Two-Level Models for Clustered* Data

- Today's Class:
 - > Fixed vs. Random Effects for Modeling Clustered Data
 - > ICC and Design Effects in Clustered Data
 - > Group-Mean-Centering vs. Grand-Mean Centering
 - Model Extensions under Group-MC and Grand-MC
 - > Nested vs. Crossed Groups Designs
- * Clustering = Nesting = Grouping...

MLM for Clustered Data

- So far we've built models to account for dependency created by repeated measures (time within person, or trials within persons crossed with items)
- Now we examine two-level models for more general examples of nesting/clustering/grouping:
 - > Students within schools, athletes within teams, patients within doctors
 - > Siblings within families, partners within dyads
- Residuals of people from same group are likely to be correlated due to group differences (e.g., purposeful grouping or shared experiences create dependency)
- Recurring theme: You still have to care about group-level variation, even if that's not the point of your study

2 Options for Differences Across Groups

Represent Group Differences as Fixed Effects

- Include (#groups-1) contrasts for group membership in the model for the means (via CLASS)→ so group is NOT another "level"
- Permits inference about differences between specific groups, but you cannot include between-group predictors (group is saturated)
- Snijders & Bosker (1999) ch. 4, p. 44 recommend if #groups < 10ish

Represent Group Differences as a Random Effect

- Include a random intercept variance in the model for the variance, such that group differences become another "level"
- Permits inference about differences across groups more generally, for which you can test effects of between-group predictors
- Better if #groups > 10ish and you want to **predict** group differences

Empty Means, Random Intercept Model

MLM for Clustered Data:

- Change in notation:
 - > i = level 1, j = level 2
- Level 1:
 - $\mathbf{y}_{ij} = \mathbf{\beta}_{0j} + \mathbf{e}_{ij}$
- Level 2:

$$\beta_{0j} = \gamma_{00} + U_{0j}$$

3 Total Parameters: **Model for the Means (1):**

Fixed Intercept γ₀₀

Model for the Variance (2):

• Level-1 Variance of $\frac{e_{ij}}{\sigma_e^2} \rightarrow \sigma_e^2$

• Level-2 Variance of
$$U_{0j} \rightarrow \tau_{U_0}^2$$

<u>Residual</u> = <u>person</u>-specific deviation from <u>group's</u> predicted outcome

Fixed Intercept =grand mean (because no predictors yet) Random Intercept = group-specific deviation from predicted intercept

Composite equation: $y_{ij} = (\gamma_{00} + U_{0j}) + e_{ij}$

Matrices in a Random Intercept Model

<u>RI and DIAG</u>: Total predicted data matrix is called V matrix, created from the G [TYPE=UN] and R [TYPE=VC] matrices as follows:

$\mathbf{V} = \mathbf{Z} * \mathbf{G} * \mathbf{Z}^{\mathrm{T}} +$	R	=	\mathbf{V}	
$\mathbf{V} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} \tau_{U_0}^2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} +$	$\sigma_e^2 0 0$	$0 \int \tau_{U_0}^2 + \sigma_e^2$	$ au_{U_0}^2 au_{U_0}^2$	$\begin{bmatrix} \tau_{U_0}^2 \end{bmatrix}$
	$0 \sigma_{\rm e}^2 0$	$0 \mid = \tau_{U_0}^2$	$\tau_{U_0}^2 + \sigma_e^2 \qquad \tau_{U_0}^2$	$ au_{U_0}^2$
	$0 0 \sigma_e^2$	$0 \begin{bmatrix} - \\ 0 \end{bmatrix} \tau_{U_0}^2$	$\tau_{U_0}^2 \qquad \tau_{U_0}^2 + \sigma_e^2$	$ au_{U_0}^2$
	0 0 0	$\sigma_{e}^{2} \ \left[\ \tau_{U_{0}}^{2} \right]$	$\tau^2_{U_0} \qquad \tau^2_{U_0}$	$\tau_{U_0}^2 + \sigma_e^2 \Big]$

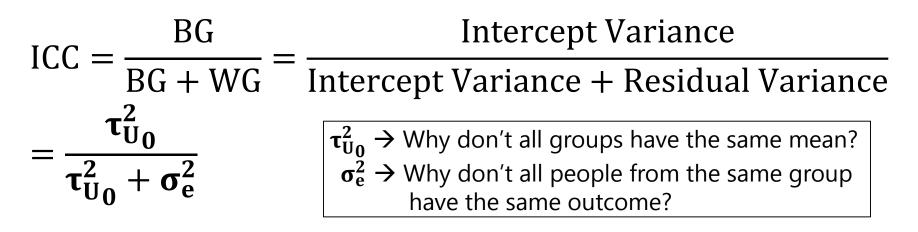
VCORR then provides the intraclass correlation, calculated as:

ICC = $\tau_{U_0}^2 / (\tau_{U_0}^2 + \sigma_e^2)$

[1	ICC	ICC	ICC	assumes a
ICC	1	ICC	ICC	constant
				correlation
ICC	ICC	ICC	1	over time

The **G**, **Z**, and **R** matrices still get combined to create the **V** matrix, except that they are now <u>per group</u>. **R** and **V** have *n* rows by *n* columns, in which n = # level-1 units, which is <u>now people</u>, not time. Thus, no type of **R** matrix other than VC will be used, and <u>REPEATED is not needed</u>.

Intraclass Correlation (ICC)



- ICC = Proportion of total variance that is between groups
- ICC = Average correlation among persons from same group
- ICC is a standardized way of expressing how much we need to worry about *dependency due to <u>group</u> mean differences* (i.e., ICC is an effect size for *constant* <u>group</u> dependency)
 - Dependency of other kinds can still be created by differences between groups in the effects of predictors (stay tuned)

Effects of Clustering on Effective N

- **Design Effect** expresses how much effective sample size needs to be adjusted due to clustering/grouping
- **Design Effect** = ratio of the variance using a given sampling design to the variance using a simple random sample from the same population, given the same total sample size either way

-n = # level-1 units

• Design Effect =
$$1 + [(n-1) * ICC]$$

- Effective sample size $\rightarrow N_{effective} = \frac{\# \text{ Total Observations}}{\text{Design Effect}}$
- As ICC goes UP and cluster size goes UP, the effective sample size goes DOWN
 - See Snijders & Bosker (2012) for more info and for a modified formula that takes unequal group sizes into account

Design Effects in 2-Level Nesting

- Design Effect = 1 + [(n-1) * ICC]
- Effective sample size $\rightarrow N_{effective} = \frac{\# \text{ Total Observations}}{\text{Design Effect}}$
- n=5 patients from each of 100 doctors, ICC = .30?
 - > Patients Design Effect = 1 + (4 * .30) = 2.20
 - ▷ N_{effective} = 500 / 2.20 = 227 (not 500)
- n=20 students from each of 50 schools, ICC = .05?
 - Students Design Effect = 1 + (19 * .05) = 1.95
 - > $N_{effective} = 1000 / 1.95 = 513$ (not 1000)

Does a non-significant ICC mean you can ignore groups and just do a regression?

- Effective sample size depends on BOTH the ICC and the number of people per group: As ICC goes UP and group size goes UP, the effective sample size goes DOWN
 - > So there is NO VALUE OF ICC that is "safe" to ignore, not even ~0!
 - An ICC=0 in an *empty (unconditional)* model can become ICC>0 after adding level-1 predictors because reducing the residual variance leads to an increase in the random intercept variance (*→ conditional* ICC > 0)
- So just do a multilevel analysis anyway...
 - Even if "that's not your question"... because people come from groups, you still have to model group dependency appropriately because of:
 - Effect of clustering on level-1 fixed effect SE's \rightarrow **biased SEs**
 - Potential for **contextual effects** of level-1 predictors

Predictors in MLM for Clustered Data Example: Achievement in Students nested in Schools

- <u>Level-2</u> predictors now refer to <u>Group-Level Variables</u>
 - Can only have fixed or systematically varying effects (level-2 predictors cannot have random effects in a two-level model, same as before)
 - > e.g., Does mean school achievement differ b/t rural and urban schools?
- <u>Level-1</u> predictors now refer to <u>Person-Level</u> Variables
 - > Can have fixed, systematically varying, or random effects over groups
 - > e.g., Does student achievement differ between boys and girls?
 - <u>Fixed effect</u>: Is there a gender difference in achievement, period?
 - <u>Systematically varying effect</u>: Does the gender effect differ b/t rural and urban schools? (but the gender effect is the same within rural and within urban schools)
 - <u>Random effect:</u> Does the gender effect differ *randomly* across schools?
 - We can skip all the steps for building models for "time" and head straight to predictors (given that level-1 units are exchangeable here)

Level-1 (Person-Level) Predictors

- Modeling of level-1 predictors is complicated (and usually done incorrectly) because each level-1 predictor is usually really 2 predictor variables (each with their own effect), not 1
- Example: Student SES when students are clustered in schools
 - > Some kids have more money than other kids in their school:
 - WG variation in SES (represented directly as deviation from school mean)
 - > Some schools have more money than other schools:
 - **BG variation in SES** (represented as school mean SES or via external info)
- Can quantify each source of variance with an ICC
 - ICC = (BG variance) / (BG variance + WG variance)
 - > ICC > 0? Level-1 predictor has BG variation (so it *could* have BG effect)
 - > ICC < 1? Level-1 predictor has WG variation (so it *could* have WG effect)

Between-Group vs.Within-Group Effects

- Between-group and within-group effects in <u>SAME</u> direction
 - > SES \rightarrow Achievement?
 - BG: <u>Schools</u> with more money <u>than other schools</u> may have <u>greater</u> mean achievement than schools with less money
 - WG: <u>Kids</u> with more money <u>than other kids in their school</u> may have <u>greater</u> achievement than other kids in their school (regardless of school mean SES)
- Between-group and within-group effects in <u>OPPOSITE</u> directions
 - > Body mass \rightarrow life expectancy in animals (Curran and Bauer, 2011)?
 - BG: <u>Larger species</u> tend to have longer life expectancies than <u>smaller species</u> (e.g., whales live longer than cows, cows live longer than ducks)
 - WG: Within a species, <u>relatively bigger</u> animals have <u>shorter</u> life expectancy (e.g., over-weight ducks die sooner than healthy-weight ducks)
- Variables have different meanings and different scales across levels (so "one-unit" effects will rarely be the same across levels)!

Predictors in MLM for Clustered Data

- BUT we still need to distinguish level-2 BG effects from level-1 WG effects of level-1 predictors: <u>NO SMUSHING ALLOWED</u>
- Options for representing level-2 BG variance as a predictor:
 - > Use **obtained** group mean of level-1 x_{ij} from your sample (labeled as **GMx**_j or \overline{X}_j), centered at a constant so that 0 is a meaningful value
 - > Use **actual** group mean of level-1 x_{ij} from outside data (also centered so 0 is meaningful) \rightarrow better if your sample is not the full population
- Can use either **Group-MC** or **Grand-MC** for level-1 predictors (where Group-MC is like Person-MC in longitudinal models)

> Level-1 Group-MC \rightarrow center at a VARIABLE: WGx_{ij} = $x_{ij} - \overline{X}_j$

- ≻ Level-1 Grand-MC → center at a CONSTANT: $L1x_{ij} = x_{ij} C$
 - Use $L1x_{ij}$ when including the actual group mean instead of sample group mean

3 Kinds of Effects for Level-1 Predictors

• Is the Between-Group (BG) effect significant?

> Are groups with higher predictor values <u>than other groups</u> also higher on Y <u>than other groups</u>, such that the group mean of the person-level predictor **GMx**_i accounts for level-2 random intercept variance $(\tau_{U_0}^2)$?

• Is the Within-Group (WG) effect significant?

If you have higher predictor values <u>than others in your group</u>, do you also have higher outcomes values <u>than others in your group</u>, such that the within-group deviation WGx_{ii} accounts for level-1 residual variance (σ_e²)?

• Are the BG and WG effects different sizes: Is there a contextual effect?

- > After controlling for the absolute value of level-1 predictor for each person, is there still <u>an incremental contribution from having a higher group mean</u> of the predictor (i.e., does a group's general tendency predict $\tau_{U_0}^2$ above and beyond)?
- If there is no contextual effect, then the BG and WG effects of the level-1 predictor show <u>convergence</u>, such that their effects are of equivalent magnitude

Clustered Data Model with **Group-Mean-Centered Level-1** x_{ii} → WG and BG Effects directly through <u>separate</u> parameters x_{ii} is group-mean-centered into WGx_{ii}, with GMx_i at L2: Level 1: $y_{ij} = \beta_{0j} + \beta_{1j}(WGx_{ij}) + e_{ij}$ $WGx_{ij} = x_{ij} - \overline{X}_j \rightarrow it$ has only Level-1 WG variation $\mathbf{GMx}_{i} = \overline{\mathbf{X}}_{i} - C \rightarrow \text{it has}$ Level 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + U_{0j}$ only Level-2 BG variation $\beta_{1i} = \mathbf{\gamma_{10}}$ Because WGx_{ii} and GMx_i γ_{10} = WG main γ_{01} = BG main effect are uncorrelated, each effect of having of having more \overline{X}_i gets the total effect for its level (WG=L1, BG=L2) more x_{ii} than others than other groups in your group

3 Kinds of Effects for Level-1 Predictors

• What Group-Mean-Centering tells us <u>directly</u>:

• Is the Between-Group (BG) effect significant?

- > Are groups with higher predictor values <u>than other groups</u> also higher on Y <u>than other groups</u>, such that the group mean of the person-level predictor **GMx**_j accounts for level-2 random intercept variance $(\tau_{U_0}^2)$?
- This would be indicated by a significant fixed effect of GMx_i
- > Note: this is NOT controlling for the absolute value of x_{ij} for each person

• Is the Within-Group (WG) effect significant?

- > If you have higher predictor values <u>than others in your group</u>, do you also have higher outcomes values <u>than others in your group</u>, such that the within-group deviation WGx_{ij} accounts for level-1 residual variance (σ_e^2)?
- > This would be indicated by a significant fixed effect of WGx_{ii}
- > Note: this is represented by the <u>relative</u> value of x_{ij} , NOT the <u>absolute</u> value of x_{ij}

3 Kinds of Effects for Level-1 Predictors

• What Group-Mean-Centering DOES NOT tell us <u>directly</u>:

• Are the **BG** and **WG** effects different sizes: Is there a **contextual** effect?

- > After controlling for the absolute value of the level-1 predictor for each person, is there still an incremental contribution from the group mean of the predictor (i.e., does a group's general tendency predict $\tau_{U_0}^2$ above and beyond just the person-specific value of the predictor)?
- In clustered data, the contextual effect is phrased as "after controlling for the individual, what is the additional contribution of the group"?
- To answer this question about the contextual effect for the incremental contribution of the group mean, we have two options:
 - ➢ Ask for the contextual effect via an ESTIMATE statement in SAS (or TEST in SPSS, or NEW in Mplus, or LINCOM in STATA): WGx −1 GMx 1
 - > Use "grand-mean-centering" for level-1 x_{ij} instead: $L1x_{ij} = x_{ij} C$ \rightarrow centered at a CONSTANT, NOT A LEVEL-2 VARIABLE
 - Which constant only matters for what the reference point is; it could be the grand mean or other

Group-MC vs. Grand-MC for Level-1 Predictors

	Level 2 O		Group-MC Level 1	Grand-MC Level 1		
$\overline{\mathbf{X}}_{\mathbf{j}}$	$\mathbf{GMx}_{\mathbf{j}} = \overline{\mathbf{X}}_{\mathbf{j}} - 5$	x _{ij}	$\mathbf{WGx}_{ij} = \mathbf{x}_{ij} - \ \overline{\mathbf{X}}_j$	$L1x_{ij} = x_{ij} - 5$		
3	-2	2 –1		-3		
3	-2	4	1	-1		
7	2	6	-1	1		
7	2	8	1	3		
the m way	Same GMx _j goes into the model using either way of centering the level-1 variable x _{ij}		Using Group-MC , WGx _{ij} has NO level-2 BG variation, so it is not correlated with GMx _j	Using Grand-MC , L1x _{ij} STILL has level-2 BG variation, so it is STILL CORRELATED with GMx _j		

So the effects of GMx_j and $L1x_{ij}$ when included together under Grand-MC will be different than their effects would be if they were by themselves...

WRONG WAY: Clustered Data Model with x_{ij} represented at Level 1 Only: → WG and BG Effects are <u>Smushed Together</u>

 x_{ij} is grand-mean-centered into L1 x_{ij} , <u>WITHOUT</u> GM x_j at L2:

Level 1:
$$y_{ij} = \beta_{0j} + \beta_{1j}(\mathbf{L1x_{ij}}) + \mathbf{e_{ij}}$$

Level 2:
$$\beta_{0j} = \gamma_{00} + U_{0j}$$

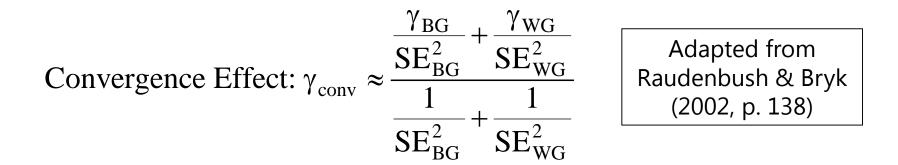
 $\beta_{1j} = \gamma_{10}$
 $\gamma_{10} = *smushed*$
WG and BG effects

A *smushed* effect is also referred to as the *convergence*, *conflated*, or *composite* effect

L1 $x_{ij} = x_{ij} - C \rightarrow \text{it still}$ has both Level-2 BG and Level-1 WG variation

Because L1x_{ij} still contains its original 2 different kinds of variation (BG and WG), its 1 fixed effect has to do the work of 2 predictors!

Convergence (Smushed) Effect of a Level-1 Predictor



- The convergence effect will often be closer to the within-group effect (due to larger level-1 sample size and thus smaller SE)
- It is the rule, not the exception, that between and within effects differ (Snijders & Bosker, 1999, p. 52-56, and personal experience!)
- However—when grand-mean-centering a level-1 predictor, convergence is testable by including a contextual effect (carried by the group mean) for how the BG effect differs from the WG effect...

Clustered Data Model with Grand-Mean-Centered Level-1 x_{ii}

→ Model tests difference of WG vs. BG effects (It's been fixed!)

 x_{ij} is grand-mean-centered into L1 x_{ij} , <u>WITH</u> GM x_j at L2:

Level 1:
$$y_{ij} = \beta_{0j} + \beta_{1j}(\mathbf{L1x_{ij}}) + \mathbf{e_{ij}}$$

Level 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + U_{0j}$

 $\beta_{1j} = \mathbf{\gamma_{10}}$

 $L1x_{ij} = x_{ij} - C \rightarrow it still$ has both Level-2 BG and Level-1 WG variation

$$\frac{\mathbf{GMx}_{j} = \overline{\mathbf{X}}_{j} - C \rightarrow \text{it has}}{\text{only Level-2 BG variation}}$$

 γ_{10} becomes the WG effect \rightarrow unique level-1 effect after controlling for GMx_i γ_{01} becomes the contextual effect that indicates how the BG effect differs from the WG effect \rightarrow unique level-2 effect after controlling for L1x_{ij} \rightarrow does group matter beyond individuals?

Group-MC and Grand-MC Models are Equivalent Given a Fixed Level-1 Main Effect Only

Contextual Effects in Clustered Data

- Group-MC is equivalent to Grand-MC if the group mean of the level-1 predictor is included and the level-1 effect is not random
- Grand-MC may be more convenient in clustered data due to its ability to directly provide contextual effects
- Example: Effect of SES for students (nested in schools) on achievement:
- **Group-MC** of level-1 student SES_{ij} , school mean \overline{SES}_{j} included at level 2
 - Level-1 WG effect: Effect of being rich kid relative to your school (is already purely WG because of centering around SES_j)
 - Level-2 BG effect: Effect of going to a rich school NOT controlling for kid SES_{ii}
- **Grand-MC** of level-1 student SES_{ij} , school mean \overline{SES}_{j} included at level 2
 - Level-1 WG effect: Effect of being rich kid relative to your school (is purely WG after *statistically* controlling for SES_i)
 - Level-2 Contextual effect: Incremental effect of going to a rich school (after statistically controlling for student SES)

3 Kinds of Effects for Level-1 Predictors

• Is the Between-Group (BG) effect significant?

- > Are groups with higher predictor values <u>than other groups</u> also higher on Y <u>than other groups</u>, such that the group mean of the person-level predictor GMx_j accounts for level-2 random intercept variance $(\tau_{U_0}^2)$?
- Given directly by level-2 effect of GMx_j if using Group-MC for the level-1 predictor (or can be requested via ESTIMATE if using Grand-MC for the level-1 predictor)

• Is the Within-Group (WG) effect significant?

- > If you have higher predictor values <u>than others in your group</u>, do you also have higher outcomes values <u>than others in your group</u>, such that the within-group deviation WGx_{ij} accounts for level-1 residual variance (σ_e^2)?
- > Given directly by the level-1 effect of WGx_{ij} if using Group-MC OR given directly by the level-1 effect of L1x_{ij} if using Grand-MC and including GMx_j at level 2 (without GMx_j, the level-1 effect of L1x_{ij} if using Grand-MC is the smushed effect)

• Are the BG and WG effects different sizes: Is there a contextual effect?

- > After controlling for the absolute value of the level-1 predictor for each person, is there still <u>an incremental contribution from the group mean of the predictor</u> (i.e., does a group's general tendency predict $\tau_{U_0}^2$ above and beyond the person-specific predictor value)?
- Given directly by level-2 effect of GMx_j if using Grand-MC for the level-1 predictor (or can be requested via ESTIMATE if using Group-MC for the level-1 predictor)

Variance Accounted For By Level-2 Predictors

• Fixed effects of level 2 predictors by themselves:

- > Level-2 (BG) main effects reduce level-2 (BG) random intercept variance
- > Level-2 (BG) interactions also reduce level-2 (BG) random intercept variance

• Fixed effects of *cross-level interactions* (level 1* level 2):

- If the interacting level-1 predictor is <u>random</u>, any cross-level interaction with it will reduce its corresponding level-2 BG random slope variance (that line's U)
- If the interacting level-1 predictor <u>not random</u>, any cross-level interaction with it will reduce the level-1 WG residual variance instead
 - This is because the level-2 BG random slope variance would have been created by decomposing the level-1 residual variance in the first place
 - The level-1 effect would then be called "systematically varying" to reflect a compromise between "fixed" (all the same) and "random" (all different)—it's not that each group needs their own slope, but that the slope varies systematically across groups as a function of a known group predictor (and not otherwise)

Variance Accounted For By Level-1 Predictors

• Fixed effects of level 1 predictors by themselves:

- > Level-1 (WG) main effects reduce Level-1 (WG) residual variance
- > Level-1 (WG) interactions also reduce Level-1 (WG) residual variance

What happens at level 2 depends on what kind of variance the level-1 predictor has:

- If the level-1 predictor ALSO has level-2 variance (e.g., Grand-MC predictors), then its level-2 variance will also likely reduce level-2 random intercept variance
- If the level-1 predictor DOES NOT have level-2 variance (e.g., Group-MC predictors), then its reduction in the level-1 residual variance will cause an INCREASE in level-2 random intercept variance
 - Same thing happens with Grand-MC level-1 predictors, but you don't generally see it
- > It's just an artifact that the estimate of true random intercept variance is:

True $\tau_{U_0}^2$ = observed $\tau_{U_0}^2 - \frac{\sigma_e^2}{n}$ \rightarrow so if only σ_e^2 decreases, $\tau_{U_0}^2$ increases

The Joy of Interactions Involving Level-1 Predictors

- Must consider interactions with both its BG and WG parts:
- Example: Does the effect of employee motivation (x_{ij}) on employee performance interact with type of business (for profit or non-profit; Type_j)?
- Group-Mean-Centering:
 - ▶ $WGx_{ij} * Type_j \rightarrow$ Does the WG motivation effect differ between business types?
 - > $GMx_i * Type_i \rightarrow$ Does the BG motivation effect differ between business types?
 - Moderation of total group motivation effect (not controlling for individual motivation)
 - If forgotten, then Type_j moderates the motivation effect only at level 1 (WG, not BG)
- <u>Grand-Mean-Centering:</u>
 - ▶ $L1x_{ij} * Type_j \rightarrow$ Does the WG motivation effect differ between business types?
 - GMx_j * Type_j \rightarrow Does the *contextual* motivation effect differ b/t business types?
 - Moderation of <u>incremental</u> group motivation effect <u>controlling for employee motivation</u> (moderation of the "boost" in group performance from working with motivated people)
 - If forgotten, then although the level-1 main effect of motivation has been un-smushed via the main effect of GMx_i, the interaction of L1x_{ii} * Type_i would still be smushed

Interactions with Level-1 Predictors: Example: Employee Motivation (x_{ii}) by Business Type $(Type_i)$

$$\begin{array}{ll} \underline{Group-MC:} & WGx_{ij} = x_{ij} - GMx_{j} \\ \\ \text{Level-1:} & y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij} - GMx_{j}) + \mathbf{e}_{ij} \\ \\ \text{Level-2:} & \beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{02}(Type_{j}) + \gamma_{03}(Type_{j})(GMx_{j}) + \mathbf{U}_{0j} \\ \\ & \beta_{1j} = \gamma_{10} + \gamma_{11}(Type_{j}) \end{array}$$

Composite: $y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij} - GMx_j) + U_{0j} + e_{ij} + \gamma_{02}(Type_j) + \gamma_{03}(Type_j)(GMx_j) + \gamma_{11}(Type_j)(x_{ij} - GMx_j)$

<u>Grand-MC:</u> $L1x_{ii} = x_{ii}$

Level-1: $y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij}) + e_{ij}$ Level-2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{02}(Type_j) + \gamma_{03}(Type_j)(GMx_j) + U_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11}(Type_j)$

Composite: $y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} + \gamma_{02}(Type_j) + \gamma_{03}(Type_j)(GMx_j) + \gamma_{11}(Type_j)(x_{ij})$

Interactions Involving Level-1 Predictors Belong at Both Levels of the Model

<u>On the left below \rightarrow Group-MC: WGx_{ii} = $x_{ii} - GMx_i$ </u>

$$y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij} - GMx_j) + U_{0j} + e_{ij} + \gamma_{02}(Type_j) + \gamma_{03}(Type_j)(GMx_j) + \gamma_{11}(Type_j)(x_{ij} - GMx_j)$$
 \leftarrow As Group-MC

 $y_{ij} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(GMx_j) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} + \gamma_{02}(Type_j) + (\gamma_{03} - \gamma_{11})(Type_j)(GMx_j) + \gamma_{11}(Type_j)(x_{ij}) \leftarrow As Grand-MC$

<u>On the right below \rightarrow Grand-MC: L1x_{ij} = x_{ij}</u>

 After adding an interaction for **Type**_j with **x**_{ij} at both levels, then the Group-MC and Grand-MC models are equivalent

Intercept: $\gamma_{00} = \gamma_{00}$ BG Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Contextual: $\gamma_{01} = \gamma_{01} - \gamma_{10}$ WG Effect: $\gamma_{10} = \gamma_{10}$ BG*Type Effect: $\gamma_{03} = \gamma_{03} + \gamma_{11}$ Contextual*Type: $\gamma_{03} = \gamma_{03} - \gamma_{11}$ Type Effect: $\gamma_{20} = \gamma_{20}$ BG*WG or Contextual*WG is the same: $\gamma_{11} = \gamma_{11}$

Intra-variable Interactions

- Still must consider interactions with both its BG and WG parts!
- Example: Does the effect of employee motivation (x_{ij}) on employee performance interact with business group mean motivation (GMx_i)?
- <u>Group-Mean-Centering</u>:
 - ▶ $WGx_{ij} * GMx_j \rightarrow$ Does the WG motivation effect differ by group motivation?
 - ▶ $GMx_i * GMx_j \rightarrow$ Does the BG motivation effect differ by group motivation?
 - Moderation of <u>total</u> group motivation effect (not controlling for individual motivation)
 - If forgotten, then GMx_j moderates the motivation effect only at level 1 (WG, not BG)
- <u>Grand-Mean-Centering:</u>
 - ▶ $L1x_{ij} * GMx_j \rightarrow Does$ the WG motivation effect differ by group motivation?
 - → $GMx_j * GMx_j \rightarrow$ Does the *contextual* motivation effect differ by group motiv.?
 - Moderation of <u>incremental</u> group motivation effect <u>controlling for</u> employee motivation (moderation of the boost in group performance from working with motivated people)
 - If forgotten, then although the level-1 main effect of motivation has been un-smushed via the main effect of GMx_j , the interaction of $L1x_{ij} * GMx_j$ would still be smushed

Intra-variable Interactions:

Example: Employee Motivation (x_{ij}) by Business Mean Motivation (GMx_j)

$$\begin{array}{lll} \underline{Group-MC:} & WGx_{ij} = x_{ij} - GMx_j \\ \\ & \text{Level-1:} & y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij} - GMx_j) + e_{ij} \\ \\ & \text{Level-2:} & \beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{02}(GMx_j)(GMx_j) + U_{0j} \\ \\ & \beta_{1j} = \gamma_{10} + \gamma_{11}(GMx_j) \end{array}$$

Composite: $y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij} - GMx_j) + U_{0j} + e_{ij} + \gamma_{02}(GMx_j)(GMx_j) + \gamma_{11}(GMx_j)(x_{ij} - GMx_j)$

<u>Grand-MC:</u> $L1x_{ij} = x_{ij}$

Level-1:
$$y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij}) + e_{ij}$$

Level-2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{02}(GMx_j)(GMx_j) + U_{0j}$
 $\beta_{1j} = \gamma_{10} + \gamma_{11}(GMx_j)$

Composite: $y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} + \gamma_{02}(GMx_j)(GMx_j) + \gamma_{11}(GMx_j)(x_{ij})$

Intra-variable Interactions:

Example: Employee Motivation (x_{ij}) by Business Mean Motivation (GMx_j)

<u>On the left below \rightarrow Group-MC: WGx_{ij} = $x_{ij} - GMx_j$ </u>

$$y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij} - GMx_j) + U_{0j} + e_{ij} + \gamma_{02}(GMx_j)(GMx_j) + \gamma_{11}(GMx_j)(x_{ij} - GMx_j)$$

$$y_{ij} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(GMx_j) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} + (\gamma_{02} - \gamma_{11})(GMx_j)(GMx_j) + \gamma_{11}(GMx_j)(x_{ij})$$

<u>On the right below \rightarrow Grand-MC: L1x_{ii} = x_{ii}</u>

$$y_{ij} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} + \gamma_{02}(GMx_{j})(GMx_{j}) + \gamma_{11}(GMx_{j})(x_{ij})$$

After adding an interaction for **Type**_j with **x**_{ij} at both levels, then the Group-MC and Grand-MC models are equivalent

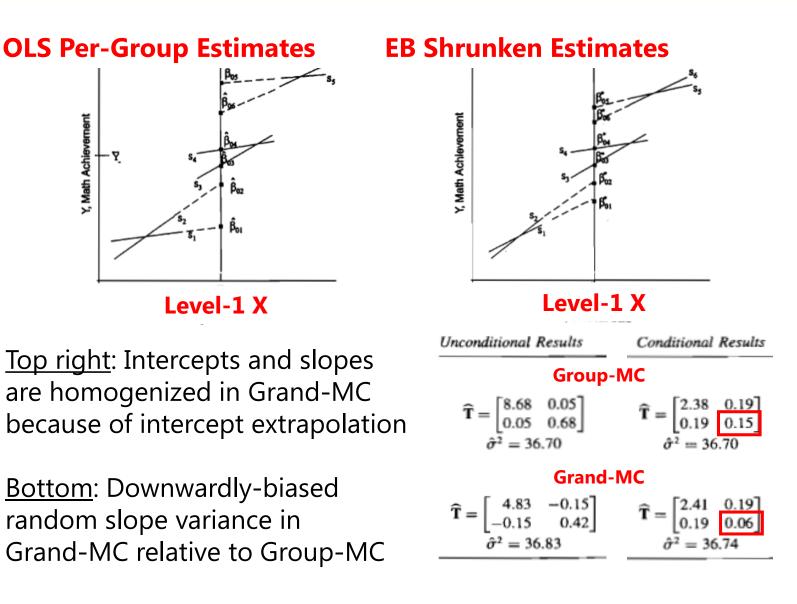
Intercept: $\gamma_{00} = \gamma_{00}$ BG Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Contextual: $\gamma_{01} = \gamma_{01} - \gamma_{10}$ WG Effect: $\gamma_{10} = \gamma_{10}$ BG² Effect: $\gamma_{02} = \gamma_{02} + \gamma_{11}$ Contextual²: $\gamma_{02} = \gamma_{02} - \gamma_{11}$ BG*WG or Contextual*WG is the same: $\gamma_{11} = \gamma_{11}$

$$\begin{array}{c} \text{When Group-MC} \neq \text{Grand-MC:}\\ \text{Random Effects of Level-1 Predictors}\\ \hline \\ \text{Group-MC:} & WGx_{ij} = x_{ij} - GMx_{j}\\ \text{Level-1:} & y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij} - GMx_{j}) + \mathbf{e}_{ij}\\ \text{Level-2:} & \beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \mathbf{U}_{0j}\\ & \beta_{1j} = \gamma_{10} + \mathbf{U}_{1j}\\ \hline \\ \Rightarrow y_{ij} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{10}(x_{ij} - GMx_{j}) + \mathbf{U}_{0j} + \mathbf{U}_{1j}(x_{ij} - GMx_{j}) + \mathbf{e}_{ij}\\ \hline \\ \hline \\ \frac{\text{Grand-MC:}}{\text{Grand-MC:}} & \text{L1}x_{ij} = x_{ij}\\ \text{Level-1:} & y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij}) + \mathbf{e}_{ij}\\ \text{Level-2:} & \beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \mathbf{U}_{0j}\\ & \beta_{1j} = \gamma_{10} + \mathbf{U}_{1j}\\ \hline \\ \Rightarrow y_{ij} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{10}(x_{ij}) + \mathbf{U}_{0j} + \mathbf{U}_{1j}(x_{ij}) + \mathbf{e}_{ij}\\ \hline \end{array} \right]$$

Random Effects of Level-1 Predictors

- **Random intercepts** mean different things under each model:
 - > **Group-MC** \rightarrow Group differences at **WGx**_{ii} =0 (that every group has)
 - > **Grand-MC** → Group differences at $L1x_{ij}=0$ (that not every group will have)
- **Differential shrinkage of the random intercepts** results from differential reliability of the intercept data across models:
 - > Group-MC \rightarrow Won't affect shrinkage of slopes unless highly correlated
 - > Grand-MC \rightarrow Will affect shrinkage of slopes due to forced extrapolation
- As a result, the **random slope variance may be smaller** under Grand-MC than under Group-MC
 - > Problem worsens with greater ICC of level-1 predictor (more extrapolation)
 - > Anecdotal example was presented in Raudenbush & Bryk (2002; chapter 5)

Bias in Random Slope Variance



MLM for Clustered Data: Summary

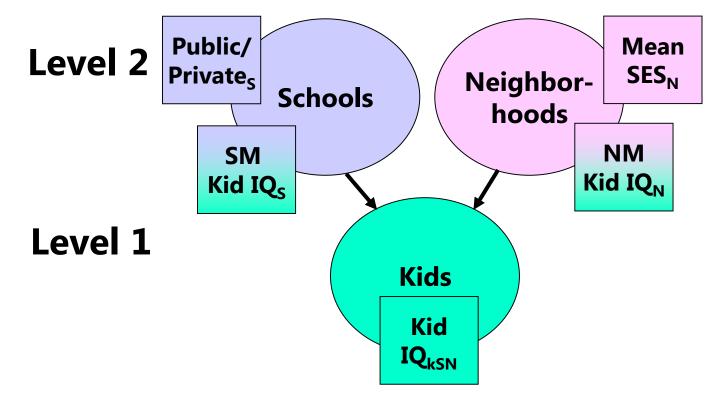
- Models now come in only two kinds: "empty" and "conditional"
 - > The lack of a comparable dimension to "time" simplifies things greatly!
- L2 = Between-Group, L1 = Within-Group (between-person)
 - Level-2 predictors are group variables: can have fixed or systematically varying effects (but not random effects in two-level models)
 - Level-1 predictors are person variables: can have fixed, random, or systematically varying effects
- No smushing main effects or interactions of level-1 predictors:
 - > Group-MC at Level 1: Get L1=WG and L2=BG effects directly
 - > Grand-MC at Level 1: Get L1=WG and L2=contextual effects directly
 - As long as some representation of the L1 effect is included in L2; otherwise, the L1 effect (and any interactions thereof) will be smushed

More Complex Multilevel Designs

- Multilevel models are specified based on the relevant dimensions by which observations differ each other, and how the units are organized
- Two-level models have at least two piles of variance, in which level-1 units are nested within level-2 units:
 - > Longitudinal Data: Time nested within Persons
 - Students nested within Teachers
- Three-level models have at least three piles of variance, in which level-2 units are nested within level-3 units:
 - > Time nested within Persons within Families
 - Student nested within Teachers within Schools
- In other designs, multiple sources of systematic variation may be present, but the sampling may be crossed instead...
 - Same idea as crossed random effects (i.e., as for persons and items), but these are known as "cross-classified" models in the clustered data world
 - > Here are a few examples on when this might happen...

Kids, Schools, and Neighborhoods

- Kids are nested within schools AND within neighborhoods
- Not all kids from same neighborhood live in same school, so schools and neighborhoods are crossed at level 2
- Can include predictors for each source of variation



Kids, Schools, and Neighborhoods

 $\begin{array}{ll} y_{kSN} = \mathbf{Y}_{000} & \rightarrow \textit{fixed intercept (all x's = 0)} \\ & + \mathbf{Y}_{010}(\text{Private}_{S}) + \mathbf{Y}_{020}(\text{SMIQ}_{S}) \rightarrow \textit{school effects} \\ & + \mathbf{Y}_{001}(\text{SES}_{N}) + \mathbf{Y}_{002}(\text{NMIQ}_{N}) & \rightarrow \textit{neighborhood effects} \\ & + \mathbf{Y}_{100}(\text{KidIQ}_{kSN}) & \rightarrow \textit{kid effects} \\ & + \mathbf{U}_{0S0} & \rightarrow \textit{random effect of school} \\ & + \mathbf{U}_{00N} & \rightarrow \textit{random effect of neighborhood} \\ & + \mathbf{e}_{kSN} & \rightarrow \textit{residual kid-to-kid variation} \end{array}$

Time (t), Students (s), and Classes (c)

- Students are nested within Classes at each occasion...
- But if students move into different classes across time...
 - > Time at level 1 is nested within Student AND within Classes
 - Student is crossed with Class at level 2
- How to model a time-varying random classroom effect?
 - > This is the basis of so-called "value-added models"
- (At least) Two options via fixed or random effects:
 - > Acute effect: Effect for class operates only when kids are in the class
 - e.g., Class effect \leftarrow teacher bias
 - Once a student is out of the class, class effect is no longer present
 - > Transfer effect: Effect for class operates now and in the future...
 - e.g., Class effect ← differential learning
 - Effect stays with the student in the future (i.e., a "layered" value-added model)

Time (t), Students (s), and Classes (c)

- Custom-built intercepts for time-varying effects of classes
 - > An intercept is usually a column of 1's, but ours will be 0's and 1's to serve as switches that turn on/off class effects

				Per-Year Class ID (–99 = missing)				Intercepts for Acute Effects			Intercepts for Transfer Effects		
Student ID	Class ID	Grade	Year	Year 0 Class	Year 1 Class	Year 2 Class	Year 0 Intercept	Year 1 Intercept	Year 2 Intercept	Year 0 Effect	Year 1 Effect	Year 2 Effect	
101 101	1 -99	3 4	0	1	-99 -99	43 43	1	0 0	0 0	1 0	0 0	0 0	
101	43	5	2	1	-99	43	0	0	1	1	0	1	
102	3	3	0	3	21	42	1	0	0	1	0	0	
102	21	4	1	3	21	42	0	1	0	1	1	0	
102	42	5	2	3	21	42	0	0	1	1	1	1	

Time (t), Students (s), and Classes (c)

• Hoffman (2015) Equation 11.3: fixed effects model for class as a categorical time-varying predictor:

> Allows for control of classes only....

$$\begin{split} \text{Effort}_{\text{tsc}} &= \gamma_{000} + \gamma_{100} \left(\text{Year01}_{\text{tsc}} \right) + \gamma_{200} \left(\text{Year12}_{\text{tsc}} \right) + \text{U}_{0s0} + \text{e}_{\text{tsc}} \\ &+ \gamma_{001}^{0} \left(\text{Class1}_{c} \right) \left(\text{Int0}_{\text{tsc}} \right) + \gamma_{002}^{0} \left(\text{Class2}_{c} \right) \left(\text{Int0}_{\text{tsc}} \right) \cdots + \gamma_{00C}^{0} \left(\text{ClassC}_{c} \right) \left(\text{Int0}_{\text{tsc}} \right) \\ &+ \gamma_{001}^{1} \left(\text{Class1}_{c} \right) \left(\text{Int1}_{\text{tsc}} \right) + \gamma_{002}^{1} \left(\text{Class2}_{c} \right) \left(\text{Int1}_{\text{tsc}} \right) \cdots + \gamma_{00C}^{1} \left(\text{ClassC}_{c} \right) \left(\text{Int1}_{\text{tsc}} \right) \\ &+ \gamma_{001}^{2} \left(\text{Class1}_{c} \right) \left(\text{Int2}_{\text{tsc}} \right) + \gamma_{002}^{2} \left(\text{Class2}_{c} \right) \left(\text{Int2}_{\text{tsc}} \right) \cdots + \gamma_{00C}^{2} \left(\text{ClassC}_{c} \right) \left(\text{Int2}_{\text{tsc}} \right) \end{split}$$

- Hoffman (2015) Equation 11.4: class as a random effects crossed with students at level 2:
 - > Controls and models class-related variance so it can be predicted $Effort_{tsc} = \gamma_{000} + \gamma_{100} (Year01_{tsc}) + \gamma_{200} (Year12_{tsc}) + U_{0s0} + e_{tsc}$ $+ U_{00c}^{0} (Int0_{tsc}) + U_{00c}^{1} (Int1_{tsc}) + U_{00c}^{2} (Int2_{tsc})$

More on Cross-Classified Models

- In crossed models, lower-level predictors can have random slopes of over higher levels AND random slopes of the other crossed factor at the same level
 - > Example: Kids, Schools, and Neighborhoods (data permitting)
 - Kid effects could vary over schools AND/OR neighborhoods
 - School effects could vary over neighborhoods (both level 2)
 - Neighborhood effects could vary over schools (both level 2)
- Concerns about smushing still apply over both level-2's
 - Separate contextual effects of kid predictors for schools and neighborhoods (e.g., after controlling for how smart you are, it matters incrementally whether you go to a smart school AND if you live in a neighborhood with smart kids)

Summary: Nested or Crossed Designs

- Dimensions of sampling can result in systematic differences (i.e., dependency) that needs to be accounted for in the model for the variances
 - Sometimes this dependency is from nested sampling
 - Sometimes this dependency is from crossed sampling
- Multilevel models that include crossed random effects (or cross-classified models):
 - Can address this dependency (statistical motivation)
 - Can quantify and predict the amount of variation due to each source (substantive motivation)
 - Can include simultaneous hypothesis tests pertaining to each source of variation (substantive motivation)