
Model Assumptions; Predicting 

Heterogeneity of Variance
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• Today’s topics:

 Brief review of estimation for general MLM

 Model assumptions

 Normality

 Constant variance

 Predicting heterogeneity of variance



Two Sides of Any Model: Estimation

• Fixed Effects in the Model for the Means:

 How the expected outcome for a given observation varies as a function 
of values on known predictor variables

 Fixed effects predict the Y values per se but are not parameters that are 
solved for iteratively in maximum likelihood estimation

• Random Effects in the Model for the Variance:

 How model residuals are related across observations 
(persons, groups, time, etc) – unknown things due to sampling

 Random effects variances and covariances are a mechanism by which 
complex patterns of variance and covariance among the Y residuals can 
be predicted (not the Y values, but their dispersion)

 Anything besides level-1 residual variance σe
2 must be solved for 

iteratively – increases the dimensionality of estimation process

 Estimation utilizes the predicted V matrix for each person

 In the material that follows, V will be based on a random linear model
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End Goals of Maximum Likelihood Estimation

1. Obtain “most likely” values for each unknown model 

parameter (random effects variances and covariances, 

residual variances and covariances, which then are used to 

calculate the fixed effects)  the estimates

2. Obtain an index as to how likely each parameter value 

actually is (i.e., “really likely” or pretty much just a guess?) 

 the standard error (SE) of the estimates

3. Obtain an index as to how well the model we’ve specified 

actually describes the data  the model fit indices

How does all this happen? The magic of multivariate 

normal…(but let’s start with univariate normal first)
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Univariate Normal
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Multivariate Normal for Yi

(height for all n outcomes for person i)

• In a random linear time model, the only fixed effects (in γ) that predict the 

Yi outcome values are the fixed intercept and fixed linear time slope

• The model also gives us Vi  the model-predicted total variance and 

covariance matrix across the occasions, taking into account the time values

• Uses |Vi| = determinant of Vi = summary of non-redundant info

 Reflects sum of variances across occasions controlling for covariances

• (Vi)
-1
 matrix inverse  like dividing (so can’t be 0 or negative)

 (Vi)
-1 must be “positive definite”, which in practice means no 0 random variances 

and no out-of-bound correlations between random effects

 Otherwise, SAS uses “generalized inverse”  questionable results
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Now Try Some Possible Answers... 
(e.g., for the 4 V parameters in this random linear model example)

• Plug Vi predictions into log-likelihood function, sum over persons:

• Try one set of possible parameter values for Vi, compute LL

• Try another possible set for Vi, compute LL….

 Different algorithms are used to decide which values to try given that 
each parameter has its own distribution  like an uncharted mountain

 Calculus helps the program scale this multidimensional mountain

 At the top, all first partial derivatives (linear slopes at that point) ≈ 0

 Positive first partial derivative? Too low, try again. Negative? Too high, try again.

 Matrix of partial first derivatives = “score function” = “gradient” 
(as in NLMIXED output for models with truly nonlinear effects)
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End Goals 1 and 2: Model Estimates and SEs

• Process terminates (the model “converges”) when the next set 

of tried values for Vi don’t improve the LL very much…

 e.g., SAS default convergence criteria = .00000001 

 Those are the values for the parameters that, relative to the other 

possible values tried, are “most likely”  the variance estimates

• But we need to know how trustworthy those estimates are…

 Precision is indexed by the steepness of the multidimensional mountain, 

where steepness  more negative partial second derivatives

 Matrix of partial second derivatives = “Hessian matrix”

 Hessian matrix * -1 = “information matrix”

 So steeper function = more information = more precision = smaller SE
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What about the Fixed Effects?
• Likelihood mountain does NOT include fixed effects as additional 

search dimensions (only variances and covariances that make Vi)

• Fixed effects are determined given the parameters for Vi:

• This is actually what happens in regular regression (GLM), too:

• Implication: fixed effects don’t cause estimation problems…
(at least in general linear mixed models with normal residuals)
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What about ML vs. REML?

• REML estimates of random effects variances and covariances 

are unbiased because they account for the uncertainty that 

results from simultaneously also estimating fixed effects 

(whereas ML estimates do not, so they are too small) 

• What does this mean? Remember “population” vs. “sample” 

formulas for computing variance?

 N-1 is used because the mean had to be estimated from the data 

(i.e., the mean is the fixed intercept)…

• Same idea: ML estimates of random effects variances will be 

downwardly biased by a factor of (N – k) / N, where N = # persons 

and k = #fixed effects… it just looks way more complicated
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What about ML vs. REML?

• Extra part in REML is the sampling variance of the fixed effects… it is added 

back in to account for uncertainty in estimating fixed effects

• REML maximizes the likelihood of the residuals specifically, so models with 

different fixed effects are not on the same scale and are not comparable

 This is why you can’t do −2ΔLL tests in REML when the models to be compared 

have different fixed effects  the model residuals are defined differently
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End Goal #3: How well do the model 

predictions match the data?
• End up with ML or REML LL from predicting Vi  so how good is it?

• Absolute model fit assessment is only possible when the Vi matrix is 
organized the same for everyone – in other words, balanced data

 Items are usually fixed, so can get absolute fit in CFA and SEM 
 𝜒2 test is based on match between actual and predicted data matrix

 Time is often a continuous variable, so no absolute fit provided in MLM 
(or in SEM when using random slopes or T-scores for unbalanced time)

 Can compute absolute fit when the saturated means, unstructured variance model is 
estimable in ML  is -2ΔLL versus “perfect” model for time

• Relative model fit is given as −2LL in SAS, in which smaller is better

 -2* needed to conduct “likelihood ratio” or “deviance difference” tests

 Also information criteria: 

 AIC: −2LL + 2*(#parms)   

 BIC: −2LL + log(N)*(#parms)

 #parms = all parameters in ML; #parms = variance model parameters only in REML
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Checking for Violations of Model 
Assumptions: Why should we care?

• “Fitting a model with untenable assumptions is as senseless as fitting a 

model to data that are knowingly flawed” (Singer & Willett, pg. 127)

• HOWEVER:

 We don’t actually know the true population relationships, so we don’t know 

when our estimates, SE’s, and p-values are off

 Recommended strategy: “check assumptions of several initial models 

and any model you cite or interpret explicitly”

 Mostly informal inspection – requires judgment call

 “We prefer visual inspection of residual distributions” (S & W pg. 128)

 Some things are fixable, some things are not

 End goal: Analyze the data the least wrong way possible

(because all models are wrong; some are useful)
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General Consequences of 

Violating Model Assumptions
2 parts of the model to be concerned with:

• Model for means = fixed effects

 Estimates depend on having the “right” model for the means 
 all relevant predictors, measured with as little error as possible

 To the extent that predictors are missing or their effects are specified 
incorrectly, fixed effect estimates will be biased

• Model for the variance = random effects and residuals

 SE and p-values of fixed effects depend on having the “right” model 
for the variances  most closely approximate actual data

 To the extent that the model for the variances is off, 
fixed effects SE and p-values will be off, too (biased)

 Because the general linear mixed model is estimated using a multivariate 
normal distribution for the V matrix, certain assumptions follow…
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*General*

Linear Mixed Model Assumptions
• GLM Assumptions:

 Normality of residuals (not outcomes)

 Independence and constant variance of residuals

 Across sampling units

 Across predictors

• MLM Assumptions are the same, except:

 Apply at each level and across levels

 More general options are available for changing the model 

to accommodate violations of assumptions if needed 

(goal is to transform the model, not the data)

 ML also assumes MAR for any missing outcomes
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Plots to Assess Assumptions:
Normality Independence & Constant Variance

Flat and Even

Flat, but Not Even
Positive Skew

Not Flat, but Even

Not Flat, Not Even
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MLM Assumptions: Normality
Multiple ‘residuals’ to consider:

Level-1 eti residuals  (multivariate) normal distribution

 eti ~ N(0, R)  where R = σe
2

 eti has a mean = 0 and some estimated variance(s) and potentially 

covariances as well (is an empirical question)

Level-2 Ui’s  multivariate normal distribution

 U0i, U1i,… ~ N(0, G)

 If random intercept:  If random slopes: 

 U’s EACH have a mean = 0 and some estimated variance, 

with estimated covariances between them

- The actual mean of U has another name: ___________

- Covariances not included by default: added with TYPE=UN

2

U0

2

U01 U1

τ
G =

τ τ

 
 
 

2

U0τ
G =

 
 
 
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3 Solutions for Non-Normality

1. Pick a new model for the level-1 eti residuals

 Generalized linear mixed models to the rescue!

 Binary  Logit or Probit, Ordinal  Cumulative Logit 

 Count  Poisson or Negative Binomial (+ Zero-Inflated versions)

 Unfortunately, level-2 U’s are still assumed multivariate normal 

 Some simulation work suggests violations of this aren’t too big of a deal

 Tricky to estimate, but should use ML with numeric integration when 
possible (try to avoid older “pseudo” or “quasi” ML options)

2. Transform your data… carefully if at all...

 Assumptions apply to residuals, not to data!

 Complicates interpretations (linear relationships  nonlinear)

 Inherently subjective (especially “outlier” removal)

 Check for extreme leverage on solution instead via INFLUENCE options 
after / on MODEL statement in PROC MIXED
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3. Robust ML for Non-Normality
• MLR in Mplus: ≈ Yuan-Bentler T2 (permits MCAR or MAR missing)

 Same estimates and -2LL, corrected standard errors for all model parameters

• χ2-based fit statistics are adjusted based on an estimated scaling factor: 

 Scaling factor = 1.000 = perfectly multivariate normal = same as ML

 Scaling factor > 1.000 = leptokurtosis (too-fat tails; fixes too big χ2) 

 Scaling factor < 1.000 = platykurtosis (too-thin tails; fixes too small χ2)

• SEs computed with Huber-White ‘sandwich’ estimator  uses an information matrix 
from the variance of the partial first derivatives to correct the information matrix from 
the partial second derivatives

 Leptokurtosis (too-fat tails)  increases information; fixes too small SEs

 Platykurtosis (too-thin tails)  lowers information; fixes too big SEs

• In SAS: use “EMPIRICAL” option in PROC MIXED line

 SEs are computed the same way but for fixed effects only, but can be unstable in 
unbalanced data, especially in small samples

 SAS does not provide the needed scaling factor to adjust -2ΔLL test 
(likely not a problem if you just use the fixed effect p-values)
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Independence of Residuals 
At Level 1:

• Level-1 eti residuals are uncorrelated across level-1 units

 Once random effects are modeled, residuals of the occasions from the same 
person are no longer correlated 

• Solution for clustered or longitudinal models:

 Choose the ‘right’ specification of random effects

 Random effects go in G; what’s left in R is uncorrelated across observations

• Another solution for longitudinal models:

 Choose the ‘right’ alternative for the structure of the residual variances and 
covariances over time 

 Use R matrix or G and R matrices to better approximate observed data:

 Are the residuals still correlated (AR1, TOEP(n)) after random effects?

 Are the variances over time homogeneous or heterogeneous?

– This falls under the “constant variance” assumption – more on that later
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Independence of Residuals 
At Level 2:

• Level-2 Ui’s are uncorrelated across level-2 units

 Implies no additional effects of clustering/nesting across persons after 

controlling for person-level predictors

• Two alternatives to deal with additional clustering/nesting:

 Via fixed effects: Add dummy codes as level-2 predictors

 Adjusts model for mean differences, 

but DOES NOT allow you to predict those mean differences

 Via random effects: Add more levels (e.g., for family, group)

 Adjusts model for mean differences, 

and it DOES allow you to predict those mean differences

 Like adding another part to G… stay tuned for three-level models
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Independence of Residuals 
Across Levels:

• Level-1 eti residuals and Level-2 Ui’s are also uncorrelated

 Implies that what’s left over at level-1 is not related to 

what’s left over at level 2

 Could be violated if level-2 effects are not modeled separately 

from level-1 effects (i.e., if convergence of level-1 predictors is 

assumed when it shouldn’t be)

• Solution: Don’t smush anything!

 Allow different effects across upper levels for any lower-level 

predictor with respect to both main effects and interactions
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Constant Variance of Residuals 
Across Sampling Units:

• Level-2 Ui’s have constant variance across level-2 units

 Implies no subgroups of individuals or groups that are more or less variable in terms of their 
distributions of random effects

 If not, we can fit a heterogeneous variance model instead (stay tuned)

• Level-1 eti residuals have constant variance across level-2 units*

 Implies equal unexplained within-person variability across persons

 Check for missing random effects of level-1 X’s or cross-level interactions

 If not, we can fit a heterogeneous variance model instead (stay tuned)

• Level-1 eti residuals have constant variance across level-1 units

 Implies equal unexplained within-person variability across occasions

 Can add additional random slopes for time or fit a heterogeneous variance model instead 
(e.g., TOEPH instead of TOEP, data permitting)

• * Test for heterogeneity of level-1 residuals applicable sometimes if n > 10 or so
(see Snijders & Bosker, 1999, p. 126-7)
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Independence and Constant 

Variance of Residuals Across Predictors:
• Level-1 eti residuals are flat with constant variance across level-1 X’s

 Implies no remaining relationship of X-Y at level 1

 Specific example: level-1 residuals are flat and even across time after fixed and random effects 
(but we can fit separate variances by time if needed)

 Check for potential nonlinear effects of level-1 predictors

• Level-2 Ui’s are flat with constant variance across level-1 X’s

 Only possible relation between level-2 Ui and level-1 X is through relationship between level-2 
PMx and level-2 Ui (so include PMx to avoid smushing)

• Level-1 eti residuals are flat with constant variance across level-2 X’s

 If not, we can fit a heterogeneous variance model instead (stay tuned)

• Level-2 Ui’s are flat with constant variance across level-2 X’s

 Implies no remaining relationship of X-Y at level 2

 Check for potential nonlinear effects of level-2 predictors

 If not, we can fit a heterogeneous variance model instead (stay tuned)
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Heterogeneous Variance Models

• Besides having random effects, predictors can play a role in predicting 

heterogeneity of variance at their level or lower:

 Level-2 predictors  Differential level-2 random effects variances τU
2

 Differential level-1 residual variances σe
2

 Level-1 predictors  Differential level-1 residual variances σe
2

 -2ΔLL tests used to see if extra heterogeneity effects are helpful

• Level-2 predictor of level-2 random effects variances for WP change:

 e.g., changes in height over time in boys and in girls?

 Boys may be taller and grow faster than girls on average

 Effect of sex and sex*time  predict level of Y in model for the means

 Boys may be more variable than girls in their levels and rates of change in height

 Effect of sex  different τU
2 in level-2 model for the variances
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Heterogeneous Variance Models

• Level-2 predictor of level-2 and level-1 variances for WP fluctuation:

 e.g., daily fluctuation in mood in men and in women

 Men may have worse negative mood than women on average

 Effect of sex  predict level of Y in model for the means

 There may be greater variability among men than women in mean mood

 Effect of sex  different τU
2 in level-2 model for the variance

 Men may be more variable than women in their daily mood fluctuation

 Effect of sex  different σe
2 in level-1 model for the variance

• Level-1 predictor of level-1 variance for WP fluctuation:

 e.g., daily fluctuation in mood on stress/non-stress days

 Negative mood may be worse on average on stress days than non-stress days

 Effect of stress  predict level of Y in model for the means

 There may be greater variation in mood on stress days than on non-stress days

 Effect of stress  different σe
2 in level-1 model for the variance
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Estimating Heterogeneous Variance 

Models via PROC MIXED
• Different variances via GROUP=groupvar option after the / on the 

RANDOM statement for level 2 or REPEATED statement for level 1

 Less flexible than multiple-group SEM because the whole G and/or R matrix 

is either the same or different across groups (i.e., it’s all or nothing)

 GROUP= is limited to categorical predictors (must use CLASS statement)

 Continuous level-2 predictors must use NLMIXED custom function instead

• In addition, different level-1 residual variances can be modeled via the 

LOCAL=EXP( ) option after / on REPEATED statement

 For categorical or continuous level-2 or level-1 predictors

 Cannot be used with any other R matrix structure besides VC

 Does NOT include random scale factor (and thus may be incorrect)

 Predicts natural log of the residual variance so prediction can’t go negative:

  
ti

2

e 0 1 1 2 2σ =α exp α X +α X

CLDP 945:  Lecture 4 26



Estimating Heterogeneous Variance 

Models via PROC NLMIXED
• Can also write custom variance functions (see Hedeker’s examples)

 More flexible, linear models approach can accommodate any combination of 

categorical or continuous predictors of variance(s) at either level

 Here, an example of heterogeneous level-2 random intercept variance from 

Hoffman chapter 7 (see example for NLMIXED code)

 
ti

0 i

ti 0i ti

2
e 0i

0i 00 01 i 02 i 03 i i 0i

00 01 i 022
U

Level 1: 

  Symptoms e

  Residual Variance: exp

Level 2: 

  Intercept: (Women ) (Age 80) (Women )(Age 80) U

(Women ) (Ag
  Random Intercept Variance exp

  

  

           

    
 

i

03 i i

0i 00

e 80)

(Women )(Age 80)

  Residual Variance: 

 
   

  

υ are effects for 

differential random 

intercept variance by 

intercept, sex, age 

and sex by age

η0i is a placeholder (like β’s in model for means)

ε00 is like fixed intercept of residual variance 
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Estimating Heterogeneous Variance 

Models via PROC NLMIXED
• Can test for a ω “scale factor”—like a random intercept for individual 

differences in residual variance (in WP variation)

 

 

ti

0 i

ti 0i ti

2
e 0i

0i 00 01 i 02 i 03 i i 0i

2
U 00

Level 1: 

  Symptoms e

  Residual Variance: exp

Level 2: 

  Intercept: (Women ) (Age 80) (Women )(Age 80) U

  

  Random Intercept Variance exp

  

  Residual Vari

  

  

           

  

0i 00 0iance:    

No υ predictors of differential random 

intercept variance, just an intercept here

η0i is a placeholder (like β’s in model for means)

ε00 is like fixed intercept of residual variance 

ω0i is like random intercept of residual variance

From Hoffman 

chapter 7 (see 

example for 

NLMIXED code)
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Estimating Heterogeneous Variance 

Models via PROC NLMIXED

   

   

      

ti

iti 0i 1i ti 2i ti ti

2
ie 0i 1i ti 2i ti

0i 00 01 i 02 i 03 i i

 

Symptoms Mood Mood Stressor e

Residual Variance: exp Mood Mood Stressor

Intercept:  Women Age 80 Women Age 80

           

     

      
  

          

Level 1 :

Level 2 :

      

 

 
 

i i i04 08 09 i

2

i0,16 0i

i1i 10 14

2i 20 21 i

              Mood 2 Stressor 0.40 Women Stressor 0.40

                         Mood 2 U

Within-Person Mood:  Mood 2

Within-Person Stressor:  Women

Random In

        

   

     

    

   

   

       

0 i

00 01 i 02 i
2
U

i i04 08

i i0i 00 01 i 02 i 04 08

1i 10

2i 20

Women Age 80
tercept Variance exp

Mood 2 Stressor 0.40

Residual Variance: 

   Women Age 80 Mood 2 Stressor 0.40

   

   

      
  
      

             

  

  

υ predictors of 

differential random 

intercept variance

ε are predictors of differential residual variance 

ω0i was not estimable here, so it was not included

From Hoffman 

chapter 8 (see 

example for 

NLMIXED code)
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Assumptions of MLM: Summary

• Because model estimates, SEs, and fit statistics are derived from likelihood 

estimation using the multivariate normal distribution in general ML, their 

accuracy depends on its assumptions being met:

 Residuals at each level (level 1 = eti values, level 2 = Ui values) are

(1) normally distributed, 

(2) uncorrelated at each level and across levels, 

(Ui values can be correlated within their level), and

(3) equally distributed across X’s at each level and across levels.

• If not:

(1) transform the data (meh) or pick a generalized MLM for non-linear outcomes 

(better when possible), or use robust ML for corrected SE’s

(2) add fixed or random effects (or a correlation over time),

(3) make sure predictive relationships are correctly specified, and  

then consider heterogeneous variance models if needed. 
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