
Two-Level Models for 
Clustered* Data
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• Today’s Class:
 Fixed vs. Random Effects for Modeling Clustered Data
 ICC and Design Effects in Clustered Data
 Group-Mean-Centering vs. Grand-Mean Centering 
 Model Extensions under Group-MC and Grand-MC
 Nested vs. Crossed Groups Designs

* Clustering = Nesting = Grouping…



MLM for Clustered Data
• So far we’ve built models to account for dependency created 

by repeated measures (time within person, or trials within 
persons crossed with items)

• Now we examine two-level models for more general examples 
of nesting/clustering/grouping:
 Students within schools, athletes within teams, patients within doctors
 Siblings within families, partners within dyads

• Residuals of people from same group are likely to be 
correlated due to group differences (e.g., purposeful 
grouping or shared experiences create dependency)

• Recurring theme: You still have to care about group-level 
variation, even if that’s not the point of your study
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2 Options for Differences Across Groups
Represent Group Differences as Fixed Effects
• Include (#groups-1) contrasts for group membership in the model 

for the means (via CLASS) so group is NOT another “level” 
• Permits inference about differences between specific groups, but 

you cannot include between-group predictors (group is saturated)
• Snijders & Bosker (1999) ch. 4, p. 44 recommend if #groups < 10ish

Represent Group Differences as a Random Effect
• Include a random intercept variance in the model for the 

variance, such that group differences become another “level” 
• Permits inference about differences across groups more generally, 

for which you can test effects of between-group predictors
• Better if #groups > 10ish and you want to predict group differences
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Empty Means, Random Intercept Model
MLM for Clustered Data:
• Change in notation: 
 i = level 1,  j = level 2

• Level 1:  
yij = β0j + eij

• Level 2: 
β0j = γ00 + U0j

3 Total Parameters: 
Model for the Means (1): 
• Fixed Intercept γ00

Model for the Variance (2):
• Level-1 Variance of eij  𝛔𝛔𝐞𝐞𝟐𝟐

• Level-2 Variance of U0j  𝛕𝛕𝐔𝐔𝟐𝟐𝟎𝟎
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Fixed Intercept 
=grand mean 
(because no 
predictors yet) 

Random Intercept 
= group-specific 
deviation from 
predicted intercept

Residual = person-specific deviation 
from group’s predicted outcome 

Composite equation:  
yij =  (γ00 + U0j ) + eij



Matrices in a Random Intercept Model
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RI and DIAG: Total predicted data matrix is called V matrix, created 
from the G [TYPE=UN] and R [TYPE=VC] matrices as follows:
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VCORR then provides the intraclass 
correlation, calculated as: 
ICC = 𝛕𝛕𝐔𝐔𝟐𝟐𝟎𝟎 / (𝛕𝛕𝐔𝐔𝟐𝟐𝟎𝟎 + 𝛔𝛔𝐞𝐞𝟐𝟐)

assumes a 
constant 
correlation 
over time

The G, Z, and R matrices still get 
combined to create the V matrix, 
except that they are now per group. 
R and V have n rows by n columns, 
in which n = # level-1 units, which is 
now people, not time. Thus, no type 
of R matrix other than VC will be 
used, and REPEATED is not needed.



Intraclass Correlation (ICC)

ICC =
BG

BG + WG
=

Intercept Variance
Intercept Variance + Residual Variance

=
𝛕𝛕𝐔𝐔𝟐𝟐𝟎𝟎

𝛕𝛕𝐔𝐔𝟐𝟐𝟎𝟎 + 𝛔𝛔𝐞𝐞𝟐𝟐

• ICC = Proportion of total variance that is between groups

• ICC = Average correlation among persons from same group

• ICC is a standardized way of expressing how much we need to 
worry about dependency due to group mean differences
(i.e., ICC is an effect size for constant group dependency)
 Dependency of other kinds can still be created by differences between 

groups in the effects of predictors (stay tuned)
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𝛕𝛕𝐔𝐔𝟐𝟐𝟎𝟎 Why don’t all groups have the same mean?
𝛔𝛔𝐞𝐞𝟐𝟐 Why don’t all people from the same group 

have the same outcome?



Effects of Clustering on Effective N
• Design Effect expresses how much effective sample size 

needs to be adjusted due to clustering/grouping
• Design Effect = ratio of the variance using a given sampling 

design to the variance using a simple random sample from the 
same population, given the same total sample size either way

• Design Effect = 1 + (𝑛𝑛 – 1) ∗ ICC

• Effective sample size  Neffective = # Total Observations
Design Effect

• As ICC goes UP and cluster size goes UP, 
the effective sample size goes DOWN
 See Snijders & Bosker (2012) for more info and for a modified 

formula that takes unequal group sizes into account

𝑛𝑛 = # level-1 units
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Design Effects in 2-Level Nesting
• Design Effect = 1 + (𝑛𝑛 – 1) ∗ ICC

• Effective sample size  Neffective = # Total Observations
Design Effect

• n=5 patients from each of 100 doctors, ICC = .30?
 Patients Design Effect = 1 + (4 * .30) = 2.20
 Neffective = 500 / 2.20 = 227 (not 500)

• n=20 students from each of 50 schools, ICC = .05?
 Students Design Effect = 1 + (19 * .05) = 1.95
 Neffective = 1000 / 1.95 = 513 (not 1000)
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Does a non-significant ICC mean you can 
ignore groups and just do a regression?

• Effective sample size depends on BOTH the ICC and the 
number of people per group: As ICC goes UP and group size 
goes UP, the effective sample size goes DOWN
 So there is NO VALUE OF ICC that is “safe” to ignore, not even ~0!

 An ICC=0 in an empty (unconditional) model can become ICC>0 after 
adding level-1 predictors because reducing the residual variance leads to 
an increase in the random intercept variance ( conditional ICC > 0)

• So just do a multilevel analysis anyway…
 Even if “that’s not your question”… because people come from groups, 

you still have to model group dependency appropriately because of:

 Effect of clustering on level-1 fixed effect SE’s  biased SEs
 Potential for contextual effects of level-1 predictors 
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Predictors in MLM for Clustered Data 
Example:  Achievement in Students nested in Schools

• Level-2 predictors now refer to Group-Level Variables
 Can only have fixed or systematically varying effects (level-2 predictors 

cannot have random effects in a two-level model, same as before)
 e.g., Does mean school achievement differ b/t rural and urban schools? 

• Level-1 predictors now refer to Person-Level Variables
 Can have fixed, systematically varying, or random effects over groups
 e.g., Does student achievement differ between boys and girls?

 Fixed effect: Is there a gender difference in achievement, period?
 Systematically varying effect: Does the gender effect differ b/t rural and urban 

schools? (but the gender effect is the same within rural and within urban schools)
 Random effect: Does the gender effect differ randomly across schools?

 We can skip all the steps for building models for “time” and head 
straight to predictors (given that level-1 units are exchangeable here)
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Level-1 (Person-Level) Predictors
• Modeling of level-1 predictors is complicated (and usually 

done incorrectly) because each level-1 predictor is usually 
really 2 predictor variables (each with their own effect), not 1

• Example: Student SES when students are clustered in schools
 Some kids have more money than other kids in their school: 

 WG variation in SES (represented directly as deviation from school mean)

 Some schools have more money than other schools:
 BG variation in SES (represented as school mean SES or via external info)

• Can quantify each source of variance with an ICC
 ICC = (BG variance) / (BG variance + WG variance)

 ICC > 0? Level-1 predictor has BG variation (so it could have BG effect)

 ICC < 1? Level-1 predictor has WG variation (so it could have WG effect)
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Between-Group vs. Within-Group Effects
• Between-group and within-group effects in SAME direction

 SES Achievement?
 BG: Schools with more money than other schools may have 

greater mean achievement than schools with less money
 WG: Kids with more money than other kids in their school may have greater

achievement than other kids in their school (regardless of school mean SES)

• Between-group and within-group effects in OPPOSITE directions
 Body mass  life expectancy in animals (Curran and Bauer, 2011)?

 BG: Larger species tend to have longer life expectancies than smaller species
(e.g., whales live longer than cows, cows live longer than ducks)

 WG: Within a species, relatively bigger animals have shorter life expectancy 
(e.g., over-weight ducks die sooner than healthy-weight ducks)

• Variables have different meanings and different scales across 
levels (so “one-unit” effects will rarely be the same across levels)!
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Predictors in MLM for Clustered Data
• BUT we still need to distinguish level-2 BG effects from level-1 

WG effects of level-1 predictors:  NO SMUSHING ALLOWED

• Options for representing level-2 BG variance as a predictor:
 Use obtained group mean of level-1 xij from your sample (labeled as 

GMxj or �𝐗𝐗𝐣𝐣), centered at a constant so that 0 is a meaningful value

 Use actual group mean of level-1 xij from outside data (also centered so 
0 is meaningful)  better if your sample is not the full population

• Can use either Group-MC or Grand-MC for level-1 predictors 
(where Group-MC is like Person-MC in longitudinal models)
 Level-1 Group-MC  center at a VARIABLE:  𝐖𝐖𝐖𝐖𝐱𝐱𝐢𝐢𝐢𝐢 = 𝐱𝐱𝐢𝐢𝐢𝐢 − �𝐗𝐗𝐣𝐣
 Level-1 Grand-MC  center at a CONSTANT: 𝐋𝐋𝐋𝐋𝐋𝐋𝐢𝐢𝐢𝐢 = 𝐱𝐱𝐢𝐢𝐢𝐢 − 𝑪𝑪

 Use L1xij when including the actual group mean instead of sample group mean

CLDP 945:  Lecture 6 13



3 Kinds of Effects for Level-1 Predictors
• Is the Between-Group (BG) effect significant?

 Are groups with higher predictor values than other groups also higher on Y 
than other groups, such that the group mean of the person-level predictor 
𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 accounts for level-2 random intercept variance (τU2 0)?

• Is the Within-Group (WG) effect significant?
 If you have higher predictor values than others in your group, do you also have 

higher outcomes values than others in your group, such that the within-group 
deviation 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 accounts for level-1 residual variance (σe2)?

• Are the BG and WG effects different sizes: Is there a contextual effect?
 After controlling for the absolute value of level-1 predictor for each person, is 

there still an incremental contribution from having a higher group mean of the 
predictor (i.e., does a group’s general tendency predict τU2 0 above and beyond)?

 If there is no contextual effect, then the BG and WG effects of the level-1 
predictor show convergence, such that their effects are of equivalent magnitude
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Clustered Data Model with
Group-Mean-Centered Level-1 𝐱𝐱𝐢𝐢𝐢𝐢

 WG and BG Effects directly through separate parameters

𝐱𝐱𝐢𝐢𝐢𝐢 is group-mean-centered into WGxij, with GMxj at L2:

Level 1:  yij = β0j + β1j(WGxij) + eij

Level 2: β0j = γ00 + γ01(GMxj) + U0j

β1j = γ10

γ10 = WG main 
effect of having 
more 𝐱𝐱𝐢𝐢𝐢𝐢 than others 
in your group

γ01 = BG main effect
of having more �𝐗𝐗𝐣𝐣
than other groups

Because WGxij and GMxj
are uncorrelated, each 
gets the total effect for 
its level (WG=L1, BG=L2)

𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣 − �𝐗𝐗𝐣𝐣  it has
only Level-1 WG variation 

𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 = �𝐗𝐗𝐣𝐣 − 𝑪𝑪 it has
only Level-2 BG variation
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3 Kinds of Effects for Level-1 Predictors
• What Group-Mean-Centering tells us directly:

• Is the Between-Group (BG) effect significant?
 Are groups with higher predictor values than other groups also higher on Y 

than other groups, such that the group mean of the person-level predictor 
𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 accounts for level-2 random intercept variance (τU2 0)?

 This would be indicated by a significant fixed effect of 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣
 Note: this is NOT controlling for the absolute value of xij for each person

• Is the Within-Group (WG) effect significant?
 If you have higher predictor values than others in your group, do you also have 

higher outcomes values than others in your group, such that the within-group 
deviation 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 accounts for level-1 residual variance (σe2)?

 This would be indicated by a significant fixed effect of 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢
 Note: this is represented by the relative value of xij, NOT the absolute value of xij
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3 Kinds of Effects for Level-1 Predictors
• What Group-Mean-Centering DOES NOT tell us directly:

• Are the BG and WG effects different sizes: Is there a contextual effect?
 After controlling for the absolute value of the level-1 predictor for each person, 

is there still an incremental contribution from the group mean of the predictor
(i.e., does a group’s general tendency predict τU2 0 above and beyond just the 
person-specific value of the predictor)?

 In clustered data, the contextual effect is phrased as “after controlling for the 
individual, what is the additional contribution of the group”?

• To answer this question about the contextual effect for the 
incremental contribution of the group mean, we have two options:
 Ask for the contextual effect via an ESTIMATE statement in SAS 

(or TEST in SPSS, or NEW in Mplus, or LINCOM in STATA):  WGx −1 GMx 1

 Use “grand-mean-centering” for level-1 xij instead:  𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝑪𝑪
 centered at a CONSTANT, NOT A LEVEL-2 VARIABLE

 Which constant only matters for what the reference point is; it could be the grand mean or other
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Group-MC vs. Grand-MC 
for Level-1 Predictors

Level 2 Original Group-MC Level 1 Grand-MC Level 1
�𝐗𝐗𝐣𝐣 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣 = �𝐗𝐗𝐣𝐣 − 𝟓𝟓 𝐱𝐱𝐢𝐢𝐢𝐢 𝐖𝐖𝐖𝐖𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐢𝐢 − �𝐗𝐗𝐣𝐣 𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝟓𝟓

3 −2 2 −1 −3

3 −2 4 1 −1

7 2 6 −1 1

7 2 8 1 3

Using Group-MC, 
𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 has NO level-2 
BG variation, so it is not 
correlated with 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣

Using Grand-MC, 𝐋𝐋𝐋𝐋𝐋𝐋𝐢𝐢𝐢𝐢
STILL has level-2 BG 
variation, so it is STILL 
CORRELATED with 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣

Same 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 goes into 
the model using either 
way of centering the 

level-1 variable xij

So the effects of GMxj and L1xij when included together under Grand-MC 
will be different than their effects would be if they were by themselves…
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WRONG WAY: Clustered Data Model with
𝐱𝐱𝐢𝐢𝐣𝐣 represented at Level 1 Only:
 WG and BG Effects are Smushed Together

𝐱𝐱𝐢𝐢𝐢𝐢 is grand-mean-centered into L1xij, WITHOUT GMxj at L2:

Level 1:  yij = β0j + β1j(L1xij) + eij

Level 2: β0j = γ00 + U0j

β1j = γ10

γ10 = *smushed* 
WG and BG effects
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𝐋𝐋𝐋𝐋𝐋𝐋𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝑪𝑪 it still 
has both Level-2 BG and 
Level-1 WG variation 

Because L1xij still contains 
its original 2 different kinds 
of variation (BG and WG), 
its 1 fixed effect has to do 
the work of 2 predictors!

A *smushed* effect is also referred to as the 
convergence, conflated, or composite effect



Convergence (Smushed) Effect 
of a Level-1 Predictor

• The convergence effect will often be closer to the within-group effect
(due to larger level-1 sample size and thus smaller SE)

• It is the rule, not the exception, that between and within effects differ
(Snijders & Bosker, 1999, p. 52-56, and personal experience!)

• However—when grand-mean-centering a level-1 predictor, convergence is 
testable by including a contextual effect (carried by the group mean) 
for how the BG effect differs from the WG effect…

Adapted from 
Raudenbush & Bryk 

(2002, p. 138)
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Clustered Data Model with
Grand-Mean-Centered Level-1 𝐱𝐱𝐢𝐢𝐢𝐢

 Model tests difference of WG vs. BG effects (It’s been fixed!)

𝐱𝐱𝐢𝐢𝐢𝐢 is grand-mean-centered into L1xij, WITH GMxj at L2:

Level 1:  yij = β0j + β1j(L1xij) + eij

Level 2: β0j = γ00 + γ01(GMxj) + U0j

β1j = γ10
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𝐋𝐋𝐋𝐋𝐋𝐋𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝑪𝑪 it still 
has both Level-2 BG and 
Level-1 WG variation 

𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 = �𝐗𝐗𝐣𝐣 − 𝑪𝑪 it has
only Level-2 BG variation

γ10 becomes the WG 
effect unique
level-1 effect after 
controlling for 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣

γ01 becomes the contextual effect that indicates
how the BG effect differs from the WG effect 
 unique level-2 effect after controlling for 𝐋𝐋𝐋𝐋𝐋𝐋𝐢𝐢𝐢𝐢
 does group matter beyond individuals?



Group-MC and Grand-MC Models are Equivalent 
Given a Fixed Level-1 Main Effect Only

Group-MC: 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣
Level-1:  yij = β0j + β1j(𝐱𝐱𝐢𝐢𝐢𝐢 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣) + eij

Level-2: β0j = γ00 + γ01(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + U0j

β1j = γ10

yij = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣) + U0j + eij

yij = γ00 + (γ01 − γ10)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣) + U0j + eij

Grand-MC: 𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣
Level-1:   yij = β0j + β1j(𝐱𝐱𝐢𝐢𝐣𝐣) + eij

Level-2:  β0j = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + U0j

β1j = γ10

 yij = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣) + U0j + eij

Grand-MCGroup-MCEffect

γ01γ01 − γ10Contextual

γ01 + γ10γ01BG Effect

γ10γ10WG Effect

γ00γ00Intercept

Composite Model: 
 As Group-MC 
 As Grand-MC
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Contextual Effects in Clustered Data
• Group-MC is equivalent to Grand-MC if the group mean of the level-1 

predictor is included and the level-1 effect is not random
• Grand-MC may be more convenient in clustered data due to its ability to 

directly provide contextual effects

• Example: Effect of SES for students (nested in schools) on achievement:

• Group-MC of level-1 student SESij , school mean SESj included at level 2
 Level-1 WG effect: Effect of being rich kid relative to your school

(is already purely WG because of centering around SESj)

 Level-2 BG effect: Effect of going to a rich school NOT controlling for kid SESij

• Grand-MC of level-1 student SESij , school mean SESj included at level 2
 Level-1 WG effect: Effect of being rich kid relative to your school 

(is purely WG after statistically controlling for SESj)

 Level-2 Contextual effect: Incremental effect of going to a rich school 
(after statistically controlling for student SES)
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3 Kinds of Effects for Level-1 Predictors
• Is the Between-Group (BG) effect significant?

 Are groups with higher predictor values than other groups also higher on Y 
than other groups, such that the group mean of the person-level predictor 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣
accounts for level-2 random intercept variance (τU2 0)?

 Given directly by level-2 effect of GMxj if using Group-MC for the level-1 predictor 
(or can be requested via ESTIMATE if using Grand-MC for the level-1 predictor)

• Is the Within-Group (WG) effect significant?
 If you have higher predictor values than others in your group, do you also have higher 

outcomes values than others in your group, such that the within-group deviation 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢
accounts for level-1 residual variance (σe2)?

 Given directly by the level-1 effect of WGxij if using Group-MC —OR — given directly 
by the level-1 effect of L1xij if using Grand-MC and including GMxj at level 2 
(without GMxj, the level-1 effect of L1xij if using Grand-MC is the smushed effect)

• Are the BG and WG effects different sizes: Is there a contextual effect?
 After controlling for the absolute value of the level-1 predictor for each person, is there 

still an incremental contribution from the group mean of the predictor (i.e., does a group’s 
general tendency predict τU2 0 above and beyond the person-specific predictor value)?

 Given directly by level-2 effect of GMxj if using Grand-MC for the level-1 predictor 
(or can be requested via ESTIMATE if using Group-MC for the level-1 predictor)
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Variance Accounted For By Level-2 Predictors
• Fixed effects of level 2 predictors by themselves:

 Level-2 (BG) main effects reduce level-2 (BG) random intercept variance

 Level-2 (BG) interactions also reduce level-2 (BG) random intercept variance

• Fixed effects of cross-level interactions (level 1* level 2):
 If the interacting level-1 predictor is random, any cross-level interaction with it 

will reduce its corresponding level-2 BG random slope variance (that line’s U)

 If the interacting level-1 predictor not random, any cross-level interaction with it 
will reduce the level-1 WG residual variance instead
 This is because the level-2 BG random slope variance would have been created 

by decomposing the level-1 residual variance in the first place
 The level-1 effect would then be called “systematically varying” to reflect a 

compromise between “fixed” (all the same) and “random” (all different)—it’s not that 
each group needs their own slope, but that the slope varies systematically across 
groups as a function of a known group predictor (and not otherwise)
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Variance Accounted For By Level-1 Predictors

• Fixed effects of level 1 predictors by themselves:
 Level-1 (WG) main effects reduce Level-1 (WG) residual variance 

 Level-1 (WG) interactions also reduce Level-1 (WG) residual variance

• What happens at level 2 depends on what kind of variance the 
level-1 predictor has:
 If the level-1 predictor ALSO has level-2 variance (e.g., Grand-MC predictors), 

then its level-2 variance will also likely reduce level-2 random intercept variance

 If the level-1 predictor DOES NOT have level-2 variance (e.g., Group-MC 
predictors), then its reduction in the level-1 residual variance will cause an 
INCREASE in level-2 random intercept variance 
 Same thing happens with Grand-MC level-1 predictors, but you don’t generally see it

 It’s just an artifact that the estimate of true random intercept variance is:
True τU2 0= observed τU2 0 −

σe2

𝑛𝑛
 so if only σe2 decreases, τU2 0 increases
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The Joy of Interactions Involving 
Level-1 Predictors

• Must consider interactions with both its BG and WG parts:
• Example: Does the effect of employee motivation (xij) on employee performance 

interact with type of business (for profit or non-profit; Typej)?

• Group-Mean-Centering:
 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐣𝐣 ∗ 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣 Does the WG motivation effect differ between business types?
 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 ∗ 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣 Does the BG motivation effect differ between business types?

 Moderation of total group motivation effect (not controlling for individual motivation)
 If forgotten, then 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣 moderates the motivation effect only at level 1 (WG, not BG)

• Grand-Mean-Centering:
 𝐋𝐋𝐋𝐋𝐋𝐋𝐢𝐢𝐣𝐣 ∗ 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣 Does the WG motivation effect differ between business types?
 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 ∗ 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣 Does the contextual motivation effect differ b/t business types?

 Moderation of incremental group motivation effect controlling for employee motivation 
(moderation of the “boost” in group performance from working with motivated people) 

 If forgotten, then although the level-1 main effect of motivation has been un-smushed via 
the main effect of 𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣, the interaction of 𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 ∗ 𝐓𝐓𝐓𝐓𝐓𝐓𝐞𝐞𝐣𝐣 would still be smushed
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Interactions with Level-1 Predictors: 
Example: Employee Motivation (xij) by Business Type (Typej)

Group-MC: 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣
Level-1:  yij = β0j + β1j(𝐱𝐱𝐢𝐢𝐢𝐢 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣) + eij

Level-2: β0j = γ00 + γ01(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ02(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣) + γ03(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + U0j

β1j = γ10 + γ11(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)

Composite: yij = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣) + U0j + eij
+ γ02(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣) + γ03(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ11(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣)

Grand-MC: 𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣
Level-1:   yij = β0j + β1j(𝐱𝐱𝐢𝐢𝐣𝐣) + eij

Level-2:  β0j = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ02(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣) + γ03(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + U0j

β1j = γ10 + γ11(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)

Composite: yij = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣) + U0j + eij
+ γ02(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣) + γ03(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ11(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐱𝐱𝐢𝐢𝐣𝐣)
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Interactions Involving Level-1 Predictors 
Belong at Both Levels of the Model

On the left below  Group-MC: 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣
yij = γ00 + γ01(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐢𝐢 − 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣) + U0j + eij
+ γ02(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣) + γ03(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ11(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐱𝐱𝐢𝐢𝐢𝐢 − 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣)

yij = γ00 + (γ01 − γ10)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐢𝐢) + U0j + eij
+ γ02(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣) + (γ03 − γ11)(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ11(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐱𝐱𝐢𝐢𝐢𝐢)

On the right below  Grand-MC: 𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣
yij = γ00 + γ01(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐢𝐢) + U0j + eij

+ γ02(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣) + γ03(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ11(𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣)(𝐱𝐱𝐢𝐢𝐢𝐢)

Intercept: γ00 = γ00 BG Effect: γ01 = γ01 + γ10 Contextual: γ01 = γ01 − γ10

WG Effect: γ10  = γ10 BG*Type Effect: γ03 = γ03 + γ11 Contextual*Type: γ03 = γ03 − γ11 

Type Effect: γ20 = γ20 BG*WG or Contextual*WG is the same:  γ11 = γ11

 As Group-MC 

 As Grand-MC
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After adding an 
interaction for 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣
with 𝐱𝐱𝐢𝐢𝐢𝐢at both levels, 
then the Group-MC 

and Grand-MC 
models are equivalent



Intra-variable Interactions
• Still must consider interactions with both its BG and WG parts!
• Example: Does the effect of employee motivation (xij) on employee 

performance interact with business group mean motivation (GMxj)?

• Group-Mean-Centering:
 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 ∗ 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 Does the WG motivation effect differ by group motivation?
 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 ∗ 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣 Does the BG motivation effect differ by group motivation?

 Moderation of total group motivation effect (not controlling for individual motivation)
 If forgotten, then 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 moderates the motivation effect only at level 1 (WG, not BG)

• Grand-Mean-Centering:
 𝐋𝐋𝐋𝐋𝐋𝐋𝐢𝐢𝐢𝐢 ∗ 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣 Does the WG motivation effect differ by group motivation?
 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣 ∗ 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣 Does the contextual motivation effect differ by group motiv.?

 Moderation of incremental group motivation effect controlling for employee motivation 
(moderation of the boost in group performance from working with motivated people) 

 If forgotten, then although the level-1 main effect of motivation has been un-smushed via 
the main effect of 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣, the interaction of 𝐋𝐋𝐋𝐋𝐋𝐋𝐢𝐢𝐢𝐢 ∗ 𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣 would still be smushed
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Intra-variable Interactions: 
Example: Employee Motivation (xij) by Business Mean Motivation (GMxj)

Group-MC: 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣
Level-1:  yij = β0j + β1j(𝐱𝐱𝐢𝐢𝐢𝐢 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣) + eij

Level-2: β0j = γ00 + γ01(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ02(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + U0j

β1j = γ10 + γ11(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)

Composite: yij = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣) + U0j + eij
+ γ02(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ11(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣)

Grand-MC: 𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣
Level-1:   yij = β0j + β1j(𝐱𝐱𝐢𝐢𝐣𝐣) + eij

Level-2:  β0j = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ02(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + U0j

β1j = γ10 + γ11(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)

Composite: yij = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣) + U0j + eij
+ γ02(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ11(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐱𝐱𝐢𝐢𝐣𝐣)
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Intra-variable Interactions: 
Example: Employee Motivation (xij) by Business Mean Motivation (GMxj)

On the left below  Group-MC: 𝐖𝐖𝐖𝐖𝐖𝐖𝐢𝐢𝐢𝐢 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣
yij = γ00 + γ01(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐢𝐢− 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣) + U0j + eij

+ γ02(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ11(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐱𝐱𝐢𝐢𝐢𝐢− 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣)

yij = γ00 + (γ01 − γ10)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐢𝐢) + U0j + eij
+ (γ02 − γ11)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ11(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐱𝐱𝐢𝐢𝐢𝐢)

On the right below  Grand-MC: 𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣
yij = γ00 + γ01(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐢𝐢) + U0j + eij

+ γ02(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣) + γ11(𝐆𝐆𝐆𝐆𝐆𝐆𝐣𝐣)(𝐱𝐱𝐢𝐢𝐢𝐢)

Intercept: γ00 = γ00 BG Effect: γ01 = γ01 + γ10 Contextual: γ01 = γ01 − γ10

WG Effect: γ10  = γ10 BG2 Effect: γ02 = γ02 + γ11 Contextual2: γ02 = γ02 − γ11 

BG*WG or Contextual*WG is the same:  γ11 = γ11

 As Group-MC 

 As Grand-MC
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After adding an 
interaction for 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐣𝐣
with 𝐱𝐱𝐢𝐢𝐢𝐢at both levels, 
then the Group-MC 

and Grand-MC models 
are equivalent



When Group-MC ≠ Grand-MC: 
Random Effects of Level-1 Predictors

Group-MC: 𝐖𝐖𝐆𝐆𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣
Level-1:   yij = β0j + β1j(𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣) + eij

Level-2:  β0j = γ00 + γ01(𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣) + U0j

β1j = γ10 + U1j

yij = γ00 + γ01(𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣) + U0j + U1j(𝐱𝐱𝐢𝐢𝐣𝐣 − 𝐆𝐆𝐆𝐆𝐱𝐱𝐣𝐣) + eij

Grand-MC: 𝐋𝐋𝐋𝐋𝐱𝐱𝐢𝐢𝐣𝐣 = 𝐱𝐱𝐢𝐢𝐣𝐣
Level-1:   yij = β0j + β1j(𝐱𝐱𝐢𝐢𝐣𝐣) + eij

Level-2:  β0j = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + U0j

β1j = γ10 + U1j

 yij = γ00 + γ01(𝐆𝐆𝐌𝐌𝐌𝐌𝐣𝐣) + γ10(𝐱𝐱𝐢𝐢𝐣𝐣) + U0j + U1j(𝐱𝐱𝐢𝐢𝐣𝐣) + eij
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Variance due to 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣
is removed from the 

random slope in 
Group-MC. 

Variance due to 𝐆𝐆𝐌𝐌𝐱𝐱𝐣𝐣 is 
still part of the random 
slope in Grand-MC. So 

these models cannot be 
made equivalent. 



Random Effects of Level-1 Predictors
• Random intercepts mean different things under each model:

 Group-MC Group differences at WGxij =0 (that every group has)

 Grand-MC  Group differences at L1xij=0 (that not every group will have)

• Differential shrinkage of the random intercepts results from 
differential reliability of the intercept data across models:
 Group-MC Won’t affect shrinkage of slopes unless highly correlated

 Grand-MC  Will affect shrinkage of slopes due to forced extrapolation

• As a result, the random slope variance may be smaller
under Grand-MC than under Group-MC
 Problem worsens with greater ICC of level-1 predictor (more extrapolation)

 Anecdotal example was presented in Raudenbush & Bryk (2002; chapter 5)
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Bias in Random Slope Variance

Top right: Intercepts and slopes 
are homogenized in Grand-MC 
because of intercept extrapolation

Bottom: Downwardly-biased 
random slope variance in 
Grand-MC relative to Group-MC

OLS Per-Group Estimates EB Shrunken Estimates

Level-1 X Level-1 X

Group-MC

Grand-MC
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MLM for Clustered Data: Summary
• Models now come in only two kinds: “empty” and “conditional”

 The lack of a comparable dimension to “time” simplifies things greatly!

• L2 = Between-Group, L1 = Within-Group (between-person)
 Level-2 predictors are group variables: can have fixed or systematically 

varying effects (but not random effects in two-level models)

 Level-1 predictors are person variables: can have fixed, random, or 
systematically varying effects

• No smushing main effects or interactions of level-1 predictors:
 Group-MC at Level 1: Get L1=WG and L2=BG effects directly

 Grand-MC at Level 1: Get L1=WG and L2=contextual effects directly 
 As long as some representation of the L1 effect is included in L2; 

otherwise, the L1 effect (and any interactions thereof) will be smushed
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More Complex Multilevel Designs
• Multilevel models are specified based on the relevant dimensions by which 

observations differ each other, and how the units are organized

• Two-level models have at least two piles of variance, 
in which level-1 units are nested within level-2 units:
 Longitudinal Data: Time nested within Persons
 Students nested within Teachers

• Three-level models have at least three piles of variance, 
in which level-2 units are nested within level-3 units:
 Time nested within Persons within Families
 Student nested within Teachers within Schools

• In other designs, multiple sources of systematic variation may be present, 
but the sampling may be crossed instead… 
 Same idea as crossed random effects (i.e., as for persons and items), but these are 

known as “cross-classified” models in the clustered data world
 Here are a few examples on when this might happen…
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Kids, Schools, and Neighborhoods
• Kids are nested within schools AND within neighborhoods
• Not all kids from same neighborhood live in same school, so 

schools and neighborhoods are crossed at level 2
• Can include predictors for each source of variation

Neighbor-
hoods

Level 2

Kids
Level 1

Schools

Public/
PrivateS

Mean
SESN

Kid
IQkSN

SM 
Kid IQS

NM
Kid IQN
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Kids, Schools, and Neighborhoods
ykSN = γ000  fixed intercept (all x’s = 0)

+ γ010(PrivateS) + γ020(SMIQS)  school effects
+ γ001(SESN) + γ002(NMIQN)     neighborhood effects
+ γ100(KidIQkSN)  kid effects
+ U0S0  random effect of school
+ U00N  random effect of neighborhood
+ ekSN  residual kid-to-kid variation
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Time (t), Students (s), and Classes (c)
• Students are nested within Classes at each occasion…
• But if students move into different classes across time… 

 Time at level 1 is nested within Student AND within Classes
 Student is crossed with Class at level 2

• How to model a time-varying random classroom effect?
 This is the basis of so-called “value-added models”

• (At least) Two options via fixed or random effects:

 Acute effect: Effect for class operates only when kids are in the class
 e.g., Class effect  teacher bias
 Once a student is out of the class, class effect is no longer present

 Transfer effect: Effect for class operates now and in the future…
 e.g., Class effect  differential learning
 Effect stays with the student in the future (i.e., a “layered” value-added model)
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Time (t), Students (s), and Classes (c)
• Custom-built intercepts for time-varying effects of classes
 An intercept is usually a column of 1’s, but ours will be 0’s 

and 1’s to serve as switches that turn on/off class effects
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Student 

ID 
Class 

ID Grade Year Year 0  
Class 

Year 1  
Class 

Year 2  
Class 

Year 0  
Intercept 

Year 1  
Intercept 

Year 2  
Intercept 

Year 0  
Effect 

Year 1  
Effect 

Year 2  
Effect 

101 1 3 0 1 −99 43 1 0 0 1 0 0 
101 −99 4 1 1 −99 43 0 0 0 0 0 0 
101 43 5 2 1 −99 43 0 0 1 1 0 1 

102 3 3 0 3 21 42 1 0 0 1 0 0 
102 21 4 1 3 21 42 0 1 0 1 1 0 
102 42 5 2 3 21 42 0 0 1 1 1 1 

                          
 

Intercepts for 
Acute Effects

Intercepts for 
Transfer Effects

Per-Year Class ID  
(−99 = missing)



Time (t), Students (s), and Classes (c)
• Hoffman (2015) Equation 11.3: fixed effects model for class as 

a categorical time-varying predictor:
 Allows for control of classes only….

• Hoffman (2015) Equation 11.4: class as a random effects 
crossed with students at level 2:
 Controls and models class-related variance so it can be predicted
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More on Cross-Classified Models
• In crossed models, lower-level predictors can have 

random slopes of over higher levels AND random slopes 
of the other crossed factor at the same level
 Example: Kids, Schools, and Neighborhoods (data permitting)

 Kid effects could vary over schools AND/OR neighborhoods
 School effects could vary over neighborhoods (both level 2)
 Neighborhood effects could vary over schools (both level 2)

• Concerns about smushing still apply over both level-2’s 
 Separate contextual effects of kid predictors for schools and 

neighborhoods (e.g., after controlling for how smart you are, 
it matters incrementally whether you go to a smart school AND 
if you live in a neighborhood with smart kids) 
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Summary: Nested or Crossed Designs
• Dimensions of sampling can result in systematic differences 

(i.e., dependency) that needs to be accounted for in the 
model for the variances
 Sometimes this dependency is from nested sampling

 Sometimes this dependency is from crossed sampling

• Multilevel models that include crossed random effects 
(or cross-classified models):
 Can address this dependency (statistical motivation)

 Can quantify and predict the amount of variation due to each source 
(substantive motivation)

 Can include simultaneous hypothesis tests pertaining to each source 
of variation (substantive motivation)
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