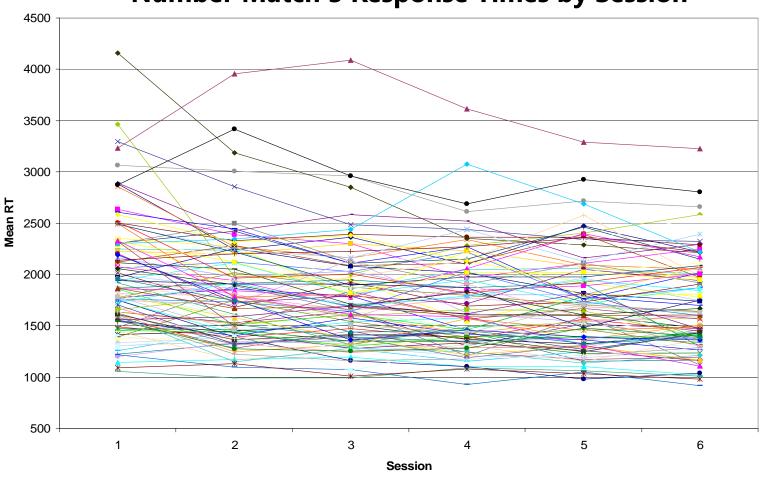
Describing Within-Person Change over Time

- Today's Class (for 3-4 days, actually):
 - > The Big Picture of modeling change
 - > Fixed and random effects models for nonlinear change:
 - Polynomial slopes
 - Piecewise slopes
 - Nonlinear change

Example Data Individual Observed Trajectories (N = 101, n = 6)

Number Match 3 Response Times by Session

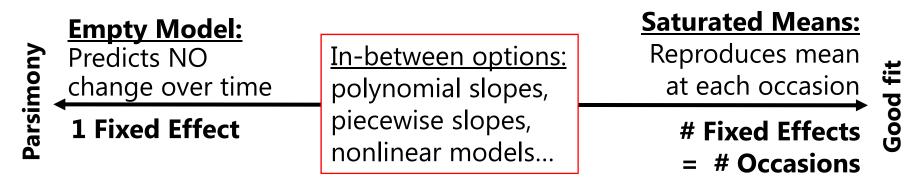


The Big Picture of Longitudinal Data: Model for the Means (Fixed Effects)

- What kind of change occurs on average over "time"?
 - > What is the most appropriate **metric of time**?
 - Time in study (with predictors for BP differences in time)?
 - Time since birth (age)? Time to event (time since diagnosis)?
 - Measurement occasions need not be the same across persons or equally spaced (code time as exactly as possible)
 - What kind of theoretical process generated the observed trajectories, and thus what kind of model do we need?
 - Linear or nonlinear? Continuous or discontinuous? Does change keep happening or does it eventually stop?
 - Many options: polynomial, piecewise, and nonlinear families

The Big Picture of Longitudinal Data: Models for the Means (Fixed Effects)

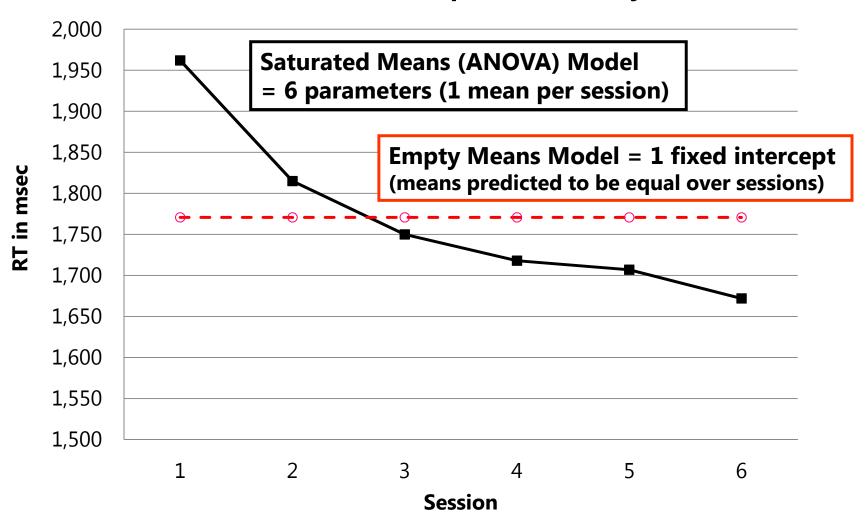
- What kind of change occurs on average over "time"?
 Two baseline models for comparison:
 - → "Empty" → only a fixed intercept (predicts no change)
 - ➤ "Saturated" → all occasion mean differences from time 0 (ANOVA model that uses # fixed effects = n) *** may not be possible in unbalanced data



Name... that... Trajectory!

Baseline Models for the Means

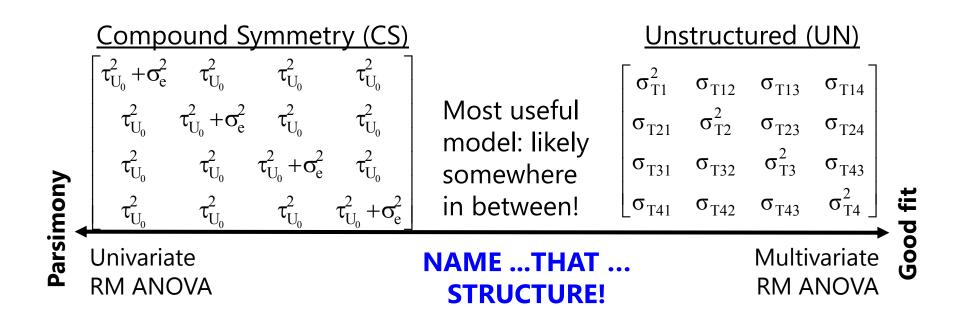
Number Match 3 Mean Response Times by Session



The Big Picture of Longitudinal Data: Models for the Variance (Random Effects)

- From a substantive perspective: Are there **individual differences** in change?
 - > Individual differences in the level of an outcome?
 - At what time point are individual differences in outcome level important for your hypotheses (beginning, middle, end)?
 - > Individual differences in magnitude of change?
 - Each aspect of change (e.g., linear change, quadratic change)
 can potentially exhibit individual differences (data permitting)
- From a statistical perspective: What kind of pattern do the variances and covariances exhibit over time?
 - > Do the variances increase or decrease over time?
 - > Are the covariances differentially related based on time?

The Big Picture of Longitudinal Data: Models for the Variance

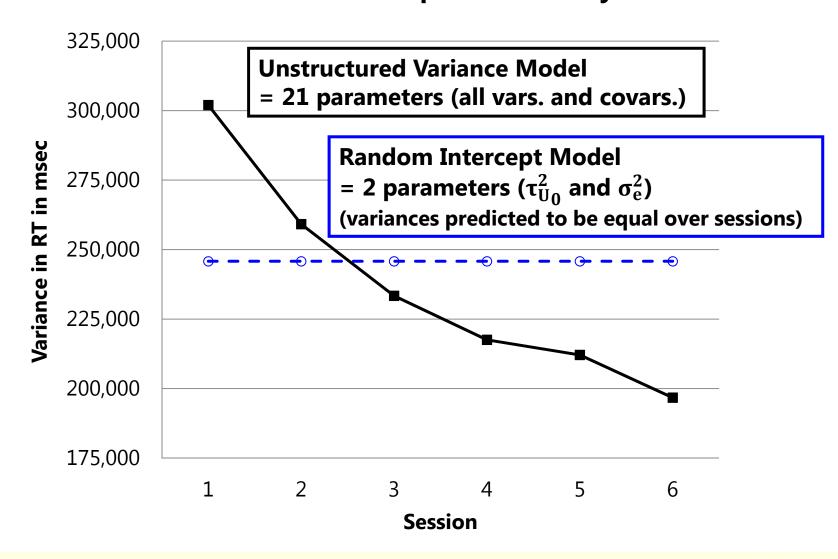


What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available within MLM, including *random effects models* (for change) and *alternative covariance structure models* (for fluctuation).

Baseline Models for the Variance

Variance in Number Match 3 Response Times by Session



Summary: Modeling Means and Variances

• We have two tasks in describing within-person change:

Choose a Model for the Means

- > What kind of change in the outcome do we have on average?
- What kind and how many fixed effects do we need to predict that mean change as parsimoniously but accurately as possible?

Choose a Model for the Variances

- > What pattern do the variances and covariances of the outcome show over time because of individual differences in change?
- What kind and how many random effects do we need to predict that pattern as parsimoniously but accurately as possible?

New Material: Absolute Fit in REML

- Answer key model (possible only for balanced data):
 - Means Model = Saturated Means
 - > Variance Model = Unstructured R, or RI+UN(n-1) equivalent
- Tests of absolute fit of any simpler means model against saturated means can only be done via $-2\Delta LL$ when using ML, but what if you need to use REML given small level-2 N?
 - Use a multivariate Wald test instead: add enough contrasts for occasionspecific mean differences to create saturated means, then test that group of contrasts (see example 6 for how to do so using CLASS/BY)
- Tests of absolute fit of any nested variance model against UN can be done using REML $-2\Delta LL$ if same means side (so keep the same fixed effects for time in each comparison model)

Name that trajectory... Polynomial?

- Predict mean change with polynomial fixed effects of time:
 - ➤ Linear → constant amount of change (up or down)
 - \rightarrow Quadratic \rightarrow change in linear rate of change (acceleration/deceleration)
 - ➤ Cubic → change in acceleration/deceleration of linear rate of change (known in physics as jerk, surge, or jolt)
 - > Terms work <u>together</u> to describe curved trajectories
- Can have polynomial fixed time slopes UP TO: n 1*
 - > 3 occasions = 2nd order (time²)= Fixed Quadratic Time or less
 - \rightarrow 4 occasions = 3rd order (time³) = Fixed Cubic Time or less
- Interpretable polynomials past cubic are rarely seen in practice
- *This rule can be broken in unbalanced data (but cautiously)

Interpreting Quadratic Fixed Effects

A Quadratic time effect is a two-way interaction: time*time

- Fixed quadratic time = "half the rate of acceleration/deceleration"
- So to interpret it as how the linear time effect changes per unit time,
 you must multiply the quadratic coefficient by 2
- If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?
 - > Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6...
- The "twice" part comes from taking the derivatives of the function:

Intercept (Position) at Time T:
$$\hat{y}_T = 50.0 + 4.0T + 0.3T^2$$

First Derivative (Velocity) at Time T: $\frac{d\hat{y}_T}{d(T)} = 4.0 + 0.6T$
Second Derivative (Acceleration) at Time T: $\frac{d^2\hat{y}_T}{d(T)} = 0.6$

Interpreting Quadratic Fixed Effects

A Quadratic time effect is a two-way interaction: time*time

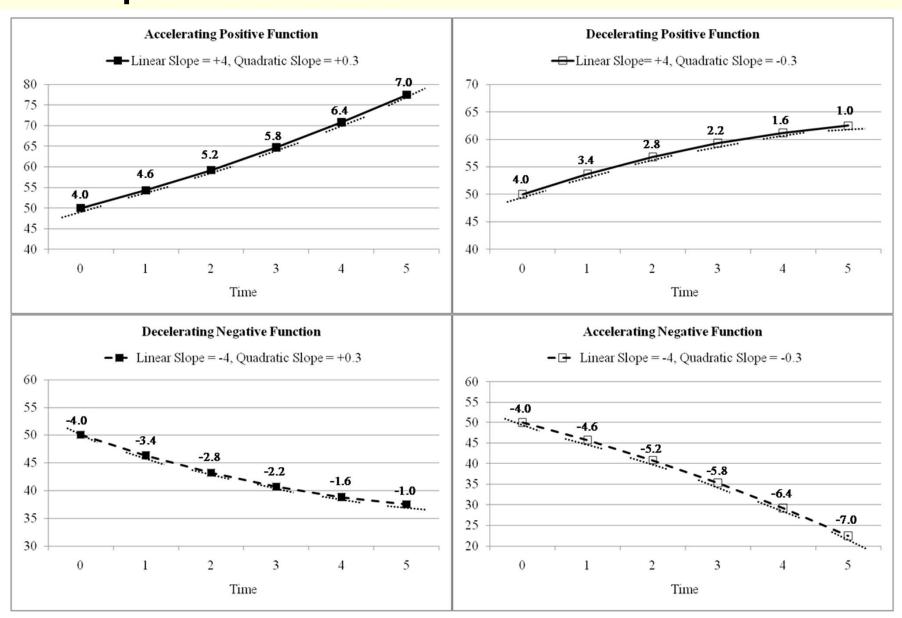
- Fixed quadratic = "half the rate of acceleration/deceleration"
- So to interpret it as how the linear time effect changes per unit time,
 you must multiply the quadratic coefficient by 2
- If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?
 - > Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6...
- The "twice" part also comes from what you remember about the role of interactions with respect to their constituent main effects:

$$\hat{y} = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z$$
Effect of $X = \beta_1 + \beta_3 Z$
Effect of $Z = \beta_2 + \beta_3 X$

$$\hat{y}_T = \beta_0 + \beta_1 \text{Time}_T + \underline{\hspace{1cm}} + \beta_3 \text{Time}_T^2$$
Effect of $\text{Time}_T = \beta_1 + 2\beta_3 \text{Time}_T$

 Because time is interacting with itself, there is no second main effect in the model for the interaction to modify as usual. So the quadratic time effect gets applied <u>twice</u> to the <u>one</u> (main) linear effect of time.

Examples of Fixed Quadratic Time Effects



Conditionality of Polynomial Fixed Time Effects

- We've seen how main effects become conditional simple effects once they are part of an interaction
- The same is true for polynomial fixed effects of time:
 - Fixed Intercept Only?
 - <u>Fixed Intercept</u> = predicted mean of Y for any occasion (= grand mean)
 - > Add Fixed Linear Time?
 - <u>Fixed Intercept</u> = **now** predicted mean of Y from linear time at time = 0 (would be different if time was centered elsewhere)
 - <u>Fixed Linear Time</u> = mean linear rate of change across all occasions (would be the same if time was centered elsewhere)
 - > Add Fixed Quadratic Time?
 - <u>Fixed Intercept</u> = still predicted mean of Y at time=0 (but from quadratic model) (would be different if time was centered elsewhere)
 - <u>Fixed Linear Time</u> = **now** mean linear rate of change at time=0 (would be different if time was centered elsewhere)
 - <u>Fixed Quadratic Time</u> = half the mean rate of acceleration or deceleration of change across all occasions (i.e., the linear slope changes the same over time)

Polynomial Fixed vs. Random Time Effects

- Polynomial fixed effects combine to describe mean trajectory over time (can have fixed slopes up to n 1):
 - Fixed Intercept = Predicted mean level (at time 0)
 - Fixed Linear Time = Mean linear rate of change (at time 0)
 - Fixed Quadratic Time = Half of mean acceleration/deceleration in linear rate of change (2*quad is how the linear time slope changes per unit time if quadratic is highest order fixed effect)
- Polynomial random effects (individual deviations from the fixed effect) describe individual differences in those change parameters (can have random slopes up to n 2):
 - Random Intercept = BP variance in level (at time 0)
 - Random Linear Time = BP variance in linear time slope (at time 0)
 - Random Quadratic Time = BP variance in half the rate of acceleration/deceleration of linear time slope (across all time if quadratic is highest-order random effect)

Random Quadratic Time Model

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i} \text{Time}_{ti} + \beta_{2i} \text{Time}_{ti}^2 + e_{ti}$$

Level 2 Equations (one per β):

$$\beta_{0i}$$
 = Intercept for person i

Fixed Effect Subscripts:

1st = which Level 1 term 2nd = which Level 2 term

$$\beta_{1i}$$
 = Linear Slope for person i

Fixed (mean)

Quad Slope

Quad Slope

Number of Possible Slopes by Number of Occasions (n):

Fixed slopes = n - 1# Random slopes = n - 2

Need n = 4 occasions to fit random quadratic time model

Quad Slope

for person i

Example Sequence for Testing Fixed and Random Polynomial Effects of Time

Build up fixed and random effects simultaneously:

- 1. Empty Means, Random Intercept → to calculate ICC
- 2. Fixed Linear, Random Intercept \rightarrow check fixed linear p-value
- 3. Random Linear \rightarrow check $-2\Delta LL(df \approx 2)$ for random linear variance
- 4. Fixed Quadratic, Random Linear \rightarrow check fixed quadratic p-value
- 5. Random Quadratic \rightarrow check $-2\Delta LL(df \approx 3)$ for random quadratic variance
- 6.

*** In general: Can use **REML** for all models, so long as you:

- → Test significance of new **fixed** effects by their **p-values**
- \rightarrow Test significance of new **random** effects in separate step by $-2\Delta LL$
- → Also see if AIC and BIC are smaller when adding random effects

Conditionality of Polynomial Random Effects

- We saw previously that lower-order fixed effects of time are conditional on higher-order polynomial fixed effects of time
- The same is true for polynomial random effects of time:
 - > Random Intercept Only?
 - Random Intercept = BP variance for any occasion in predicted mean Y
 (= variance in grand mean because individual lines are parallel)
 - Add Random Linear Time?
 - Random Intercept = now BP variance at time=0 in predicted mean Y (would be different if time was centered elsewhere)
 - Random Linear Time = BP variance across all occasions in linear rate of change (would be the same if time was centered elsewhere)
 - > Add Random Quadratic Time?
 - Random Intercept = still BP variance at time=0 in predicted mean Y
 - Random Linear Time = now BP variance at time=0 in linear rate of change (would be different if time was centered elsewhere)
 - Random Quadratic Time = BP variance across all occasions in half of accel/decel
 of change (would be the same if time was centered elsewhere)

Random Effects Allowed by #Occasions

3 unique pieces of information

n=2 occasions

Data

G Matrix

Random Intercept only

R Matrix

Variance Model # **Parameters**

6 unique pieces of information

$$\begin{bmatrix} \sigma_1^2 & & & \\ \sigma_{21} & \sigma_2^2 & & \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix}$$

$$\begin{array}{c|c} & & & \\ \hline \tau_{U_0}^2 & \\ \hline \tau_{U_{01}} & \tau_{U_1}^2 \\ \hline \text{Up to 1} \\ \hline \text{Random slope} \end{array}$$

$$egin{bmatrix} \sigma_{\mathrm{e}}^2 & 0 & 0 \ 0 & \sigma_{\mathrm{e}}^2 & 0 \ 0 & 0 & \sigma_{\mathrm{e}}^2 \ \end{pmatrix}$$

$$\begin{array}{c|c}
 \underline{n=4 \text{ occasions}} & \sigma_{1} \\
 \hline
 \mathbf{10} \text{ unique pieces} & \sigma_{21} & \sigma_{2}^{2} \\
 \end{array}$$

of information
$$\begin{bmatrix} \sigma_1 \\ \sigma_{21} \\ \sigma_{21} \\ \sigma_{31} \\ \sigma_{32} \\ \sigma_{41} \\ \sigma_{42} \\ \sigma_{43} \\ \sigma_{43} \\ \sigma_{44} \\ \sigma_{45} \\ \sigma_{46} \\ \sigma_{47} \\ \sigma_{48} \\ \sigma_{48$$

$$\begin{array}{ccc} \mathsf{U}_{02} & \mathsf{v}_{\mathsf{U}_{12}} & \mathsf{v}_{\mathsf{U}_{2}} \\ \mathsf{Up to 2} & \\ \mathsf{Random slopes} & \\ \end{array}$$

$$\begin{bmatrix} \sigma_{e}^{2} & 0 & 0 & 0 \\ 0 & \sigma_{e}^{2} & 0 & 0 \\ 0 & 0 & \sigma_{e}^{2} & 0 \\ 0 & 0 & 0 & \sigma_{e}^{2} \end{bmatrix}$$

Predicted V Matrix from Polynomial Random Effects Models

- Random linear model? Variance has a quadratic dependence on time
 - > Variance will be at a minimum when time = $-\text{Cov}(U_0, U_1)/\text{Var}(U_1)$, and will increase parabolically and symmetrically over time
 - > **Predicted variance** at each occasion and covariance between A and B:

$$Var(y_{time}) = Var(e_t) + Var(U_0) + 2Cov(U_0, U_1)(time_t) + Var(U_1)(time_t^2)$$

$$Cov(y_A, y_B) = Var(U_0) + Cov(U_0, U_1)(A + B) + Var(U_1)(AB)$$

• Random quadratic model? Variance has a quartic dependence on time

$$\begin{aligned} \text{Var}(y_{\text{time}}) &= \text{Var}(e_{t}) + \text{Var}(U_{0}) + 2\text{Cov}(U_{0}, U_{1})(\textbf{time}_{t}) + \text{Var}(U_{1})(\textbf{time}_{t}^{2}) + \\ & 2\text{Cov}(U_{0}, U_{2})(\textbf{time}_{t}^{2}) + 2\text{Cov}(U_{1}, U_{2})(\textbf{time}_{t}^{3}) + \text{Var}(U_{2})(\textbf{time}_{t}^{4}) \end{aligned}$$

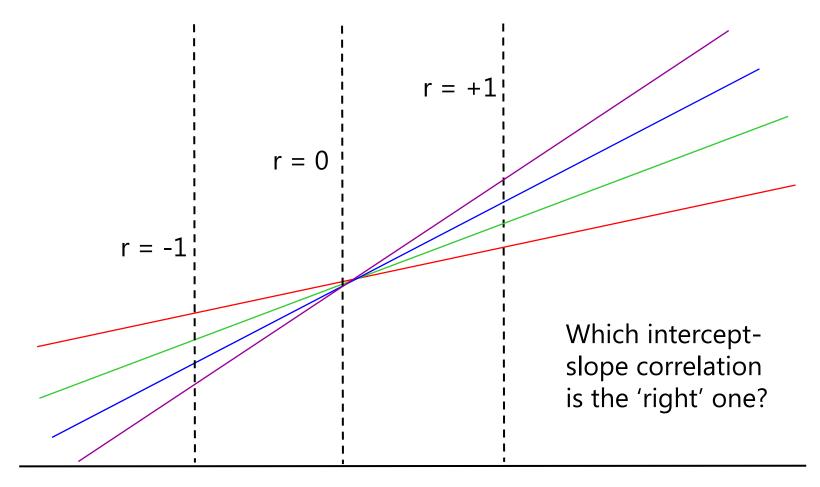
$$\begin{aligned} \text{Cov}(y_{A}, y_{B}) &= \text{Var}(U_{0}) + \text{Cov}(U_{0}, U_{1})(A + B) + \text{Var}(U_{1})(AB) + \text{Cov}(U_{0}, U_{2})(A^{2} + B^{2}) + \\ & \text{Cov}(U_{1}, U_{2})[(AB^{2}) + (A^{2}B)] + \text{Var}(U_{2})(A^{2}B^{2}) \end{aligned}$$

• The point of the story: random effects of time are a way of allowing the variances and covariances to differ over time in specific, time-dependent patterns (that result from differential individual change over time).

Rules for Polynomial Models (and in general for fixed and random effects)

- On the same side of the model (means or variances side), lower-order effects stay in EVEN IF NONSIGNIFICANT (for correct interpretation)
 - > e.g., Significant *fixed* quadratic? Keep the *fixed* linear
 - > e.g., Significant random quadratic? Keep the random linear
- Also remember—you can have a significant random effect EVEN IF the corresponding fixed effect is not significant (keep it anyway):
 - ➤ e.g., Fixed linear not significant, but random linear is significant?
 → No linear change on average, but significant individual differences in change
- Language: A random effect supersedes a fixed effect:
 - If <u>Fixed</u> = intercept, linear, quad; <u>Random</u> = intercept, linear, quad?
 - Call it a "Random quadratic model" (implies everything beneath those terms)
 - If <u>Fixed</u> = intercept, linear, quad; <u>Random</u> = intercept, linear?
 - Call it a "Fixed quadratic, random linear model" (distinguishes no random quad)
- Intercept-slope correlation depends largely on centering of time...

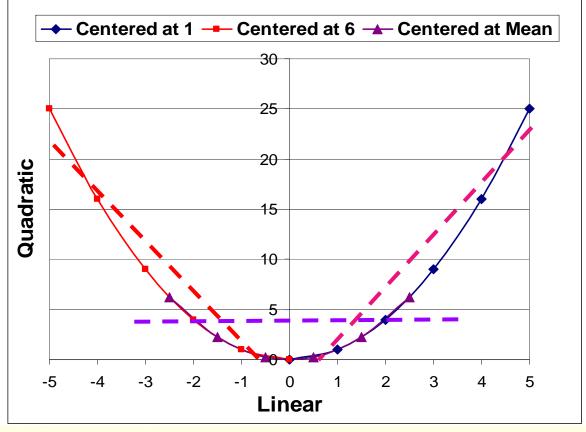
Correlation between Random Intercept and Random Linear Slope depends on time 0



!! Nonparallel lines will eventually cross.

Correlations among polynomial slopes

Session Centered at 1:		Session Centered at 6:			Session Centered at Mean:				
Session	Linear	Quadratic	Session	Linear	Quadratic	Session	Linear	Quadratic	
1	0	0	1	-5	25	1	-2.5	6.25	
2	1	1	2	-4	16	2	-1.5	2.25	
3	2	4	3	-3	9	3	-0.5	0.25	
4	3	9	4	-2	4	4	0.5	0.25	
5	4	16	5	-1	1	5	1.5	2.25	
6	5	25	6	0	0	6	2.5	6.25	



Correlations among polynomial effects of time can be induced by centering time near the start or near the end.

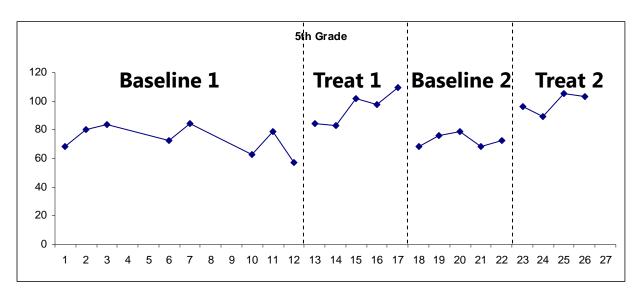
Therefore, these correlations will be *most* interpretable when centering time at its mean instead.

Summarizing so far...

- Modeling within-person change involves specifying effects of time for both sides of the model
 - > Fixed effects in model for the means:
 - What kind of change am I observing on average?
 - What kind of trajectory will reproduce those means?
 - > Random effects (and residuals) in model for the variances:
 - What kind of individual differences in change am I observing?
 - How many random effects do I need to reproduce the observed pattern of variances and covariances over time?
- One option: Polynomial models (linear, quadratic, cubic)
 - > Terms work together to describe non-linear trajectories
 - Careful with the covariances among random effects, though
- Coming next: Piecewise slopes and truly nonlinear change...

Other Random Effects Models of Change

- Piecewise models: Discrete slopes for discrete phases of time
 - > Separate terms describe sections of overall trajectories
 - Useful for examining change in intercepts and slopes before/after discrete events (changes in policy, interventions)
 - Must know where the break point is ahead of time!



Piecewise Model:

4 slopes (one per phase)

3 "jumps" (shift in intercept between phases)

Example of Daily Cortisol Fluctuation: Morning Rise and Afternoon Decline

<u>Average Trajectories</u> 50 This piecewise model 45 is structured using 40 "Time Since Waking" 35 30 25 20 15 10 5 Wake +30min lunch bed

SAS Code to create two piecewise slopes from continuous time of day in stacked data:

```
IF occasion=1 THEN DO;
P1=0; P2=0; END;
IF occasion=2 THEN DO;
P1= time2-time1; P2=0; END;
IF occasion=3 THEN DO;
P1= time2-time1; P2=time3-time2; END;
IF occasion=4 THEN DO;
P1= time2-time1; P2=time4-time2; END;
```

Note that a quadratic slope may be necessary for the afternoon decline slope!

Random Two-Slope Piecewise Model

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}Slope1_{ti} + \beta_{2i}Slope2_{ti} + e_{ti}$$

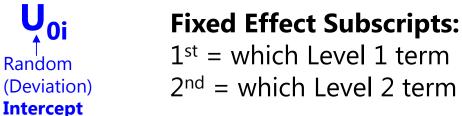
Level 2 Equations (one per β):

$$\beta_{0i}$$
 = γ_{00} +

Intercept for person i Fixed (mean)
Intercept In

Slope2

for person i



$$eta_{1i} = \gamma_{10} + \bigcup_{\substack{1i \\ \text{Random} \\ \text{(Deviation)}}} Random \\ \text{Slope1}$$
 $eta_{2i} = \gamma_{20} + \bigcup_{\substack{2i}} Random \\ \text{Slope1}$

Fixed (mean)

Slope2

Fixed slopes =
$$n - 1$$

Random slopes = $n - 2$
Need $n = 4$ occasions to fit
random two-slope model

Number of Possible Slopes

by Number of Occasions (n):

CLDP 944: Lecture 6 28

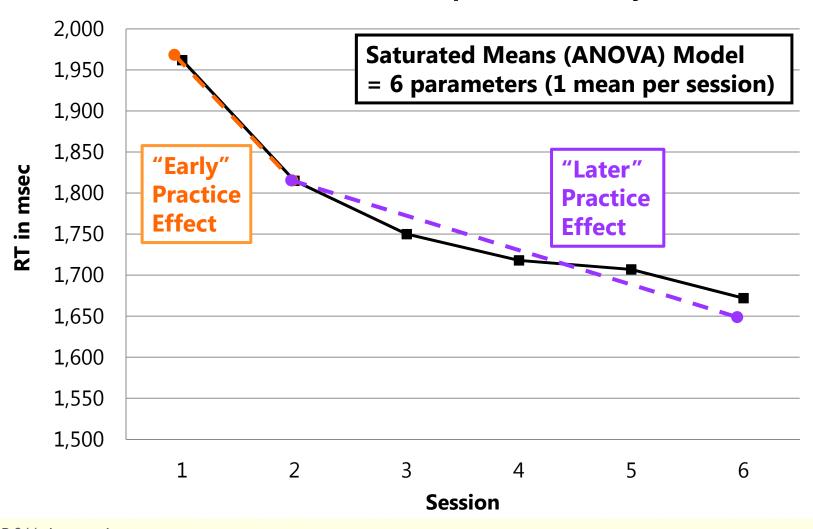
Random

Slope2

(Deviation)

What kind of piecewise model could predict our example data mean change across sessions?

Number Match 3 Mean Response Times by Session



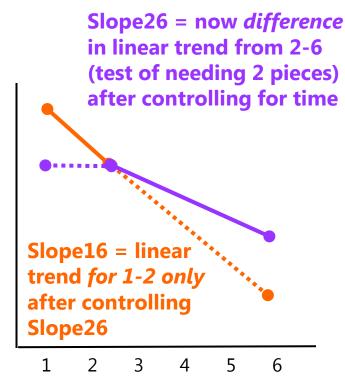
Piecewise Models: Two Direct Slopes

- "Early Practice Slope" and "Later Practice Slope"
- Use to specify slopes through each discrete phase directly
- Session (1-6) gets recoded into 2 new time predictor variables, as shown below:

Session	1	2	3	4	5	6
Early Practice → Slope12 =	0	1	1	1	1	1
Later Practice → Slope26 =	0	0	1	2	3	4

Piecewise Models: Slope + Deviation Slope

- "Linear Time Slope" and "Deviation Slope"
- Use to test if multiple slopes are needed
- Initial slope predictor is coded differently, second slope predictor is same:



Session		1	2	3	4	5	6
Time	→ Slope16 =	0	1	2	3	4	5
Deviation	→ Slope26 =	0	0	1	2	3	4

2 Direct Slopes Model: Random Effects

- Parameters directly represent each part of trajectory:
- Fixed effects for mean change over time (3):
 - Fixed Intercept = expected Y when both slopes = 0 (Session 1)
 - > Fixed Slope12 = expected linear rate of change from 1 to 2
 - > Fixed Slope26 = expected linear rate of change from 2 to 6
- Leads to possible random effects (up to 3 var+3 cov):
 - Random Intercept = BP variance in expected level
 when both slopes = 0 (at Session 1)
 - Random Slope12 = BP variance in linear slope from 1 to 2
 - > Random Slope26 = BP variance in linear slope from 2 to 6

Slope + Deviation Slope: Random Effects

- Parameters directly differences across parts of trajectory:
- Fixed effects for mean change over time (3):
 - Fixed Intercept = expected Y when both slopes = 0 (Session 1)
 - Fixed Slope16 = expected linear rate of change from 1 to 2 (after controlling for slope26)
 - Fixed Slope26 = expected extra linear rate of change from 2 to 6 (after controlling for slope16, which is just time)
- Leads to possible random effects (up to 3 var+3 cov):
 - Random Intercept = BP variance in expected level when both slopes = 0 (at Session 1)
 - Random Slope16 = BP variance in linear slope from 1 to 2
 - Random Slope26 = BP variance in extra linear slope from 2 to 6

Saturated Means via Piecewise Slopes Models

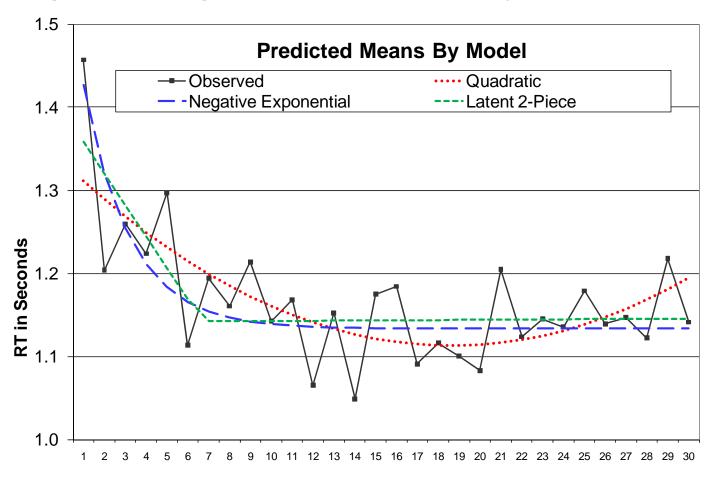
- You can fit fixed piecewise slopes up to n-1, but only random piecewise slopes up to n-2:
 - > 3 occasions? up to 2 fixed pieces, but only 1 random piece
 - > 4 occasions? up to 3 fixed pieces, but only 2 random pieces
 - > n-1 fixed pieces will perfectly reproduce observed means
- Given this constraint (and balanced data), you should consider some of the ACS models as well:
 - \rightarrow Example: $n=3 \rightarrow$ Model for the means = 2 fixed pieces, Model for the Variances could be....
 - UN, CSH, CS (Random Intercept Only), Random Intercept + Random Slope12, OR Random Intercept + Random Slope23
 - Everything is nested within UN; can also use AIC and BIC to choose

Summary: Piecewise Slopes Models

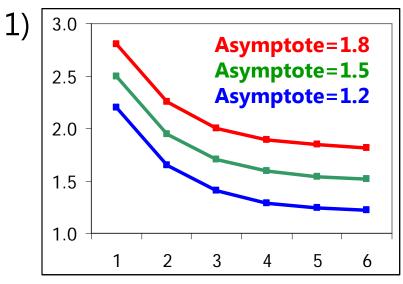
- Piecewise models are useful for discontinuous trajectories (empirically or based on the study design)
 - Use slope + deviation slope(s) to test if > 1 slope is necessary
- If all effects are random, the slope + deviation slope and the direct slopes versions of the models will be equivalent
 - > Select the one that has the random effects variance you want to predict
- Keep all the pieces in the model (even if non-significant) in order to maintain a correct interpretation of each
- Each piece can be linear or non-linear as needed
 - \triangleright e.g., piece1 + piece2 + piece2² \rightarrow linear, then non-linear trajectory
- You may also need to test for a 'drop' or 'jump' in intercept at the break point in addition to change in slope, data permitting
 - Planning on doing piecewise models? They can be tricky... PLEASE let me help you set up the predictors to do so!

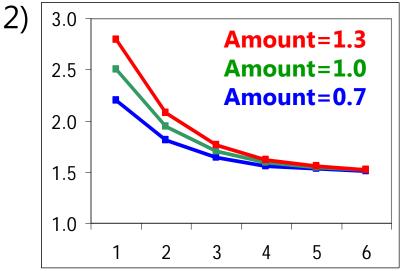
Other Random Effects for Change

- Truly nonlinear models: Non-additive terms to describe change
 - Models can include asymptotes (so change can "shut off" as needed)
 - Include power and exponential functions (see chapter 6 for references)

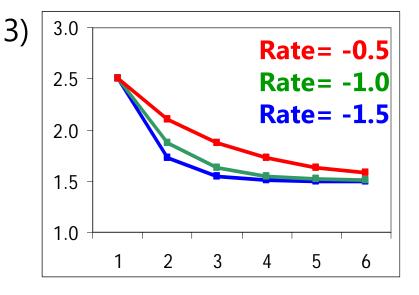


(Negative) Exponential Model Parameters





- 1) Different **Asymptotes**, same amount and rate
- 2) Different **Amounts**, same asymptote and rate
- 3) Different Rates, same asymptote and amount



Exponential Models

- The name positive or negative reflects whether the data are moving away or towards asymptote
 - Accelerating trajectory (up or down) = "positive" exponential
 - Decelerating trajectory (up or down) = "negative" exponential
- Amount reflects distance from asymptote to time 0, multiplied by exp(rate*time)
 - Decrease across time to asymptote = positive amount
 - Increase across time to asymptote = negative amount
- Amount can also be replaced by an intercept
 - Asymptote + Amount = Intercept
- Cannot be estimated in SAS PROC MIXED given its nonlinear parameters (use SAS PROC NLMIXED instead)

Exponential Model (3 Random Effects)

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}*exp(\beta_{2i}*Time_{ti}) + e_{ti}$$

Level 2 Equations (one per β):

$$eta_{0i} = \gamma_{00} + U_{0i}$$
Asymptote for person i

Fixed (mean)
Asymptote

 $\beta_{1i} = \gamma_{10} + U_{1i}$

$$\beta_{2i}$$
 = γ_{20} + γ_{2i} Random (Deviation) Rate

Fixed Effect Subscripts:

1st = which Level 1 term 2nd = which Level 2 term

Number of Possible Slopes by Number of Occasions (n):

Fixed slopes = n - 1# Random slopes = n - 2

Also need 4 occasions to fit random exponential model

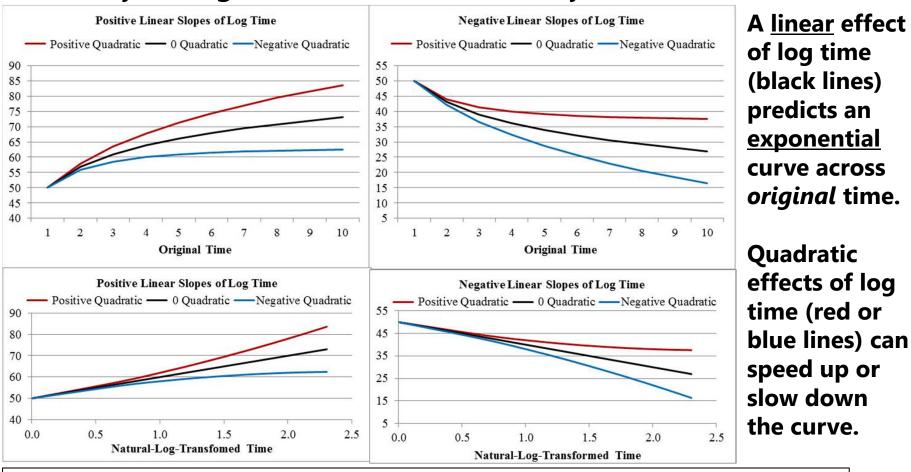
(Likely need way more occasions to find U_{2i}, though)

Nonlinear Models

- Not all forms of change fit polynomial models
 - What goes up must come back down (and vice-versa)
 - Sometimes change needs to "shut off" (need asymptotes)
- Many kinds of truly nonlinear models can be used for longitudinal data
 - ▶ Linear in variables vs. linear in parameters (exp → nonlinear)
 - > Logistic, power, exponential... see end of chapter 6 for ideas
- Require extra steps to evaluate estimation quality
 - > Start values are needed, especially for random variances
 - Check that "gradient" values are as close to 0 as possible (partial first derivative of that parameter in LL function)

How to Mimic an Exponential Model

If you need to use REML, a predictor of natural-log-transformed time may be a good substitute for a truly nonlinear model



Bottom: There is a linear relationship between log-time and the outcome.

Which change family should I choose?

- Within a given family, nested models can usually be compared to judge the need for each parameter
 - > e.g., linear vs. quadratic? One slope vs. two slopes?
 - ▶ Usual nested model comparison rules apply (p-values for fixed effects, $-2\Delta LL$ tests for random effects)
 - When using REML, you can test absolute fit of each side separately if you have balanced data to see if you are "there yet"
- Between families, however, alternative models of change may not be nested, so deciding among them can be tricky
 - > e.g., quadratic vs. two-slope vs. log time vs. exponential?
 - Use ML AIC and BIC to see what is "preferred" across the families
 - > In balanced data, you can also compare each alternative to a saturated means, UN model using ML as test of absolute fit
 - Also consider plausibility of alternative models in terms of both data predictions and theoretical predictions in deciding