
Review of CLDP 944: Multilevel 
Models for Longitudinal Data
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• Topics:
 Review of general MLM concepts and terminology
 Model comparisons and significance testing
 Fixed and random effects of time
 Significance testing and effect size in MLM



What is a Multilevel Model (MLM)?
• Same as other terms you have heard of:
 General(ized) Linear Mixed Model (if you are from statistics)

 Mixed = Fixed and Random effects
 Random Coefficients Model (also if you are from statistics)

 Random coefficients = Random effects = latent variables/factors
 Hierarchical Linear Model (if you are from education)

• MLM is for modeling dependency. Special cases include:
 Random Effects ANOVA or Repeated Measures ANOVA
 (Latent) Growth Curve Model (where “Latent” implies use of SEM)
 Within-Person Fluctuation Model (e.g., for daily diary data)
 Clustered/Nested Observations Model (e.g., for kids in schools)
 Cross-Classified Models (e.g., “value-added” models)
 Psychometric Models (e.g., factor analysis, item response theory) 
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The Two Sides of *Any* Model
• Model for the Means:
 Aka Fixed Effects, Structural Part of Model
 What you are used to caring about for testing hypotheses
 How the expected outcome for a given observation varies as a 

function of values on predictor variables

• Model for the Variance:
 Aka Random Effects and Residuals, Stochastic Part of Model
 What you *were* used to making assumptions about instead
 How residuals are distributed and related across observations 

(persons, groups, time, etc.)  these relationships are called 
“dependency” and this is the primary way that multilevel 
models differ from general linear models (e.g., regression)
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For Example:  A Single-Level (BP) Model

୧ ଴ ଵ ୧ ଶ ୧ ଷ ୧ ୧ ୧

• Model for the Means (Predicted Values):
• Each person’s expected (predicted) outcome is a weighted linear 

function of his/her values on X and Z (and here, their interaction), 
each measured once per person (i.e., this is a between-person model)

• Estimated parameters are called fixed effects (here, β଴, βଵ, βଶ, and βଷ)

• Model for the Variance (“Piles” of Variance):
• e୧ ∼ N 0, σୣଶ  ONE residual (unexplained) deviation, so 

estimated parameter is residual variance in single-level (BP) model
• e୧ residuals have a mean of 0 with some estimated constant variance
σୣଶ, are normally distributed, are unrelated to X and Z, and are 
independent across all observations

• We should change models when any of these assumptions do not hold…
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= Single-Level



Models We Will Learn in CLDP 945
• Outcome type: General (normal) vs. Generalized (not normal)
• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome)  OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 
fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 
fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 
fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)
 Many of the same concepts, but with more complexity in estimation

• “Linear” means fixed effects predict the link-transformed conditional mean 
of DV in a linear combination of (effect*predictor) + (effect*predictor)…
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Note: Least 
Squares is 
only for GLM



What kinds of designs will we analyze?
• “Longitudinal” data (still, but with more complexity)
 Same individual units of analysis measured at different occasions

(which could range from milliseconds to days to years)
 Accelerated longitudinal designs; multiple levels of “time”
 Multivariate models (e.g., for families, dyads, and mediation)

• “Repeated measures” (RM) data (not involving “time”)
 Same individual units of analysis measured via different items, 

using different stimuli, or under different conditions

• “Clustered” and “cross-classified” data
 Same individual units of analysis (one or more kinds of groups) 

measured via different people (cross-sectionally or longitudinally)
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Options for Modeling Dependency
• Many sampling designs have one or more sources/types of 

dependency, or correlation of observations from same unit
• Three main ways of building dependency into a model:

 Fixed effects in the model for the means: add ID variable as a 
categorical predictor to represent differences across upper-level units
 Main effects of ID represent intercept dependency; interactions of ID with 

lower-level predictors represent predictor-specific dependency
 Does not allow prediction of why those differences occurred

 Multivariate variance–covariance structures: for balanced longitudinal 
or repeated measures data; those using lags also require equal intervals
 e.g., VC(H), CS(H), AR1(H), TOEP(H), or Unstructured (UN) as “answer key”
 Can create a pattern of non-constant variance and covariance over time/RM

 Add one level (or more): add random intercept (and slope) variances
 Can create multiple patterns of non-constant variance and covariance even 

with unbalanced data (longitudinal or clustered)  LET’S REVIEW THIS…
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Two-Level Longitudinal Data
• Between-Person (BP) Variation:

 Level 2 – “INTER-individual Differences” – Time-Invariant

 All longitudinal studies begin as cross-sectional studies

• Within-Person (WP) Variation over Time:
 Level 1 – “INTRA-individual Differences” – Time-Varying

 Only longitudinal studies can provide this extra information

• Longitudinal studies allow examination of both types of 
relationships simultaneously (and their interactions)
 Any variable measured over time usually has both BP and WP variation

 BP = more/less than other people; WP = more/less than one’s average

• I use “person” here, but level 2 can be any entity that is measured 
repeatedly (like animals, schools, houses, countries…)
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Characterizing Longitudinal Data
• What should “time” be?
 e.g., time in study, age, grade, time from event/diagnosis

• Does time vary both within- AND between-persons?
 Model will need to differentiate each level of time effect
 Often known as “accelerated” longitudinal designs

• Is time balanced or unbalanced?
 Balanced = everyone has a shared measurement schedule

 Some people may miss occasions, making their data “incomplete”
 Unbalanced = people have different possible “time” values

 By definition, observations are “incomplete” across persons
 This is a consequence of any time metric varying between persons 
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Characterizing Longitudinal Data

Role of “Time” in the Model for the Means:
• WP Change   describe pattern of average change (e.g., growth curves)
• WP Fluctuation  describe average time-specific trends that may not have 

been expected (e.g., reactivity, day of the week, circadian/schedule effects)

Role of “Time” in the Model for the Variance:
• WP Change   describe individual differences in change (random effects)

 this allows variances and covariances to differ over time
• WP Fluctuation  describe pattern of variance and covariance over time
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ANOVA for two-level longitudinal data?
• There are 3 possible “kinds” of ANOVAs we could use:

 Between-Persons/Groups, Univariate RM, and Multivariate RM

• NONE OF THEM ALLOW:
 Missing occasions (do listwise deletion when using least squares)
 Time-varying predictors (covariates are BP predictors only)

• Each includes the same model for the means for time: all 
possible mean differences (so 4 parameters to get to 4 means)
 “Saturated means” model for Time: β0 + β1(T1) + β2(T2) + β3(T3)
 The Time variable must be balanced and discrete in ANOVA!

• These ANOVAs differ by what they predict for the correlation 
across outcomes from the same person in the model for the 
variance…
 i.e., how they “handle dependency” due to persons, or what they says 

the variance and covariance of the yti residuals should look like…

CLDP 945:  Lecture 1 11



Summary:  ANOVA models for longitudinal 
data are like “one size fits most”

• Saturated Model for the Means (balanced time required)
 All possible mean differences across time

 Unparsimonious, but best-fitting (is a description of the complete data)

• 3 kinds of Models for the Variance (need complete data in least squares)
 BP ANOVA (σୣଶ only; VC)  independence and constant variance over time

 Univ. RM ANOVA τ୙ଶ ଴ ൅ σୣଶ; ܁۱  constant variance and covariance over time

 Multiv. RM ANOVA (unstructured)  is a description of the (complete) data

• MLM will give us more flexibility in both parts of the model:
 Fixed effects that predict the pattern of means over time (polynomials, pieces)

 Random intercepts and slopes and/or alternative covariance structures that 
predict intermediate patterns of variance and covariance over time
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there is no structure that shows up in a 
scalar equation (i.e., the way U0i + eti does) 



An Empty Between-Person Model 
(i.e., Single-Level)
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“Error” in a BP Model for the Variance:
Single-Level Model
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eti represents all yti variance
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e5i



Adding Within-Person Information… 
(i.e., to become a Two-Level Model)
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Empty +Within-Person Model
yti variance (V)  2 sources:

Level-2 Random Intercept 
Variance (of U0i, as ૌ܃૛૙):

 Between-Person Variance in G

 Differences from GRAND mean

 INTER-Individual Differences

Level-1 Residual Variance
(of eti, as ો܍૛):

 Within-Person Variance in R

 Differences from OWN mean

 INTRA-Individual Differences
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“Error” in a +WP Model for the Variance:
Multilevel Model
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U0i

U0i = random intercept that represents BP mean variance in yti
eti = residual that represents WP variance in yti

e1i
e2i e3i

e4i e5i

In other words: U0i represents a source of 
constant dependency (covariance) due to 

mean differences in yti across persons



BP vs. +WP Empty Models
• Empty Between-Person Model (used for 1 occasion):

yi = β0 + ei

 β0 = fixed intercept = grand mean

 ei = residual deviation from GRAND mean

• Empty +Within-Person Model (for >1 occasions):

yti = β0 + U0i + eti

 β0 = fixed intercept = grand mean

 U0i = random intercept = individual deviation from GRAND mean

 eti = time-specific residual deviation from OWN mean
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Same Model Using Multilevel Notation:
Empty Means, Random Intercept Model

GLM Empty Model:
• yi = β0 + ei

MLM Empty Model:
• Level 1:  

yti = β0i + eti

• Level 2: 
β0i = γ00 + U0i
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3 Parameters: 
Model for the Means (1): 
• Fixed Intercept γ00

Model for the Variance (2):
• Level-1 Variance of eti  ો܍૛

• Level-2 Variance of U0i  ૌ܃૛૙

Fixed Intercept 
= mean of means 
(=mean because 
no predictors yet) 

Random Intercept 
= individual-specific 
deviation from 
predicted intercept

Residual = time-specific deviation 
from individual’s predicted outcome 

Composite equation:  
yti =  (γ00 + U0i ) + eti



Intraclass Correlation (ICC)
Intraclass Correlation (ICC):

ICC ൌ
BP

BP ൅WP ൌ
Intercept	Var.

Intercept	Var. ൅Residual	Var. ൌ
ૌ܃૛૙

ૌ܃૛૙ ൅ ો܍૛

• ICC = Proportion of total variance that is between persons
• ICC = Correlation of occasions from same person (in VCORR)
• ICC is a standardized way of expressing how much we need to 

worry about dependency due to person mean differences
(i.e., ICC is an effect size for constant person dependency)

CLDP 945:  Lecture 1 20

0 0 0

0 0 0

0 0 0

2 2 2 2
e u u u

2 2 2 2
u e u u

2 2 2 2
u u e u

    
 
    
 
     

1 ICC ICC
ICC 1 ICC
ICC ICC 1

 
 
 
  

V matrix        VCORR Matrix

1 2
1 2

1 2

Cov(y ,y )Corr(y ,y )
Var(y ) * Var(y )





Augmenting the empty means, 
random intercept model with time

• 2 questions about the possible effects of time:

1. Is there an effect of time on average?
 If the line describing the sample means not flat?
 Significant FIXED effect of time

2. Does the average effect of time vary across 
individuals?

 Does each individual need his or her own line?
 Significant RANDOM effect of time
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Fixed and Random Effects of Time
(Note:  The intercept is random in every figure)
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A. No Fixed, No Random B. Yes Fixed, No Random

C. No Fixed, Yes Random D. Yes Fixed, Yes Random



B. Fixed Linear Time, Random Intercept Model 
(4 parameters: effect of time is FIXED only)

Multilevel Model
Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10 

Composite Model
yti = (γ00 + U0i) + (γ10)(Timeti) + eti
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Fixed Intercept 
= predicted mean 
outcome at time 0

Fixed Linear Time Slope
= predicted mean rate 
of change per unit time

Random Intercept = individual-specific deviation 
from fixed intercept  estimated variance of ૌ܃૛૙

Residual = time-specific deviation from individual’s 
predicted outcome  estimated variance of ો܍૛

β0i β1i

Because the effect of 
time is fixed, everyone is 
predicted to change at 
exactly the same rate.



C or D: Random Linear Time Model (6 parms)

Multilevel Model
Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10 + U1i

Composite Model
yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Fixed Intercept 
= predicted mean 
outcome at time 0

Fixed Linear Time Slope
= predicted mean rate 
of change per unit time

Random Intercept = 
individual-specific deviation 
from fixed intercept at time 0 
 estimated variance of ૌ܃૛૙

Random Linear Time Slope= 
individual-specific deviation 
from fixed linear time slope 
 estimated variance of ૌ܃૛૚

Residual = time-specific deviation from individual’s 
predicted outcome  estimated variance of ો܍૛

β0i β1i

Also has an 
estimated 
covariance
of random 
intercepts 
and slopes  
of ૌ܃૙૚



Random Linear Time Model
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= ો܍૛



Summary: Sequential Models for Effects of Time

Level 1:  yti = β0i + eti

Level 2: β0i = γ00 + U0i

Composite: yti = γ00 + U0i + eti

Level 1:  yti = β0i + β1i(Timeti)+ eti

Level 2: β0i = γ00 + U0i
β1i = γ10

Composite: yti = (γ00 + U0i) + γ10(Timeti) + eti

Level 1:  yti = β0i + β1i(Timeti)+ eti

Level 2: β0i = γ00 + U0i
β1i = γ10 + U1i

Composite: yti = (γ00 + U0i) + (γ10+ U0i)(Timeti) + eti
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Empty Means, 
Random Intercept Model: 
3 parms = γ00, ો܍૛, ૌ܃૛૙

Fixed Linear Time, 
Random Intercept Model: 
4 parms = γ00, γ10, ો܍૛, ૌ܃૛૙

Random Linear Time Model: 
6 parms = γ00, γ10, ો܍૛, ૌ܃૛૙,
ૌ܃૛૚, ૌ܃૙૚( cov of U0i and U1i)



Random Linear Time Models Imply:
• People differ from each other systematically in TWO ways—in 

intercept (U0i) and slope (U1i), which implies TWO kinds of BP 
variance, which translates to TWO sources of person dependency 
(covariance or correlation in the outcomes from the same person)

• If so, after controlling for both BP intercept and slope differences 
(by estimating the τ୙ଶ ଴ and τ୙ଶଵ	variances in the G matrix), the eti
residuals (whose variance and covariance are estimated in the R
matrix) should be uncorrelated with homogeneous variance 
across time, as shown (or else a different R matrix is needed):
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What Does Each Side of the Model Need?
• Nested models (i.e., in which one is a subset of the other) 

can now differ from each other in two important ways

• Model for the Means  which predictors and which 
fixed effects of them are included in the model 
 Does not require assessment of relative model fit using LL or −2LL 

(can use univariate or multivariate Wald tests for this)

• Model for the Variance  what the pattern of variance 
and covariance of residuals from the same unit should be
 DOES require assessment of relative model fit using LL or −2LL
 Cannot use the Wald test p-values that show up on the output for 

testing significance of variances because those p-values are use a 
two-sided sampling distribution for what the variance could be 
(but variances cannot be negative, so those p-values are not valid)
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Testing Significance of Fixed Effects (of 
Predictors) in the Model for the Means

• Any single-df fixed effect has 4-5 relevant pieces of output:
 Estimate = best guess for the fixed effect from our data 

 Standard Error = precision of fixed effect estimate 
(quality of most likely estimate)

 t-value or z-value = Estimate / Standard Error

 p-value = probability that fixed effect estimate is ≠ 0

 95% Confidence Interval = Estimate ± 1.96*SE = range in which true 
(population) value of estimate is expected to fall 95% of the time

• Compare test statistic (t or z) to critical value at chosen level of 
significance (known as alpha): this is a “univariate Wald test”

• Whether the p-value is based on t or z varies by program… 
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Evaluating Significance of Fixed Effects

Denominator DF 
is infinite

(Proper Wald test)

Denominator DF is 
estimated instead

(“Modified” Wald test)
Numerator DF = 1 
(test one fixed effect) is 
Univariate Wald Test

use z distribution
(Mplus, STATA)

use t distribution
(SAS, SPSS)

Numerator DF > 1
(test 2+ fixed effects) is 
Multivariate Wald Test

use χ2 distribution
(Mplus, STATA)

use F distribution
(SAS, SPSS)

Denominator DF 
options

not applicable, so 
DDF is not given

SAS, STATA 14: BW, KR 
SAS, STATA 14, SPSS: 

Satterthwaite

Fixed effects can be tested via Wald tests: the ratio of its 
estimate/SE forms a statistic we compare to a distribution
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Evaluating Effect Size of Fixed Effects
• Most common measure of effect size in MLM is Pseudo-R2

 Is supposed to be variance accounted for by predictors

 Multiple piles of variance mean multiple possible values of pseudo R2

(can be calculated per variance component or per model level)

 A fixed linear effect of time will reduce level-1 residual variance σୣଶ in R

 By how much is the residual variance σୣଶ	reduced? 

 If time varies between persons, then level-2 random intercept variance 
τ୙ଶ ଴	in G may also be reduced:

 But you are likely to see a (net) INCREASE in τ୙ଶ ଴ instead…. Here’s why:
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2 fewer more
e

fewer

residual variance  - residual variancePseudo R  = 
residual variance

2 fewer more
U0

fewer

random intercept variance  - random intercept variancePseudo R  = 
random intercept variance



Increases in Random Intercept Variance
• Level-2 random intercept variance τ୙ଶ ଴	will often increase 

as a consequence of reducing level-1 residual variance σୣଶ

• Observed level-2 τ୙ଶ ଴ is NOT just between-person variance
 Also has a small part of within-person variance (level-1 σୣଶ), or:

Observed ૌ܃૛૙ = True ૌ܃૛૙ + (ો܍૛/n)
 As n occasions increases, bias of level-1 σୣଶ is minimized

 Likelihood-based estimates of “true” τ୙ଶ ଴ use (σୣଶ/n) as correction factor:
True ૌ܃૛૙ = Observed ૌ܃૛૙ − (ો܍૛/n)

• For example: observed level-2 τ୙ଶ ଴=4.65, level-1 σୣଶ=7.06, n=4
 True τ୙ଶ ଴= 4.65 −(7.60/4) = 2.88 in empty means model

 Add fixed linear time slope  reduce σୣଶ from 7.06 to 2.17 (R2 = .69)

 But now True τ୙ଶ ଴= 4.65 −(2.17/4) = 4.10 in fixed linear time model

CLDP 945:  Lecture 1 32



Significance Tests for Choosing 
Models for the Variance

• Requires assessment of relative model fit: how well does the model 
fit relative to other possible models?
 Assessment of absolute model fit is only possible for balanced data

• Relative fit is indexed by overall model log-likelihood (LL):
 Log of likelihood for each person’s outcomes given model parameters
 Sum log-likelihoods across all independent persons = model LL
 Two flavors: Maximum Likelihood (ML) or Restricted ML (REML) 

• What you get for this on your output varies by software…

• Given as −2*log likelihood (−2LL) in SAS or SPSS MIXED:
−2LL gives BADNESS of fit, so smaller value = better model

• Given as just log-likelihood (LL) in STATA MIXED and Mplus:
LL gives GOODNESS of fit, so bigger value = better model
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Comparing Models for the Variance
• Two strategies for choosing a model for the variance:
 Does the more complex model fit better (than a simpler model)?

 Does the simpler model fit worse (than a more complex model)?

• Nested models are compared using a “likelihood ratio test”: 
−2∆LL test (aka, “χ2 test” in SEM; “deviance difference test” in MLM)

1. Calculate −2∆LL:  if given −2LL, do −2∆LL = (−2LLfewer)  – (−2LLmore)
if given LL, do −2∆LL = −2 *(LLfewer – LLmore)

2. Calculate  ∆df = (# Parmsmore)  – (# Parmsfewer)

3. Compare −2∆LL to χ2 distribution with df = ∆df

4. Get p-value from CHIDIST in excel or LRTEST option in STATA
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Results of 1. & 2. must 
be positive values!

“fewer” = from model with fewer parameters
“more” = from model with more parameters



Comparing Models for the Variance
• What your p-value for the −2∆LL test means:
 If you ADD parameters, then your model can get better

(if −2∆LL test is significant ) or not better (not significant)
 If you REMOVE parameters, then your model can get worse

(if −2∆LL test is significant ) or not worse (not significant)

• Nested or non-nested models can also be compared by 
Information Criteria that also reflect model parsimony
 No significance tests or critical values, just “smaller is better”
 AIC = Akaike IC     = −2LL +        2 *(#parameters)
 BIC = Bayesian IC  = −2LL + log(N)*(#parameters) 
 What “parameters” means depends on flavor (except in stata):

 ML = ALL parameters; REML = variance model parameters only
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Flavors of Maximum Likelihood
• Remember that Maximum likelihood comes in two flavors:
• “Restricted (or residual) maximum likelihood”

 Only available for general linear models or general linear mixed models 
(that assume normally distributed residuals)

 Is same as LS given complete outcomes, but it doesn’t require them

 Estimates variances the same way as in LS (accurate) 

• “Maximum likelihood” (ML; also called FIML*)
 Is more general, is available for the above plus for non-normal 

outcomes and latent variable models (CFA/SEM/IRT)

 Is NOT the same as LS: it under-estimates variances by 
not accounting for the # of estimated fixed effects 

• *FI = Full information it uses all original data (they both do)
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Flavors of Full-Information 
Maximum Likelihood

• Restricted maximum likelihood (REML; used in MIXED)
 Provides unbiased variances

 Especially important for small N (< 100 units)

 −2∆LL test cannot be used to compare models differing in fixed effects 
(no biggee; we can do this using univariate or multivariate Wald tests)

 −2∆LL test MUST be used to compare different models for the variance

• Maximum likelihood (ML; also used in MIXED)
 Variances (and SEs) are too small in small samples

 Is only option in most software for path models and SEM

 −2∆LL test can be used to compare any nested model; 
must be used to compare different models for the variance 
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ML vs. REML in a nutshell
Remember “population” 
vs. “sample” formulas 
for calculating variance?
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All comparisons 
must have same N!!!

ML REML

To select, type… METHOD=ML
(-2 log likelihood)

METHOD=REML default
(-2 res log likelihood)

In estimating 
variances, it treats 
fixed effects as…

Known (df for having to 
also estimate fixed effects 
is not factored in)

Unknown (df for having 
to estimate fixed effects 
is factored in)

So, in small samples, 
L2 variances will be…

Too small (less difference 
after N=30-50 or so)

Unbiased (correct)

But because it indexes 
the fit of the…

Entire model
(means + variances)

Variances model only 

You can compare 
models differing in…

Fixed and/or random 
effects (either/both)

Random effects only 
(same fixed effects)

∑ y୧ െ y୮୰ୣୢ
ଶ

N െ k
∑ y୧ െ y୮୰ୣୢ

ଶ

N
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Rules for Comparing Models
All observations must be the same across models!
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Type of 
Comparison:

Means Model      
(Fixed) 
Only

Variance Model 
(Random) 

Only

Both Means and 
Variances Model 

(Fixed and Random)

Nested?
YES, can do 
significance 
tests via…

Fixed effect 
p-values from 
ML or REML 

-- OR --
ML −2∆LL only 

(NO REML −2∆LL)

NO p-values

REML −2∆LL
(ML −2∆LL is 
ok if big N)

ML −2∆LL only 
(NO REML −2∆LL)

Non-Nested?
NO signif. tests, 
instead see…

ML AIC, BIC
(NO REML AIC, BIC)

REML AIC, BIC
(ML ok if big N)

ML AIC, BIC only
(NO REML AIC, BIC)

Compare Models Differing In:

Nested = one model is a direct subset of the other
Non-Nested = one model is not a direct subset of the other



3 Decision Points for Model Comparisons
1.   Are the models nested or non-nested?

 Nested: have to add OR subtract effects to go from one to other
 Can conduct significance tests for improvement in fit

 Non-nested: have to add AND subtract effects
 No significance tests available for these comparisons

2.  Differ in model for the means, variances, or both?
 Means? Can only use −2∆LL tests if ML (or p-value of each fixed effect)

 Variances? Can use ML (or preferably REML) −2∆LL tests, no p-values

 Both sides? Can only use −2∆LL tests if ML

3.  Models estimated using ML or REML?
 ML: All model comparisons are ok

 REML: Model comparisons are ok for the variance parameters only
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Effect Size for Random Effects Variances
• We can test if a random effect variance is significant, but the 

variance estimates are not likely to have inherent meaning
 e.g., “I have a significant fixed linear time effect of γ10 = 1.72, so people 

increase by 1.72/time on average. I also have a significant random linear 
time slope variance of ૌ܃૛૚= 0.91, so people need their own slopes 
(people change differently). But how much is a variance of 0.91, really?”

• 95% Random Effects Confidence Intervals can tell you
 Can be calculated for each effect that is random in your model

 Provide range around the fixed effect within which 95% of your sample 
is predicted to fall, based on your random effect variance: 

 So although people improve on average, individual slopes are predicted 
to range from −0.15 to 3.59 (so some people may actually decline)
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 
   1

2
10 U

Random Effect 95% CI = fixed effect ± 1.96* Random Variance

Linear Time Slope 95% CI = γ  ± 1.96* τ   1.72  ± 1.96* 0.91  = 0.15 to 3.59     



Another Variance Model Effect Size: 
Intercept/Slope Reliability

• Another measure of effect size for random effects variances is 
Intercept Reliability (IR) or Slope Reliability (SR)

• IR formula is the same, just replacing ࡸ࣌૚૛ with 1
• SR is known as growth rate reliability in context of time 

(Willett, 1989)
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ࢋ
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૚ࡸ
૛

૛૚= random slope varianceࢁ࣎
૛ࢋ࣌ = residual variance
࢔૚ࡸ = L1 sample size per L2 unit
૚૛ࡸ࣌ = variance of L1 predictor



The Big Picture of Longitudinal Data: 
Models for the Means for Time
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• What kind of change occurs on average over “time”? 
There are two baseline models to consider:
 “Empty”  only a fixed intercept (predicts no change)
 “Saturated”  all occasion mean differences from time 0

(ANOVA model that uses # fixed effects= n)
*** may not be possible in unbalanced data

Empty Model:
Predicts NO 
change over time 
1 Fixed Effect

Saturated Means:
Reproduces mean 

at each occasion

# Fixed Effects 
=  # Occasions

Name… that… Trajectory!

In-between options:
polynomial slopes, 
piecewise slopes, 
nonlinear slopes…



The Big Picture of Longitudinal Data: 
Models for the Variance for Time
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Unstructured (UN)Compound Symmetry (CS)

Name ...that … Structure!

Most useful 
model: likely 
somewhere 
in between!

Univariate
RM ANOVA

Multivariate 
RM ANOVA

What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available 
within MLM, including random effects models (for change) 
and alternative covariance structure models (for fluctuation).
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Summary: Unconditional Longitudinal Models
Model for the Means for Time:
• What kind of fixed effects of time are needed to create a function with which 

to parsimoniously represent the pattern of saturated means across time?
 Continuous or discontinuous? This choice likely comes from the design!
 Polynomials? Pieces? Log time? Truly nonlinear? This comes from the means plot!
 Use obtained p-values to test significance of fixed effects (Wald test)
 Use pseudo-R2 values to describe effect size (just for residual if time is WP only)

Model for the Variance for Time (building V):
• What kind of random effects of time in G are needed :

 To account for individual differences in each aspect of change?
 To describe any non-constant variance and covariance across occasions?
 Do the residuals in R show any covariance after accounting for random effects?
 Use REML −2∆LL tests to test significance of new effects (or ML if big upper-level N)
 Use random effects CIs and intercept/slope reliability to describe effect size
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Summary of Unconditional Time Models
• Each source of correlation or dependency goes into a new variance 

component (or pile of variance) until each source meets the usual 
assumptions of GLM: normality, independence, constant variance

• Example two-level longitudinal model:

Residual
Variance

(ો܍૛)

BP Slope
Variance

(ૌ܃૛૚)

BP Int
Variance

(ૌ܃૛૙)

ૌ
		૙૚܃

covariance

Level 2 (two sources of) 
Between-Person Variation:
gets accounted for by 
person-level predictors

Level 1 (one source of) 
Within-Person Variation:
gets accounted for by 
time-level predictors

FIXED effects make variance 
go away (explain variance).

RANDOM effects just make 
a new pile of variance.

Next we will add predictors to account for each pile!
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Multiple BP 
time slope 
variances are 
possible…


