Interactions involving Categorical Predictors

- Today's Class (still in GLM for now):
 - To CLASS or not to CLASS: Manual vs. program-created differences among groups
 - > Interactions of continuous and categorical predictors
 - > Interactions among categorical predictors

Categorical Predictors (3+ Groups)

Two alternatives for how to include grouping predictors

1. Manually create and include dummy-coded group contrasts

- > Need g-1 contrasts for g groups, added all at once, **treated as continuous** (WITH in SPSS, by default in SAS, c. in STATA)
- > Corresponds more directly to linear model representation
- > Can be easier to set own reference group and contrasts of interest

2. Let the program create and include group contrasts for you

- > Treated as categorical: BY in SPSS, CLASS in SAS, i. in STATA
 - SPSS and SAS: reference = highest/last group; STATA: reference = lowest/first group
- Can be more convenient if you have many groups, want many contrasts, or have interactions among categorical predictors
- > Program marginalizes over main effects when estimating other effects

Categorical Predictors Treated as Continuous

- Model: $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$
 - "Treatgroup" variable: Control=0, Treat1=1, Treat2=2, Treat3=3
 - New variables $d1=0, 1, 0, 0 \rightarrow \text{difference between Control and T1}$ to be created $d2=0, 0, 1, 0 \rightarrow \text{difference between Control and T2}$ for the model: $d3=0, 0, 0, 1 \rightarrow \text{difference between Control and T3}$
- How does the model give us **all possible group differences**? By determining each group's mean, and then the difference...

Control Mean (Reference)	Treatment 1	Treatment 2	Treatment 3
	Mean	Mean	Mean
eta_0	$\beta_0 + \beta_1 d1_i$	$\beta_0 + \beta_2 d2_i$	$\beta_0 + \beta_3 d3_i$

• The model for the 4 groups directly provides 3 differences (control vs. each treatment), and indirectly provides another 3 differences (differences between treatments)

Categorical Predictors Treated as Continuous

• Model: $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$

Control Mean	Treatment 1	Treatment 2	Treatment 3
(Reference)	Mean	Mean	Mean
β_0	$\beta_0 + \beta_1 d1_i$	$\beta_0 + \beta_2 d2_i$	$\beta_0 + \beta_3 d3_i$

Alt Group Ref Group Difference

• Control vs. T1 =
$$(\beta_0 + \beta_1)$$
 – (β_0)

• Control vs.
$$T2 = (\beta_0 + \beta_2) - (\beta_0)$$

• Control vs. T3 =
$$(\beta_0 + \beta_3)$$
 – (β_0)

$$(\beta_0 + \beta_2) - (\beta_0 + \beta_1)$$

$$(\beta_0 + \beta_3) - (\beta_0 + \beta_1)$$

$$(\beta_0+\beta_3) - (\beta_0+\beta_2)$$

$$= \beta_1$$

$$= \beta_2$$

$$= \beta_3$$

$$= \beta_2 - \beta_1$$

$$= \beta_3 - \beta_1$$

$$= \beta_3 - \beta_2$$

Main effects with manual dummy codes

```
Alt Group Ref Group
                                                                Difference
• Control vs. T1 = (\beta_0 + \beta_1) - (\beta_0)
                                                                = \beta_1
• Control vs. T2 = (\beta_0 + \beta_2) - (\beta_0)
                                                                = \beta_2
• Control vs. T3 = (\beta_0 + \beta_3) - (\beta_0)
                                                                = \beta_3
• T1 vs. T2 =
                           (\beta_0 + \beta_2) - (\beta_0 + \beta_1)
                                                                = \beta_2 - \beta_1
                                                                = \beta_3 - \beta_1
• T1 vs. T3 =
                           (\beta_0 + \beta_3) - (\beta_0 + \beta_1)
• T2 vs. T3 =
                           (\beta_0+\beta_3)-(\beta_0+\beta_2)
                                                                = \beta_3 - \beta_2
```

```
Note the order of the equations:
the reference group mean
is subtracted from
the alternative group mean.
```

In SAS ESTIMATE statements (or SPSS TEST or STATA LINCOM), the variables refer to their betas; the numbers refer to the operations of their betas.

```
TITLE "Manual Contrasts for 4-Group Diffs";
PROC MIXED DATA=dataname METHOD=REML;
MODEL y = d1 d2 d3 / SOLUTION;
CONTRAST "Omnibus df=3 main effect F-test" d1 1, d2 1, d3 1;
ESTIMATE "Control Mean" intercept 1 d1 0 d2 0 d3 0;
ESTIMATE "T1 Mean"
                        intercept 1 d1 1 d2 0 d3 0;
ESTIMATE "T2 Mean"
                        intercept 1 d1 0 d2 1 d3 0;
ESTIMATE "T3 Mean"
                        intercept 1 d1 0 d2 0 d3 1;
ESTIMATE "Control vs. T1"
                                          0 d3 0;
                                    1 d2
ESTIMATE "Control vs.
                                d1
                                    0 d2
                                          1 d3 0;
                                    0 d2
                                          0 d3 1;
ESTIMATE "Control vs. T3"
                                d1 -1 d2 1 d3 0;
ESTIMATE "T1 vs. T2"
                                d1 -1 d2 0 d3 1;
ESTIMATE "T1 vs.
                                d1
                                    0 d2 -1 d3 1;
ESTIMATE
         "T2 vs. T3"
RUN:
```

Intercepts are used <u>only</u> in predicted values.

Positive values indicate addition; negative values indicate subtraction.

Interactions with manual dummy codes

- When using manual dummy-codes for group contrasts treated as continuous, any interactions have to be specified with each contrast
- For example, adding an interaction of treatgroup with age (0=85):

```
y_i = \beta_0 + \beta_1(d1_i) + \beta_2(d2_i) + \beta_3(d3_i)
              +\beta_4(Age_i - 85) + \beta_5(d1_i)(Age_i - 85)
              +\beta_6(d2_i)(Age_i - 85) + \beta_7(d3_i)(Age_i - 85) + e_i
TITLE "Group by Age for 4-Group Variable Treated as Continuous";
PROC MIXED DATA=dataname METHOD=REML;
MODEL y = d1 d2 d3 age d1*age d2*age d3*age / SOLUTION;
CONTRAST "Omnibus df=3 SIMPLE effect F-test" d1 1, d2 1, d3 1;
CONTRAST "Omnibus df=3 interaction F-test"
                                              d1*age 1, d2*age 1, d3*age 1;
ESTIMATE "Age Slope for Control" age 1 d1*age
                                                 0 d2*age 0 d3*age
                                                                      0;
ESTIMATE "Age Slope for T1"
                                  age 1 d1*age 1 d2*age 0 d3*age
                                                                      0;
                                 age 1 d1*age 0 d2*age 1 d3*age
ESTIMATE "Age Slope for T2"
                                                                     0;
                                                 0 d2*age 0 d3*age
ESTIMATE "Age Slope for T3"
                                 age 1 d1*age
                                                                     1;
                                         d1*age 1 d2*age 0 d3*age
ESTIMATE "Age Slope: Control vs. T1"
                                                                     0;
ESTIMATE "Age Slope: Control vs. T2"
                                                 0 d2*age 1 d3*age
                                         d1*age
                                                                     0;
ESTIMATE "Age Slope: Control vs. T3"
                                                 0 d2*age 0 d3*age
                                                                     1;
                                         d1*age
ESTIMATE "Age Slope: T1 vs. T2"
                                         d1*age -1 d2*age 1 d3*age
                                                                      0;
ESTIMATE "Age Slope: T1 vs. T3"
                                         d1*age -1 d2*age 0 d3*age
                                                                     1;
ESTIMATE "Age Slope: T2 vs. T3"
                                         d1*age 0 d2*age -1 d3*age
                                                                     1;
```

Using BY/CLASS/i. statements instead

- Designate as "categorical" in program syntax
 - If you let SAS/SPSS do the dummy coding via CLASS/BY, then the highest/last group is default reference
 - In SAS 9.4 you can change reference group: REF='level' | FIRST | LAST but it changes that group to be last in the data (→ confusing)
 - "Type III test of fixed effects" provide omnibus tests by default
 - LSMEANS/EMMEANS can be used to get all means and comparisons without specifying each individual contrast
 - If you let STATA do the dummy coding via i.group, then the lowest/first group is default reference
 - Can change reference group, e.g., last = ref \rightarrow ib(last).group
 - CONTRAST used to get omnibus tests (not provided by default)
 - MARGINS can be used to get all means and comparisons with much less code than describing each individual contrast

Main effects of Categorical Predictors

```
TITLE "Program-Created Contrasts for 4-Group Diffs via CLASS";

PROC MIXED DATA=dataname ITDETAILS METHOD=REML;

CLASS treatgroup;

MODEL y = treatgroup / SOLUTION;

LSMEANS treatgroup / DIFF=ALL;

CLASS statement means "make my dummy codes for me"
```

The LSMEANS line above gives you all of the following... note that one value has to be given for each possible level of the categorical predictor in order of data

```
ESTIMATE "Control Mean" intercept 1 treatgroup 1 0 0 0;
                                                               When predicting
                        intercept 1 treatgroup 0 1 0 0;
ESTIMATE "T1 Mean"
                                                             intercepts, 1 means
ESTIMATE "T2 Mean"
                        intercept 1 treatgroup 0 0 1 0;
ESTIMATE "T3 Mean"
                        intercept 1 treatgroup 0 0 0 1;
                                                             "for that group only"
ESTIMATE "Control vs. T1" treatgroup -1 1 0 0;
                                                          When predicting group
ESTIMATE "Control vs. T2"
                           treatgroup -1 0 1 0;
                           treatgroup -1 0 0 1;
ESTIMATE "Control vs. T3"
                                                        differences, contrasts must
ESTIMATE "T1 vs. T2"
                           treatgroup 0 -1 1 0;
                                                         sum to 0; here -1 = \text{ref}, 1
ESTIMATE "T1 vs. T3"
                           treatgroup 0 - 1 0 1;
ESTIMATE "T2 vs. T3"
                           treatgroup 0 0 -1
                                                           = alt, and 0 = ignore
CONTRAST "Omnibus df=3 main effect F-test" treatgroup -1 1 0 0,
```

```
CLASS gives this contrast by default treatgroup -1 0 1 0, treatgroup -1 0 0 1;
```

Can also make up whatever contrasts you feel like using DIVISOR option:

```
ESTIMATE "Mean of Treat groups" intercept 1 treatgroup 0 1 1 1 / DIVISOR=3; ESTIMATE "Control vs. Mean of Treat groups" treatgroup -3 1 1 1 / DIVISOR=3; RUN;
```

Interactions with Categorical Predictors

• For example, adding an interaction of treatgroup with age (0=85):

```
TITLE "Group by Age for 4-Group Variable Modeled as Categorical";
PROC MIXED DATA=dataname METHOD=REML;
CLASS treatgroup;
MODEL y = treatgroup age treatgroup*age / SOLUTION;
* To explain interaction as how group diffs depend on age:
LSMEANS treatgroup / DIFF=ALL AT (age)=(-5); * group intercept diffs at age 80;
LSMEANS treatgroup / DIFF=ALL AT (age)=(0); * group intercept diffs at age 85;
LSMEANS treatgroup / DIFF=ALL AT (age)=(5); * group intercept diffs at age 90;
* To explain interaction as how age slope depends on group:
ESTIMATE "Age Slope for Control" age 1 treatgroup*age 1 0 0 0;
ESTIMATE "Age Slope for T1"
                               age 1 treatgroup*age 0 1 0 0;
ESTIMATE "Age Slope for T2" age 1 treatgroup*age 0 0 1 0;
ESTIMATE "Age Slope for T3" age 1 treatgroup*age 0 0 0 1;
ESTIMATE "Age Slope: Control vs. T1"
                                       treatgroup*age -1 1 0 0;
ESTIMATE "Age Slope: Control vs. T2"
                                       treatgroup*age -1 0 1 0;
ESTIMATE "Age Slope: Control vs. T3"
                                      treatgroup*age -1 0 0 1;
ESTIMATE "Age Slope: T1 vs. T2"
                                       treatgroup*age 0 -1 1 0;
ESTIMATE "Age Slope: T1 vs. T3"
                                       treatgroup*age 0 -1 0 1;
ESTIMATE "Age Slope: T2 vs. T3"
                                      treatgroup*age 0 0 -1 1;
```

Can also make up whatever contrasts you feel like using DIVISOR option:

```
ESTIMATE "Mean Age Slope in Treat groups" age 1 treatgroup*age 0 1 1 1 / DIVISOR=3; ESTIMATE "Age Slope: Control vs. Mean of Treat" treatgroup*age -3 1 1 1 / DIVISOR=3; RUN;
```

Categorical Predictors = Marginal Effects

- Letting the program build contrasts for categorical predictors (instead of creating manual dummy codes) does the following:
 - Allows LSMEANS/EMMEANS/MARGINS (for cell means and differences)
 - > Provides omnibus (multiple df) multivariate Wald tests for group effects
 - Marginalizes the group effect across interacting predictors
 omnibus F-tests represent marginal main effects (instead of simple)
 - > e.g., MODEL y = Treatgroup sexMW Treatgroup*sexMW (in which Treatgroup is always "categorical")

Type 3 Tests of Fixed Effects	Interpretation if sexMW is "continuous" (no CLASS)	Interpretation if sexMW is "categorical" on CLASS	
sexMW	Marginal diff across groups	Marginal diff across groups	
Treatgroup	Group diff if sexMW=0	Marginal diff across sexes	
Treatgroup*sexMW	Interaction	Interaction	

Interactions Among Categorical Predictors

- By default (i.e., as in "ANOVA"):
 - Model includes all possible higher-order interactions among categorical predictors
 - Software does this for you; nonsignificant interactions usually still are kept in the model (but only significant interactions are interpreted)
 - This is very different from typical practice in "regression"!
 - > Omnibus marginal main effects are provided by default
 - i.e., what we ask for via CONTRAST using manual group contrasts
 - But are basically useless if given significant interactions
 - Omnibus interaction effects are provided
 - i.e., what we ask for via CONTRAST using manual group contrasts
 - But are **basically useless** in actually understanding the interaction
- Let's see how to make software give us more useful info...