Example 7a: Generalized Linear Mixed Models for Logistic Clustered Outcomes using SAS PROC GLIMMIX, STATA MELOGIT, and MPLUS (last model only)

These are the same real data featured in CLDP 945 Example 6a from a 10^{th} grade math test in a Midwestern Rectangular State. These data include 13,802 students from 94 schools, with 31–515 students in each school (M = 275). We will examine how student free and reduced lunch status (0 = pay for lunch, 1= receive free or reduced lunch) can be predicted by math test scores (i.e., the reverse of CLDP 945 Example 6a).

Variable	Label	Mean	Variance	Minimum	Maximum
math	math: Math Test Score Outcome	48.1186	297.8747	0.000	83.0000
SMmath	SMmath: School Mean Math Outcome	48.1186	46.4869	29.451	61.6136
frlunch	frlunch: O=No, 1=Free/Reduced Lunch	0.3075	0.2130	0.000	1.0000
SMfrlunch	SMfrlunch: School Mean O=No, 1=Free/Reduced Lunch	0.3075	0.0493	0.000	0.8033

SAS Syntax for Data Manipulation:

```
* Centering math predictors (had previously used PROC MEANS BY school to get school mean math);
DATA grade10; SET grade10;
    WSmath = (math - SMmath)/10;
    LABEL WSmath= "WSmath: Within-School Math (0=SM)";
    SMmath50 = (SMmath - 50)/10;
    LABEL SMmath50= "SMmath50: School Mean Math (0=5)";
RUN;
```

STATA Syntax for Data Manipulation:

```
* Label existing variables
label variable frlunch "frlunch: Student Free/Reduced Lunch 0=No 1=Yes"
label variable math "math: Student Free/Reduced Lunch 0=No 1=Yes"
* Get school means of variables and label them
egen SMfrlunch = mean(frlunch), by (schoolID)
egen SMmath = mean(math), by (schoolID)
label variable SMfrlunch "SMfrlunch: School Mean 0=No, 1=Free/Reduced Lunch"
label variable SMmath "SMmath: School Mean Math"
* Center school mean math
gen SMmath50 = (SMmath-50)/10
label variable SMmath50 "SMmath: School Mean Math (0=5)"
* Center to get within-school math
gen WSmath = (math-SMmath)/10
label variable SMmath "WSmath: Within-School Math (0=SM)"
```

Model 1. Empty Means, Single-Level Logistic Model Predicting Paid Lunch (=0) vs. Free/Reduced Lunch (=1) Level 1: Logit (FRlunch_{ks} = 1) = β_{0s} Level 2: Intercept: $\beta_{0s} = \gamma_{00}$

```
TITLE1 "SAS Empty Means, Single-Level Logistic Model Predicting Student Free/Reduced Lunch";
PROC GLIMMIX DATA=work.grade10 NOCLPRINT NAMELEN=100 METHOD=QUAD(QPOINTS=15) GRADIENT;
CLASS schoolID;
 * Descending makes us predict the 1 instead of the default-predicted 0;
MODEL frlunch (DESCENDING) = / SOLUTION LINK=LOGIT DIST=BINARY DDFM=Satterthwaite;
ESTIMATE "Intercept" intercept 1 / ILINK; * ILINK is inverse link (to un-logit);
RUN;
* STATA Model 1: Empty Means, Single-Level Logistic Model Predicting FRlunch
melogit frlunch ,
estat ic, n(94),
nlcom 1/(1+exp(-1*(_b[_cons]))) // intercept in probability
```

Convergence criterion (GCONV=1E-8) satisfied.

16145.89
16147.89
16147.89
16155.37
16156.37
16150.39
13082.00
1.00

What table is missing that would normally be here?

		Parame	ter Estim	ates 🗌			
		Standard					
Effect	Estimate	Error	DF	t Value	Pr > t	Gradient	
Intercept	-0.8117	0.01895	13081	-42.84	<.0001	2.155E-9	
			Esti	mates			Standard
		Standard					Error
Label	Estimate	Error	DF	t Value	Pr > t	Mean	Mean
Intercept	-0.8117	0.01895	13081	-42.84	<.0001	0.3075	0.004035

What does the fixed intercept represent?

Model 2. Empty Means, Two-Level Logistic Model Predicting Paid (=0) vs. Free/Reduced Lunch (=1)

Level 1:	$\text{Logit}(\text{FRlunch}_{\text{ks}}=1)=\beta_{0s}$
Level 2:	Intercept: $\beta_{0s} = \gamma_{00} + U_{0s}$

TITLE1 "SAS Empty Means, Two-Level Logistic Model Predicting Student Free/Reduced Lunch";
PROC GLIMMIX DATA=work.grade10 NOCLPRINT NAMELEN=100 METHOD=QUAD (QPOINTS=15) GRADIENT;
CLASS schoolID;
MODEL frlunch (DESCENDING) = / SOLUTION LINK=LOGIT DIST=BINARY DDFM=BW;
RANDOM INTERCEPT / TYPE=UN SUBJECT=schoolID;
ESTIMATE "Intercept" intercept 1 / ILINK; * ILINK is inverse link (to un-logit);
COVTEST "Random School Intercept?" 0; * Test if G matrix UN(1,1)=0;
ODS OUTPUT CovParms=CovEmpty; * Save random int var for pseudo-R2;

RUN; DDFM=Satterthwaite or KR is not available in METHOD=QUAD, so we switch to DDFM=BW (Between-Within).

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics-2 Log Likelihood13172.43AIC (smaller is better)13176.43AICC (smaller is better)13176.43BIC (smaller is better)13181.52CAIC (smaller is better)13183.52HQIC (smaller is better)13178.48

	Cov	ariance Param	neter Estima	tes
Cov			Standard	
Parm	Subject	Estimate	Error	Gradient
UN(1,1)	schoolID	1.9545	0.3315	0.000164

Model-scale ICC for the correlation of students in the same school for FRlunch: $ICC = \frac{1.9545}{1.9545 + 3.29} = .3737$

		Solution 1	for Fixed	Effects		
		Standard				
Effect	Estimate	Error	DF	t Value	Pr > t	Gradient
Intercept	-1.1721	0.1494	93	-7.85	<.0001	0.000085

To go from logits to probability for predicted outcomes (i.e., to apply the inverse logit link):

$$Prob(y = 1) = \frac{exp(-0.8117)}{1 + exp(-0.8117)} = .3075$$

							Standard
		Standard					Error
Label	Estimate	Error	DF	t Value	Pr > t	Mean	Mean
Intercept	-1.1721	0.1494	93	-7.85	<.0001	0.2365	0.02697
		Tasta of Co		Donomotono			

Estimates

lest	IS OT	Covariance Para	neters		
E	Based	on the Likeliho	bc		
Label	DF	-2 Log Like	ChiSq	Pr > ChiSq	Note
Random School Intercept?	1	16146	2973.46	<.0001	MI
MI: P-value based on a mixtur	re of	chi-squares.			

The COVTEST tells us whether adding the random intercept variance across schools significantly improves model fit: -2LL single-level = 16,145.89 -2LL two-level = 13,172.43 $-2\Delta LL$ (df= \sim 1) = 2,973.46

COVTEST can be used for any nested model comparisons involving variance components, but I have seen it get the answer wrong, so be careful when using it!

What does the fixed intercept NOW represent?

To go from logits to predicted probability: $Prob(y = 1) = \frac{exp(-1.1721)}{1 + exp(-1.1721)} = .2365$

Calculate a 95% random effect confidence interval for the school random intercept:

 $CI = fixed effect \pm 1.96*SQRT(random intercept variance)$ $CI = -1.1721 \pm 1.96*SQRT(1.9545) = -3.91$ to 1.57 in logits, or .02 to .83 in probability

Model 3. Adding a Level-2 Fixed Effect of School Mean Student Math

```
Level 1: Logit (FRlunch<sub>ks</sub> = 1) = \beta_{0s}
                 Intercept: \beta_{0s} = \gamma_{00} + \gamma_{01} (SMmath_s - 50) + U_{0s}
Level 2:
TITLE1 "SAS Add Level-2 Fixed Effect of School Mean Math";
PROC GLIMMIX DATA=work.grade10 NOCLPRINT NAMELEN=100 METHOD=QUAD (QPOINTS=15) GRADIENT;
       CLASS schoolID;
       MODEL frlunch (DESCENDING) = SMmath50 / SOLUTION LINK=LOGIT DIST=BINARY DDFM=BW ODDSRATIO;
       RANDOM INTERCEPT / TYPE=UN SUBJECT=schoolID;
       ESTIMATE "Intercept if SMmath=49" intercept 1 SMmath50 -1 / ILINK;
       ESTIMATE "Intercept if SMmath=50" intercept 1 SMmath50 0 / ILINK;
ESTIMATE "Intercept if SMmath=51" intercept 1 SMmath50 1 / ILINK;
       ESTIMATE "L2 Math Slope"
                                               SMmath50 1 / ILINK; * Example of non-sense ILINK;
       ODS OUTPUT CovParms=CovSMmath;
                                                              * Save random int var for pseudo-R2;
RUN; %PseudoR2G(NCov=1, CovFewer=CovEmpty, CovMore=CovSMmath);
* STATA Model 3: Add Level-2 Fixed Effect of School Mean Math
melogit frlunch c.SMmath50, || schoolID: , covariance(unstructured) intpoints(15),
    estat ic, n(94),
    margins , at(c.SMmath50=(-1(1)1)) predict(xb) // logits
    margins , at(c.SMmath50=(-1(1)1))
                                                        // probabilities
         Convergence criterion (GCONV=1E-8) satisfied.
           Fit Statistics
-2 Log Likelihood
                            13103.22
AIC (smaller is better)
                            13109.22
AICC (smaller is better)
                            13109.23
BIC (smaller is better)
                            13116.85
CAIC (smaller is better)
                            13119.85
HQIC (smaller is better)
                            13112.31
            Covariance Parameter Estimates
Cov
                                   Standard
           Subject
Parm
                       Estimate
                                      Error
                                               Gradient
UN(1,1)
           schoolID
                        0.7657
                                     0.1448
                                               -0.00005
```

		Solutions Standard	for Fixed Ef	fects				
Effect	Estimate	Error	DF t	Value	Pr > t	Gradient		
Intercept	-1.4696	0.1040	92	-14.13	<.0001	0.000025		
SMmath50	-1.4429	0.1403	92	-10.29	<.0001	-0.00002		
		Odds Ratio E	stimates					
				95% Con	fidence			
SMmath50	_SMmath50	Estimate	DF	Lim	its			
0.8119	-0.188	0.236	92	0.179	0.312			
Effects of	continuous v	ariables are	assessed as	one unit	offsets from	m the mean.		
The AT sub	option modifi	es the refer	ence value a	nd the UN	IT suboption	modifies the	e offsets.	
			E	stimates				Standard
			امیں مامیں جا O					
			Standard					Error
Label		Estimate	Standard Error	DF	t Value	Pr > t	Mean	Error Mean
	if SMmath=49	Estimate -0.02668		DF 92	t Value -0.19	Pr > t 0.8515	Mean 0.4933	
Intercept :	if SMmath=49 if SMmath=50		Error					Mean
Intercept : Intercept :		-0.02668	Error 0.1421	92	-0.19	0.8515	0.4933	Mean 0.03552
Intercept : Intercept :	if SMmath=50 if SMmath=51	-0.02668 -1.4696	Error 0.1421 0.1040	92 92	-0.19 -14.13	0.8515 <.0001	0.4933 0.1870	Mean 0.03552 0.01581
Intercept : Intercept : Intercept : L2 Math Slo	if SMmath=50 if SMmath=51 ope	-0.02668 -1.4696 -2.9125 -1.4429	Error 0.1421 0.1040 0.2020 0.1403	92 92 92 92	-0.19 -14.13 -14.42	0.8515 <.0001 <.0001	0.4933 0.1870 0.05154	Mean 0.03552 0.01581 0.009873
Intercept : Intercept : Intercept : L2 Math Slo	if SMmath=50 if SMmath=51 ope	-0.02668 -1.4696 -2.9125	Error 0.1421 0.1040 0.2020 0.1403	92 92 92 92	-0.19 -14.13 -14.42	0.8515 <.0001 <.0001	0.4933 0.1870 0.05154	Mean 0.03552 0.01581 0.009873

What does the fixed intercept NOW represent? The logit for the probability of getting free/reduced lunch for a kid in a school with a random intercept $U_{0s} = 0$ and school mean math = 50 is -1.4696, which is a probability = .187.

0.3315

0.1448

0.000164

-0.00005

0.60824

What does the main effect of school mean math represent? <u>Without controlling for student math</u>, for every 10 units higher school mean math, the logit for the probability of getting free/reduced lunch is significantly lower by 1.4429, which translates into an odds ratio of 0.236. This is the "total" between-school effect. This effect accounted for 60.824% of the level-2 school random intercept variance.

*****Note that the probability estimate of 0.1911 is meaningless, because a one-unit difference in the predictor does not imply the same difference in probability at all points along the predictor.*****

Model 4. Adding a Level-1 Fixed Effect of Group-Mean-Centered Student Math

1.9545

0.7657

Level 1: Logit (FRlunch_{ks} = 1) = $\beta_{0s} + \beta_{1s} (math_{ks} - SMmath_{s})$ Level 2: Intercept: $\beta_{0s} = \gamma_{00} + \gamma_{01} (SMmath_{s} - 50) + U_{0s}$ Within-School Math: $\beta_{1s} = \gamma_{10}$

CovEmpty

CovSMmath

UN(1,1)

UN(1,1)

schoolID

schoolID

C	Convergence d	criterion (GC	ONV=1E-8)	satisfied.			CI	DF 945 Exampl
	Fit Statist		,					
-2 Log Lił	kelihood	12390.	67					
•	ller is bette	er) 12398.	67					
AICC (smal	ller is bette	er) 12398.	67					
BIC (smal	ller is bette	er) 12408.	85					
-	ller is bette		85					
,	ller is bette	,	78					
	Covariance	e Parameter E	stimates		Note the	increase in th	e level-	2 random
Cov			Standard			variance and		
Parm	Subject	Estimate	Error	Gradient	-	t is rescaled d		
UN(1,1)	schoolID	0.8414	0.1576	0.000012				
						vel-1 residual		e (winch
		Solutions	for Fixed	Effects	stays at 2	3.29 no matter	what).	
		Standard						
Effect	Estimate	Error	DF	t Value	Pr > t	Gradient		
Intercept	-1.5598	0.1088	92	-14.34	<.0001	-0.00046		
SMmath50	-1.5174	0.1467	92	-10.35	<.0001	0.00009		
WSmath	-0.3720	0.01450	12987	-25.66	<.0001	0.000823		
			Odds Ratio	Estimates				
						95% Confi	dence	
SMmath50	WSmath	SMmath50	WSmath	Estimate	DF	Limit	s	
0.8119	-1E-17	-0.188	-1E-17	0.219	92	0.164	0.293	3
-0.188	1	-0.188	-1E-17	0.689	12987	0.670	0.709)
			E	stimates				
					Standard			
Label				Estimate	Error	DF t	Value	Pr > t
Contextual	l Between-Sch	nool Effect o	f Math	-1.1454	0.1468	92	-7.80	<.0001

What does the fixed intercept NOW represent? The logit for the probability of getting free/reduced lunch for a kid in a school with a random intercept $U_{0s} = 0$ and school mean math = 50 and within-school math = 0 (e.g., an average student) is -1.5598, which translates into a probability = .210.

What does the main effect of school mean math NOW represent? The interpretation is the same: without controlling for student math, for every one-unit higher school mean math, the logit for the probability of getting free/reduced lunch is significantly lower by 0.1517, which translates into an odds ratio of 0.219. This effect is still significant after controlling for kid math (as indicated by a contextual between-school effect = -1.1454).

What does the main effect of student math represent? For every 10 units higher student math relative to the rest of your school, the logit for the probability of getting free/reduced lunch is significantly lower by 0.372, which translates into an odds ratio of 0.689. We cannot compute a pseudo- R^2 for the residual variance, which remains un-estimated.

		Contrasts				
	Num	Den				
Label	DF	DF	Chi-Square	F Value	Pr > ChiSq	Pr > F
Multivariate Wald test for Math Effects	2	12987	746.30	373.15	<.0001	<.0001

There are two ways to test multiple fixed effects at once. The above output is an example of a multivariate Wald test (from CONTRAST) that you can use for any model and with either REML or ML. Given that we are using ML here, we can also do an LRT: $-2\Delta LL(2) = 781.76$, p < .0001. These tests should agree (asymptotically).

Model 5 Addi Effort of C MC Student Math ъ

	Adding a R			-		1		
Level 1:	Logit (FRlur	$\operatorname{nch}_{\mathrm{ks}}=1)=1$	$\beta_{0s} + \beta_{1s} (m)$	$ath_{ks} - SM$	math_{s})			
Level 2:	Inter	cept: $\beta_{0s} = \gamma$	$_{00} + \gamma_{01} (SI)$	$Mmath_s - 50$	$(0) + U_{0s}$			
Wit	hin-School N	Aath: $\beta_{1s} = \gamma$	$U_{10} + U_{1s}$					
PROC GLIN CI MC RA CC	MMIX DATA=wd LASS schooll DEL frlunch / SOLUTION ANDOM INTERC DVTEST "Rand	ID; h (DESCENDIN N LINK=LOGI CEPT WSmath	NOCLPRINT IG) = SMma I DIST=BIN / TYPE=UN Math Slop	T NAMELEN=1 th50 WSmat NARY DDFM=F SUBJECT=s pe?" . 0 0;	h MODDSRAT ChoolID; * Leave	IO; = (1,1), t	DINTS=15) GRADIENT; est if (2,1) and (2,2 pseudo-R2;	2) =
* STATA I	Model 5: Add	d Random Ef:	fect of G	coup-MC Sti	ident Math			
melogit :	frlunch c.S	Mmath50 c.W	Smath,	schoolII				
	ovariance(un stat ic, n(nstructured)	intpoint	.s(15),				
		ore RandMath	n // sav	e LL for I	RT			
lr	test RandMa	ath FixMath	// LRI	against f	ixed effec	ct model		
	Convergence	criterion (GC	ONV-1E-9)	eatiefied				
	oonvergence t	A I LEA ION (GO	0NV-12-0)	54(15)164.				
FROM THE	LOG: At lea	st one eleme	nt of the ç	gradient is	greater tha	an 1e-3.		
	Fit Statist	tics						
-2 Log Lil		12352.	01					
AIC (smai	ller is bette	er) 12364.	01					
	ller is bette		01					
•	ller is bette	,						
``	ller is bette	,						
nuic (sila.	ller is bette	er) 12370.	17					
	Covariance	e Parameter E	stimates		Note that	at the level-2	2 random slope variance	
Cov			Standard				he effect of student math	
Parm	Subject	Estimate	Error	Gradient	is not es	stimated ver	y well: the gradient is the	
UN(1,1)	schoolID schoolID	0.8118 -0.03524	0.1540 0.02906	-0.00188 0.007376			ith respect to each	
UN(2,1) UN(2,2)	schoolID	0.01608	0.005433	0.324555	^		nould be ~0.	
())								
		Solutions Standard	for Fixed	Effects				
	Estimate	Error	DF	t Value	Pr > t	Gradient		
FITECT		0.1076	92		<.0001	0.003945		
	-1.5665	0.1070		-14.56	<.0001	0.003943		
Effect Intercept SMmath50	-1.5665 -1.5617	0.1477	92	-14.56	<.0001 <.0001	-0.0015		
Intercept								
Intercept SMmath50	-1.5617	0.1477 0.02425	92 12987	-10.57 -14.16	<.0001	-0.0015		
Intercept SMmath50	-1.5617	0.1477 0.02425	92	-10.57 -14.16	<.0001	-0.0015 -0.04844		
Intercept SMmath50 WSmath SMmath50	-1.5617 -0.3434 WSmath	0.1477 0.02425 _SMmath50	92 12987 Odds Ratio _WSmath	-10.57 -14.16 Estimates Estimate	<.0001 <.0001 DF	-0.0015 -0.04844 95% Con Lim	fidence its	
Intercept SMmath50 WSmath SMmath50 0.8119	-1.5617 -0.3434 WSmath -1E-17	0.1477 0.02425 _SMmath50 -0.188	92 12987 Odds Ratio _WSmath -1E-17	-10.57 -14.16 Estimates Estimate 0.210	<.0001 <.0001 DF 92	-0.0015 -0.04844 95% Con Lim 0.156	fidence its 0.281	
Intercept SMmath50 WSmath SMmath50	-1.5617 -0.3434 WSmath	0.1477 0.02425 _SMmath50	92 12987 Odds Ratio _WSmath	-10.57 -14.16 Estimates Estimate	<.0001 <.0001 DF	-0.0015 -0.04844 95% Con Lim	fidence its	
Intercept SMmath50 WSmath SMmath50 0.8119	-1.5617 -0.3434 WSmath -1E-17	0.1477 0.02425 _SMmath50 -0.188 -0.188	92 12987 Odds Ratio _WSmath -1E-17 -1E-17	-10.57 -14.16 Estimates Estimate 0.210	<.0001 <.0001 DF 92 12987	-0.0015 -0.04844 95% Con Lim 0.156	fidence its 0.281	
Intercept SMmath50 WSmath SMmath50 0.8119	-1.5617 -0.3434 WSmath -1E-17	0.1477 0.02425 _SMmath50 -0.188 -0.188 Tests of	92 12987 Odds Ratio _WSmath -1E-17 -1E-17	-10.57 -14.16 Estimates Estimate 0.210 0.709 e Parameters	<.0001 <.0001 DF 92 12987	-0.0015 -0.04844 95% Con Lim 0.156	fidence its 0.281	
Intercept SMmath50 WSmath SMmath50 0.8119 -0.188 Label	-1.5617 -0.3434 WSmath -1E-17	0.1477 0.02425 SMmath50 -0.188 -0.188 Tests of Based DF	92 12987 Odds Ratio _WSmath -1E-17 -1E-17 Covariance on the Lil -2 Log	-10.57 -14.16 Estimates Estimate 0.210 0.709 e Parameters kelihood Like (<.0001 <.0001 DF 92 12987	-0.0015 -0.04844 95% Con Lim 0.156	fidence its 0.281	

Does the level-2 random effect of level-1 student math improve model fit? Yes, $-2\Delta LL(\sim 2) = 38.66$, p < .001

Calculate a 95% random effect confidence interval for the student math slope:

 $CI = fixed effect \pm 1.96*SQRT(random slope variance)$ $CI = -0.3434 \pm 1.96*SQRT(0.01608) = -0.59$ to -0.09 in logits (there is no analog in probability terms)

So what does this mean? The extent to which within-school student differences in math predicts student free/reduced lunch status varies significantly across schools, but across 95% of schools, higher student math is predicted to relate to a lower probability of receiving free/reduced lunch.

Model 6. Adding Intra-Variable Interactions of School Mean Math and GMC Student Math

Level 1: Logit (FRlunch_{ks} = 1) = $\beta_{0s} + \beta_{1s}$ (math_{ks} - SMmath_s) Intercept: $\beta_{0s} = \gamma_{00} + \gamma_{01} (\text{SMmath}_s - 50)$ Level 2: $+\gamma_{02} (\text{SMmath}_{s} - 50)^{2} + U_{0s}$ Within-School Math: $\beta_{1s} = \gamma_{10} + \gamma_{11} (SMmath_s - 50) + U_{1s}$ TITLE1 "SAS Add Intra-Variable Interactions of School Mean and Group-MC Student Math"; PROC GLIMMIX DATA=work.grade10 NOCLPRINT NAMELEN=100 METHOD=QUAD (QPOINTS=15) GRADIENT; CLASS schoolID; MODEL frlunch (DESCENDING) = SMmath50 WSmath SMmath50*WSmath SMmath50*SMmath50 / SOLUTION LINK=LOGIT DIST=BINARY DDFM=BW ODDSRATIO; RANDOM INTERCEPT WSmath / TYPE=UN SUBJECT=schoolID; ESTIMATE "Contextual Math Main Effect" WSmath -1 SMmath50 1; ESTIMATE "Contextual Math Interaction" SMmath50*WSmath -1 SMmath50*SMmath50 1; CONTRAST "Multiv Wald test for Interactions" SMmath50*WSmath 1, SMmath50*SMmath50 1 / CHISQ; RUN; %PseudoR2G(NCov=3, CovFewer=CovRandMath, CovMore=CovInteract); * STATA Model 6: Add Intra-Variable Interactions of School Mean Math and GMC Student Math melogit frlunch c.SMmath50 c.WSmath c.SMmath50#c.WSmath c.SMmath50#c.SMmath50, /// || schoolID: WSmath, covariance (unstructured) intpoints (15), estat ic, n(94), lincom c.WSmath*-1 + c.SMmath50*1 // Contextual Math Main Effect lincom c.SMmath50#c.WSmath*-1 + c.SMmath50#c.SMmath50*1 // Contextual Math Interaction Convergence criterion (GCONV=1E-8) satisfied. FROM THE LOG: At least one element of the gradient is greater than 1e-3. Fit Statistics

-2 Lo	og Likeli	12347.84		
AIC	(smaller	is	better)	12363.84
AICC	(smaller	is	better)	12363.86
BIC	(smaller	is	better)	12384.19
CAIC	(smaller	is	better)	12392.19
HQIC	(smaller	is	better)	12372.06

Cov	Covarianc	e Parameter	Estimates Standard					
Parm	Subject schoolID	Estimate 0.8157	Error 0.1553	Gradi -0.00				
UN(1,1) UN(2,1)	schoolID	-0.02773	0.02798	-0.05	393	LRT agrees	closely with te	sts of
UN(2,2)	schoolID	0.01348	0.004909	0.332	867	two new int		
				Con	trasts	$-2\Delta LL(2)$ -	= 4.17 , <i>p</i> = .124	
			Num	Den				
Label			DF	DF	Chi-Square	F Value	Pr > ChiSq	Pr > F
Multiv Wa	ld test for	Interactions	2	91	4.35	2.18	0.1133	0.1192

		So	olutions for	Fixed Effe	cts		_
			Standard				
Effect		Estimate	Error	DF	t Value	Pr > t	Gradient
Intercept		-1.5460	0.1231	91	-12.55	<.0001	0.003075
SMmath50		-1.5833	0.1998	91	-7.93	<.0001	-0.00215
WSmath		-0.3688	0.02633	12986	-14.01	<.0001	-0.10677
SMmath50*WS	math	-0.06962	0.03364	12986	-2.07	0.0385	0.055708
SMmath50*SMmath50 -0.0		-0.06850	0.1760	91	-0.39	0.6980	0.0059
			Odda Dati	lo Estimate			
			OUUS RALI	LO ESTIMATE	15	0.5%	Confidence
SMmath50	WSmath	_SMmath50 _WSmath		Estimat	Estimate DF		Limits
0.8119	-1E-17	-0.188	—	0.19			
-0.188	-12-17	-0.188		0.70			
-0.100	I	-0.100	Estima		1 12900	0.00	0.755
			LSCIM	Standard			
Label			Estimate	Error	DF	t Value	Pr > t
Contextual	Math Mair	Effoot	-1.2145	0.1994	91	-6.09	<.0001
Contextual			0.001114	0.1994	91	0.09	0.9950
CONTEXTUAL		action	0.001114	0.1772	91	0.01	0.9950
PsuedoR2 (%	Reductio	on) for Covi	RandMath vs.	CovInterac	t		
Name	CovPa	,				radient	PseudoR2
CovRandMath	UN(1.	-		3118 0	.1540 -	0.00188	
CovRandMath		,	olID 0.01	608 0.0	05433 0	.324555	
CovInteract		, 1) schoo			.1553 -	0.00526	-0.00479
CovInteract		,	olID 0.01	348 0.0	04909 0	.332867	0.16163

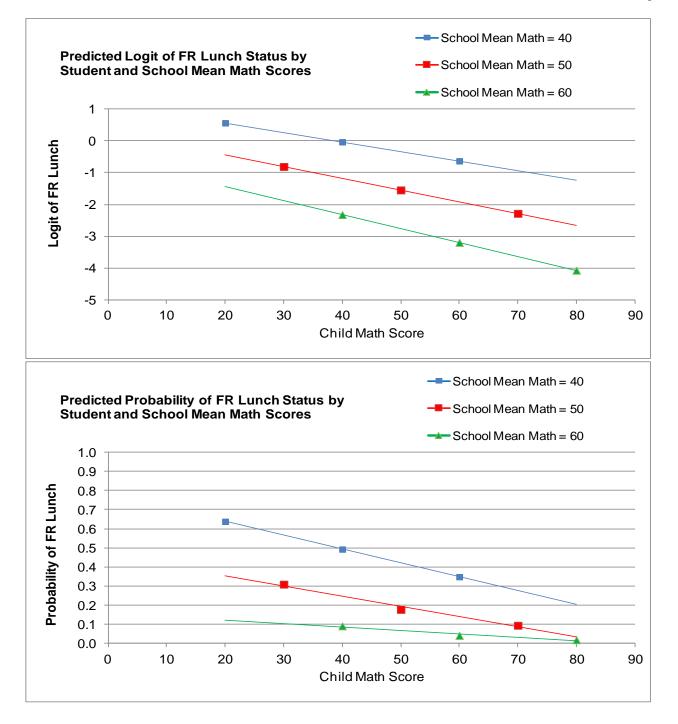
What does the Within-School*Between-School math interaction represent? For every 10 units higher school mean math, the effect of within-school student differences in math on student free/reduced lunch (which is -0.3688 as evaluated at school mean math = 50) becomes significantly more negative by 0.06962. So the effect of being "smarter than the others" is even stronger in a "smart" school, which accounted for 16.162% of the level-2 school random slope variance in the level-1 effect of within-school student math.

What does the Between-School*Between-School math interaction represent? Without controlling for student math, for every 10 units higher school mean math, the effect of school mean math on school mean free/reduced lunch (which is -1.5833 as evaluated at school mean math = 50) becomes nonsignificantly more negative by 2*0.06850. So the effect of being in a "smart" school is predominantly linear. The quadratic effect of school mean math did not account for any level-1 school random intercept variance (which increased by 0.479% instead).

What do the contextual math effects represent? <u>After controlling for student math</u>, there is a contextual effect of school mean math 1.2145 per 10 units as evaluated at school mean math = 50 for an average student. However, there is not a contextual effect of how school mean math moderates the effect of within-school student math (incremental interaction = 0.0011). -OR — The between-school math effect is significantly more negative by 1.2145 as evaluated at school mean math does not moderate the between-school math effect (-0.06850) differently than the within-school math effect (-0.06962).

Sample Results Section

Overall, 30.75% of the sample students received free or reduced lunch; the proportion of students receiving free or reduced lunch in each school ranged from 0 to 80.33%. The extent to which student math outcomes could predict student free/reduced lunch status was examined in a series of multilevel models in which the 13,802 students were modeled as nested at level 1 within their 94 schools at level 2, and school differences were captured via school-level random effects. The binary lunch status outcome was predicted using a logit link function and Bernoulli conditional outcome distribution. All model parameters were estimated via full-information marginal maximum likelihood (MML) using adaptive Gaussian quadrature with 15 points of integration per random effect dimension in SAS GLIMMIX. Accordingly, all fixed effects should be interpreted as unit-specific (i.e., as the fixed effect specifically for schools in which the corresponding random effect = 0). The significance of fixed effects was evaluated with Wald tests (i.e., the


CLDP945 Example 7a page 9 *t*-test of the ratio of each estimate to its standard error using between–within denominator degrees of freedom), whereas the significance of random effects was evaluated via likelihood ratio tests (i.e., $-2\Delta LL$ with degrees of freedom equal to the number of new random effects variances and covariances). Effect size was evaluated via pseduo- R^2 values for the proportion reduction in each variance component for level-2 school variances.

As derived from an empty means, random intercept model, student lunch status had an intraclass correlation of ICC = .373, indicating that 37.3% of the variance in lunch status was between schools, which was significant, $-2\Delta LL(1) = 2973.46$, p < .0001. A 95% random effects confidence interval, calculated as fixed intercept ± 1.96 *SQRT(random intercept variance), revealed that 95% of the sample schools were predicted to have intercepts for school proportion free or reduced lunch between .02 and .83. The fixed intercept estimate for the logit (log-odds) of receiving free or reduced lunch in an average school (random intercept = 0) was -1.172, or probability = .237. We then examined the impact of student math scores in predicting student lunch status. Given that previous analyses had revealed that approximately 15% of the variance in math was between schools, the level-1 variance in student math was represented by group-mean-centering, in the level-1 predictor was calculated by substracting the school's mean math score from each student's math score. The level-2 school variance in student math was then represented by centering the school mean math score at 50 (near the mean of the distribution). To aid in numeric stability, both predictors were rescaled by diving by 10, such that a one-unit increase indicated a 10-point increase in each level of math score.

The effect of school mean math was first added to the model. The fixed intercept indicated that the logit for getting free or reduced lunch for a child in a school with a random intercept = 0 and school mean math = 50 was -1.470, or a probability = .187. The total between-school effect of math indicated that for every 10 units higher school mean math, the logit of getting free/reduced lunch was significantly lower by 1.4429, which translates into an odds ratio of 0.236. This effect accounted for 60.824% of the level-2 school random intercept variance.

Next, the effect of group-mean-centered student math was added to the model. The fixed intercept indicated that the logit of getting free or reduced lunch for a child in a school with a random intercept = 0 and school mean math = 50 and within-school math = 0 (i.e., an average student) was -1.560, or a probability = .210. The total within-school effect of math indicated that for every 10 units higher student math relative to the rest of your school, the logit for the probability of getting free/reduced lunch was significantly lower by 0.372, which translates into an odds ratio of 0.689. After controlling for student math, the contextual between-school math effect of -1.145 per additional 10 points of math was still significant. We then examined to what extent the within-school effect of student math varied across schools. A level-2 random slope variance for the effect of level-1 student math resulted in a significant improvement in model fit, $-2\Delta LL(2) = 38.66$, p < .001, indicating that the size of the disadvantage related to student math differed significantly across schools. A 95% random effects confidence interval for the student math effect, calculated as fixed slope ± 1.96 *SQRT(random slope variance), revealed that 95% of the schools were predicted to have math-related slopes on the logit scale ranging from -0.59 to -0.09.

Finally, the extent to which school differences in the math-related disadvantage in predicting student lunch status could be predicted from school math scores was then examined by adding a cross-level intra-variable interaction between the student and school math predictors, as well as the quadratic effect of school math to control for a contextual interaction effect. The within-school student math effect was significantly moderated by school mean math (which reduced its random slope variance by 16.2%), although the moderation of the between-school and contextual effects was not significant and did not reduc the random intercept variance. The significant intra-variable cross-level interaction, is shown by the nonparallel slopes of the lines in Figure 1, in which the top panel depicts predicted logit (log-odds), and the bottom panel translates those predictions in probability. The decrease in the logit for the probability of receiving free or reduced lunch per unit increase in within-school student math of of 3.69, as found for students with school mean math = 50, became significantly more negative by 0.070 for every additional 10 points of school mean math. Alternatively, the between-school school effect of -1.583 per 10 points of school mean math (in students at their school's mean) became significantly more negative by 0.070 per 10 points higher student math relative to their school's mean. Thus, the effect of relatively better math on student lunch status was more pronounced in better performing schools. The level-2 quadratic effect indicated that the between-school math effect became nonsignificantly more negative by 0.069 for every additional 10 points of school mean math. (see excel spreadsheet for figures)

STATA output for final model:

Mixed-effects logistic regression	Number of obs = 1	3,082
Group variable: schoolID	Number of groups =	94
	Obs per group:	
	min =	31
	avg =	139.2
	max =	515
Integration method: mvaghermite	Integration pts. =	15
	Wald chi2(4) = 3	13.72

Prob > chi2 = 0.0000 Log likelihood = -6173.9224_____ frlunch | Coef. Std. Err. z P>|z| [95% Conf. Interval] SMmath50 | -1.583297 .199763 -7.93 0.000 -1.974825 -1.191769 WSmath | -.3687664 .0263264 -14.01 0.000 -.4203653 -.3171676 c.SMmath50#c.WSmath | -.069635 .0336328 -2.07 0.038 -.1355541 -.0037159 c.SMmath50#c.SMmath50 | -.0685611 .1760223 -0.39 0.697 -.4135583 .2764362 _cons | -1.54604 .1231471 -12.55 0.000 -1.787404 -1.304676 1 schoolID var(WSmath)| .0134766 .0049058 .0066028 .0275065 var(_cons)| .8157032 .1553459 .5615983 1.184782 schoolID | cov(_cons,WSmath)| -.0277102 .0279772 -0.99 0.322 -.0825445 .0271242 _____ LR test vs. logistic model: chi2(3) = 731.57 Prob > chi2 = 0.0000Note: LR test is conservative and provided only for reference. estat ic, n(94), Akaike's information criterion and Bayesian information criterion AIC Obs ll(null) ll(model) df BIC Model | -----+----+ • | . -6173.922 8 12363.84 12384.19 94 _____ Note: N=94 used in calculating BIC. lincom c.WSmath*-1 + c.SMmath50*1 // Contextual Math Main Effect (1) [frlunch]SMmath50 - [frlunch]WSmath = 0 _____ frlunch | Coef. Std. Err. z P > |z| [95% Conf. Interval] (1) | -1.21453 .1993694 -6.09 0.000 -1.605287 -.8237735 _____ lincom c.SMmath50#c.WSmath*-1 + c.SMmath50#c.SMmath50*1 // Contextual Math Interaction . (1) - [frlunch]c.SMmath50#c.WSmath + [frlunch]c.SMmath50#c.SMmath50 = 0 Coef. Std. Err. z P>|z| [95% Conf. Interval] frlunch | (1) | .0010739 .1772221 0.01 0.995 -.346275 .3484229 _____

Mplus Syntax and Output for final model (using observed variables as predictors rather than latent)—results are very similar to SAS:

TITLE: 2-Level Model for Students within Schools Predicting FR Lunch;	UNIVARIATE PROPORT	TONG AND COL	INTS FOD CA	TECOPICAT V	NDINBIES
DATA: FILE = grade10M.csv; ! Can just list file if in same directory;	UNIVARIALE FROPORT	TONS AND COU	NIS FOR CA	AILGORICAL V	ARIADIES
FORMAT = free; ! FREE or FIXED format;	FRLUNCH				
TYPE = individual; ! Individual or matrix data as input;	Category 1	0.692	9059.000		
TIPE - Individual, : Individual of matrix data as input,	Category 2		4023.000		
VARIABLE:	Calegory 2	0.308	4023.000		
! List of ALL variables in stacked data file, in order;	THE MODEL ESTIMATI	ON TERMINATE	D NORMALLY	7	
! Mplus does NOT know what they used to be called, though;	MODEL FIT INFORMAT	ION			
NAMES ARE Student School BvG FRlunch Math smvG smFR smMath SchoolN					
<pre>smBvG50 smFR30 WSmath smMath50;</pre>	Number of Free Par	ameters		8	
! List of ALL variables used in model (DEFINED variables at end);	Loglikelihood				
USEVARIABLES ARE FRlunch WSmath smMath50 smMath2;	HO Value	9		-6173.936	
! Outcomes that are binary/ordinal;					
CATEGORICAL ARE FRlunch;	Information Criter				
! Missing data codes (here, -999);	Akaike	· · ·		12363.871	
MISSING ARE ALL (-999);	Bayesiar	. ,		12423.703	
! Identify upper-level nesting;	-	Size Adjusted		12398.280	
CLUSTER = School;	(n* =	(n + 2) / 24)		
<pre>! Predictor variables with variation ONLY within at level 1; WITHIN = WSmath;</pre>					
<pre>WITHIN = WSmath; ! Predictor variables with variation ONLY between at level 2;</pre>	MODEL RESULTS				
BETWEEN = smMath50 smMath2;	MODEL RESULIS				Two-Tailed
DEIWEEN - SIERACIISO SIERACIIZ,		Estimate	C F	Est./S.E.	P-Value
DEFINE: smMath2 = smMath50*smMath50; ! Creating level-2 math quadratic;	Within Level	ESCIMALE	D.E.	LSL./S.E.	r-value
ANALYSIS: TYPE IS TWOLEVEL RANDOM; ! 2-level model with random slopes;	MICHINI DEVEL				
ESTIMATOR IS ML; ! Can also use MLR for non-normality;	Between Level				
MODEL:	L1MATH ON				
!!! MODEL 6	SMMATH50	-0.069	0.034	-2.065	0.039
! Level-1, student-level model;					
%WITHIN%	FRLUNCH ON	1 505	0 000		0 000
! NO residual variance is estimated for FRlunch at level 1;	SMMATH50	-1.587 -0.083	0.200	-7.952 -0.472	0.000 0.637
L1math FRlunch ON WSmath; ! B1s effect of 0/1 level-1 math;	SMMATH2	-0.083	0.1/6	-0.4/2	0.637
! Level-2, school-level model; %BETWEEN%					
BETWEEN FRlunch; ! Random intercept variance (is default);	FRLUNCH WITH L1MATH	-0.027	0.028	-0.972	0.331
[FRlunch; ! Random intercept variance (is default); [FRlunch\$1]; ! Fixed "threshold" (is intercept*-1);	LIMATH	-0.027	0.028	-0.972	0.331
[L1math] (L1math); ! Fixed WS effect of level-1 math;	Intercepts				
Limath; ! Yes random effect of level-1 math;	L1MATH	-0.369	0.026	-14.099	0.000
FRlunch WITH L1math; ! Covariance of intercept and math slope;		0.000	0.020	11.000	0.000
FRlunch ON smMath50 (L2math); ! Linear BS math on intercept;	Thresholds				
FRlunch ON smMath2 (L2math2); ! Quad BS math on intercept;	FRLUNCH\$1	1.526	0.123	12.443	0.000
Limath ON smMath50 (L12math); ! Cross-level L1 by L2 math interaction;			2.120		2.000
···· · · · · · · · · · · · · · · · · ·	Residual Variance	es			
	FRLUNCH	0.813	0.155	5.251	0.000
!!!!! Adding NEW statements to show how to get ESTIMATE-type statements;	L1MATH	0.013	0.005	2.729	0.006
MODEL CONSTRAINT:					
! Define new parameters not directly given by model;	New/Additional Pa	rameters			
NEW (conM conMint);	CONM	-1.218	0.199	-6.115	0.000
<pre>conM = L2math - L1math; ! Contextual main effect of math;</pre>	CONMINT	-0.014	0.177	-0.077	0.939
<pre>conMint = L2math2 - L12math; ! Contextual L2 interaction of math;</pre>					