Describing Within-Person
Fluctuation over Time using
Alternative Covariance Structures

- Today's Class:
> The Big Picture
> ACS models using the R matrix only
> Introducing the G, Z, and V matrices
> ACS models combining the G and R matrices
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Modeling Change vs. Fluctuation

Pure WP Change Our focus |_~» Pure WP Fluctuation
right now
4 <€ >
\
Time Time

Model for the Means:
- WP Change -> describe pattern of average change (over “time”)
- WP Fluctuation 2> *may* not need anything (if no systematic change)

Model for the Variance:

- WP Change -> describe individual differences in change (random effects)
- this allows variances and covariances to differ over time

- WP Fluctuation - describe pattern of variances and covariances over time
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Big Picture Framework: Models for
the Variance in Longitudinal Data

Compound Symmetry (CS)

Unstructured (UN)

[ 2 2 2 2 - -
U, 0% Ty, U, G113 Ot14
2 2 162 Most useful
Ty, Ty, TOe Ty, e Ot23 Ot
) ) ) model: likely )
> | b O somewhere O3 GT243 .
N ¥ ¥ v T in between!  [Ota Gra3 Oma | W
.g « 0 0 0 e > g
& Univariate NAME ...THAT ... Multivariate 8
& RM ANOVA STRUCTURE! RM ANOVA

What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available
within MLM, including random effects models (for change)
and alternative covariance structure models (for fluctuation).
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Relative Model Fit by Model Side

« Nested models (i.e., in which one is a subset of the other)
can now differ from each other in two important ways

- Model for the Means = which predictors and which
fixed effects of them are included in the model

> Does not require assessment of relative model fit using LL or =2LL
(can still use univariate or multivariate Wald tests for this)

- Model for the Variance - what the pattern of variance
and covariance of residuals from the same unit should be

> DOES require assessment of relative model fit using LL or —2LL

> Cannot use the Wald test p-values that show up on the output for
testing significance of variances because those p-values are use a
two-sided sampling distribution for what the variance could be
(but variances cannot be negative, so those p-values are not valid)
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Comparing Models for the Variance

- ACS models require assessment of relative model fit: how
well does the model fit relative to other possible models?

- Relative fit is indexed by overall model log-likelihood (LL):
> Log of likelihood for each person’s outcomes given model parameters
> Sum log-likelihoods across all independent persons = model LL
> Two flavors: Maximum Likelihood (ML) or Restricted ML (REML)

- What you get for this on your output varies by software...

. Given as -2*log likelihood (-2LL) in SAS or SPSS MIXED:
—2LL gives BADNESS of fit, so smaller value = better model

. Given as just log-likelihood (LL) in STATA MIXED and Mplus:
LL gives GOODNESS of fit, so bigger value = better model
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Comparing Models for the Variance

- Two main questions in choosing a model for the variance:
> How does the variance of the residuals differ across occasions?

» How are the residuals from the same sampling unit correlated?

- Nested models are compared using a “likelihood ratio test”:
—2ALL test (aka, "x? test” in SEM; “"deviance difference test” in MLM)

“fewer” = from model with fewer parameters Results of 1. & 2. must
“more” = from model with more parameters be positive values!

1. Calculate —2ALL: if given —2LL, do —2ALL = (-2LL,,.) — (-2LL
if given  LL, do —2ALL = =2 *(LL;,,,. — LL

2. Calculate Adf = (# Parms .) — (# Parms,.,)
3. Compare -2ALL to x? distribution with df = Adf
4. Get p-value from CHIDIST in excel or LRTEST option in STATA

more)

more)
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Comparing Models for the Variance

- What your p-value for the —2ALL test means:

> If you ADD parameters, then your model can get better
(if —2ALL test is significant ) or not better (not significant)

> If you REMOVE parameters, then your model can get worse
(if —2ALL test is significant ) or not worse (not significant)

- Nested or non-nested models can also be compared by
Information Criteria that also reflect model parsimony

> No significance tests or critical values, just “smaller is better”
> AIC = Akaike IC = -2LL + 2 *(#parameters) N = #
> BIC = Bayesian IC = -2LL + log(N)*(#parameters) level-2 units
> What “parameters” means depends on flavor (except in STATA):

« ML = ALL parameters; REML = variance model parameters only
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Alternative Covariance Structure Models

- Useful in predicting patterns of variance and covariance that
arise from fluctuation in the outcome across time:

> Variances: Same (homogeneous) or different (heterogeneous)?

> Covariances: Same or different? If different, what is the pattern?

Models with heterogeneous variances predict correlation instead of covariance
because covariances will differ when variances differ

> Often don't need any fixed effects for systematic effects of time in the
model for the means (although this is always an empirical question)

 Limitations for most of the ACS models:
> Require equal-interval occasions (if they use the idea of “time lag")
> Require balanced time across persons (no intermediate time values)

> But do not require complete data (unlike when CS and UN are
estimated via least squares in ANOVA instead of ML/REML in MLM)

- ACS models do require some new terminology to introduce...
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Two Families of ACS Models

- So far, we've referred to the variance and covariance matrix of the
multivariate (longitudinal) outcomes as the R matrix

> We now refer to these as “R-only models” (use REPEATED statement only)

> Although the R matrix is actually specified per individual, ACS models
usually assume the same R matrix for everyone

> R matrix is symmetric with dimensions n x n, in which n = # occasions per

person (although people can have missing data, the same set of possible
occasions is required across people to use most R-only models)

- 3 other matrices we’ll see in “G and R combined” ACS models:
> G = matrix of random effects variances and covariances (stay tuned)
> Z = matrix of values for predictors that have random effects (stay tuned)
> V = symmetric n x n matrix of total variance and covariance over time

If the model includes random effects, then G and Z get combined with R to make V
as V=1ZGZ" + R (accomplished by adding the RANDOM statement)

If the model does NOT include random effects in G, then V = R... so, R-only
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Review: Covariances and Correlations

Covariance,, ,,
y2 = ; :
= JVariance,, */Variance, ,

Correlation,,

Covariance,, ,, = Correlation,, ,, *,/Variance,, *,/Variance, ,

yly?2 yly?2

. Given the standard deviation (as v/Variance) at each occasion, either the
correlation and covariance can be calculated given the other

- ACS models with homogeneous variances tend to be specified in terms of
variance and covariance

> @Given same variance over time, same covariance = same correlation

- ACS models with heterogeneous variance tend to be specified in terms of
variance and correlation

> Different variances over time = different covariances over time, even if the
correlation is the same (so only correlation is estimated directly)
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R-Only ACS Models

The R-only models to be presented next are all specified using the
REPEATED statement only (ho RANDOM statement)

They are explained by showing their predicted R matrix, which
provides the total variances and covariances across occasions

> Total variance per occasion on diagonal
> Total covariances across occasions on off-diagonals
> I'veincluded in “ ” the labels SAS uses for each parameter

Correlations across occasions can be calculated given variances and
covariances, which would be shown in the RCORR matrix (available
in SAS PROC MIXED)

> 1's on diagonal (standardized variables), correlations on off-diagonal

Unstructured (TYPE=UN) will always fit best by -2LL
> All ACS models are nested within Unstructured (UN = the data)
> Goal: find an ACS model that is simpler but not worse fitting than UN
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R-Only ACS Models: CS/CSH

- Compound Symmetry: TYPE=CS

> 2 parameters:

, , (CS+c2 CS CS CS
- 1 “residual” variance o2 ¢ ,
- 1"“CS"” covariance CS CS+o, CS CS
across occasions CS CS CS i 62 CS
> Constant total variance: CS + o2 ° 5
, CS CS CS CS+o;
> Constant total covariance: CS - -
- Compound Symmetry Heterogeneous: TYPE=CSH
> n+1 parameters: | 64, CSHop,01, CSHoq014 CSHGHG-M_
= n se||oarate “Var(n)” CSHor,or;  of,  CSHopor; CSHorpyor,
total variances o7, )
CSHo .o CSHo .0 o CSHo .o
= 1 “CSH"” total correlation ah Bk ™ 2T3 T
across occasions  CSHop,01; CSHoqyor, CSHop,0q; 074

> Separate total variances are estimated directly

> Still constant total correlation: CSH (but has non-constant covariances)

CLDP 944: Lecture 4



R-Only ACS Models: AR1/ARH1

. 15t Order Auto-Regressive: TYPE=AR(1)

. 2 1.2 2 2 3 2]
> 2 parameters: 67 IO I;OT 1307
. ) 2 1.2 2 2
- 1 constant total variance If6+ ©7 1707 1707
2 ° “ . ”
o5 (mislabeled “residual 2.2 1.2 2 1.2
= 1 “AR1"” total auto-correlationr 3. 2 .22 12 2
: T | [O7r KOr KOy O |
across occasions

- riislag-1 correlation, r% is lag-2 correlation, r3 is lag-3 correlation....

. 1t Order Auto-Regressive Heterogeneous: TYPE=ARH(1)

> n+1 parameters: 64 I1G,Ory T[2G1Or3 TG0,
+ n separate “Var(n)” fTGr,0r1  Or,  1O7,0r3 170707
total variances o3, [7G1407; [1O7307, O  I3G74074

- 1 “ARH1" total auto- _r-?GT4G-|—1 261,07, I+G7,073 6%,

correlation r; across occasions

- r+is lag-1 correlation, r# is lag-2 correlation, r3 is lag-3 correlation....
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R-Only ACS Models: TOEPn/TOEPHnN

. Toeplitz(n): TYPE=TOEP(n)

> N parameters:

= 1 constant total variance
o4 (mislabeled “residual”)

« n-1"TOEP(lag)” c;,, banded
total covariances across occasions L

Ot

Cri  OF
Cr, Cpg
Crs3 Cpp

2
Ot

2
Cri Ot_

= ¢t IS lag-1 covariance, cr, is lag-2 covariance, cts is lag-3 covariance....

- Toeplitz Heterogeneous(n) TYPE=TOEPH(n)

> n + (n-1) parameters:

= n separate “Var(n)”
total variances 63,

- n-1"TOEPH(lag)" r,
banded total correlations
across occasions

2
Or1

110712011

190713071

| 730714011

11611017
2
Oy
110713072

(720140712

196110713
116720713
2
O3

710740713

73071074
7207120714
711073074

2
Oy

= rr,is lag-1 correlation, rr, is lag-2 correlation, r3 is lag-3 correlation....
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Comparing R-only ACS Models

- Baseline models: CS =simplest, UN = most complex

>

>

Relative to CS, more complex models fit “better” or “not better”
Relative to UN, less complex models fit “worse” or “not worse”

. Other rules of nesting and model comparisons:

>

Homogeneous variance models are nested within heterogeneous
variance models (e.g., CS in CSH, AR1 in ARH1, TOEP in TOEPH)

CS and AR1 are each nested within TOEP (i.e., TOEP can become
CS or AR1 through restrictions of its covariance patterns)

CS and AR1 are not nested (because both have 2 parameters)

R-only models differ in unbounded parameters, so can be compared
using regular —2ALL tests (instead of mixture —2ALL tests)

Good idea to start by assuming heterogeneous variances until you settle
on the covariance pattern, then test if het. var. are still necessary

When in doubt, just compare AIC and BIC (useful even with —2ALL tests)
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The Other Family of ACS Models

- R-only models directly predict the total variance and covariance

- G and R models indirectly predict the total variance and covariance
through between-person (BP) and within-person (WP) sources of
variance and covariance = So, for this model: y; = B, + Uy; + €
> BP = G matrix of level-2 random effect (U,;) variances and covariances

Which effects get to be random (whose variance and covariances are then
included in G) is specified using the RANDOM statement (always TYPE=UN)

Our ACS models have a random intercept only, so G is 1x1 scalar of [tﬁo]

> WP = R matrix of level-1 (e;) residual variances and covariances

The n x n R matrix of residual variances and covariances that remain after
controlling for random intercept variance is then modeled with REPEATED

> Total = V = n x n matrix of total variance and covariance over time that
results from putting G and R together: V = ZGZ' + R

Z is a matrix that holds the values of predictors with random effects,
but Z will be an n x 1 column of 1's for now (random intercept only)
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A “Random Intercept” (G and R) Model

2 2 2

Total Predicted Ty, Ty, tO
Data Matrix is 5 5
called V Matrix tu, tu,

2 2

/ L U

Level 2, BP Variance
Unstructured G Matrix
(RANDOM statement)

Each person hassamelx1G
matrix (no covariance across
persons in two-level model)

Random 2
Intercept |:ﬂ':U0 :l

Variance only
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Ty, Ty,
2 2
Tu Tu

Ty, Tu, +Ge_ \

Level 1, WP Variance
Diagonal (VC) R Matrix
(REPEATED statement)

Each person has samenxnR
matrix = equal variances and 0
covariances across time

(no covariance across persons)

(62 0 0 0]
Residual 0 oo 0 O
Varianceonly | 0 0 o2 0

|0 0 0 of]



CS as a “Random Intercept” Model

RI and DIAG: Total predicted data matrix is called V matrix, created
from the G [TYPE=UN] and R [TYPE=VC] matrices as follows:

V=2Z*G* Z' + R
L _Gg

9, 11+

S

0
o,
0
0

0
0
0

o A, o o

= V
0 _160 +G§ 1:60 Tf,o ’560 ]
0| | %, deed B T
0 rﬁo rao ’560 +G§ 160
2
e | rﬁo rﬁo rfjo 160 +c5§_

Does the end result V look
familiar? It should: CS = T{,

CS+c2  CS CS CS
CS CS+o; CS CS
CS CS CS+o: CS

. CS CS CS CS+o!|

So if the R-only CS model
(the simplest baseline) can be
specified equivalently using
G and R, can we do the same
for the R-only UN model
(the most complex baseline)?

Absolutely! ...with one small catch
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UN via a “Random Intercept” Model

RI and UNn-1: Total predicted data matrix is called V matrix, created

from the G [TYPE=UN] and R [TYPE=UN(n-1)] matrices as follows:

V=Z*G* Z' + R V

[ 2

2

2

2

, _
1 G2 Ouy O @ Ty, TOe1 Ty, TOe12 Tu, TO0e13
) 2 2 | 2 2 2
\/ = 1 [12 :|[1 11 1]_|_ Oe21 Oe2 Oe2z Oes Tu, TOe1 Ty, TOe2 Ty, *Oez3 Ty, T Oes
B Ug 2 2 2 2 2 2
1 Oc31 Oe3p Oe3 Oczs | | Ty, TOes1 Ty, TOe32 Tu, TOes Tu, T Ocs4
1 2 2 2

2
_@ Oet2 Oes3 Oes

2
+ 0Oy

2

U, TOes2 Tu, TOus Ty,

This RI and UNn-1 model is equivalent to (makes same predictions as)
the R-only UN model. But it shows the residual (not total) covariances.

Because we can't estimate all possible variances and covariances in the R
matrix and also estimate the random intercept variance r%o in the G matrix,

we are eliminating the last R matrix covariance by setting it to 0.

Accordingly, in the RI and UNn-1 model, the random intercept variance
T, takes on the value of the covariance for the first and last occasions.
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Rationale for G and R ACS models

- Modeling WP fluctuation traditionally involves using R only (no G)
- Total BP + WP variance described by just R matrix (so R=V)

> Correlations would still be expected even at distant time lags because of
constant individual differences (i.e., the BP random intercept)

> Resulting R-only model may require lots of estimated parameters as a result

e.g., 8 time points? Pry need a 7-lag Toeplitz(8) model

- Why not take out the primary reason for the covariance across
occasions (the random intercept variance) and see what's left?

> Random intercept variance t[z,Oin G - control for person mean differences

> THEN predict just the residual variance/covariance in R, not the total

> Resulting model may be more parsimonious (e.g., maybe only lagl or lag2
occasions are still related after removing t[z,O as a source of covariance)

> Has the advantage of still distinguishing BP from WP variance
(useful for descriptive purposes and for calculating effect sizes later)
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Random Intercept + Diagonal R Models

V=2z*G* zZ" + R =
1 (62 0 0 0]
1 0 620 0
v [ e
1= 0 0 o O
1 0 0 0 o2

homogeneous residual variances; no residual covariances

2 2
U, T O¢

T
2
’CUO
2
’CUO

2
’CUO

RI and DIAG: V is created from G [TYPE=UN] and R [TYPE=VC(]:

Same fit as
vV R-only CS
0, T, 0,
T +0, Ty, 0,
T, Ty +0. Ty,
T R e

ZT

V=2*G* +
=
1 2

V= R
_1_

R
s, 0 0 0|
0 g5, 0 O
0 0 o5, O
0 0 0 o

heterogeneous residual variances, no residual covariances

P 2
Ty, T 0e1

RI and DIAGH: V is created from G [TYPE=UN] and R [TYPE=UN(1)]:

NOT same fit

v  (as R-only CSH
W W, T,
rﬁo +65, Ty rf,o
W, T, t%a T,

2 2 2+,
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Random Intercept + ARI R Models

RI and AR1: V is created from G [TYPE=UN] and R [TYPE=AR(1)]:
homogeneous residual variances, auto-regressive lagged residual covariances

V=2Z*G*Z + R
a0 2 1 2 2 2
1 Ge reGe reGe
1ir » e’ ol ro’
— e~e e e-e
v_l[ruo][1111]+ B
1 eGe reGe Ge
3.2 2 2 12
il _reGe IO, I,G,

— V —_
Ty, +0, Ty, +os Ty, +1.0, Ty +I,0,
Ty, +1;0s Ty +C, Ty, +1,0, T, +150,
Ty, +1:0s Ty +1,0, Ty +0p Ty +1,0,

_rﬁo +10; Ty +1.0p Ty +1,0, Ty +0q |

RI and ARH1: V is created from G [TYPE=UN] and R [TYPE=ARH(1)]:
auto-regressive lagged residual covariances

heterogeneous residual variances;

T
V=27*G* Z + R
- B 2 1 2
1 Gel re6e10e2 I'e GelGe:%
1 2 1
1l » [G,,0 c I,6,,0
_ eve2vel e2 eve2ve3
V= 1[TUO][1111]+ . . ’
1 e 0e30e1 1‘eceEiGeZ GeS
3 2 1
- _reGe4Ge1 I.e Ge40e2 I'e(5e4(5e3

\Y
2 1 2 2 2 3
TUO + reGelGeZ TUO T 1 01063 TUO T 1010

2 1 2
TUO T10¢y0¢3 TU0

2 2
Ty, T O
2
Ty,
2
Ty,

1 2 2 2
+ reGeZGel 1TUO T 0 1 0¢y0¢

2 2 1 2 2 2 1
+ re Ge30e1 TUO + Ie0e30¢2 TUO + Oe3 TUO + I0¢30¢4

2 3 2 2 2 1 2 2
_rU0 + re GesOe1 TUO 1 0¢0¢ TUO T10¢0¢3 TUO T 0g4
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Random Intercept + TOEPn—1 R Models

RI and TOEPn-1:V is created from G [TYPE=UN] and R [TYPE=TOEP(n-1)]:
homogeneous residual variances;, banded residual covariances

Same fit as
R-only TOEP(n)

V=2*G* Z + R = v : >
_ T2 2 2 2 7|Because of 1.,

_1_ 05 Cel Cez @ TUO + Ge TUO + Cel TUO + Ce2 ) UO

) ) s o o ) highest lag

0 2 2 2 2 2 2
1 Cer Ca Op Ce | | Ty, +Cer Ty, +Co Ty +0s Ty +Cqy || Must be set to
1 @ 2 2 ) , | 0for model to
] Copy Cy O
(@) e o oel [ () b+ wren w40 ] pedentified

RI and TOEPHn-1:V is created from G [TYPE=UN] and R [TYPE=TOEPH(n-1)]:
heterogeneous residual variances, banded residual covariances NOT same fit as

R-only TOEPH(n)

V=2z*G*Z + R = \Y

oh [ <2 1 [ & +c? 1, +1,6.0., T +1.,0.,0 |

1 O 10¢10e T20010¢3 U, el U, " 'el¥el¥e2 ‘U, " ‘e2VelVe3

2 2 2 2

e, [10e20e1  Oe2  T:10e20e3 1e20e20es T, TGOt Ty, tO0e2 Ty, TTer0e20es T, 12020

V= 1[% ][1111]+ 2 |2 2 2 2 2
rezcei%cel [610630¢2 Ge3 I610¢30¢4 TUO + re2(5e3(5e1 TUO +relGeSGeZ TUO +Ge3 TUO + Ire16<336e4
1 2 2 2 2 2
- - L [20e40e2 12106403 Oeq | i @ T, T1e20ea0e2 Ty, T1e10esOes Ty, +0es |
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Random Intercept + TOEPZ R Models

V=2*G* Z" + R =

1 62 ¢y 0 0

1 C.. 62 c,.. 0
VAL O Y e
1 0 0 c 2 ¢

el Ge el

1] 0 0 cy 05_

2

2 2
Ty, + e

2
’CUO

2
TUO

V
2 +cC
Ty, Tla

2 2
+ 0O,

2
TUO +Ce1

2
TUO

2
Ty

0

2

2

2
Ty, + O

2 2 2

RI and TOEP2: V is created from G [TYPE=UN] and R [TYPE=TOEP(2)]:
homogeneous residual variances; banded residual covariance at lagl only

Now we can
2] test the need
Yo for residual
2 .
Tu, covariances at
2 higher lags
1'7U0 +Ce1

V=2*G* Z'

N
1] | Oer

V| [ i1 11+ @00
1= 0
1] 0

Iy

I

R

10610¢2
052

10630¢e2

0

Iy

f

e

0
10e20¢3
2
Ge3

10e40¢3

I

0
0

2 2
Ty, + O

2
TUO + relceZGel

RI and TOEPHI: V is created from G [TYPE=UN] and R [TYPE=TOEPH(2)]:
heterogeneous residual variances, banded residual covariance at lagl only

\
2 +r
Tu, T 1e10e10¢2

2 2
Ty, * O

2 2
'CUO 'CUO

2

2
TUO T 110203 TUO

10 e30 ed
2
Ge4

2
TUO

2
TUO

2
Ty, 116106302

2
TUO

2 2
Ty, e

2
TUO + relGe4(5e3

2
Tu, T1e10e30e4

2 2
Ty, * Oes
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Map of R-only and G and R ACS Models

Arrows indicate nesting (end is more complex model)

Nl R-only n-1 Lag
Toeplitz

Random Intercept & | |

n-2 Lag Toeplitz R

R-Only Models G and R Combined Models
2 | | R-only Compound Random Intercept & |_
Symmetry Diagonal R
%)
§ 2 R-only I
s — First-Order °
© Auto-Regressive Random Intercept
2 & First-Order i
= 3 Auto-Regressive R
]
>
S J
3
é_’ 3 Random Intercept |
2 & 1-Lag Toeplitz R
(@]
I :
|
% 4 Random Intercept
g & 2-Lag Toeplitz R [
= s
T oeee L e A
o :
B v v
g
S
>
p

R-Only Models G and R Combined Models
R-only Compound + Random Intercept & |-
Symmetry Het. Diagonal Het. R
R-only First-Order
Auto-Regressive Y
Het. Random Intercept &
First-Order Auto-
Regressive Het. R
y
Random Intercept &
1-Lag Toeplitz Het. R
Random Intercept &
2-Lag Toeplitz Het. R
ISUUURNE. R
v v i
R-only n-1 Lag + Random Intercept &
Toeplitz Het. n-2 Lag Toeplitz Het. R

Homogeneous Variance over Time
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R-only n-order
Unstructured

Random Intercept &
n-1 order Unstructured R

Heterogeneous (Het.) Variance over Time

n+1

n+1

n+2

n+2

n+3

n+n-1

Number of Parameters in Heterogeneous Variance Models

n*(n+1)
/2
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Stuff to Watch Out For...

If using a random intercept, don’t forget to drop 1 parameter in:
> n-1order UN R: Can't get all possible elements in R, plus T%O in G

> TOEPn-1: Have to eliminate last lag covariance

If using a random intercept...
> Can'tdo RI + CS R: Can't get a constant in R, and then another constant in G
> (Can often test if random intercept helps (e.g., ARL is nested within RI + AR1)

If “time” is treated as continuous in the fixed effects, you will need
another variable for time that is categorical to use in the syntax:

> "Continuous Time" = on MODEL statement
> "Categorical Time" - on CLASS and REPEATED statements

Most alternative covariance structure models assume time is balanced
across persons with equal intervals across occasions

> If not, holding correlations of same lag equal doesn't make sense

> Other structures can be used for unbalanced time
= SP(POW)(time) = AR1 for unbalanced time (see SAS REPEATED statement for others)

CLDP 944: Lecture 4 26



Summary: Two Families of ACS Models

- R-only models:

> Specify R model on REPEATED statement without any random effects
variances in G (so no RANDOM statement is used)

> Include UN, CS, CSH, AR1, AR1H, TOEPn, TOEPHn (among others)
> Total variance and total covariance kept in R, soR =V

> Other than CS, does not partition total variance into BP vs. WP

« G and R combined models (so G and R = V):

> Specify random intercept variance T%O In G using RANDOM statement,
then specify R model using REPEATED statement

> G matrix = Level-2 BP variance and covariance due to Uy, so
R = Level-1 WP variance and covariance of the e, residuals

> R models what's left after accounting for mean differences between
persons (via the random intercept variance T%Jo in G)
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Syntax for Models for the Variance

- Does your model include random intercept variance r%o (for U,) ?
> Use the RANDOM statement - G matrix
> Random intercept models BP interindividual differences in mean Y

- What about residual variance o2 (for e,;) ?
> Use the REPEATED statement - R matrix

WITHOUT a RANDOM statement: R is BP and WP variance together = ¢4
- Total variances and covariances (to model all variation, so R = V)

WITH a RANDOM statement: R is WP variance only = o2
—> Residual variances and covariances to model WP intraindividual variation
- G and R put back together = V matrix of total variances and covariances

- The REPEATED statement is always there implicitly...
> Any model always has at least one residual variance in R matrix
- But the RANDOM statement is only there if you write it

> G matrix isn't always necessary (don't always need random intercept)
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Wrapping Up: ACS Models

- Even if you just expect fluctuation over time rather than
change, you still should be concerned about accurately
predicting the variances and covariances across occasions

- Baseline models (from ANOVA least squares) are CS & UN:
> Compound Symmetry: Equal variance and covariance over time
> Unstructured: All variances & covariances estimated separately

> CS and UN via ML or REML estimation allows missing data

- MLM gives us choices in the middle
> Goal: Get as close to UN as parsimoniously as possible
> R-only: Structure TOTAL variation in one matrix (R only)

> G+R: Put constant covariance due to random intercept in G, then
structural RESIDUAL covariance in R (so that G and R =2 V TOTAL)
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