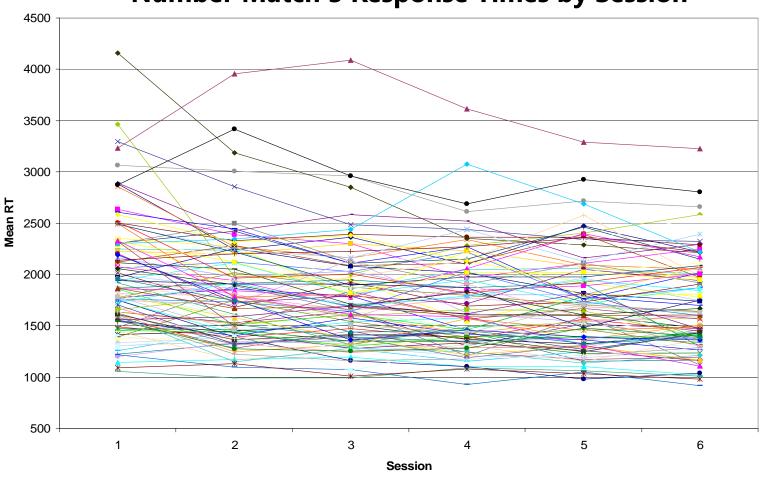
# Describing Within-Person Change over Time

- Today's Class (for 3-4 days, actually):
  - > The Big Picture of modeling change
  - > Fixed and random effects models for nonlinear change:
    - Polynomial slopes
    - Piecewise slopes
    - Nonlinear change

# Example Data Individual Observed Trajectories (N = 101, n = 6)

#### **Number Match 3 Response Times by Session**

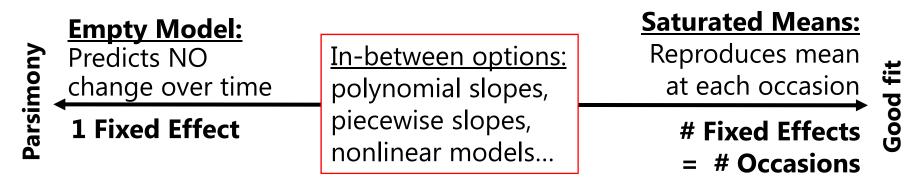


# The Big Picture of Longitudinal Data: Model for the Means (Fixed Effects)

- What kind of change occurs on average over "time"?
  - > What is the most appropriate **metric of time**?
    - Time in study (with predictors for BP differences in time)?
    - Time since birth (age)? Time to event (time since diagnosis)?
    - Measurement occasions need not be the same across persons or equally spaced (code time as exactly as possible)
  - What kind of theoretical process generated the observed trajectories, and thus what kind of model do we need?
    - Linear or nonlinear? Continuous or discontinuous? Does change keep happening or does it eventually stop?
    - Many options: polynomial, piecewise, and nonlinear families

# The Big Picture of Longitudinal Data: Models for the Means (Fixed Effects)

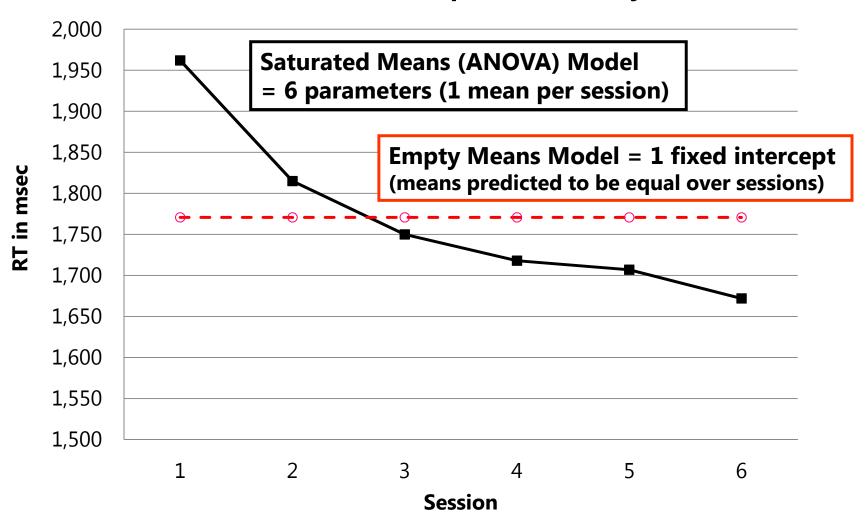
- What kind of change occurs on average over "time"?
   Two baseline models for comparison:
  - → "Empty" → only a fixed intercept (predicts no change)
  - ➤ "Saturated" → all occasion mean differences from time 0 (ANOVA model that uses # fixed effects = n) \*\*\* may not be possible in unbalanced data



Name... that... Trajectory!

## Baseline Models for the Means

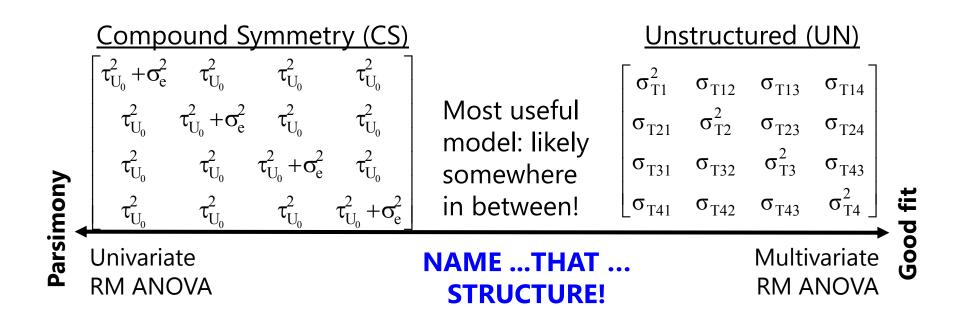
#### **Number Match 3 Mean Response Times by Session**



# The Big Picture of Longitudinal Data: Models for the Variance (Random Effects)

- From a substantive perspective: Are there **individual differences** in change?
  - > Individual differences in the level of an outcome?
    - At what time point are individual differences in outcome level important for your hypotheses (beginning, middle, end)?
  - > Individual differences in magnitude of change?
    - Each aspect of change (e.g., linear change, quadratic change)
       can potentially exhibit individual differences (data permitting)
- From a statistical perspective: What kind of pattern do the variances and covariances exhibit over time?
  - > Do the variances increase or decrease over time?
  - > Are the covariances differentially related based on time?

# The Big Picture of Longitudinal Data: Models for the Variance

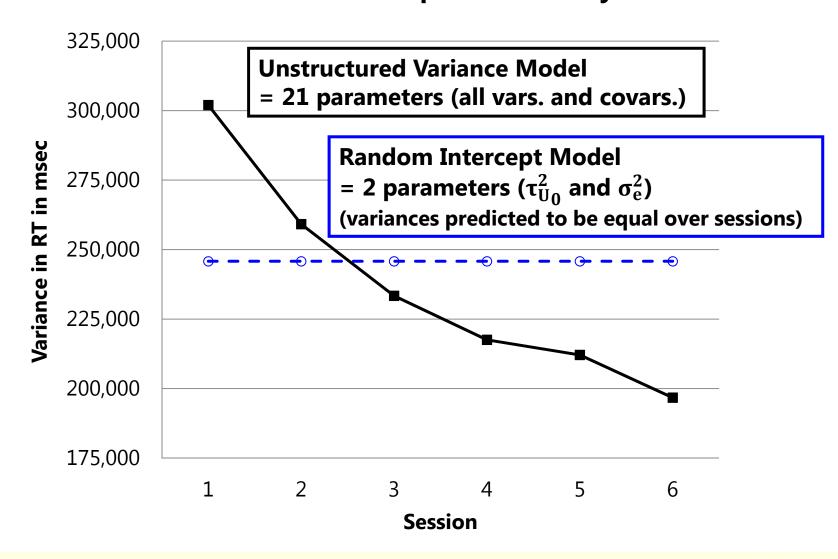


#### What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available within MLM, including *random effects models* (for change) and *alternative covariance structure models* (for fluctuation).

## Baseline Models for the Variance

#### **Variance in Number Match 3 Response Times by Session**



## Summary: Modeling Means and Variances

• We have two tasks in describing within-person change:

#### Choose a Model for the Means

- > What kind of change in the outcome do we have on average?
- What kind and how many fixed effects do we need to predict that mean change as parsimoniously but accurately as possible?

#### Choose a Model for the Variances

- > What pattern do the variances and covariances of the outcome show over time because of individual differences in change?
- What kind and how many random effects do we need to predict that pattern as parsimoniously but accurately as possible?

## New Material: Absolute Fit in REML

- Answer key model (possible only for balanced data):
  - Means Model = Saturated Means
  - > Variance Model = Unstructured R, or RI+UN(n-1) equivalent
- Tests of absolute fit of any simpler means model against saturated means can only be done via  $-2\Delta LL$  when using ML, but what if you need to use REML given small level-2 N?
  - Use a multivariate Wald test instead: add enough contrasts for occasionspecific mean differences to create saturated means, then test that group of contrasts (see example 6 for how to do so using CLASS/BY)
- Tests of absolute fit of any nested variance model against UN can be done using REML  $-2\Delta LL$  if same means side (so keep the same fixed effects for time in each comparison model)

# Name that trajectory... Polynomial?

- Predict mean change with polynomial fixed effects of time:
  - ➤ Linear → constant amount of change (up or down)
  - $\rightarrow$  Quadratic  $\rightarrow$  change in linear rate of change (acceleration/deceleration)
  - ➤ Cubic → change in acceleration/deceleration of linear rate of change (known in physics as jerk, surge, or jolt)
  - > Terms work <u>together</u> to describe curved trajectories
- Can have polynomial fixed time slopes UP TO: n 1\*
  - > 3 occasions = 2nd order (time<sup>2</sup>)= Fixed Quadratic Time or less
  - $\rightarrow$  4 occasions = 3rd order (time<sup>3</sup>) = Fixed Cubic Time or less
- Interpretable polynomials past cubic are rarely seen in practice
- \*This rule can be broken in unbalanced data (but cautiously)

## Interpreting Quadratic Fixed Effects

### A Quadratic time effect is a two-way interaction: time\*time

- Fixed quadratic time = "half the rate of acceleration/deceleration"
- So to interpret it as how the linear time effect changes per unit time,
   you must multiply the quadratic coefficient by 2
- If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?
  - > Instantaneous linear rate of  $\Delta$  at time 0 = 4.0, at time 1 = 4.6...
- The "twice" part comes from taking the derivatives of the function:

Intercept (Position) at Time T: 
$$\hat{y}_T = 50.0 + 4.0T + 0.3T^2$$
  
First Derivative (Velocity) at Time T:  $\frac{d\hat{y}_T}{d(T)} = 4.0 + 0.6T$   
Second Derivative (Acceleration) at Time T:  $\frac{d^2\hat{y}_T}{d(T)} = 0.6$ 

# Interpreting Quadratic Fixed Effects

### A Quadratic time effect is a two-way interaction: time\*time

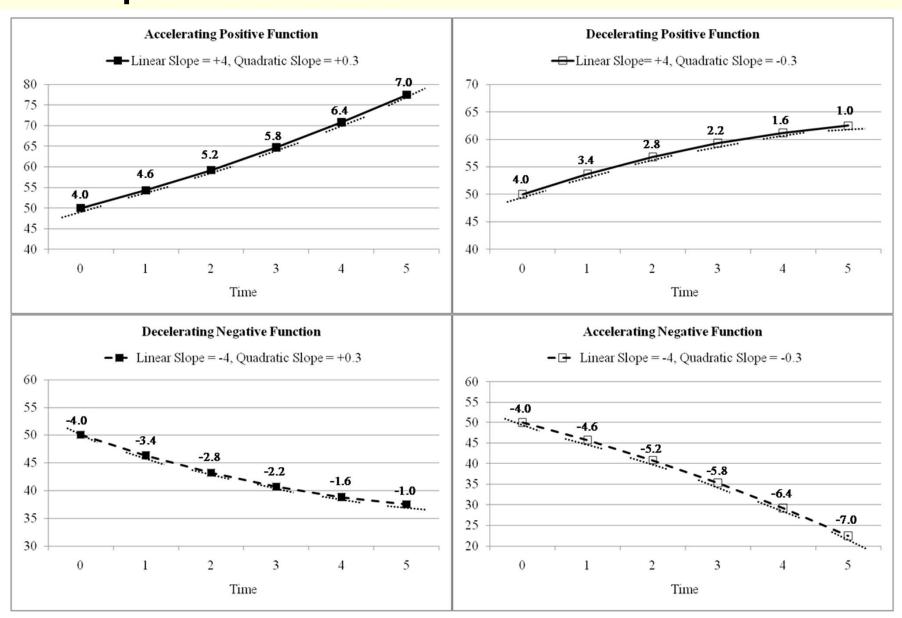
- Fixed quadratic = "half the rate of acceleration/deceleration"
- So to interpret it as how the linear time effect changes per unit time,
   you must multiply the quadratic coefficient by 2
- If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?
  - > Instantaneous linear rate of  $\Delta$  at time 0 = 4.0, at time 1 = 4.6...
- The "twice" part also comes from what you remember about the role of interactions with respect to their constituent main effects:

$$\hat{y} = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z$$
Effect of  $X = \beta_1 + \beta_3 Z$ 
Effect of  $Z = \beta_2 + \beta_3 X$ 

$$\hat{y}_T = \beta_0 + \beta_1 \text{Time}_T + \underline{\hspace{1cm}} + \beta_3 \text{Time}_T^2$$
Effect of  $\text{Time}_T = \beta_1 + 2\beta_3 \text{Time}_T$ 

 Because time is interacting with itself, there is no second main effect in the model for the interaction to modify as usual. So the quadratic time effect gets applied <u>twice</u> to the <u>one</u> (main) linear effect of time.

## Examples of Fixed Quadratic Time Effects



## Conditionality of Polynomial Fixed Time Effects

- We've seen how main effects become conditional simple effects once they are part of an interaction
- The same is true for polynomial fixed effects of time:
  - Fixed Intercept Only?
    - <u>Fixed Intercept</u> = predicted mean of Y for any occasion (= grand mean)
  - > Add Fixed Linear Time?
    - <u>Fixed Intercept</u> = **now** predicted mean of Y from linear time at time = 0 (would be different if time was centered elsewhere)
    - <u>Fixed Linear Time</u> = mean linear rate of change across all occasions (would be the same if time was centered elsewhere)
  - > Add Fixed Quadratic Time?
    - <u>Fixed Intercept</u> = still predicted mean of Y at time=0 (but from quadratic model) (would be different if time was centered elsewhere)
    - <u>Fixed Linear Time</u> = **now** mean linear rate of change at time=0 (would be different if time was centered elsewhere)
    - <u>Fixed Quadratic Time</u> = half the mean rate of acceleration or deceleration of change across all occasions (i.e., the linear slope changes the same over time)

## Polynomial Fixed vs. Random Time Effects

- Polynomial fixed effects combine to describe mean trajectory over time (can have fixed slopes up to n 1):
  - Fixed Intercept = Predicted mean level (at time 0)
  - Fixed Linear Time = Mean linear rate of change (at time 0)
  - Fixed Quadratic Time = Half of mean acceleration/deceleration in linear rate of change (2\*quad is how the linear time slope changes per unit time if quadratic is highest order fixed effect)
- Polynomial random effects (individual deviations from the fixed effect) describe individual differences in those change parameters (can have random slopes up to n 2):
  - Random Intercept = BP variance in level (at time 0)
  - Random Linear Time = BP variance in linear time slope (at time 0)
  - Random Quadratic Time = BP variance in half the rate of acceleration/deceleration of linear time slope (across all time if quadratic is highest-order random effect)

## Random Quadratic Time Model

Level 1: 
$$y_{ti} = \beta_{0i} + \beta_{1i} \text{Time}_{ti} + \beta_{2i} \text{Time}_{ti}^2 + e_{ti}$$

### Level 2 Equations (one per β):

$$\beta_{0i}$$
 = Intercept for person  $i$ 



### **Fixed Effect Subscripts:**

1<sup>st</sup> = which Level 1 term 2<sup>nd</sup> = which Level 2 term

$$\beta_{1i}$$
 = Linear Slope for person  $i$ 

Fixed (mean)

**Quad Slope** 



**Quad Slope** 

# Number of Possible Slopes by Number of Occasions (n):

# Fixed slopes = n - 1# Random slopes = n - 2

Need n = 4 occasions to fit random quadratic time model

**Quad Slope** 

for person i

# Example Sequence for Testing Fixed and Random Polynomial Effects of Time

### Build up fixed and random effects simultaneously:

- 1. Empty Means, Random Intercept → to calculate ICC
- 2. Fixed Linear, Random Intercept  $\rightarrow$  check fixed linear p-value
- 3. Random Linear  $\rightarrow$  check  $-2\Delta LL(df \approx 2)$  for random linear variance
- 4. Fixed Quadratic, Random Linear  $\rightarrow$  check fixed quadratic p-value
- 5. Random Quadratic  $\rightarrow$  check  $-2\Delta LL(df \approx 3)$  for random quadratic variance
- 6. ......

#### \*\*\* In general: Can use **REML** for all models, so long as you:

- → Test significance of new **fixed** effects by their **p-values**
- $\rightarrow$  Test significance of new **random** effects in separate step by  $-2\Delta LL$
- → Also see if AIC and BIC are smaller when adding random effects

## Conditionality of Polynomial Random Effects

- We saw previously that lower-order fixed effects of time are conditional on higher-order polynomial fixed effects of time
- The same is true for polynomial random effects of time:
  - > Random Intercept Only?
    - Random Intercept = BP variance for any occasion in predicted mean Y
       (= variance in grand mean because individual lines are parallel)
  - Add Random Linear Time?
    - Random Intercept = now BP variance at time=0 in predicted mean Y (would be different if time was centered elsewhere)
    - Random Linear Time = BP variance across all occasions in linear rate of change (would be the same if time was centered elsewhere)
  - > Add Random Quadratic Time?
    - Random Intercept = still BP variance at time=0 in predicted mean Y
    - Random Linear Time = now BP variance at time=0 in linear rate of change (would be different if time was centered elsewhere)
    - Random Quadratic Time = BP variance across all occasions in half of accel/decel
      of change (would be the same if time was centered elsewhere)

# Random Effects Allowed by #Occasions

**3** unique pieces of information

*n*=2 occasions

#### **Data**

**G Matrix** 

**Random Intercept only** 

#### **R Matrix**

**Variance** Model # **Parameters** 

**6** unique pieces of information

$$\begin{bmatrix} \sigma_1^2 & & & \\ \sigma_{21} & \sigma_2^2 & & \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix}$$

$$\begin{array}{c|c} & & & \\ \hline \tau_{U_0}^2 & \\ \hline \tau_{U_{01}} & \tau_{U_1}^2 \\ \hline \text{Up to 1} \\ \hline \text{Random slope} \end{array}$$

$$egin{bmatrix} \sigma_{\mathrm{e}}^2 & 0 & 0 \ 0 & \sigma_{\mathrm{e}}^2 & 0 \ 0 & 0 & \sigma_{\mathrm{e}}^2 \ \end{pmatrix}$$

$$\begin{array}{c|c}
 \underline{n=4 \text{ occasions}} & \sigma_{1} \\
 \hline
 \mathbf{10} \text{ unique pieces} & \sigma_{21} & \sigma_{2}^{2} \\
 \end{array}$$

of information 
$$\begin{bmatrix} \sigma_1 \\ \sigma_{21} \\ \sigma_{21} \\ \sigma_{31} \\ \sigma_{32} \\ \sigma_{41} \\ \sigma_{42} \\ \sigma_{43} \\ \sigma_{43} \\ \sigma_{44} \\ \sigma_{45} \\ \sigma_{46} \\ \sigma_{47} \\ \sigma_{48} \\ \sigma_{48$$

$$\begin{array}{ccc} \mathsf{U}_{02} & \mathsf{v}_{\mathsf{U}_{12}} & \mathsf{v}_{\mathsf{U}_{2}} \\ \mathsf{Up to 2} & \\ \mathsf{Random slopes} & \\ \end{array}$$

$$\begin{bmatrix} \sigma_{e}^{2} & 0 & 0 & 0 \\ 0 & \sigma_{e}^{2} & 0 & 0 \\ 0 & 0 & \sigma_{e}^{2} & 0 \\ 0 & 0 & 0 & \sigma_{e}^{2} \end{bmatrix}$$

# Predicted V Matrix from Polynomial Random Effects Models

- Random linear model? Variance has a quadratic dependence on time
  - > Variance will be at a minimum when time =  $-\text{Cov}(U_0, U_1)/\text{Var}(U_1)$ , and will increase parabolically and symmetrically over time
  - > **Predicted variance** at each occasion and covariance between A and B:

$$Var(y_{time}) = Var(e_t) + Var(U_0) + 2Cov(U_0, U_1)(time_t) + Var(U_1)(time_t^2)$$

$$Cov(y_A, y_B) = Var(U_0) + Cov(U_0, U_1)(A + B) + Var(U_1)(AB)$$

• Random quadratic model? Variance has a quartic dependence on time

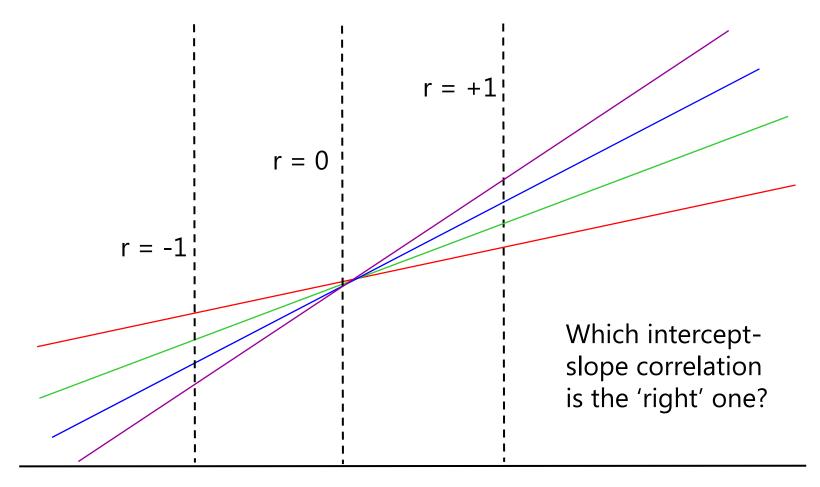
$$\begin{aligned} \text{Var}(y_{\text{time}}) &= \text{Var}(e_{t}) + \text{Var}(U_{0}) + 2\text{Cov}(U_{0}, U_{1})(\textbf{time}_{t}) + \text{Var}(U_{1})(\textbf{time}_{t}^{2}) + \\ & 2\text{Cov}(U_{0}, U_{2})(\textbf{time}_{t}^{2}) + 2\text{Cov}(U_{1}, U_{2})(\textbf{time}_{t}^{3}) + \text{Var}(U_{2})(\textbf{time}_{t}^{4}) \end{aligned}$$
 
$$\begin{aligned} \text{Cov}(y_{A}, y_{B}) &= \text{Var}(U_{0}) + \text{Cov}(U_{0}, U_{1})(A + B) + \text{Var}(U_{1})(AB) + \text{Cov}(U_{0}, U_{2})(A^{2} + B^{2}) + \\ & \text{Cov}(U_{1}, U_{2})[(AB^{2}) + (A^{2}B)] + \text{Var}(U_{2})(A^{2}B^{2}) \end{aligned}$$

• The point of the story: random effects of time are a way of allowing the variances and covariances to differ over time in specific, time-dependent patterns (that result from differential individual change over time).

# Rules for Polynomial Models (and in general for fixed and random effects)

- On the same side of the model (means or variances side), lower-order effects stay in EVEN IF NONSIGNIFICANT (for correct interpretation)
  - > e.g., Significant *fixed* quadratic? Keep the *fixed* linear
  - > e.g., Significant random quadratic? Keep the random linear
- Also remember—you can have a significant random effect EVEN IF the corresponding fixed effect is not significant (keep it anyway):
  - ➤ e.g., Fixed linear not significant, but random linear is significant?
     → No linear change on average, but significant individual differences in change
- Language: A random effect supersedes a fixed effect:
  - If <u>Fixed</u> = intercept, linear, quad; <u>Random</u> = intercept, linear, quad?
    - Call it a "Random quadratic model" (implies everything beneath those terms)
  - If <u>Fixed</u> = intercept, linear, quad; <u>Random</u> = intercept, linear?
    - Call it a "Fixed quadratic, random linear model" (distinguishes no random quad)
- Intercept-slope correlation depends largely on centering of time...

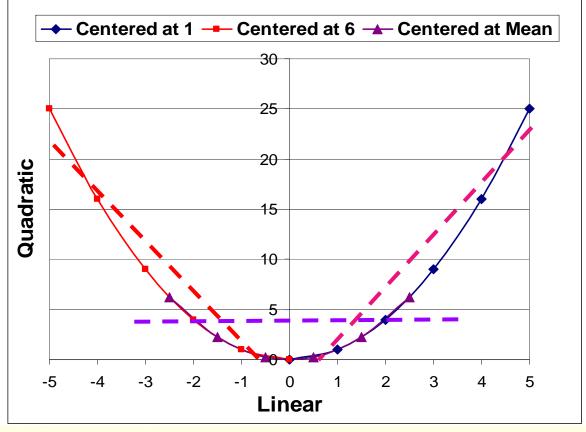
# Correlation between Random Intercept and Random Linear Slope depends on time 0



!! Nonparallel lines will eventually cross.

# Correlations among polynomial slopes

| Session Centered at 1: |        | Session Centered at 6: |         |        | Session Centered at Mean: |         |        |           |  |
|------------------------|--------|------------------------|---------|--------|---------------------------|---------|--------|-----------|--|
| Session                | Linear | Quadratic              | Session | Linear | Quadratic                 | Session | Linear | Quadratic |  |
| 1                      | 0      | 0                      | 1       | -5     | 25                        | 1       | -2.5   | 6.25      |  |
| 2                      | 1      | 1                      | 2       | -4     | 16                        | 2       | -1.5   | 2.25      |  |
| 3                      | 2      | 4                      | 3       | -3     | 9                         | 3       | -0.5   | 0.25      |  |
| 4                      | 3      | 9                      | 4       | -2     | 4                         | 4       | 0.5    | 0.25      |  |
| 5                      | 4      | 16                     | 5       | -1     | 1                         | 5       | 1.5    | 2.25      |  |
| 6                      | 5      | 25                     | 6       | 0      | 0                         | 6       | 2.5    | 6.25      |  |



Correlations among polynomial effects of time can be induced by centering time near the start or near the end.

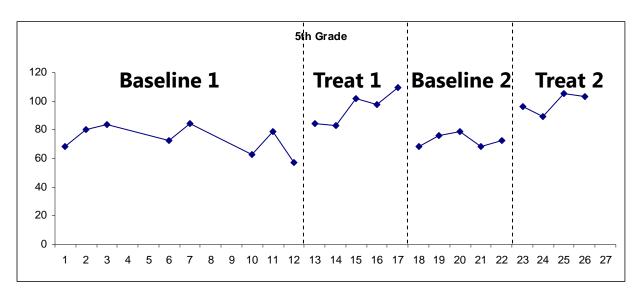
Therefore, these correlations will be \*most\* interpretable when centering time at its mean instead.

## Summarizing so far...

- Modeling within-person change involves specifying effects of time for both sides of the model
  - > Fixed effects in model for the means:
    - What kind of change am I observing on average?
    - What kind of trajectory will reproduce those means?
  - > Random effects (and residuals) in model for the variances:
    - What kind of individual differences in change am I observing?
    - How many random effects do I need to reproduce the observed pattern of variances and covariances over time?
- One option: Polynomial models (linear, quadratic, cubic)
  - > Terms work together to describe non-linear trajectories
  - Careful with the covariances among random effects, though
- Coming next: Piecewise slopes and truly nonlinear change...

## Other Random Effects Models of Change

- Piecewise models: Discrete slopes for discrete phases of time
  - > Separate terms describe sections of overall trajectories
  - Useful for examining change in intercepts and slopes before/after discrete events (changes in policy, interventions)
  - Must know where the break point is ahead of time!



#### **Piecewise Model:**

4 slopes (one per phase)

3 "jumps" (shift in intercept between phases)

# Example of Daily Cortisol Fluctuation: Morning Rise and Afternoon Decline

#### <u>Average Trajectories</u> 50 This piecewise model 45 is structured using 40 "Time Since Waking" 35 30 25 20 15 10 5 Wake +30min lunch bed

**SAS Code** to create two piecewise slopes from continuous time of day in stacked data:

```
IF occasion=1 THEN DO;
P1=0; P2=0; END;
IF occasion=2 THEN DO;
P1= time2-time1; P2=0; END;
IF occasion=3 THEN DO;
P1= time2-time1; P2=time3-time2; END;
IF occasion=4 THEN DO;
P1= time2-time1; P2=time4-time2; END;
```

Note that a quadratic slope may be necessary for the afternoon decline slope!

## Random Two-Slope Piecewise Model

Level 1: 
$$y_{ti} = \beta_{0i} + \beta_{1i}Slope1_{ti} + \beta_{2i}Slope2_{ti} + e_{ti}$$

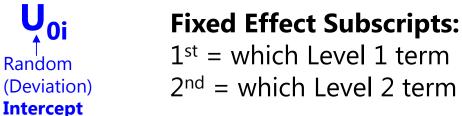
### Level 2 Equations (one per β):

$$\beta_{0i}$$
 =  $\gamma_{00}$  +

Intercept for person  $i$  Fixed (mean)
Intercept In

Slope2

for person i



$$eta_{1i} = \gamma_{10} + \bigcup_{\substack{1i \\ \text{Random} \\ \text{(Deviation)}}} Random \\ \text{Slope1}$$
 $eta_{2i} = \gamma_{20} + \bigcup_{\substack{2i}} Random \\ \text{Slope1}$ 

Fixed (mean)

Slope2

# Fixed slopes = 
$$n - 1$$
  
# Random slopes =  $n - 2$   
Need  $n = 4$  occasions to fit  
random two-slope model

**Number of Possible Slopes** 

by Number of Occasions (n):

CLDP 944: Lecture 6 28

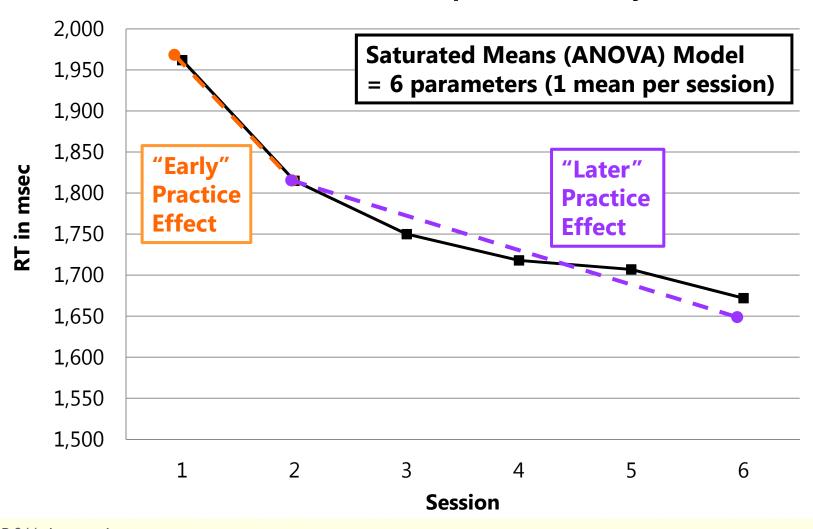
Random

Slope2

(Deviation)

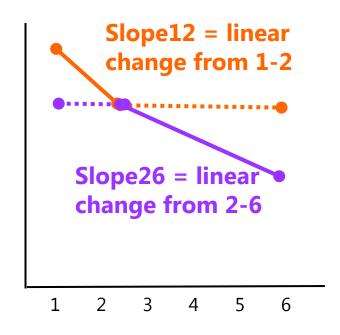
# What kind of piecewise model could predict our example data mean change across sessions?

#### **Number Match 3 Mean Response Times by Session**



## Piecewise Models: Two Direct Slopes

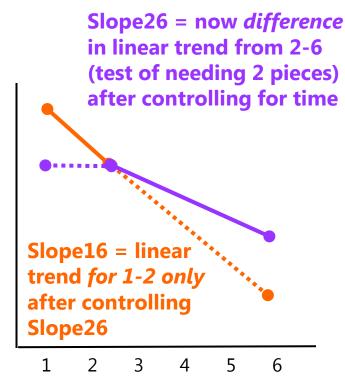
- "Early Practice Slope" and "Later Practice Slope"
- Use to specify slopes through each discrete phase directly
- Session (1-6) gets recoded into 2 new time predictor variables, as shown below:



| Session                    | 1 | 2 | 3 | 4 | 5 | 6 |
|----------------------------|---|---|---|---|---|---|
| Early Practice → Slope12 = | 0 | 1 | 1 | 1 | 1 | 1 |
| Later Practice → Slope26 = | 0 | 0 | 1 | 2 | 3 | 4 |

## Piecewise Models: Slope + Deviation Slope

- "Linear Time Slope" and "Deviation Slope"
- Use to test if multiple slopes are needed
- Initial slope predictor is coded differently, second slope predictor is same:



| Session   |             | 1 | 2 | 3 | 4 | 5 | 6 |
|-----------|-------------|---|---|---|---|---|---|
| Time      | → Slope16 = | 0 | 1 | 2 | 3 | 4 | 5 |
| Deviation | → Slope26 = | 0 | 0 | 1 | 2 | 3 | 4 |

## 2 Direct Slopes Model: Random Effects

- Parameters directly represent each part of trajectory:
- Fixed effects for mean change over time (3):
  - Fixed Intercept = expected Y when both slopes = 0 (Session 1)
  - > Fixed Slope12 = expected linear rate of change from 1 to 2
  - > Fixed Slope26 = expected linear rate of change from 2 to 6
- Leads to possible random effects (up to 3 var+3 cov):
  - Random Intercept = BP variance in expected level
     when both slopes = 0 (at Session 1)
  - Random Slope12 = BP variance in linear slope from 1 to 2
  - > Random Slope26 = BP variance in linear slope from 2 to 6

## Slope + Deviation Slope: Random Effects

- Parameters directly differences across parts of trajectory:
- Fixed effects for mean change over time (3):
  - Fixed Intercept = expected Y when both slopes = 0 (Session 1)
  - Fixed Slope16 = expected linear rate of change from 1 to 2 (after controlling for slope26)
  - Fixed Slope26 = expected extra linear rate of change from 2 to 6 (after controlling for slope16, which is just time)
- Leads to possible random effects (up to 3 var+3 cov):
  - Random Intercept = BP variance in expected level when both slopes = 0 (at Session 1)
  - Random Slope16 = BP variance in linear slope from 1 to 2
  - Random Slope26 = BP variance in extra linear slope from 2 to 6

## Saturated Means via Piecewise Slopes Models

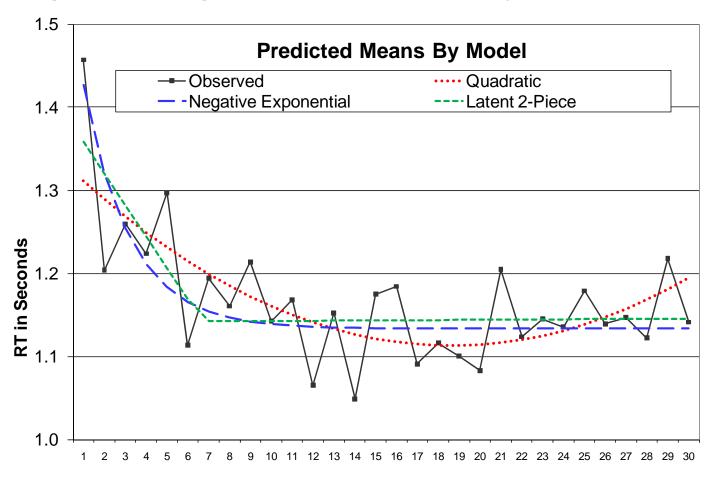
- You can fit fixed piecewise slopes up to n-1, but only random piecewise slopes up to n-2:
  - > 3 occasions? up to 2 fixed pieces, but only 1 random piece
  - > 4 occasions? up to 3 fixed pieces, but only 2 random pieces
  - > n-1 fixed pieces will perfectly reproduce observed means
- Given this constraint (and balanced data), you should consider some of the ACS models as well:
  - $\rightarrow$  Example:  $n=3 \rightarrow$  Model for the means = 2 fixed pieces, Model for the Variances could be....
    - UN, CSH, CS (Random Intercept Only), Random Intercept + Random Slope12, OR Random Intercept + Random Slope23
    - Everything is nested within UN; can also use AIC and BIC to choose

## Summary: Piecewise Slopes Models

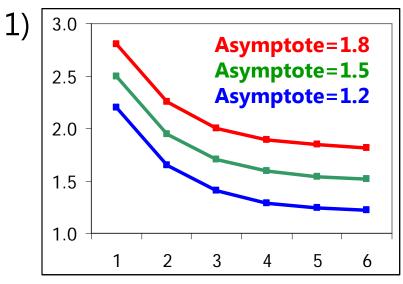
- Piecewise models are useful for discontinuous trajectories (empirically or based on the study design)
  - Use slope + deviation slope(s) to test if > 1 slope is necessary
- If all effects are random, the slope + deviation slope and the direct slopes versions of the models will be equivalent
  - > Select the one that has the random effects variance you want to predict
- Keep all the pieces in the model (even if non-significant) in order to maintain a correct interpretation of each
- Each piece can be linear or non-linear as needed
  - $\triangleright$  e.g., piece1 + piece2 + piece2<sup>2</sup>  $\rightarrow$  linear, then non-linear trajectory
- You may also need to test for a 'drop' or 'jump' in intercept at the break point in addition to change in slope, data permitting
  - Planning on doing piecewise models? They can be tricky... PLEASE let me help you set up the predictors to do so!

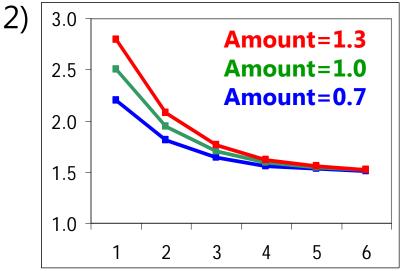
# Other Random Effects for Change

- Truly nonlinear models: Non-additive terms to describe change
  - Models can include asymptotes (so change can "shut off" as needed)
  - Include power and exponential functions (see chapter 6 for references)

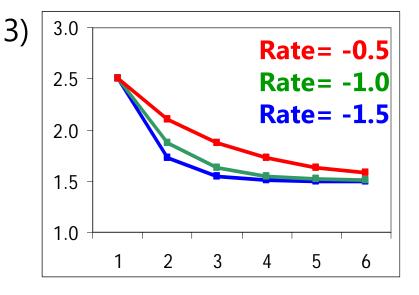


## (Negative) Exponential Model Parameters





- 1) Different **Asymptotes**, same amount and rate
- 2) Different **Amounts**, same asymptote and rate
- 3) Different Rates, same asymptote and amount



## Exponential Models

- The name positive or negative reflects whether the data are moving away or towards asymptote
  - Accelerating trajectory (up or down) = "positive" exponential
  - Decelerating trajectory (up or down) = "negative" exponential
- Amount reflects distance from asymptote to time 0, multiplied by exp(rate\*time)
  - Decrease across time to asymptote = positive amount
  - Increase across time to asymptote = negative amount
- Amount can also be replaced by an intercept
  - Asymptote + Amount = Intercept
- Cannot be estimated in SAS PROC MIXED given its nonlinear parameters (use SAS PROC NLMIXED instead)

## Exponential Model (3 Random Effects)

Level 1: 
$$y_{ti} = \beta_{0i} + \beta_{1i}*exp(\beta_{2i}*Time_{ti}) + e_{ti}$$

### Level 2 Equations (one per β):

$$eta_{0i} = \gamma_{00} + U_{0i}$$
Asymptote for person  $i$ 

Fixed (mean)
Asymptote

 $\beta_{1i} = \gamma_{10} + U_{1i}$ 



$$\beta_{2i}$$
 =  $\gamma_{20}$  +  $\gamma_{2i}$  Random (Deviation) Rate

### **Fixed Effect Subscripts:**

1<sup>st</sup> = which Level 1 term 2<sup>nd</sup> = which Level 2 term

# Number of Possible Slopes by Number of Occasions (n):

# Fixed slopes = n - 1# Random slopes = n - 2

Also need 4 occasions to fit random exponential model

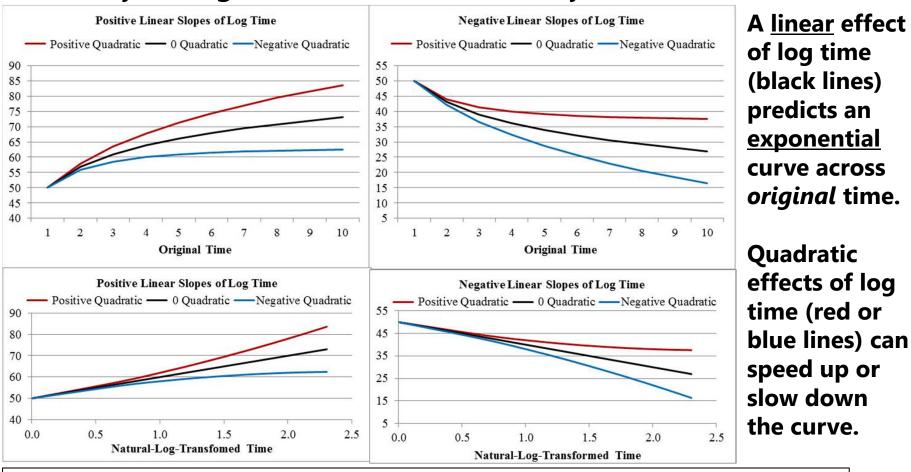
(Likely need way more occasions to find U<sub>2i</sub>, though)

## Nonlinear Models

- Not all forms of change fit polynomial models
  - What goes up must come back down (and vice-versa)
  - Sometimes change needs to "shut off" (need asymptotes)
- Many kinds of truly nonlinear models can be used for longitudinal data
  - ▶ Linear in variables vs. linear in parameters (exp → nonlinear)
  - > Logistic, power, exponential... see end of chapter 6 for ideas
- Require extra steps to evaluate estimation quality
  - > Start values are needed, especially for random variances
  - Check that "gradient" values are as close to 0 as possible (partial first derivative of that parameter in LL function)

# How to Mimic an Exponential Model

If you need to use REML, a predictor of natural-log-transformed time may be a good substitute for a truly nonlinear model



Bottom: There is a linear relationship between log-time and the outcome.

# Which change family should I choose?

- Within a given family, nested models can usually be compared to judge the need for each parameter
  - > e.g., linear vs. quadratic? One slope vs. two slopes?
  - ▶ Usual nested model comparison rules apply (p-values for fixed effects,  $-2\Delta LL$  tests for random effects)
  - When using REML, you can test absolute fit of each side separately if you have balanced data to see if you are "there yet"
- Between families, however, alternative models of change may not be nested, so deciding among them can be tricky
  - > e.g., quadratic vs. two-slope vs. log time vs. exponential?
  - Use ML AIC and BIC to see what is "preferred" across the families
  - > In balanced data, you can also compare each alternative to a saturated means, UN model using ML as test of absolute fit
  - Also consider plausibility of alternative models in terms of both data predictions and theoretical predictions in deciding