n 2	4.5467 5.2892 4.8957			122.74 105.67		intercepts per item conditional on
itemnun itemnun	n 1 n 2 n 3	5.2892	0.04309	5510	122.74	<.0001	intercepts per item conditional on factor = 0 (which then are equal
itemnun itemnun itemnun	n 1 n 2 n 3 n 4	5.2892 4.8957	0.04309 0.04633	5510 5510	122.74 105.67	<.0001 <.0001	intercepts per item conditional on

Parallel Items Single-Factor Model with Marker Item Factor Model Identification (Factor Variance = ?, Factor Mean = 0, All Loadings = 1 and All Error Variances Equal)

TITLE "Parallel Items Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED"; PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; CLASS PersonID itemnum; MODEL response = itemnum / SOLUTION NOINT NOTEST; A random intercept creates a constant RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID G V VCORR; source of covariance across all items. REPEATED itemnum / TYPE=VC SUBJECT=PersonID R; RUN; A Type=VC R matrix means equal residual variance across items. Estimated R Matrix for PersonID 1 Row Col1 Co12 Co13 Col4 Co15 Co16 1 1.5180 2 1.5180 3 1.5180 4 1.5180 5 1.5180 6 1.5180 Estimated G Matrix The R matrix shows the item Person residual variances. Effect Col1 Row ID 0.9401 Intercept 1 1 The G matrix shows the Estimated V Matrix for PersonID 1 variance due to the factor for Co15 Co16 Row Col1 Co12 Co13 Col4 all items. 2.4581 0.9401 0.9401 0.9401 0.9401 0.9401 1 0.9401 2 0.9401 2.4581 0.9401 0.9401 0.9401 V is the predicted covariance 0.9401 2.4581 0.9401 3 0.9401 0.9401 0.9401 matrix from putting G and R 4 0.9401 0.9401 0.9401 2.4581 0.9401 0.9401 back together, and VCORR is 5 0.9401 0.9401 0.9401 0.9401 2.4581 0.9401 the predicted correlation 0.9401 2.4581 6 0.9401 0.9401 0.9401 0.9401 matrix. Estimated V Correlation Matrix for PersonID 1 This type of predicted Row Col1 Co12 Co13 Col4 Co15 Co16 covariance matrix has a special 1.0000 0.3825 0.3825 0.3825 0.3825 0.3825 1 name: compound symmetry. 2 0.3825 1.0000 0.3825 0.3825 0.3825 0.3825 3 0.3825 0.3825 1.0000 0.3825 0.3825 0.3825 4 0.3825 0.3825 0.3825 1.0000 0.3825 0.3825 5 0.3825 0.3825 0.3825 0.3825 1.0000 0.3825 6 0.3825 0.3825 0.3825 0.3825 0.3825 1.0000 **Covariance Parameter Estimates** Ζ Standard Pr > ZCov Parm Subject Estimate Value Error <.0001 UN(1,1) PersonID 0.9401 0.05103 18.42 PersonID 0.02891 52.51 <.0001 itemnum 1.5180 Information Criteria Neg2LogLike Parms AIC AICC HQIC BTC CAIC 23254.0 23270.1 8 23270.0 23285.2 23310.1 23318.1 Solution for Fixed Effects Standard Effect t Value Pr > |t|itemnum Estimate Error DF 4.5467 0.04721 5510 96.31 <.0001 itemnum 1 The fixed effects still show the 2 0.04721 <.0001 5.2892 5510 112.04 itemnum intercepts per item conditional on itemnum 3 4.8957 0.04721 5510 103.71 <.0001 0.04721 <.0001 factor = 0 (which then are equal) itemnum 4 5.3590 5510 113.52 0.04721 5510 102.96 <.0001 to the original item means). itemnum 5 4.8604 <.0001 6 5.3209 0.04721 5510 112.71 itemnum

Unfortunately, multiple factor models in MIXED appear to be EFA models instead of CFA models, so no examples of two-factor models are given.