
Introduction to Within-Person 
Analysis and RM ANOVA
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• Today’s Class:
 From between-person to within-person
 ANOVAs for longitudinal data
 Variance model comparisons using −2∆LL



The Two Sides of a (BP) Model

୧ ଴ ଵ ୧ ଶ ୧ ଷ ୧ ୧ ୧

• Model for the Means (Predicted Values):
• Each person’s expected (predicted) outcome is a weighted linear 

function of his/her values on X and Z (and here, their interaction), 
each measured once per person (i.e., this is a between-person model)

• Estimated parameters are called fixed effects (here, β଴, βଵ, βଶ, and βଷ)
• The number of fixed effects will show up in formulas as ݇ (so ݇ = 4 here)

• Model for the Variance (“Piles” of Variance):
• e୧ ∼ N 0, σୣଶ  ONE source of residual (unexplained) deviation
• e୧ has a mean of 0 with some estimated constant residual variance σୣଶ, 

is normally distributed, is unrelated to ܺ and ܼ, and is unrelated across 
people (across all observations, just people here)

• Contains residual variance only in above BP model
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Our focus today



Review:  Variances and Covariances
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Variance:
Dispersion of y

N = # people,  t = time,  i = person
k = # fixed effects, yොti = y predicted from fixed effects

Covariance:
How y’s go together, 
unstandardized

Correlation:
How y’s go together, 
standardized (−1 to 1)
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An Empty Between-Person Model 
(i.e., Single-Level)
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Adding Within-Person Information… 
(i.e., to become a Multilevel Model)
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Full Sample Distribution
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Empty +Within-Person Model
Start off with Mean of Y as 
“best guess” for any value:

= Grand Mean

= Fixed Intercept

Can make better guess by 
taking advantage of 
repeated observations:

= Person Mean 

 Random Intercept
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Empty +Within-Person Model
Variance of Y  2 sources:

Between-Person (BP) Variance:
 Differences from GRAND mean

 INTER-Individual Differences

Within-Person (WP) Variance:
 Differences from OWN mean

 INTRA-Individual Differences

 This part is only observable 
through longitudinal data.

Now we have 2 piles of 
variance in Y to predict.
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Hypothetical Longitudinal Data
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“Error” in a BP Model for the Variance:
Single-Level Model
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eti represents all yti variance

e1i
e2i e3i

e4i
e5i



“Error” in a +WP Model for the Variance:
Multilevel Model
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U0i

U0i = random intercept that represents BP mean variance in yti
eti = residual that represents WP variance in yti

e1i
e2i e3i

e4i e5i

In other words: U0i represents a source of 
constant dependency (covariance) due to 

mean differences in yti across persons



Empty +Within-Person Model
yti variance  2 sources:

Level 2 Random Intercept 
Variance (of U0i, as ૌ܃૛૙):

 Between-Person Variance

 Differences from GRAND mean

 INTER-Individual Differences

Level 1 Residual Variance
(of eti, as ો܍૛):

 Within-Person Variance

 Differences from OWN mean

 INTRA-Individual Differences
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BP vs. +WP Empty Models
• Empty Between-Person Model (used for 1 occasion):

yi =   β0 +  ei

 β0 = fixed intercept = grand mean

 ei = residual deviation from GRAND mean

• Empty +Within-Person Model (for >1 occasions):

yti =   β0 +  U0i + eti

 β0 = fixed intercept = grand mean

 U0i = random intercept = individual deviation from GRAND mean

 eti = time-specific residual deviation from OWN mean
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Intraclass Correlation (ICC)
Intraclass Correlation (ICC):

ICC ൌ
BP

BP ൅WP ൌ
Intercept	Var.

Intercept	Var. ൅Residual	Var. ൌ
ૌ܃૛૙

ૌ܃૛૙ ൅ ો܍૛

• ICC = Proportion of total variance that is between persons
• ICC = Correlation of occasions from same person (in RCORR)
• ICC is a standardized way of expressing how much we need to 

worry about dependency due to person mean differences
(i.e., ICC is an effect size for constant person dependency)
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BP and +WP Conditional Models
• Multiple Regression, Between-Person ANOVA: 1 PILE
 yi = (β0 + β1Xi + β2Zi…) + ei

 ei  ONE residual, assumed uncorrelated with equal variance 
across observations (here, just persons)  “BP (all) variation”

• Repeated Measures, Within-Person ANOVA: 2 PILES
 yti = (β0 + β1Xi + β2Zi…) + U0i + eti

 U0i  A random intercept for differences in person means, 
assumed uncorrelated with equal variance across persons 
 “BP (mean) variation”= ૌ܃૛૙ is now “leftover” after predictors

 eti  A residual that represents remaining time-to-time variation, 
usually assumed uncorrelated with equal variance across 
observations (now, persons and time)  “WP variation”
= ો܍૛ is also now “leftover” after predictors
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Example Data for BP and WP Models
• 50 kids in a control or treatment group each measured twice
• Hypothesis: Learning outcome should be higher at post-test 

than pre-test, with a greater difference in the treatment group
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Means (SE) Pre-Test Post-Test Marginal

Control 49.08 (1.14) 54.90 (1.13) 51.99 (0.89)

Treatment 50.76 (0.91) 58.62 (0.99) 54.70 (0.87)

Marginal 49.92 (0.73) 56.76 (0.79) 53.34 (0.64)6.84

2.711.68 3.72

5.82

7.86

2.04



Why error and person*time are the 
same thing in two-occasion data
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ANOVA for longitudinal data?
• There are 3 possible “kinds” of ANOVAs we could use:

 Between-Persons/Groups, Univariate RM, and Multivariate RM

• NONE OF THEM ALLOW:
 Missing occasions (do listwise deletion when using least squares)
 Time-varying predictors (covariates are BP predictors only)

• Each includes the same model for the means for time: all 
possible mean differences (so 4 parameters to get to 4 means)
 “Saturated means model”: β0 + β1(T1) + β2(T2) + β3(T3)
 The Time variable must be balanced and discrete in ANOVA!

• These ANOVAs differ by what they predict for the correlation 
across outcomes from the same person in the model for the 
variance…
 i.e., how they “handle dependency” due to persons, or what they says 

the variance and covariance of the yti residuals should look like…
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1. Between-Groups ANOVA
• Uses eti only (total variance = a single variance term of σୣଶ)
• Assumes no covariance at all among observations from the 

same person: Dependency? What dependency?
• Will usually be very, very wrong for longitudinal data

 WP effects tested against wrong residual variance 
(significance tests will often be way too conservative)

 Will also tend to be wrong for clustered data, but less so 
(because the correlation among persons from the same group is not 
as strong as the correlation among occasions from the same person)

• Predicts a variance-covariance matrix
over time (here, 4 occasions) like this, 
called “Variance Components”
(R matrix is TYPE=VC on REPEATED):
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2a. Univariate Repeated Measures
• Separates total variance into two sources:

 Between-Person (mean differences due to U0i, or ૌ܃૛૙ across persons)

 Within-Person (remaining variance due to eti, or ો܍૛ across time, person)

• Predicts a variance-covariance matrix
over time (here, 4 occasions) like this, 
called “Compound Symmetry”
(R matrix is TYPE=CS on REPEATED): 
 Mean differences from U0i are the only

reason why occasions are correlated

• Will usually be at least somewhat wrong for longitudinal data
 If people change at different rates, 

the variances and covariances
over time have to change, too

CLDP 944:  Lecture 3 19

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2 2 2 2 2
e u u u u

2 2 2 2 2
u e u u u

2 2 2 2 2
u u e u u

2 2 2 2 2
u u u e u

     
 
     
 
     

 
      

TimeTime

R matrix



The Problem with Univariate RM ANOVA

• Univ. RM ANOVA τ୙ଶ ଴ ൅ σୣଶ predicts compound symmetry:
 All variances and all covariances are equal across occasions

 In other words, the amount of error observed should be the same at any 
occasion, so a single, pooled residual variance term makes sense

 If not, tests of fixed effects may be biased (i.e., sometimes tested against 
too much or too little error, if error is not really constant over time)

 COMPOUND SYMMETRY RARELY FITS FOR LONGITUDINAL DATA

• But to get the correct tests of the fixed effects, the data must 
only meet a less restrictive assumption of sphericity:
 In English  pairwise differences between adjacent occasions have equal 

variance and covariance (satisfied by default with only 2 occasions)

 If compound symmetry is satisfied, so is sphericity (but see above)

 Significance test provided in ANOVA for where data meet sphericity assumption

 Other RM ANOVA approaches are used when sphericity fails…
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The Other Repeated Measures ANOVAs…
• 2b. Univariate RM ANOVA with sphericity corrections

 Based on ε  how far off sphericity (from 0-1, 1=spherical)
 Applies an overall correction for model df based on estimated ε, 

but it doesn’t really address the problem that data ≠ model

• 3. Multivariate Repeated Measures ANOVA
 All variances and covariances are estimated

separately over time (here, n = 4 occasions), 
called “Unstructured” (R matrix is TYPE=UN 
on REPEATED)—it’s not a model, it IS the data:

 Because it can never be wrong, UN can be useful for complete and 
balanced longitudinal data with few (e.g., 2-4) occasions (n)

 Parameters = 
୬	∗ሺ୬ାଵሻ

ଶ
so it can be hard to estimate with many occasions

 Unstructured can also be specified to include random intercept variance τ୙ଶ ଴
 All other models for the variance are nested under Unstructured, so we can 

do LRT model comparisons to see if any other model is NOT WORSE
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Summary: ANOVA approaches for 
longitudinal data are “one size fits most”

• Saturated Model for the Means (balanced time required)
 All possible mean differences

 Unparsimonious, but best-fitting (is a description, not a model)

• 3 kinds of Models for the Variance (need complete data in least squares)
 BP ANOVA (σୣଶ only)  assumes independence and constant variance over time

 Univ. RM ANOVA τ୙ଶ ଴ ൅ σୣଶ  assumes constant variance and covariance

 Multiv. RM ANOVA (whatever)  no assumptions; is a description, not a model

• MLM will give us more flexibility in both parts of the model:
 Fixed effects that predict the pattern of means (polynomials, pieces)

 Random intercepts and slopes and/or alternative covariance structures that 
predict intermediate patterns of variance and covariance over time
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there is no structure that shows up in a 
scalar equation (i.e., the way U0i + eti does) 



Comparing Models for the Variance
• Choosing a model for the variance requires assessment of 

relative model fit: how well does the model fit relative to 
other possible models?

• Relative fit is indexed by overall model log-likelihood (LL):
 Log of likelihood for each person’s outcomes given model parameters
 Sum log-likelihoods across all independent persons = model LL
 Two flavors: Maximum Likelihood (ML) or Restricted ML (REML) 

• What you get for this on your output varies by software…

• Given as −2*log likelihood (−2LL) in SAS or SPSS MIXED:
−2LL gives BADNESS of fit, so smaller value = better model

• Given as just log-likelihood (LL) in STATA MIXED and Mplus:
LL gives GOODNESS of fit, so bigger value = better model
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Comparing Models for the Variance
• Two main questions in choosing a model for the variance:
 How does the residual variance differ across occasions?

 How are the residuals from the same unit correlated?

• Nested models are compared using a “likelihood ratio test”: 
−2∆LL test (aka, “χ2 test” in SEM; “deviance difference test” in MLM)

1. Calculate −2∆LL:  if given −2LL, do −2∆LL = (−2LLfewer)  – (−2LLmore)
if given LL, do −2∆LL = −2 *(LLfewer – LLmore)

2. Calculate  ∆df = (# Parmsmore)  – (# Parmsfewer)

3. Compare −2∆LL to χ2 distribution with df = ∆df

4. Get p-value from CHIDIST in excel or LRTEST option in STATA
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Results of 1. & 2. must 
be positive values!

“fewer” = from model with fewer parameters
“more” = from model with more parameters



Comparing Models for the Variance
• What your p-value for the −2∆LL test means:
 If you ADD parameters, then your model can get better

(if −2∆LL test is significant ) or not better (not significant)
 If you REMOVE parameters, then your model can get worse

(if −2∆LL test is significant ) or not worse (not significant)

• Nested or non-nested models can also be compared by 
Information Criteria that also reflect model parsimony
 No significance tests or critical values, just “smaller is better”
 AIC = Akaike IC     = −2LL +        2 *(#parameters)
 BIC = Bayesian IC  = −2LL + log(N)*(#parameters) 
 What “parameters” means depends on flavor (except in stata):

 ML = ALL parameters; REML = variance model parameters only
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Flavors of Maximum Likelihood
• Remember that Maximum likelihood comes in 2 flavors:
• “Restricted (or residual) maximum likelihood”

 Only available for general linear models or general linear mixed models 
(that assume normally distributed residuals)

 Is same as LS given complete outcomes, but it doesn’t require them

 Estimates variances the same way as in LS (accurate) 

• “Maximum likelihood” (ML; also called FIML*)
 Is more general, is available for the above plus for non-normal 

outcomes and latent variable models (CFA/SEM/IRT)

 Is NOT the same as LS: it under-estimates variances by 
not accounting for the # of estimated fixed effects 

• *FI = Full information it uses all original data (they both do)
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Flavors of Full-Information 
Maximum Likelihood

• Restricted maximum likelihood (REML; used in MIXED)
 Provides unbiased variances

 Especially important for small N (< 100 units)

 −2∆LL test cannot be used to compare models differing in fixed effects 
(no biggee; we can do this using univariate or multivariate Wald tests)

 −2∆LL test MUST be used to compare different models for the variance

• Maximum likelihood (ML; also used in MIXED)
 Variances (and SEs) are too small in small samples

 Is only option in most software for path models and SEM

 −2∆LL test can be used to compare any nested model; 
must be used to compare different models for the variance 
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ML vs. REML in a nutshell
Remember “population” 
vs. “sample” formulas 
for calculating variance?
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All comparisons 
must have same N!!!

ML REML

To select, type… METHOD=ML
(-2 log likelihood)

METHOD=REML default
(-2 res log likelihood)

In estimating 
variances, it treats 
fixed effects as…

Known (df for having to 
also estimate fixed effects 
is not factored in)

Unknown (df for having 
to estimate fixed effects 
is factored in)

So, in small samples, 
L2 variances will be…

Too small (less difference 
after N=30-50 or so)

Unbiased (correct)

But because it indexes 
the fit of the…

Entire model
(means + variances)

Variances model only 

You can compare 
models differing in…

Fixed and/or random 
effects (either/both)

Random effects only 
(same fixed effects)

∑ y୧ െ y୮୰ୣୢ
ଶ

N െ k
∑ y୧ െ y୮୰ୣୢ

ଶ

N

“Population” “Sample”



Rules for Comparing Models
All observations must be the same across models!
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Type of 
Comparison:

Means Model      
(Fixed) 
Only

Variance Model 
(Random) 

Only

Both Means and 
Variances Model 

(Fixed and Random)

Nested?
YES, can do 
significance 
tests via…

Fixed effect 
p-values from 
ML or REML 

-- OR --
ML −2∆LL only 

(NO REML −2∆LL)

NO p-values

REML −2∆LL
(ML −2∆LL is 
ok if big N)

ML −2∆LL only 
(NO REML −2∆LL)

Non-Nested?
NO signif. tests, 
instead see…

ML AIC, BIC
(NO REML AIC, BIC)

REML AIC, BIC
(ML ok if big N)

ML AIC, BIC only
(NO REML AIC, BIC)

Compare Models Differing In:

Nested = one model is a direct subset of the other
Non-Nested = one model is not a direct subset of the other



3 Decision Points for Model Comparisons
1.   Are the models nested or non-nested?

 Nested: have to add OR subtract effects to go from one to other
 Can conduct significance tests for improvement in fit

 Non-nested: have to add AND subtract effects
 No significance tests available for these comparisons

2.  Differ in model for the means, variances, or both?
 Means? Can only use −2∆LL tests if ML (or p-value of each fixed effect)

 Variances? Can use ML (or preferably REML) −2∆LL tests, no p-values

 Both sides? Can only use −2∆LL tests if ML

3.  Models estimated using ML or REML?
 ML: All model comparisons are ok

 REML: Model comparisons are ok for the variance parameters only
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