Example 8b: Three-Level Models for Intensive Longitudinal Data in SAS

These are real data borrowed from the Affect Health and Behavior Study (AHAB) conducted by KU PI Chris Cushing's Pediatric Health Insight Team (PHIT). The present sample consists of 25 adolescents who completed surveys about their mood and energy levels up to four times per day for up to 20 days (total N = 976). In this example we will examine how self-reported fatigue varies throughout the day, how negative affect relates to fatigue, and how variation in sleep may moderate these relationships. Given our use of last night's sleep as a predictor and concerns about first-day reactivity, only days 3–20 are used here. The variables are as follows:

- *Hours of Sleep*: previous night's sleep duration (day-level variable) \rightarrow moderator
- *Fatigue*: measured four times per day using 3 items (each response from 1-5) \rightarrow outcome
- Negative Affect: measured four times per day using 5 items (each response from 1-5) \rightarrow predictor
- Since Midnight: time of observation in hours since midnight \rightarrow time predictor

Code for Data Manipulation:

```
* Build ID-day and time-related variables;
DATA work.EMA; SET work.EMA; FORMAT Date MMDDYY8.; * Format date;
       PersonIDday = PersonID + Day/100;
       SinceMidnight = TimeOfDay/3600;
       DayOfWeek = WEEKDAY(Date); * 1=Sunday through 7=Saturday;
       IF DayOfWeek=2 THEN Monday=1; ELSE Monday=0;
* Sort by person, day, time;
PROC SORT DATA=work.EMA; BY PersonIDday TimeOfDay; RUN;
* Get means per day;
PROC MEANS NOPRINT DATA=work.EMA; BY PersonID PersonIDday Day;
      VAR Day HoursSleep NegAffect SinceMidnight; OUTPUT OUT=work.DayMeans N(Day)=Nperday
             MEAN (HoursSleep NegAffect SinceMidnight) = DaySleep DayNegAffect DaySinceMidnight; RUN;
* Create lagged day sleep;
PROC EXPAND DATA=work.DayMeans OUT=work.DayMeansLag;
      BY PersonID; ID Day; * Old = new name;
      CONVERT DaySleep=LagDaySleep / METHOD=NONE TRANSFORMOUT=(LAG 1); RUN;
* Get person means;
PROC MEANS NOPRINT DATA=work.DayMeansLag; BY PersonID;
       VAR Day DaySleep DayNeqAffect DaySinceMidnight; OUTPUT OUT=work.PersonMeans N(Day)=Ndays
       MEAN (DaySleep DayNegAffect DaySinceMidnight) = PersonSleep PersonNegAffect PersonSinceMidnight;
RUN:
* Merge person means into day means, create level-3 and level-2 variables;;
DATA work.DayMeans; MERGE work.PersonMeans work.DayMeansLag; BY PersonID; DROP TYPE FREQ ;
       L3Sleep=PersonSleep-7; L2Sleep=DaySleep-PersonSleep;
       L3NA=PersonNegAffect-10; L2NA=DayNegAffect-PersonNegAffect;
       L3T=PersonSinceMidnight-15; RUN;
* Merge day means into level-1 data and create level-variables;
DATA work.EMA; MERGE work.EMA work.DayMeans; BY PersonIDday;
       L1NA=NeqAffect-DayNeqAffect; L1T=SinceMidnight-15;
       RoundTimeofDay=ROUND(SinceMidnight,.5); RUN;
* Subset to days 2-20 and complete cases;
DATA work.EMA; SET work.EMA; IF Day=1 THEN DELETE;
      WHERE NMISS (Fatique, Day, L1T, L1NA, L2NA, L3NA, L2Sleep, L3Sleep) =0; RUN;
* Ranges for variables:
PROC MEANS NONOBS NDEC=2 DATA=work.EMA; VAR Fatique NeqAffect DaySleepLag SinceMidnight; RUN;
Variable
                                       Std Dev
                                                      Minimum
               Ν
                           Mean
                                                                     Maximum
                                                         3.00
                                                                      15.00
Fatigue
             976
                           6.11
                                          3.21
                                                                      25.00
NegAffect
             976
                           7.51
                                          4.19
                                                         5.00
LagDaySleep
             976
                           6.80
                                          1.35
                                                         3.10
                                                                       11.45
SinceMidnight 976
                          14.85
                                          4.93
                                                         6.20
                                                                       23.56
```

Model 1a: Two-Level Empty Means, Random Intercept for the Level-1 Fatigue Outcome

Level 2 Day: Intercept: $\beta_{0di} = \delta_{00i}$ Level 3 Person: Intercept: $\delta_{00i} = \gamma_{000} + V_{00i}$ TITLE1 "Model 1a: Empty Means, Two-Level Model for Fatigue Outcome"; TITLE2 "All Occasions at Level 1 within Persons at Level 2"; PROC MIXED DATA=work.EMA COVTEST NOCLPRINT NAMELEN=100 IC METHOD=REML; CLASS PersonID Day; MODEL Fatigue = / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=PersonID; ODS OUTPUT InfoCrit=FitDV2level; * Save for fit; RUN; Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr > Z UN(1,1) PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 <.0001 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq This LRT tells us that the random intercept variance is NULL Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq	Level 1	Time: Fatigu	$\mathbf{e}_{\mathrm{tdi}} = \beta_{\mathrm{0di}} + \mathbf{e}$	tdi			
Level 3 Person: Intercept: $\delta_{00i} = \gamma_{000} + V_{00i}$ TITLE1 "Model 1a: Empty Means, Two-Level Model for Fatigue Outcome"; TITLE2 "All Occasions at Level 1 within Persons at Level 2"; PROC MIXED DATA=work.EMA COVTEST NOCLPRINT NAMELEN=100 IC METHOD=REML; CLASS PersonID Day; MODEL Fatigue = / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=PersonID; ODS OUTPUT InfoCrit=FitDV2level; * Save for fit; RUN; Covariance Parameter Estimates Standard Z UN(1,1) PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 <.0001 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq This LRT tells us that the random intercept variance is	Level 2	Day: Interce	ept: $\beta_{0di} = \delta$	00i			
TITLE1 "Model 1a: Empty Means, Two-Level Model for Fatigue Outcome"; TITLE2 "All Occasions at Level 1 within Persons at Level 2"; PROC MIXED DATA=work.EMA COVTEST NOCLPRINT NAMELEN=100 IC METHOD=REML; CLASS PersonID Day; MODEL Fatigue = / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=PersonID; ODS OUTPUT InfoCrit=FitDV2level; * Save for fit; RUN; Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr > Z UN(1,1) PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 <.0001 Covariance Pr > ChiSquare Pr > ChiSq	Level 3	Person: Interco	ept: $\delta_{00i} = \gamma$	$_{000} + V_{00i}$			
PROC MIXED DATA=work.EMA COVTEST NOCLPRINT NAMELEN=100 IC METHOD=REML; CLASS PersonID Day; MODEL Fatigue = / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=PersonID; ODS OUTPUT InfoCrit=FitDV2level; * Save for fit; RUN; Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value $Pr > Z$ UN(1,1) PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 <.0001 Null Model Likelihood Ratio Test DF Chi-Square $Pr > ChiSq$ This LRT tells us that the random intercept variance is in if the matching of the correlation of t	TITLE1 "	Model 1a: Emp	oty Means, I	wo-Level M	odel for H	Tatigue Ou	tcome";
CLASS PersonID Day; MODEL Fatigue = / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=PersonID; ODS OUTPUT InfoCrit=FitDV2level; * Save for fit; RUN; Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value $Pr > Z$ UN(1,1) PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 <.0001 Null Model Likelihood Ratio Test DF Chi-Square $Pr > ChiSq$ This LRT tells us that the random intercept variance is in its calculate the ICC _{L3b} for the correlation of occasions from the same person: ICC = $\frac{6.7127}{6.7127 + 6.1046} = .5237$	PROC MIX	ED DATA=work	EMA COVTESI	NOCLPRINT	NAMELEN=1	LOO IC MET	HOD=REML;
MODEL Fatigue = / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=PersonID; ODS OUTPUT InfoCrit=FitDV2level; * Save for fit; RUN;Covariance Parameter Estimates Standard ZCalculate the ICCL3b for the correlation of occasions from the same person: Of occasions from the same person: ICC = $\frac{6.7127}{6.7127 + 6.1046} = .5237$ Cov ParmSubjectEstimateErrorValuePr > ZCov ParmSubjectEstimateErrorValuePr > ZUN(1,1)PersonID6.71272.07693.230.0006Residual6.10460.279921.81<.0001ICC = $\frac{6.7127}{6.7127 + 6.1046} = .5237$ Null Model Likelihood Ratio Test DFChi-SquareThis LRT tells us that the random intercept variance is in if the data of the same person is in the same person is in the same person.	C	LASS PersonID	Day;				
RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=PersonID; ODS OUTPUT InfoCrit=FitDV2level; * Save for fit; RUN;Covariance Parameter Estimates Standard ZCovariance Parameter Estimates Standard ZCov Parm Subject Estimate Error Value $Pr > Z$ UN(1,1) PersonID 6.7127 2.0769 3.23 0.0006Residual 6.1046 0.2799 21.81 <.0001Colspan="2">Colspan="2">Colspan="2">Covariance Pr > ZCovariance Parameter Estimates Standard ZCovariance Parameter Estimate Standard ZCovariance Parameter Estimate Standard ZCovariance Parameter Estimate Standard ZCovariance Parameter Estimate Standard ZCovariance Parameter Estimate CovarianceNU11 Model Likelihood Ratio Test DFChisqThis LRT tells us that the random intercept variance is Device Parameter Prove Parameter Parameter Parameter Parameter Parameter Parameter	M	ODEL Fatigue	= / SOLUTI	ON DDFM=Sat	terthwait	e;	
Covariance Parameter Estimates Standard ZCov Parm Subject Estimate Error Value $Pr > Z$ UN(1,1)PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 $<.0001$ $ICC = \frac{6.7127}{6.7127 + 6.1046} = .5237$ Null Model Likelihood Ratio Test DFChi-SquareThis LRT tells us that the random intercept variance is in the standard of the stan	R	ANDOM INTERCE	PT / VCORR	TYPE=UN SUE	BJECT=Pers	onID;	
Covariance Parameter Estimates Standard ZCalculate the ICCL3b for the correlation of occasions from the same person: of occasions from the same person: of occasions from the same person: ICC = $\frac{6.7127}{6.7127 + 6.1046} = .5237$ Null Model Likelihood Ratio Test DFThis LRT tells us that the random intercept variance is is if the use of the correlation of occasions from the same person: ICC = $\frac{6.7127}{6.7127 + 6.1046} = .5237$	0.		OCTIC=FICDV	ZIEVEI, ~ L	ave ioi i	IC, RON,	
StandardZCov ParmSubjectEstimateErrorValue $\Pr > Z$ UN(1,1)PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 $<.0001$ $ICC = \frac{6.7127}{6.7127 + 6.1046} = .5237$ Null Model Likelihood Ratio Test DFChi-SquarePr > ChiSqThis LRT tells us that the random intercept variance is in the standard of t		Covar	iance Paramet	er Estimates	6		Calculate the ICC _{I 3b} for the correlation
Cov ParmSubjectEstimateErrorValue $Pr > Z$ UN(1,1)PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 $<.0001$ Null Model Likelihood Ratio Test DFDFChi-Square $Pr > ChiSq$				Standard	Z		of occasions from the same person:
UN(1,1) PersonID 6.7127 2.0769 3.23 0.0006 Residual 6.1046 0.2799 21.81 <.0001 $ICC = \frac{1}{6.7127 + 6.1046} = .5237$ Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq This LRT tells us that the random intercept variance is	Cov Parm	Subject	Estimate	Error	Value	Pr > Z	6.7127
Residual 6.1046 0.2799 21.81 <.0001	UN(1,1)	PersonID	6.7127	2.0769	3.23	0.0006	$ICC = \frac{1}{67127 + 61046} = .5237$
Null Model Likelihood Ratio Test This LRT tells us that the random intercept variance is DF Chi-Square Pr > ChiSq	Residual		6.1046	0.2799	21.81	<.0001	
DF Chi-Square Pr > ChiSq This LRT tells us that the random intercept variance is	Nu11	Modol Likoliho	od Patio Tost				
		Chi-Square	Dr > Chisc	This LR1	tells us that	the random	intercept variance is
1 429.42 < 0001 significantly greater than 0, and thus so is the ICC.	1	429.42	<_0001	' significar	ntly greater the	han 0, and th	us so is the ICC.

Model 1b: Three-Level Empty Means, Random Intercept for the Level-1 Fatigue Outcome

Level 1 Tim	ne: Fatigue _{td}	$_{i} = \beta_{0di} + \beta_{0di}$	e _{tdi}								
Level 2 Day	: Intercept	$\beta_{0di} = \delta$	$\delta_{00i} + U_0$	4							
Level 3 Pers	son: Intercept	$\delta_{\alpha\alpha} = \delta_{\alpha\alpha}$	$v_{aaa} + V_{aa}$								
	ol 1b: Empty)1 Wodol	for Fati						
TITLE2 "Lev	el-1 Occasio	ons withi	.n Level-	-2 Days wi	thin Level	1-3 Pers	ons";				
PROC MIXED	DATA=work.EM	A COVTES	T NOCLPF	RINT NAMEI	LEN=100 IC	METHOD=	REML;				
CLAS	S PersonID D	ay;									
MODE	L Fatigue =	/ SOLUT	ION DDFM	=Satterth	waite;						
RANDO	M INTERCEPT	/ TYPE=	UN SUBJE	CT=Person	ID;	* Level	3;				
ODS (OUTPUT InfoC	rit=FitD	V3level	CovParms=	CovEmpty;	* Save 1	for fit	and p	seudoR2: RUN:		
* Test 2-le	vel vs 3-lev	vel;						<u>-</u>	,		
%FitTest(FitFewer=FitDV2level, FitMore=FitDV3level);											
					Is the 3-lev	vel model a	a better	fit than	the 2-level model?		
Likelihood Ra	atio Test for	FitDV2lev	/el vs. F:	itDV3level	Yes, $-2\Delta L$	$L(\sim 1) = 75.$	76, p <	.001, so	keep it		
Nomo	Neg2Log	Donmo	ATC	DIC		DEdif	+ 1 +	- Dvoluo	1		
Fi+DV2lovel	1620 1	2	AIG 4624 1	4626 5	DevDIII	DFUII	1	FVALUE			
FitDV3level	4544.3	3	4550.3	4553.9	75.7588	1		0			
	Covar	iance Para	ameter Es	timates							
			Sta	andard	Z						
Cov Parm	Subject	Estima	ate	Error	Value	Pr > Z					
UN(1,1)	PersonID	6.44	170 2	2.0665	3.12	0.0009 L	3 int				
UN(1,1)	PersonID*Day	1.68	326 (0.2763	6.09	<.0001 L	2 int				
Residual		4.54	427 (0.2409	18.86	<.0001 L	1 res				
Proportion va	riance at each	evel.	IC	CL24 for pr	onortion of b	netween_n/	erson va	riance o	ver total variance		
Total $- 64470$	+ 1.6826 + 4.54	12 -	672 - 51	ctween-p		ii iance o					
Level 3 (person	(1.0020 + 4.5) n) = 64470 / 1	2.672 = 51		0.4470712.0	572 = .51						
Level 2 (day) =	= 1.6826 / 12	2.672 = .13	IC	CL2b for pr	oportion of b	oetween-da	ay over	within-p	erson variance		
Level 1 (time)	= 4.5427 / 12	2.672 = .36	=	1.6826 / (1.6	5826 + 4.5427	7) = .27					
Lever r (unite)	Level I (time) = $4.5427/12.672 = .36$ This ICC _{L2b} = .27 is significantly greater than 0 via $-2\Delta LL$ for 3- vs. 2-level.										

Now let's do the same thing for our level-2 moderator of last night's sleep. A Two-Level Model indicates we will need to represent sleep at levels 2 and 3.

	Covariar	ice Parameter	Estimates Standard	Z		Calculate the ICC for the correlation of days from the same person:
Cov Parm	Subject	Estimate	Error	Value	Pr > Z	0.5421
UN(1,1)	PersonID	0.5421	0.2022	2.68	0.0037	$ICC = \frac{1}{0.5421 + 1.4696} = .2696$
Residual		1.4686	0.06754	21.74	<.0001	0.3421 ± 1.4000
Null DF 1	Model Likelihood Chi-Square 157.73	Ratio Test Pr > ChiSq <.0001	This LRT significant	tells us that tly greater th	the random an 0, and th	intercept variance is us so is the ICC.

Now let's do the same thing for our level-1 predictor of negative affect. Two-Level Model Results:

	Covari	ance Paramet.	er Estimates			Calculate the ICC _{1.25} for the correlation			
			Standard	Z		of $pagaging from the same persons$			
Cov Parm	Subject	Estimate	Error	Value	Pr > Z	105001			
UN(1,1)	PersonID	19.5994	5.8817	3.33	0.0004	$ICC = \frac{19.3994}{} = .7697$			
Residual		5.8647	0.2688	21.82	<.0001	19.5994 + 5.8647			

Null Model Likelihood Ratio TestDFChi-SquarePr > ChiSq1960.55<.0001</td>

7.71

1

<.0001

This LRT tells us that the random intercept variance is significantly greater than 0, and thus so is the ICC.

Three-Level Model Results indicate we will need to represent negative affect at levels 1, 2, and 3:

	Covar	iance Para	meter Est	timates							
			Sta	andard	Z						
Cov Parm	Subject	Estima	te	Error	Value	Pr > Z					
UN(1,1)	PersonID	19.35	33 !	5.8388	3.31	0.0005 -	→ 76.61%,	so ICCL3b	= .7661		
UN(1,1)	PersonID*Day	0.73)9 (0.2028	3.60	0.0002 -	→ 2.89%,	so ICCL2b	= .1237		
Residual		5.178	35 (0.2720	19.04	<.0001 -	→ 20.50%				
Likelihood Ratio Test for FitIV2level vs. FitIV3level Neg2Log Is the 3-level model a better fit than the 2-level model $Yes, -2\Delta LL(\sim 1) = 18.33, p < .001$, so keep it											
Name	Like	Parms	AIC	BIC	DevDif	f DFdif	f	Pvalue			
FitIV2level	4605.9	2	4609.9	4612.3							
FitIV3level	4587.6	3	4593.6	4597.1	18.334	2 1	.000	018535			

Now let's do the same thing for our level-1 predictor of time of day. Two-Level Model Results:

Cov Parm UN(1,1) Residual	Covarian Subject I PersonID	ce Parameter Estimate 0.5801 23.7931	Estimates Standard Error 0.3467 1.0883	Z Value 1.67 21.86	Pr > Z 0.0471 <.0001	Calculate the ICC _{L3b} for the correlation of occasions from the same person: $ICC = \frac{0.5801}{0.5801 + 23.7931} = .0238$
Null DF	Model Likelihood Chi-Square	Ratio Test Pr > ChiSq	This LRT te	lls us that the	e random ir	ntercept variance is

significantly greater than 0, and thus so is the ICC.

Three-Leve	e l Model says t i Covaria	ime is neede nce Parameter	Is the 3-level model a better fit? Not if it can't find any level-2, day variance!			
			Standard	Z		
Cov Parm	Subject	Estimate	Error	Value	Pr > Z	
UN(1,1)	PersonID	0.5798	0.3465	1.67	0.0471 → 2.38%, so ICCL3b = .0238	
UN(1,1)	PersonID*Day	0			. \rightarrow 0%, so ICCL2b = 0	
Residual		23.7932	1.0883	21.86	<.0001 → 97.62%	

Now we need to examine unconditional models for possible changes over "time" in our fatigue outcome: this means examining different types of change across level 1 and level 2. To do so, I am temporarily switching to GLIMMIX to get plots from LSMEANS (which are not available in my version of MIXED).

```
TITLE1 "Examine Saturated Means for Level-1 Within-Day Change";
PROC GLIMMIX DATA=work.EMA NOCLPRINT NAMELEN=100 METHOD=RSPL;
CLASS PersonID Day RoundTimeofDay;
MODEL Fatigue = RoundTimeofDay / SOLUTION DDFM=Satterthwaite;
RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID; * Level 3;
RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID*Day; * Level 2;
LSMEANS RoundTimeofDay / PLOT=MEANPLOT(CLBAND JOIN); RUN;
```


TITLE1 "Examine Saturated Means for Level-2 Across-Day Change"; PROC GLIMMIX DATA=work.EMA NOCLPRINT NAMELEN=100 METHOD=RSPL; CLASS PersonID Day;

MODEL Fatigue = Day / SOLUTION DDFM=Satterthwaite;RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID;* Level 3;RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID*Day;* Level 2;LSMEANS Day / PLOT=MEANPLOT(CLBAND JOIN);RUN;

TITLE1 "Examine Saturated Means for Level-2 Day of Week Change";
PROC GLIMMIX DATA=work.EMA NOCLPRINT NAMELEN=100 METHOD=RSPL;
CLASS PersonID Day DayOfWeek;
MODEL Fatigue = DayOfWeek / SOLUTION DDFM=Satterthwaite;
RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID; * Level 3;
RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID*Day; * Level 2;

LSMEANS DayOfWeek / DIFF=ALL PLOT=MEANPLOT (CLBAND JOIN); RUN;

Based on the previous plots, I propose the following unconditional model for time as Model 2a:

Level 1 Tir	ne: Fatigue _{tdi}	$=\beta_{0di}+\beta_{1di}$	(Hour _{tdi}	$-15) + \beta_{20}$	_{li} (Hou	$t_{tdi} - 1$	$(5)^2 + 6$	e _{tdi} The new fixed effects include a L2
Level 2 Da	y: Intercept:	$\beta_{0di} = \delta_{00i}$	$+\delta_{01}$ (N	Ionday)	$+ U_{0di}$			dummy code for if it's Monday, as
	Linear Time	$\beta = \beta$	011 <	J ul /	Udi			well as linear and quadratic L1
		$\rho_{1di} - \sigma_{10i}$						time of day (predictors labeled
Q	uadratic Time	$\beta_{2di} = \delta_{20i}$	i					"1", where $0=3$ PM). The linear
Level 3 Per	rson: Intercept:	$\delta_{00i} = \gamma_{000}$	$+\gamma_{001}(\bar{l})$	$Hour_i - 15$	$+ V_{00i}$			L3 time effects (also 0=3PM) are
	Lincor Time	8 – v		$\overline{100r}$ 15)	001			given the use of constant-based-
	Linear Time.	$O_{10i} - \gamma_{100}$	$+\gamma_{101}(\mathbf{I})$	$\frac{10ur_i - 13}{2}$				centering for L1 time Quadratic
Q	uadratic Time	: $\delta_{20i} = \gamma_{200}$	$\gamma_{201}(2)$	Hour _i -15)			L3 time main and interaction
	It's Monday:	$\delta_{01i} = \gamma_{010}$						effects were nonsignificant.
TITLE1 "Moo	del 2a: Add F	ixed Effect	s of L2	Monday,	Quadra	tic T	ime o	f Day (0=3PM) at L1 and L3";
PROC MIXED	DATA=work.EM	A COVTEST N	OCLPRIN	T NAMELEN	=100 I	C MET	HOD=R	EML;
CLAS	S PersonID Da	ay;						
MODE	L Fatigue = N	fonday L1T	L1T*L1T	L3T L1T*	L3T L1	r*L1T'	L3T	
DAN		/ SOLUTION	DDFM=Sa	tterthwai	te OUT	PM=Pr	edTim	e; * Save for total-R2;
RANI	OM INTERCEPT	/ TYPE=UN	SUBJECT	=PersonID	, *Dav:	د ~ ۲ * ۱	Level	2:
ODS	OUTPUT InfoC	it=FitFixT	ime Cov	Parms=Cov	FixTime	а; * S	Save 1	for fit and pseudo-R2; RUN;
								-
	Covari	ance Paramet	er Estin	ates				
			Stand	lard	Z	_	_	
Cov Parm	Subject	Estimate	Er	ror Va	Lue	Pr >	> _	
UN(1,1)	PersonID	6.1526	2.0	326 3	.03	0.00	012 L3	intercept
UN(I,I) Decidual	Personid^Day	1.6220	0.2	0// 0 2/0 19	.00	<.00	01 L2	intercept
Residual		4.4019	0.2	.340 10	.01	<.UC		residual
	Soluti	on for Fixed	l Effects	i				
		Standard						
Effect	Estimate	Error	DF	t Value	Pr >	t		
Intercept	5.8232	0.5416	22.2	10.75	<.0	001 →	Note	that DDF ~ L3 effect
Monday	0.6911	0.2908	255	2.38	0.0	182 →	Note	that DDF ~ L2 effect
L1T	0.008223	0.01666	760	0.49	0.6	218 →	Note	that DDF ~ L1 effect
L1T*L1T	0.01634	0.003880	772	4.21	<.0	001 →	Note	that DDF ~ L2 effect
L3T	0.8829	0.4828	22.3	1.83	0.0	809 →	Note	that DDF ~ L3 effect
L1T*L3T	-0.01382	0.01537	751	-0.90	0.3	689 →	Note	that DDF ~ L1 effect
L1T*L1T*L3T	-0.00752	0.003581	754	-2.10	0.0	360 →	Note	that DDF ~ L1 effect
* Decude D	o for time of	footo						
%PseudoR2()	NCov=3, CovFe	wer=CovEmpt	y, CovM	lore=CovFi	xTime)	;		

* Total-R2 for time effects (no "fewer" comparison possible here); %TotalR2(DV=Fatigue, PredFewer=PredTime, PredMore=PredTime);

				Name	Pred Corr	TotalR2	2
PsuedoR2 (%	Reduction)	for CovEmpty vs.	CovFixTime	PredTime	0.28697	0.082354	ļ.
Name	CovParm	Subject	Estimate	StdErr	ZValue	ProbZ	PseudoR2
CovEmpty	UN(1,1)	PersonID	6.4470	2.0665	3.12	0.0009	
CovEmpty	UN(1,1)	PersonID*Day	1.6826	0.2763	6.09	<.0001	
CovEmpty	Residual		4.5427	0.2409	18.86	<.0001	
CovFixTime	UN(1,1)	PersonID	6.1526	2.0326	3.03	0.0012	0.045655 for L3 int
CovFixTime	UN(1,1)	PersonID*Day	1.6220	0.2677	6.06	<.0001	0.036025 for L2 int
CovFixTime	Residual		4.4019	0.2340	18.81	<.0001	0.031005 for L1 res

Let's test if the effects of level-1 time of day vary randomly over days and persons. Given the heavily quadratic time-of-day trend shown above, I'm going to break my own rules by testing random quadratic effects first, and then test if random linear effects are also needed. Only lines of code that changed are shown.

Level 1 Time: Fatigue _{tdi} =	$=\beta_{0di} + \beta_{1di} (Hour_{tdi} - 15) + \beta_{2di} (Hour_{tdi} - 15)^2 + e_{tdi}$	Models 2b and 2c added random
Level 2 Day: Intercept:	$\beta_{0di} = \delta_{00i} + \delta_{01i} (Monday_{di}) + U_{0di}$	quadratic and then random linear
Linear Time:	$\beta_{1di} = \delta_{10i} + U_{1di} \leftarrow 2c$	time of day effects at level 2 only:
Quadratic Time:	$\beta_{2di} = \delta_{20i} + U_{2di} - 2b$	across days.
Level 3 Person: Intercept:	$\delta_{00i} = \gamma_{000} + \gamma_{001} (\overline{Hour}_i - 15) + V_{00i}$	LRTs reveal both the level-2
Linear Time:	$\delta_{10i} = \gamma_{100} + \gamma_{101} (\overline{\text{Hour}}_i - 15)$	quadratic effects are needed, and
Quadratic Time:	$\delta_{20i} = \gamma_{200} + \gamma_{201} (\overline{\text{Hour}}_i - 15)$	their $r = -0.56$ (so is ok).
It's Monday:	$\delta_{01i} = \gamma_{010}$	

TITLE1 "Model 2b: Add Random Effect of Only L1 Quadratic Time of Day Across L2 Days"; RANDOM INTERCEPT L1T*L1T / GCORR TYPE=UN SUBJECT=PersonID*Day; * Level 2; ODS OUTPUT InfoCrit=FitR2QTime; * Save for fit; RUN;

* Test only random quadratic time across days; % FitTest (FitFewer=FitFixTime, FitMore=FitR2QTime);

Likelihood	Ratio Test f Neg2Log	or FitFix]	Time vs. Fit	R2QTime	Does the qua level-2 days?	dratic level Yes, −2∆Ll	-1 time effect va L(~2) =24.41, p <	ry randomly over < .001, so keep it
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue	
FitFixTime	4539.1	3	4545.1	4548.6				
FitR2QTime	4514.7	5	4524.7	4530.6	24.4076	2	.000005011	

TITLE1 "Model 2c: Add Random Effect of Also L1 Linear Time of Day Across L2 Days"; RANDOM INTERCEPT L1T L1T*L1T / GCORR TYPE=UN SUBJECT=PersonID*Day; * Level 2; ODS OUTPUT InfoCrit=FitR2LQTime; * Save for fit; RUN;

* Test also random linear time across days; %FitTest(FitFewer=FitR2QTime, FitMore=FitR2LQTime);

Likelihood Ra	tio Test fo Neg2Log	or FitR2QT:	ime vs. FitH	R2LQTime	Does the linear level-1 time effect vary randomly over level-2 days? <i>Yes</i> , $-2\Delta LL(\sim 3) = 13.00$, $p = .005$, so keep it			
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue	
FitR2QTime	4514.7	5	4524.7	4530.6				
FitR2LQTime	4501.7	8	4517.7	4527.1	12.9955	3	.004646336	
	Cova	riance Pa	ramatar Est	imatos				

	GUVaria	ince Paramete	ESTIMATES	_		
			Standard	Z		
Cov Parm	Subject	Estimate	Error	Value	Pr Z	
UN(1,1)	PersonID	6.0888	2.0114	3.03	0.0012 L	<u>3 intercept</u>
UN(1,1)	PersonID*Day	2.5582	0.5010	5.11	<.0001 L2	2 intercept
UN(2,1)	PersonID*Day	0.05112	0.04056	1.26	0.2075	
UN(2,2)	PersonID*Day	0.01140	0.006393	1.78	0.0373 L	2 linear time
UN(3,1)	PersonID*Day	-0.02823	0.01258	-2.24	0.0248	
UN(3,2)	PersonID*Day	-0.00191	0.000979	-1.95	0.0514	
UN(3,3)	PersonID*Day	0.001012	0.000381	2.66	0.0039 L	2 quad time
Residual		3.2864	0.2609	12.60	<.0001 L ⁻	residual

Solution for Fixed Effects Standard Effect Estimate DF Error t Value Pr > |t| <.0001 Intercept 5.8210 0.5396 22.4 10.79 0.6512 0.2854 241 2.28 0.0234 Monday 0.006262 0.01627 234 0.38 0.7006 \rightarrow Note that DDF now ~ L2 effect L1T 0.0002 \rightarrow Note that DDF now ~ L2 effect L1T*L1T 0.01560 0.004067 214 3.84 L3T 0.9136 0.4812 22.5 1.90 0.0705 -0.01286 0.01516 -0.85 0.3970 \rightarrow Note that DDF now ~ L2 effect L1T*L3T 231 -0.00880 0.003788 -2.32 0.0212 \rightarrow Note that DDF now ~ L2 effect L1T*L1T*L3T 197

Level 1 Time: Fatigue _{tdi} =	$=\beta_{0di} + \beta_{1di} (Hour_{tdi} - 15) + \beta_{2di} (Hour_{tdi} - 15)^2 + e_{tdi}$
Level 2 Day: Intercept:	$\beta_{0di} = \delta_{00i} + \delta_{01i} (Monday_{di}) + U_{0di}$
Linear Time:	$\beta_{1di} = \delta_{10i} + U_{1di}$
Quadratic Time:	$\beta_{2di} = \delta_{20i} + U_{2di}$
Level 3 Person: Intercept:	$\delta_{00i} = \gamma_{000} + \gamma_{001} (\overline{Hour}_i - 15) + V_{00i}$
Linear Time:	$\delta_{10i} = \gamma_{100} + \gamma_{101} (\overline{\text{Hour}}_i - 15) + V_{10i}$
Quadratic Time:	$\delta_{20i} = \gamma_{200} + \gamma_{201} (\overline{\text{Hour}}_i - 15) + V_{20i} \checkmark 20$
It's Monday:	$\delta_{01i} = \gamma_{010}$

Models 2d and 2e added random quadratic and then random linear time of day effects at level 3: across persons.

LRTs revealed only the level-3 random quadratic effect is needed. When I tried keeping the linear anyway, later on their r = -1 (so it became not ok).

Likelihood	Ratio Test for Neg2Log	FitR2LQ	∏ime vs. Fit	R3QTime:	Does the qua level-3 perso	ndratic level ns? Yes, –2	$\frac{1-1 \text{ time effect}}{\Delta LL(\sim 2)} = 7.7$	vary randomly over $8, p = .020, so keep it$
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue	
FitR2LQTime	4501.7	8	4517.7	4527.1				
FitR3QTime	4493.9	10	4513.9	4525.7	7.78333	2	0.020411	

Covariance	Parameter	Estimates
------------	-----------	-----------

			Standard	Z	
Cov Parm	Subject	Estimate	Error	Value	Pr Z
UN(1,1)	PersonID	6.5735	2.3371	2.81	0.0025 L3 intercept
UN(2,1)	PersonID	-0.01880	0.02424	-0.78	0.4381
UN(2,2)	PersonID	0.000531	0.000331	1.60	0.0546 L3 quad time
UN(1,1)	PersonID*Day	2.4547	0.4782	5.13	<.0001 L2 intercept
UN(2,1)	PersonID*Day	0.03406	0.04112	0.83	0.4075
UN(2,2)	PersonID*Day	0.01155	0.006327	1.82	0.0340 L2 linear time
UN(3,1)	PersonID*Day	-0.02225	0.01178	-1.89	0.0588
UN(3,2)	PersonID*Day	-0.00137	0.000993	-1.38	0.1681
<u>UN(3,3)</u>	PersonID*Day	0.000802	0.000354	2.27	0.0117 L2 quad time
Residual		3.2275	0.2550	12.66	<.0001 L1 residual

Solution for Fixed Effects

Standard

		ocunuaru								
Effect	Estimate	Error	DF	t Value	Pr > t					
Intercept	5.9301	0.5598	19.1	10.59	<.0001					
Monday	0.6352	0.2875	242	2.21	0.0281					
L1T	0.007288	0.01642	247	0.44	0.6576	\rightarrow Note	that	DDF	still	~ L2 effect
L1T*L1T	0.01004	0.006471	14.6	1.55	0.1421	\rightarrow Note	that	DDF	NOW ~	L3 effect
L3T	0.9528	0.4998	19.2	1.91	0.0716					
L1T*L3T	-0.01106	0.01540	246	-0.72	0.4732	\rightarrow Note	that	DDF	still	~ L2 effect
L1T*L1T*L3T	-0.01064	0.005853	15.8	-1.82	0.0880	\rightarrow Note	that	DDF	NOW ~	L3 effect

across persons.

TITLE1 "Model 2e: Add Random Effect of Also L1 Linear Time of Day Across L3 Persons"; RANDOM INTERCEPT L1T L1T*L1T / GCORR TYPE=UN SUBJECT=PersonID; * Level 3; ODS OUTPUT InfoCrit=FitR3LQTime; * Save for fit; RUN; * Test also random linear time across persons; %*FitTest*(FitFewer=FitR3QTime, FitMore=FitR3LQTime); Does the linear level-1 time effect vary randomly over level-3 Likelihood Ratio Test for FitR3QTime vs. FitR3LQTime **persons?** No, $-2\Delta LL(\sim 3) = 2.31$, p = .511, so drop it Neg2Log DevDiff DFdiff Pvalue Name Like Parms AIC BIC FitR3QTime 4493.9 10 4513.9 4525.7 . FitR3LQTime 4491.6 13 4517.6 4532.9 2.30729 3 0.51113 Level 1 Time: Fatigue_{tdi} = $\beta_{0di} + \beta_{1di} (Hour_{tdi} - 15) + \beta_{2di} (Hour_{tdi} - 15)^2 + e_{tdi}$ Intercept: $\beta_{0di} = \delta_{00i} + \delta_{01i} (Monday_{di}) + U_{0di}$ Level 2 Day: Linear Time: $\beta_{1di} = \delta_{10i} + U_{1di}$ Quadratic Time: $\beta_{2di} = \delta_{20i} + U_{2di}$ Level 3 Person: Intercept: $\delta_{00i} = \gamma_{000} + \gamma_{001} (Hour_i - 15) + V_{00i}$ Linear Time: $\delta_{10i} = \gamma_{100} + \gamma_{101} (\overline{\text{Hour}}_i - 15)$ Model 2f added a random Quadratic Time: $\delta_{20i} = \gamma_{200} + \gamma_{201} (Hour_i - 15) + V_{20i}$ Monday effect to level 3:

It's Monday: $\delta_{01i} = \gamma_{010} + V_{01i} \blacktriangleleft$

Likelihood	Ratio Test f Neg2Log	or FitR3Q	Time vs. Fit	R3Day	Does the lev persons? No	r el-2 Mond a ppe, −2∆LL(ay effect vary (~3) =4.94, p =	randomly over level-3 = .176, so drop it
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue	
FitR3QTime	4493.9	10	4513.9	4525.7				
FitR3Day	4488.9	13	4514.9	4530.3	4.94274	3	0.17604	

Btw, here is how to add an R-matrix AR(1) level-1 correlation using continuous time. It did not converge.

REPEATED / TYPE=SP(Pow) (SinceMidnight) SUBJECT=PersonID*Day; * Level 1 now has AR(1) corr;

Model 3a: Add fixed main effects of Negative Affect (NA) at each level using variable-based-centering

Level 1 Time: Fatigue _{tdi} =	$=\beta_{0di}+\beta_{1di}(Hour_{tdi}-15)+\beta_{2di}(Hour_{tdi}-15)^2+\beta_{3di}(NA_{tdi}-15)^2)$	$_{\rm di} - \overline{\rm NA}_{\rm di}) + e_{\rm tdi}$
Level 2 Day: Intercept:	$\beta_{0di} = \delta_{00i} + \delta_{01i} (Monday_{di}) + \delta_{02i} (\overline{NA}_{di} - \overline{NA}_{i}) + U_{0di}$	Civen their contering each
Linear Time:	$\beta_{1di} = \delta_{10i} + U_{1di}$	NA effect is specific to its
Quadratic Time:	$\beta_{2di} = \delta_{20i} + U_{2di}$	level—being grumpier than:
Within-Day NA:	$\beta_{3di} = \delta_{30i}$	I 1 – the rest of the day
Level 3 Person: Intercept:	$\delta_{00i} = \gamma_{000} + \gamma_{001} (\overline{Hour}_i - 15) + \gamma_{002} (\overline{NA}_i - 10) + V_{00i}$	(the day's mean)
Linear Time:	$\delta_{10i} = \gamma_{100} + \gamma_{101} (\overline{\text{Hour}_i} - 15)$	L2 = usual (the person's
Quadratic Time:	$\delta_{20i} = \gamma_{200} + \gamma_{201} (Hour_i - 15) + V_{20i}$	mean across days)
Within-Day NA:	$\delta_{30i} = \gamma_{300}$	I 3 – other people
It's Monday:	$\delta_{01i} = \gamma_{010}$	(on average)
Between-Day NA:	$\delta_{02i} = \gamma_{020}$	

TITLE1 "Model 3a: Add Fixed Main Effects of Negative Affect Per Level";

PROC MIXED DATA=work.EMA COVTEST NOCLPRINT NAMELEN=100 IC METHOD=REML; **CLASS** PersonID Day;

MODEL Fatigue = Monday L1T L1T*L1T L3T L1T*L3T L1T*L3T L1NA L2NA L3NA / SOLUTION DDFM=Satterthwaite OUTPM=PredNA; * Save for total-R2; RANDOM INTERCEPT L1T*L1T / GCORR TYPE=UN SUBJECT=PersonID; * Level 3; RANDOM INTERCEPT L1T L1T*L1T / GCORR TYPE=UN SUBJECT=PersonID*Day; * Level 2; ODS OUTPUT InfoCrit=FitFixNA CovParms=CovFixNA; * Save for fit and pseudo-R2; RUN;

	Covaria	ince Parameter	Estimates		
			Standard	Z	
Cov Parm	Subject	Estimate	Error	Value	Pr Z
UN(1,1)	PersonID	0.9817	0.4664	2.10	0.0177
UN(2,1)	PersonID	-0.00662	0.009453	-0.70	0.4835
UN(2,2)	PersonID	0.000459	0.000294	1.56	0.0594
UN(1,1)	PersonID*Day	1.8845	0.4082	4.62	<.0001
UN(2,1)	PersonID*Day	0.03496	0.03545	0.99	0.3240
UN(2,2)	PersonID*Day	0.01222	0.005893	2.07	0.0191
UN(3,1)	PersonID*Day	-0.01556	0.01034	-1.50	0.1325
UN(3,2)	PersonID*Day	-0.00144	0.000885	-1.63	0.1036
UN(3,3)	PersonID*Day	0.000699	0.000311	2.25	0.0124
Residual		2.9904	0.2352	12.71	<.0001

Solution for Fixed Effects Standard

		Scanual u			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	7.2351	0.3269	27.5	22.13	<.0001
Monday	0.4678	0.2691	243	1.74	0.0834
L1T	0.008782	0.01598	254	0.55	0.5831
<u>L1T*L1T</u>	0.01153	0.006086	14.3	1.89	0.0785
L3T	-0.1144	0.2599	21.6	-0.44	0.6640
L1T*L3T	-0.00765	0.01498	253	-0.51	0.6101
L1T*L1T*L3T	-0.00890	0.005504	15.6	-1.62	0.1259
L1NA	0.2283	0.03145	631	7.26	<.0001
L2NA	0.4293	0.06821	227	6.29	<.0001
L3NA	0.6205	0.08167	27.1	7.60	<.0001

Based on the change in their *p*-values, it looks like L3NA explained some of the L3 time-of-day effects.

Big picture interpretation:

Being grumpier (than the rest of the day at L1, than usual at L2, or than other people L3) is related to feeling more fatigue.

* Pseudo-R2 for NA main effects;

%PseudoR2(NCov=10, CovFewer=CovRandTime, CovMore=CovFixNA); * Total-R2 for NA main effects;

%TotalR2(DV=Fatigue, PredFewer=PredTime, PredMore=PredNA);

<i>*TotalR2</i> (DV=Fatigue,		PredFewer=PredTin	ne, PredMo	<pre>PredMore=PredNA) ;</pre>		Pred Corr	TotalR2	R2Diff	
PsuedoR2 (%	Reduction)	for CovRandTime vs.	CovFixNA		PredNA	0.62385	0.38919	0.30684	
Name	CovParm	Subject	Estimate	StdErr	ZValue	ProbZ	PseudoR2		
CovRandTime	UN(1,1)	PersonID	6.5735	2.3371	2.81	0.0025			
CovRandTime	UN(2,2)	PersonID	0.000531	0.000331	1.60	0.0546			
CovRandTime	UN(1,1)	PersonID*Day	2.4547	0.4782	5.13	<.0001			
CovRandTime	UN(2,2)	PersonID*Day	0.01155	0.006327	1.82	0.0340			
CovRandTime	UN(3,3)	PersonID*Day	0.000802	0.000354	2.27	0.0117			
CovRandTime	Residual	L	3.2275	0.2550	12.66	<.0001			
CovFixNA	UN(1,1)	PersonID	0.9817	0.4664	2.10	0.0177	0.85066 fc	or L3 int	
CovFixNA	UN(2,2)	PersonID	0.000459	0.000294	1.56	0.0594	0.13539 fc	or L3 quad 3	??
CovFixNA	UN(1,1)	PersonID*Day	1.8845	0.4082	4.62	<.0001	0.23229 fc	or L2 int	
CovFixNA	UN(2,2)	PersonID*Day	0.01222	0.005893	2.07	0.0191	-0.05844 fc	or L2 linear	•
CovFixNA	UN(3,3)	PersonID*Day	0.000699	0.000311	2.25	0.0124	0.12821 fc	or L2 quad 3	??
CovFixNA	Residual	L	2.9904	0.2352	12.71	<.0001	0.07347 fc	or L1 res	

It is unexpected that adding main effects of NA would reduce random quadratic time variance—in theory that should have only happened by adding interactions of NA by quadratic time. In testing those interactions with time, though, none of them was significant. So perhaps it's just a case of pseudo- R^2 being pseudo??

Level 1 Time:	Fatigue	$_{\rm tdi} = \beta_{\rm 0di} +$	$-\beta_{1di}(Hour_{tot})$	$_{di}$ –15) + β		$(-15)^2 + \beta_{3d}$	$_{i}(NA_{tdi} - \overline{NA}_{di}) + e_{tdi}$	
Level 2 Day:	Intercep	ot: $\beta_{0di} =$	$\delta_{00i} + \delta_{01i}$	Monday _{di}	$) + \delta_{02i} (\overline{NA})$	$_{di} - \overline{NA}_{i}$ +	- U _{0di} Before testing main or	
L	inear Tim	e: $\beta_{1di} =$	$\delta_{10i} + U_{1di}$				moderation effects of	
Ouad	dratic Tim	$B_{a,r} =$	$= \delta_{aa} + U_{aa}$				sleep, we need to test	
With	in-Day N	$\Delta \cdot \beta = -$	$-\delta \pm U$	3	h		random NA effects.	
		r_{3di} -	$-0_{30i} + 0_{3di}$	i T		- 10) I	Models 3b and 3c added	1
Level 3 Person	n: Intercep	ot: $\delta_{00i} =$	$\gamma_{000} + \gamma_{001}$	$(Hour_i - I)$	$(NA) + \gamma_{002} (NA)$	$A_i - 10) + V_i$	⁷ ⁰⁰ⁱ random effects of L1 NA	1
L	inear Tim	e: $\delta_{10i} =$	$\gamma_{100} + \gamma_{101} ($	Hour _i -15	5)		across L2 days and L3	
Quadratic Time: $\delta_{20i} = \gamma_{200} + \gamma_{201} (\overline{\text{Hour}}_i - 15) + V_{20i}$							persons. Model 3d added	1 a
With	in-Day N	A: δ _{30i} =	$= \gamma_{300} + V_{30i}$	→ 3	c —		over L3 persons. Only	
	It's Monda	$\delta_{01} =$	= V ₀₁₀		C		lines of code that changed	d
Betwe	en-Dav N	$[\mathbf{A} \cdot \mathbf{\delta}] =$	$-\gamma + V$	→ 3	d —		are shown.	
Detwe	CII-Day IV	-1.0_{02i}	- Y ₀₂₀ - Y _{02i}					
TITLE1 "Model	3b: Add	Random E	ffect of I	1 NA Acro	oss L2 Days	";		
RANDOM	INTERCEP	T L1T L1	T*L1T L1NA	/ GCORR	TYPE=UN SU	BJECT=Pers	<pre>sonID*Day; * Level 2;</pre>	
ODS OUT	IPUT Info	Crit=Fit	Rand2NA1 C	ovParms=C	ovRandNA;	* Save for FitMoro	fit, pseudo-R2; RUN;	
· Test Tandom	DI NA ac	1055 Uay	S, officies	sc(ricrewe	1-r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+	1 1 NA offor	t vorw randomly over level 2	٦
Likelihood Rati	lo Test for	r FitFixNA	A vs. FitRar	nd2NA1	days? Yes -	$2\Lambda LL(\sim 4) = 4$	15.92 $n < 0.01$ so keen it	
	Neg2Log	_		L				
Name	L1Ke	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue	
FILFIXNA FitBand2NA1	4383.0	10	4403.0	4414.8	45,9229	4	2 . 5555E - 9	
	100711		100011	100110	1010220	·	2100002 0	
TITLE1 "Model	3c: Add	Random E	ffect of I	1 NA Acro	oss L3 Pers	ons";	· · · · · · · · · · · · · · · · · · ·	
ODS OU	INTERCEP PUT Info	Crit=Fit	Rand3NA1;	RUN;	-UN SUBJEC	r=personn	; · Level 3;	
* Test random	L1 NA ac	ross per	sons;	,				
% <i>FitTest</i> (FitF	ewer=FitF	Rand2NA1,	FitMore=F	TitRand3NA	<u>1);</u>			_
likelihood Bati	o Test fo	c FitBand2	NA1 vs. Fit	Rand3NA1	Does the le	vel-1 NA eff	ect vary randomly over level-3	
	Neg2Log				persons? N	ο, −2ΔLL(~:	(3) = 3.21, p = .361, so drop it	
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue	
FitRand2NA1	4337.1	14	4365.1	4381.6	•	•		
FitRand23NA1	4333.9	17	4367.9	4387.9	3.20629	3	0.36090	
TTTLE1 "Model	3d: Add	Random E	ffect of I	2 NA Acro	oss I.3 Pers	ons":		
RANDOM	INTERCEP	T L1T*L1	T L2NA / G	CORR TYPE	=UN SUBJEC	T=PersonII); * Level 3;	
ODS OUT	<mark>FPUT</mark> Info	Crit=Fit	Rand3NA2;	RUN;				
* Test random	L1 NA ac	ross per	sons;	i+Pand3NZ	N2N •			
officiesc (ficf	ewer-ritt	anuznai ,	richore-r		2), D (1 1			٦
Likelihood Rati	lo Test fo	r FitRand2	2NA1 vs. Fit	tRand3NA2	Does the leve	-2AII(2)	et vary randomly over level-3 -4.07 n -1.74 so drop it	
	Neg2Log	_			persons: No,	=2/1LL(~3)	-4.97, p174, so arop lt	
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue	
FitRand2NA1	4337.1	14 17	4365.1	4381.6		•		
I I LINAIIUSIVAZ	4002.1	17	4000.1	4000.1	4.90920	3	0.1/400	

Now we can introduce the effects of sleep, beginning with the main effects at each level...

Level 1 Time: Fatigue _{tdi} = $\beta_{0di} + \beta_{1di}$ (Hour _{tdi} -15) + β_{2di} (Hour _{tdi} -15) ² + β_{3di} (NA _{tdi} - \overline{NA}_{di}) + e_{tdi}								
Level 2 Day	Level 2 Day: Intercent: $\beta = \delta + \delta$ (Monday) + δ (NA $\mu = NA$) + δ (Sleep = Sleep) + U							
Level 2 Duy	Lincor Time	$p_{0di} - v_{00i}$				- 0 _{03i} (bie	ep _{di} sheep _i)	0 _{0di}
	Linear Time: $\beta_{1di} = \delta_{10i} + U_{1di}$							
Qu	adratic Time	e: $\beta_{2di} = \delta_{20i}$	$+ U_{2di}$					
Wi	thin-Day NA	A: $\beta_{3di} = \delta_{30i}$	+ U _{3di}					
Level 3 Person: Intercept: $\delta_{00i} = \gamma_{000} + \gamma_{001} (\overline{\text{Hour}}_i - 15) + \gamma_{002} (\overline{\text{NA}}_i - 10) + \gamma_{003} (\overline{\text{Sleep}}_i - 7) + V_{00i}$								
Linear Time: $\delta_{10i} = \gamma_{100} + \gamma_{101} (\overline{\text{Hour}}_i - 15)$								
Quadratic Time: $\delta_{20i} = \gamma_{200} + \gamma_{201} (\overline{\text{Hour}}_i - 15) + V_{20i}$					Model 4a added fixed main effects of L2 last night sleep (0=Person Mean) and L3 person mean sleep			
vv 1	unin-Day NA	A: $o_{30i} = \gamma_{300}$			(0=7 hours	.).		
	It's Monda	$y: \delta_{01i} = \gamma_{010}$				11 1		
Betw	veen-Day N.	A: $\delta_{02i} = \gamma_{020}$		1b	Model 4b	added a rand	lom effect of L2 la	st night
Ye	sterday Slee	p: $\delta_{03i} = \gamma_{030}$	$+V_{03i}$	-0	sleep over	L5 persons,		erge.
TITLE1 "Mode	al 4a: Add 1	Fixed Main Ef	fects of Sle	ep Per Leve	1";			
PROC MIXED I	DATA=work.EM	MA COVTEST NO	CLPRINT NAME	ELEN=100 IC	METHOD=RE	:ML;		
CLASS	PersonID D	ay;						
MODEL	Fatigue =	Monday LIT L	1T*L1T L3T I	3T*L1T L3T*1	LlT*LlT L torthwait	INA L2NA :	L3NA redsleep: *For	total-P2.
RANDO	M INTERCEPT	L1T*L1T	GCOF	R TYPE=UN SI	UBJECT=Pe	rsonID;	* Level 3	;
RANDO	M INTERCEPT	LIT LIT*LIT	L1NA / GCOR	R TYPE=UN SI	UBJECT=Pe	rsonID*Da	y; * Level 2	;
ODS O	UTPUT InfoC	rit=FitSleep	CovParms=Cc	vSleep; * Sa	ave for f	it and ps	eudo-R2; RUN;	
	Solut	ion for Fixed	Effects					
		Standard			I then e	examined int	eractions with time	e of day
Effect	Estimate	Error	DF t Val	ue Pr> t	for both	h NA and sle	ep; all were nonsig	gnificant.
Intercept	7.1411	0.3224	25.3 22.	15 <.000	$\begin{bmatrix} 1 \\ e \end{bmatrix}$ I also e	xamined the	intra-variable slee	p
мопаау	0.5020	0.2719	238 2.	07 0.039 67 0.504	o interact	tion, and it w	as nonsignificant	as well.
L 1 T * I 1 T	0.01530	0.004980	13 3.	07 0.004 07 0.008	9			
L3T	-0.1490	0.2556	19.9 -0.	58 0.566	7 Big pic	ture interp	retation:	
L1T*L3T	-0.00749	0.01456	232 -0.	51 0.607	4 Getting	g less sleep th	nan usual the night	before is
L1T*L1T*L3T	-0.00669	0.004580	14.6 -1.	46 0.165	2 related	to feeling m	ore fatigue that day	y (duh).
L1NA	0.1630	0.04509	87.9 3.	62 0.000	5 But get	ting less slee	ep than other peopl	le does <i>not</i>
L2NA	0.4264	0.06834	217 6.	24 <.000	1 imply y	ou are more	tired than other pe	eople.
L3NA	0.6330	0.08334	23.9 7.	60 <.000	1			
L2Sleep	-0.1472	0.08092	208 -1.	82 0.070	3 Name	Pred Co	rr TotalR2	R2Diff
L3S1eep	-0.2308	0.3056	30.5 -0.	76 0.455	9 PredSle	ep 0.62	890 0.39551	.006319902
* Proudo-P2	for sloop r	main offorts	& Psoudo P2/I		Eowor=Cou	PandNA C	owMoro-Cowslo	
* Total-R2	for sleep i	main effects;	* * TotalR2 (D	/=Fatique, P	redFewer=	PredNA, P	PredMore=PredSl	=p); Leep);
PsuedoR2 (% R	eduction) fo	r CovRandNA vs	. CovFixSleep			, -		• • <i>'</i>
Name	CovParm	Subject	Estimate	StdErr	ZValue	ProbZ	PseudoR2	
CovRandNA	UN(1,1)	PersonID	0.8647	0.4366	1.98	0.0238		
CovRandNA	UN(2,2)	PersonID	0.000206	0.000193	1.06	0.1435	•	
CovRandNA	UN(1,1)	PersonID*Day	2.1662	0.4109	5.27	<.0001	•	
CovRandNA	UN(2,2)	PersonID*Day	0.01400	0.005611	2.49	0.0063	•	
	UN(3,3)	PersoniD*Day	0.000831	0.000296	2.81	0.0025	•	
CovBandNA	UN(4,4) Residual	Personito"Day	0.09070	0.03097	2.90 11 60		•	
CovFixSleen	UN(1,1)	PersonID	0.9004	0.4585	1.96	0.0248	-0.041346 for	13 int
CovFixSleen	UN(2.2)	PersonID	0.000212	0.000197	1.07	0.1413	-0.030228 for	L3 guad
CovFixSleep	UN(1,1)	PersonID*Dav	2.1559	0.4099	5.26	<.0001	0.004754 for	L2 int
CovFixSleep	UN(2,2)	PersonID*Day	0.01421	0.005642	2.52	0.0059	-0.015215 for	L2 linear
CovFixSleep	UN(3,3)	PersonID*Day	0.000833	0.000296	2.81	0.0025	-0.002261 for	L2 quad
<u>CovFixSleep</u>	UN(4,4)	PersonID*Day	0.09065	0.03095	2.93	0.0017	0.000633 for	L2 L1-NA
CovFixSleep	Residual		2.4451	0.2110	11.59	<.0001	0.000552 for	L1 res

Level 1 Time: Fatigue _{tdi} = $\beta_{0di} + \beta_{1di}$ (Hour _{tdi} -15) + β_{2di} ($(\text{Hour}_{tdi} - 15)^2 + \beta_{3di}(\text{NA}_{tdi} - \overline{\text{NA}}_{di}) + e_{tdi}$					
Level 2 Day: Intercept: $\beta_{0di} = \delta_{00i} + \delta_{01i} (Monday_{di}) + \delta_{01i} $	$\delta_{02i}(\overline{NA}_{di} - \overline{NA}_{i}) + \delta_{03i}(\overline{Sleep}_{di} - \overline{Sleep}_{i})$					
$+\delta_{04i}(\overline{NA}_{di}-\overline{NA}_{i})(Sleet$	$ep_{di} - \overline{Sleep}_i) + U_{0di}$					
Linear Time: $\beta_{1di} = \delta_{10i} + U_{1di}$						
Quadratic Time: $\beta_{2di} = \delta_{20i} + U_{2di}$						
Within-Day NA: $\beta_{3di} = \delta_{30i} + \delta_{33i} (Sleep_{di} - \overline{Sleep}_i) + U_{3di}$						
Level 3 Person: Intercept: $\delta_{00i} = \gamma_{000} + \gamma_{001} (\overline{Hour}_i - 15) +$	$-\gamma_{002}(\overline{NA}_i - 10) + \gamma_{003}(\overline{Sleep}_i - 7)$					
$+\gamma_{004}(\overline{NA_i}-10)(\overline{Sleep})$	$\overline{P}_{i} - 7) + V_{00i}$					
Linear Time: $\delta_{10i} = \gamma_{100} + \gamma_{101} (\overline{\text{Hour}}_i - 15)$						
Quadratic Time: $\delta_{20i} = \gamma_{200} + \gamma_{201} (\overline{\text{Hour}}_i - 15) + V_{20i}$						
Within-Day NA: $\delta_{30i} = \gamma_{300} + \gamma_{303} (\overline{\text{Sleep}}_i - 7)$						
It's Monday: $\delta_{01i} = \gamma_{010}$						
Between-Day NA: $\delta_{02i} = \gamma_{020} + \gamma_{023} (\overline{\text{Sleep}}_i - 7)$	Model 4c added six total interactions of L2 and L3 sleep with each level of NA.					
Yesterday Sleep: $\delta_{03i} = \gamma_{030} + \gamma_{002} (\overline{NA_i} - 10)$						
Between-Day NA by Yesterday Sleep: $\delta_{04i} = \gamma_{040}$	This will be our final model to report!					
Within-Day NA by Yesterday Sleep: $\delta_{33i} = \gamma_{330}$						

TITLE1 "Model 4c: Add Fixed Effects of Sleep Moderating Effects of NA";
PROC MIXED DATA=work.EMA COVTEST NOCLPRINT NAMELEN=100 IC METHOD=REML;
CLASS PersonID Day;
MODEL Fatigue = Monday L1T L1T*L1T L3T L3T*L1T L3T*L1T*L1T L1NA L2NA L3NA
L2Sleep L2Sleep*L1NA L2Sleep*L2NA L2Sleep*L3NA
L3Sleep L3Sleep*L1NA L3Sleep*L2NA L3Sleep*L3NA
/ SOLUTION DDFM=Satterthwaite OUTPM=PredModSleep; * Save for total-R2;
RANDOM INTERCEPT L1T*L1T L1NA / GCORR TYPE=UN SUBJECT=PersonID; * Level 3;
RANDOM INTERCEPT L1T L1T*L1T L1NA / GCORR TYPE=UN SUBJECT=PersonID*Day; * Level 2;
ODS OUTPUT CovParms=CovModSleep; * Save for fit and pseudo-R2; RUN;

Solution for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	7.0175	0.3835	22.2	18.30	<.0001
Monday	0.5671	0.2711	234	2.09	0.0375
L1T	0.009415	0.01546	241	0.61	0.5430
L1T*L1T	0.01578	0.004903	13	3.22	0.0067
L3T	-0.1103	0.2787	20.1	-0.40	0.6964
L1T*L3T	-0.00875	0.01457	235	-0.60	0.5491
L1T*L1T*L3T	-0.00684	0.004511	14.6	-1.52	0.1508
L1NA	0.1273	0.04610	83.6	2.76	0.0071
L2NA	0.3887	0.07120	215	5.46	<.0001
L3NA	0.5991	0.09694	21.4	6.18	<.0001
L2Sleep	-0.1346	0.1226	197	-1.10	0.2733
L1NA*L2Sleep	-0.02965	0.03994	74	-0.74	0.4602
L2NA*L2Sleep	0.02243	0.05975	211	0.38	0.7077
L3NA*L2Sleep	0.004104	0.03121	184	0.13	0.8955
L3Sleep	0.6632	0.5490	61	1.21	0.2317
L1NA*L3Sleep	-0.1950	0.07165	97.8	-2.72	0.0077
L2NA*L3Sleep	-0.2110	0.09964	240	-2.12	0.0352
L3NA*L3Sleep	0.2637	0.1453	60.4	1.82	0.0745

1	
5	
0 7	Big picture interpretation:
4 1	weaker within-person effects of negative
<u>8</u> 1	affect on fatigue—they appear <i>less</i> susceptible to feeling more tired when they are grumpy
1	(or vice-versa). But people who sleep more
1 3	of negative affect—the tendency for grumpy
2	people to be tired people is (almost) stronger
' 5	in people who sleep more.
7	There are no level-2 moderating effects of
1	naving slept less the hight before, however.

* Pseudo-R2 for sleep moderating effects;

%PseudoR2(NCov=14, CovFewer=CovSleep, CovMore=CovModSleep);

* Total-R2 for sleep main effects;

%TotalR2(DV=Fatigue, PredFewer=PredSleep, PredMore=PredModSleep);

PsuedoB2 (%	Reduction) fo	r CovEixSleen vs		Name PredModS	Pr Sleep	red Corr 0.63195	TotalR2 0.39936	R2Diff .003844363	
Name	CovParm	Subject	Estimate	StdErr	ZValue	ProbZ	Pseudo	R2	
CovFixSleep	UN(1,1)	PersonID	0.9004	0.4585	1.96	0.0248			
CovFixSleep	UN(2,2)	PersonID	0.000212	0.000197	1.07	0.1413			
CovFixSleep	UN(1,1)	PersonID*Day	2.1559	0.4099	5.26	<.0001			
CovFixSleep	UN(2,2)	PersonID*Day	0.01421	0.005642	2.52	0.0059			
CovFixSleep	UN(3,3)	PersonID*Day	0.000833	0.000296	2.81	0.0025			
CovFixSleep	UN(4,4)	PersonID*Day	0.09065	0.03095	2.93	0.0017			
CovFixSleep	Residual		2.4451	0.2110	11.59	<.0001			
CovModSleep	UN(1,1)	PersonID	1.0858	0.5173	2.10	0.0179	-0.205	88 for L3	int
<u>CovModSleep</u>	UN(2,2)	PersonID	0.000199	0.000191	1.04	0.1485	0.062	59 for L2	quad
CovModSleep	UN(1,1)	PersonID*Day	2.0173	0.3979	5.07	<.0001	0.064	29 for L2	int
CovModSleep	UN(2,2)	PersonID*Day	0.01436	0.005630	2.55	0.0054	-0.010	62 for L2	linear
CovModSleep	UN(3,3)	PersonID*Day	0.000813	0.000294	2.77	0.0028	0.024	09 for L2	quad
<u>CovModSleep</u>	UN(4,4)	PersonID*Day	0.08324	0.02960	2.81	0.0025	0.081	67 for L2	<u>L1-NA</u>
CovModSleep	Residual		2.4456	0.2104	11.62	<.0001	-0.000	19 for L1	res

Sample Results Section:

The extent to which daily sleep moderates the association between self-reported negative affect and fatigue was examined in a sample of 25 adolescents who completed surveys about their mood and energy levels up to four times per day for up to 20 days (total N = 976). All analyses were conducted using multilevel models estimated with residual maximum likelihood in SAS MIXED. Accordingly, the significance of fixed effects was evaluated with Wald tests using Satterthwaite denominator degrees of freedom, whereas the significance of random effects was evaluated via likelihood ratio tests (i.e., $-2\Delta LL$ with degrees of freedom equal to the number of new random effects variances and covariances). All results for the likelihood ratio tests referenced below are shown in Table X. Effect sizes are reported using two metrics: pseudo-R², the proportion reduction in each variance component after including the fixed effects, and total-R², the square of the correlation between the original fatigue outcome and the outcome predicted by the model's fixed effects.

Given the intensive longitudinal sampling design, we first examined the extent of dependency of observations from the same person, as well as from the same day, by contrasting the fit of two empty means models (i.e., with no predictors). Specifically, we compared the fit of two-level models of time within persons, in which only persons had a random intercept, against the fit of three-level models, in which a random intercept for day was added. As reported in Table X, a three-level model fit significantly better for both fatigue and negative affect. For fatigue, 52% of the total variance was between persons (level 3), 13% was between days (level 2), and 36% was within days (level 1); for negative affect, these values were 77%, 12%, and 21%, respectively. Given that participants could select at what time they completed each of the four surveys during the day, we also examined the same two- and three-level models treating time of day as an outcome. While there was no significant variance across days (as expected given that the survey timing was intended to be constant across days), 2.4% of the total variance in time of day was between persons. Finally, we examined a two-level model treating last night's sleep as an outcome, which revealed that 27% of the variance in sleep was between persons.

We then explored differences by time of day at level 1 by rounding time to the nearest half hour and estimating a saturated means model (i.e., with a separate mean for each time value). Fatigue followed a U-shape across the day, peaking in the mornings and in the late evening. We then approximated this pattern by fitting linear and quadratic level-1 effects of time of day, as well as their interactions with (and a main effect of) a level-3 predictor for person mean time of day; all time variables were entered such that 0 = 3 PM. The level-3 person mean time effects were necessary to create contextual effects by which the level-1 time of day effects then represented purely within-day effects as desired. We also examined potential level-2 time effects by estimating saturated means models for day in study and for day of the week. While no discernable pattern of change in fatigue by day of study was observed, fatigue appeared to be greatest on Mondays, which we approximated with a single contrast in which 1 = Monday and 0 = other days. Together, these fixed effects related to time accounted for 8.23% of the total variance in fatigue (i.e., total-R² = .083), including 4.57% of the level-3 person random intercept variance, 3.60% of the level-2 day random intercept variance, and 3.10% of the level-1 within-day residual variance.

We next examined the potential for random effects of these time-related predictors, beginning with level-1time of day. Given the heavily quadratic pattern, a random quadratic effect of time of day over level-2 days was fitted first, followed by a random linear effect. Each resulted in significant model improvement, indicating that the U-shaped trend for fatigue varied randomly across days within persons. Retaining these day-level random effects, we then examined random quadratic and linear time of day effects over level-3 persons. Only the random quadratic time of day effect varied significantly over persons, and thus the random linear time of day effect at level 3 was not retained. A random effect over level-3 persons for the difference in fatigue on Mondays did not improve model fit and was also not retained.

We then added level-specific predictors of negative affect using variable-based-centering for levels 1 and 2. Specifically, the level-1 within-day predictor was centered at the day's mean, the level-2 day mean predictor was centered at the person's mean, and the level-3 person mean predictor was centered at 10 (near the sample mean). All three effects were significantly positive and together accounted for an additional 30.7% of the total variance. The level-1 effect of being grumpier than the rest of the day explained 7.35% of the remaining level-1 residual variance. The level-2 effect of having a grumpier day than usual explained 23.2% of the remaining level-2 day random intercept variance, as well as—inexplicably—12.8% of the level-2 random quadratic time of day variance. Similarly, the level-3 effect of being grumpier than other people explained 85.1% of the remaining level-3 person random intercept variance, as well as 13.5% of the level-3 random quadratic time of day variance. In then testing random effects, we found a significant random effect of level-1 negative affect across level-2 days, which was retained in the model. There was no significant random variance across level-3 persons in the level-1 or level-2 effects of negative affect, and so these random effects were not retained.

We next added fixed main effects of level-2 previous night's sleep (centered at the person's mean) and level-3 person mean sleep (centered at seven hours, near the sample mean). Both effects were nonsignificantly negative and accounted for an additional 0.63% of the total variance. The level-2 effect of having less sleep than usual the night before explained 0.48% of the remaining level-2 day random intercept variance, and the level-3 effect of averaging less sleep than other people did not reduce the remaining level-3 person random intercept variance. A model also testing the random variance across level-3 persons in the level-2 sleep effect did not converge. All interactions of negative affect and sleep with time of day were nonsignificant; an intra-variable interaction of level-2 by level-3 sleep was also nonsignificant.

Finally, to examine the moderating effects of sleep on the relationship between negative affect and fatigue, we added the six possible two-way interactions between negative affect and sleep at each level, which accounted for an additional 0.38% of the variance, making the model total- $R^2 = .399$. The remaining level-2 day random intercept variance was reduced by 6.43% from three interactions: level-2 sleep by level-2 negative affect, level-2 sleep by level-3 negative affect, and level-3 sleep by level-2 negative affect. The remaining level-2 day random variance in the effect of level-1 negative affect was reduced by 8.17% from two interactions: level-2 sleep by level-1 negative affect, and level-3 sleep by level-3 person random intercept variance was not reduced by the level-3 sleep by level-3 negative affect interaction. Inexplicably, the remaining level-2 and level-3 random quadratic time of day variances were also reduced by 2.41% and 6.26%, respectively.

Results for this final model are shown in Table XX and can be interpreted as follows. Fatigue was significantly higher on Mondays. There remained a significant positive quadratic trend of level-1 time of day (as evaluated for a person with a mean time of day = 3 PM), although no contextual effects of level-3 person mean time of day were significant. The simple main effects of negative affect at each level (each conditional on the reference values for level-2 and level-3 sleep) remained significantly positive, indicating greater negative affect was related to greater fatigue. The simple main effects of level-2 and level-3 sleep (each conditional on the reference values for level-2 and level-2 and level-3 sleep (each conditional on the reference values for level-1, level-2, and level-3 negative affect) remained nonsignificant. The three interactions of level-2 sleep with each of level of negative affect were all nonsignificant, indicating no differentiable impact of getting less sleep than usual on the association between negative affect and fatigue. A different pattern of results was found with respect to level-3 sleep: the interactions of level-3 person mean sleep with level-1 and level-2 negative affect on fatigue—they appear less susceptible to feeling more tired than usual when they are grumpier than usual (or vice-versa). In contrast, the interaction of level-3 person mean sleep with level-3 negative affect was almost significantly positive (p = .075), indicating that the tendency for grumpy people to be tired people is (almost) stronger in people who sleep more than other people.