
A Re-Introduction to 
General Linear Models (GLM)
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• Today’s Class:
 You do know the GLM
 Estimation (where the numbers in the output come from): 

From least squares to restricted maximum likelihood (REML)
 Reviewing specification of fixed effects in GLMs

 Centering continuous predictors
 Two ways of including categorical predictors
 Make friends with CONTAST, ESTIMATE, and LSMEANS statements



You do know the General Linear Model
• The general linear model incorporates many different labels of 

related single-level analyses under one unifying umbrella term:

• Actually, these words are not helpful— they create artificial 
distinctions among what is really just one kind of model

• What these models all have in common is the use of a normal 
conditional distribution (i.e., for the residuals that remain after 
creating conditional outcomes from the model predictors)

• Note: Model predictors do NOT have distributional assumptions!
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Categorical
Predictors

Continuous
Predictors

Both Types of
Predictors

Univariate
(one outcome)

“ANOVA” “Regression” “ANCOVA”

Multivariate
(2+ outcomes)

“MANOVA” “Multivariate 
Regression”

“MANCOVA”



The Two Sides of Any Model
• Model for the Means:
 Aka Fixed Effects, Structural Part of Model
 What you are used to caring about for testing hypotheses
 How the expected outcome for a given observation varies as a 

function of values on predictor variables

• Model for the Variance:
 Aka Random Effects and Residuals, Stochastic Part of Model
 How residuals are distributed and related across observations
 What you are used to making assumptions about instead… 
 For the GLM, that residuals come from a normal distribution, 

are independent across persons, and have constant variance 
across persons and predictors (“identically distributed”)
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The Simplest Possible Model:
The “Empty” GLM
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Std. Dev. = 15.114
N = 1,334

yi =  β0 +  ei

Filling in values:
32  =  90 + −58

Model 
for the 
Means

ܑ error variance:

୧ ୮୰ୣୢ
ଶ

܌܍ܚܘܡ
܌܍ܚܘܡ is also 

called ܡො (“y-hat”)



“Linear Regression” Model with a 
Continuous Predictor (Xi = Ability)
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Ability (X) Model:
32 = 29 + 2*9 + −15

Empty Model:
32 =  90 + −58

Model 
for the 
Means

Predictor X: Ability

ܑܡ error variance:
∑ y୧ െ y୮୰ୣୢ

ଶ

N െ 2
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“ANOVA” Model with a 
Categorical Predictor (Zi = Sex)

yi = β0 + β2Zi + ei

Sex (Z) Model:
32 = 89 + 1.6*0 + −57

Empty Model:
32 =  90 + − 58

܌܍ܚܘܡ Model 
for the 
Means

Predictor Z: Sex (0=M, 1=W)

Men mean 
= 89.0

Women mean 
= 90.6

ܑܡ error variance:
∑ y୧ െ y୮୰ୣୢ

ଶ

N െ 2
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The Two Sides of a General Linear Model

୧  ଵ ୧ ଶ ୧ ୧

• Model for the Means (Predicted Values):
• Each person’s expected (predicted) outcome is a weighted linear 

function of his/her values on ܺ and ܼ (and any other predictors), 
each measured once per person (i.e., this is a univariate model)

• Estimated parameters are called fixed effects (here, β, βଵ, and βଶ)
• The number of fixed effects will show up in formulas as k (so k = 3 here)

• Model for the Variance:
• e୧ ∼ N 0, σୣଶ  ONE source of residual (unexplained) deviation
• e୧ has a mean of 0 with some estimated constant variance σୣଶ, 

is normally distributed, is unrelated to ܺ and ܼ, and is unrelated across 
people (across all observations, just people here)

• Estimated parameter is the residual variance only (not each e୧), 
• Proportion of residual variance reduced relative to empty model = R2
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Our focus today



See? You do know the GLM
• The general linear model incorporates many different labels 

of related single-level analyses under one unifying term:

• What these models all have in common is the use of a normal 
conditional distribution (for the residuals that remain after 
creating conditional outcomes from the model predictors)

• The use of these words almost always means estimation using 
“least squares” (LS), aka “ordinary least squares” (OLS)
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Categorical
Predictors

Continuous
Predictors

Both Types of
Predictors

Univariate
(one outcome)

“ANOVA” “Regression” “ANCOVA”

Multivariate
(2+ outcomes)

“MANOVA” “Multivariate 
Regression”

“MANCOVA”



How Estimation Works (More or Less)
• Most statistical estimation routines do one of three things:

• Minimize Something: Typically found with names that have “least” in 
the title. Forms of least squares include “Generalized”, “Ordinary”, 
“Weighted”, “Diagonally Weighted”, “WLSMV”, and “Iteratively 
Reweighted.” Typically the estimator of last resort…

• Maximize Something: Typically found with names that have 
“maximum” in the title. Forms include “Maximum likelihood”, “ML”, 
“Residual Maximum Likelihood” (REML), “Robust ML”. Typically the 
gold standard of estimators, and what we will use this semester. 
REML is the same thing as least squares for complete data.

• Use Simulation to Sample from Something: more recent advances in 
simulation use resampling techniques. Names include “Bayesian
Markov Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis 
Hastings”, “Metropolis Algorithm”, and “Monte Carlo”. Used for 
complex models in which ML is not available or feasible.
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Least Squares (LS) Estimation

CLDP 944:  Lecture 2a 10

Source Sum of 
Squares (SS)

Degrees of 
Freedom (DF)

Mean Square
(MS) F-ratio

Model (from 
predictor 
model)

SSmodel =
∑ β െ y୮୰ୣୢ

ଶ
DFnum = 

#fixed effects 
− 1 (for β)

MSmodel = 
SSmodel / DFnum

F-ratio = 
MSmodel / 

MSerror

Error (from 
empty model)

SSerror =
∑ y୧ െ y୮୰ୣୢ

ଶ
DFdenom = #people 
− #fixed effects 
− 1 (for β)

MSerror = 
SSmodel / DFnum

Total SStotal = 
SSmodel + SSerror

DFtotal = 
DFnum + DFdenom

• MSmodel = how much error you reduced per added fixed effect
• MSerror = how much error is left, per possible new fixed effect 

(otherwise known as “residual” or “error” variance)
• Compare F-ratio to critical value given DFnum and DFdenom to 

get p-value for model R2 (proportion error variance reduced)



Least Squares (LS) Estimation
• Uses fixed effect estimates that minimize: ∑ ሺe୧ଶሻ

୧ୀଵ
 (Sum of squared residuals across persons)
 Invented c. 1840, can be done via matrix algebra, so it will always work 

• Has “closed form” solution (=easy formula) when used for 
general linear models (GLM) for single outcomes
 e୧ ∼ N 0, σୣଶ  normal, independent, constant variance

• For GLM for multiple outcomes, LS quickly becomes useless…
 Cannot handle missing outcomes (listwise-deletes entire person instead)
 Only two options for modeling covariance between outcomes 
 Then why do it this way? Dogma + lack of awareness of alternatives…

• For non-normal outcomes, LS can’t be used at all…
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Maximum Likelihood to the Rescue
• Maximum likelihood estimation is better way of finding the 

model estimates using all the data, and it comes in 2 flavors:
• “Restricted (or residual) maximum likelihood”

 Only available for general linear models or general linear mixed models 
(that assume normally distributed residuals)

 REML = LS given complete outcomes, but it doesn’t require them

 Estimates variances the same way as in LS (accurate) 

• “Maximum likelihood” (ML; also called FIML*)
 Is more general, is available for the above plus for non-normal 

outcomes and latent variable models (CFA/SEM/IRT)

 Is NOT the same as LS: it under-estimates variances by 
not accounting for the # of estimated fixed effects 

• *FI = Full information it uses all original data (they both do)
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N െ k
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Maximum Likelihood to the Rescue
• Even though REML = LS for complete outcomes, we will 

begin by using software based in REML instead of LS
 In SPSS, SAS, or STATA:  one routine called “MIXED” instead of 

separate routines for GLM, REGRESSION, or ANOVA (or t-tests)
 So “sums of squares” and “mean squares” are no longer provided

• Why use MIXED? 
 Big-time convenience: MIXED has options to produce fixed 

effects that are model-implied, but not directly given 
(e.g., pairwise comparisons, simple slopes of interactions)

 Model comparisons (F-test for change in R2 from new effects) 
can be requested in a single step for any combination of effects 

 Generalizability: We can estimate univariate or multivariate 
models for normal outcomes using the same MIXED routine

 For non-normal outcomes, there are parallel routines in SAS 
(GLIMMIX) and STATA (several), but not in SPSS (“pseudo-ML”)
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Intermediate Summary
• What is not new:
 We will be starting with the same kind of general linear 

univariate models for single outcomes per person 
(regression, ANOVA, ANCOVA) you already know…

 We will examine main effects (today) and interaction terms 
(later this semester) among all kinds of predictors

• What is new:
 Rather than finding the fixed effects and residual variance 

through least squares (which yields sums of squares, mean 
squares, and so forth), the program will find them using 
restricted maximum likelihood, of which least squares is a 
special case with limited applicability…
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Testing Significance of Fixed Effects (of 
Predictors) in the Model for the Means

• Any single-df fixed effect has 4-5 relevant pieces of output:
 Estimate = best guess for the fixed effect from our data 

 Standard Error = precision of fixed effect estimate 
(quality of most likely estimate)

 t-value or z-value = Estimate / Standard Error

 p-value = probability that fixed effect estimate is ≠ 0

 95% Confidence Interval = Estimate ± 1.96*SE = range in which true 
(population) value of estimate is expected to fall 95% of the time

• Compare test statistic (t or z) to critical value at chosen level of 
significance (known as alpha): this is a “univariate Wald test”

• Whether the p-value is based on t or z varies by program… 
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Evaluating Significance of Fixed Effects

Denominator DF 
is infinite

(Proper Wald test)

Denominator DF is 
estimated instead

(“Modified” Wald test)
Numerator DF = 1 
(test one fixed effect) is 
Univariate Wald Test

use z distribution
(Mplus, STATA)

use t distribution
(SAS, SPSS)

Numerator DF > 1
(test 2+ fixed effects) is 
Multivariate Wald Test

use χ2 distribution
(Mplus, STATA)

use F distribution
(SAS, SPSS)

Denominator DF 
options

not applicable, so 
DDF is not given

SAS, STATA 14: BW, KR 
SAS, STATA 14, SPSS: 

Satterthwaite

Fixed effects can be tested via Wald tests: the ratio of its 
estimate/SE forms a statistic we compare to a distribution
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Standard Errors for Fixed Effects
• Standard Error (SE) for fixed effect estimate βX in a one-predictor 

model (remember, SE is like the SD of the estimated parameter):

SEஒ ൌ
୰ୣୱ୧ୢ୳ୟ୪	୴ୟ୰୧ୟ୬ୡୣ	୭	ଢ଼
୴ୟ୰୧ୟ୬ୡୣ	୭	ଡ଼∗ ି୩

• When more than one predictor is included, SE turns into:

SEஒ ൌ
୰ୣୱ୧ୢ୳ୟ୪	୴ୟ୰୧ୟ୬ୡୣ	୭	ଢ଼
ୟ୰ ଡ଼ ∗ ଵିୖ

మ ∗ ି୩

• So all things being equal, SE is smaller when:
 More of the outcome variance has been reduced (better model)

 So fixed effects can become significant later if R2 is higher then
 The predictor has less covariance with other predictors (less collinearity)

 Best case scenario: X is uncorrelated with all other predictors

• If SE is smaller  t-value or z-value is bigger p-value is smaller 

Rଡ଼ଶ 	= X variance accounted 
for by other predictors, so 
1−Rଡ଼ଶ 	= unique X variance
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Multivariate Wald Tests of Fixed Effects
• Tests for significance of multiple fixed effects at once
• Special cases you already know:

 “Omnibus” F-test for the effect of a grouping variable

 F-Test of Model R2 or change in R2 in hierarchical regression

• Available for sets of fixed effects of *any* type via CONTRAST 
statements (in SAS, SPSS, STATA, or Mplus)
 Separate each fixed effect by commas to indicate separate DF

• For example:  y୧ ൌ β  βଵሺXଵ୧ሻ  βଶሺXଶ୧ሻ 	 e୧
PROC MIXED DATA=work.dataname ITDETAILS METHOD=REML;
MODEL y = x1 x2 / SOLUTION;
CONTRAST "F-Test with df=2 of Model R2" x1 1, x2 1;
RUN;
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Representing the Effects of Predictors
• From now on, we will think carefully about exactly how the 

predictor variables are entered into the model for the means 
(i.e., by which a predicted outcome is created for each person)

• Why don’t people always care? Because the scale of predictors:
 Does NOT affect the amount of outcome variance accounted for (R2)

 Does NOT affect the outcomes values predicted by the model for the means
(so long as the same predictor fixed effects are included)

• Why should this matter to us? 
 Because the Intercept = expected outcome when all predictors = 0

 Can end up with nonsense values for intercept if X = 0 isn’t in the data, 
so we need to change the scale of the predictors to include 0

 Scaling becomes more important once interactions are included or once 
random intercepts are included (i.e., variability around fixed intercept)

CLDP 944:  Lecture 2a 19



Why the Intercept β0
*Should* Be Meaningful…

CLDP 944:  Lecture 2a 20

This is a very detailed map…
But what do we need to know 

to be able to use the map at all?



What the Intercept β0 *Should* Mean to You…
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The model for the means 
will describe what happens 
to the predicted outcome Y 

“as X increases” or
“as Z increases” 

and so forth…

But you won’t know what 
the predicted outcome is 
supposed to be unless you 
know where the predictor 
variables are starting from!

Therefore, the intercept is the 
“YOU ARE HERE” sign in the 
map of your data… so it should 
be somewhere in the map*!

* There is no wrong way to center (or not), only weird…
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What if I want a different intercept?
• Choosing a location for your model-estimated intercept does not 

lock you into only that location…

• ESTIMATE statements (in SAS) to the rescue!
 TEST in SPSS, LINCOM in STATA, NEW in Mplus

• These statements allow to you to request model-predicted fixed 
effects for any values of your predictors 
(i.e., new intercept values = predicted outcomes)

• Rules for ESTIMATE-type statements:
 If you want a predicted outcome, you must include the intercept
 Variable names sometimes refer to their predictor values, and sometimes to 

their model fixed effects, depending on what is being estimated
 The default value for continuous predictors is 0
 The default value for categorical predictors varies by program

 Sometimes the mean across groups (SAS), or requires an input explicitly (SPSS)

CLDP 944:  Lecture 2a 22



Continuous Predictors
• For continuous (quantitative) predictors, we will make the intercept 

interpretable by centering (new variable goes in the equation):
 Centering = subtract a constant from each person’s variable value so that 

the 0 value falls within the range of the new centered predictor variable
 Typical  Center around predictor’s mean: Centered	Xଵ ൌ Xଵ െ Xଵ

 Intercept is then expected outcome for “average X1 person”
 Better  Center around meaningful constant ܥ: Centered	Xଵ ൌ Xଵ െ ܥ

 Intercept is then expected outcome for person with that constant (even 0 may be ok)

• ESTIMATE statements can be used to request predicted outcomes 
(i.e., intercepts) for specific combinations of predictor values

• For example:  y୧ ൌ β  βଵሺXଵ୧ െ 10ሻ  βଶሺXଶ୧ െ 5ሻ 	 e୧
PROC MIXED DATA=work.dataname ITDETAILS METHOD=REML;
MODEL y = x1c x2c / SOLUTION;
CONTRAST "F-Test with df=2 of Model R2" x1c 1, x2c 1;
ESTIMATE "Pred Y if X1=10, X2=5" intercept 1 x1c  0 x2c  0;
ESTIMATE "Pred Y if X1= 8, X2=4" intercept 1 x1c -2 x2c -1;
ESTIMATE "Pred Y if X1= 8, X2=6" intercept 1 x1c -2 x2c 1;
ESTIMATE "Pred Y if X1=12, X2=4" intercept 1 x1c 2 x2c -1;
ESTIMATE "Pred Y if X1=12, X2=6" intercept 1 x1c 2 x2c 1;
RUN;
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Categorical (Grouping) Predictors
• For categorical predictors, either we or the program will 

make the intercept interpretable by making a reference group
 Which is more convenient depends on what’s in the rest of the model

• If you create your own reference group via the following, 
the program treats the new predictor variables as 
“continuous” even if they represent group differences!
 To do it yourself:  Denote a reference group by giving it a 0 value on 

all predictor variables created from the original grouping variable, then
β = expected outcome for that reference group specifically

 Accomplished via “dummy coding” (aka, “reference group coding”) 
 Two-group example using Gender:    0 = Men, 1 = Women 

(or  0 = Women, 1 = Men)

 Alternative approach I usually do not like to use:
 “Contrast/effect coding” Gender: −0.5 = Men, 0.5 = Women
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Categorical Predictors Modeled as Continuous

• For 2+groups, need: dummy codes = #groups − 1
 “Treatgroup” variable:  Control=0, Treat1=1, Treat2=2, Treat3=3

 Variables: d1= 0, 1, 0, 0   difference between Control and T1 
d2= 0, 0, 1, 0   difference between Control and T2
d3= 0, 0, 0, 1   difference between Control and T3

• d1, d2, and d3 are then continuous variables as far as 
the  program is concerned, which implies the following:
 All predictors that distinguish the groups (e.g., d1, d2, d3) MUST be in 

the model to get these specific group-difference interpretations!
 e.g., MODEL y = d1  d1 = difference between T1 and mean of C,T2,T3

 Fixed effects for these dummy codes will not directly tell you about 
differences among non-reference groups… 
 e.g., MODEL y = d1 d2 d3  won’t give differences among T1,T2,T3

 … But you can still get them: ESTIMATE statements to the rescue!
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Categorical Predictors Modeled as Continuous

• Model:  ୧  ଵ ୧ ଶ ୧ ଷ ୧ ୧
 “Treatgroup” variable:  Control=0, Treat1=1, Treat2=2, Treat3=3

 New variables d1= 0, 1, 0, 0   difference between Control and T1 
to be created d2= 0, 0, 1, 0   difference between Control and T2
for the model: d3= 0, 0, 0, 1   difference between Control and T3

• How does the model give us all possible group differences? 
By determining each group’s mean, and then the difference…

• The model for the 4 groups directly provides 3 differences 
(control vs. each treatment), and indirectly provides another 
3 differences (differences between treatments)
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Control Mean
(Reference)

Treatment 1 
Mean

Treatment 2 
Mean

Treatment 3
Mean

 +܌ܑ +܌ܑ +܌ܑ



Categorical Predictors Modeled as Continuous

• Model:  ୧  ଵ ୧ ଶ ୧ ଷ ୧ ୧

Alt Group Ref Group Difference
• Control vs. T1 =  ଵ  ଵ
• Control vs. T2 =  ଶ  ଶ
• Control vs. T3 =  ଷ  ଷ
• T1 vs. T2 =          ଶ  ଵ ଶ ଵ
• T1 vs. T3 =          ଷ  ଵ ଷ ଵ
• T2 vs. T3 =          ଷ  ଶ ଷ ଶ
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ESTIMATEs with manual dummy codes
Alt Group Ref Group Difference

• Control vs. T1 = ሺββଵሻ		െ		ሺβሻ 																		ൌ βଵ
• Control vs. T2 = ሺββଶሻ		െ		ሺβሻ 																		ൌ βଶ
• Control vs. T3 = ሺββଷሻ		െ		ሺβሻ 																		ൌ βଷ
• T1 vs. T2 =         ሺββଶሻ 	െ	ሺββଵሻ 										ൌ βଶ െ βଵ
• T1 vs. T3 =         ሺββଷሻ 	െ	ሺββଵሻ 										ൌ βଷ െ βଵ
• T2 vs. T3 =         ሺββଷሻ 	െ	ሺββଶሻ 										ൌ βଷ െ βଶ

TITLE "Manual Contrasts for 4-Group Diffs";
PROC MIXED DATA=dataname ITDETAILS METHOD=REML;
MODEL y = d1 d2 d3 / SOLUTION;
CONTRAST "Omnibus df=3 treatgroup main effect F-test" d1 1, d2 1, d3 1; 
ESTIMATE "Control Mean" intercept 1 d1 0 d2 0 d3 0;
ESTIMATE "T1 Mean" intercept 1 d1 1 d2 0 d3 0;
ESTIMATE "T2 Mean" intercept 1 d1 0 d2 1 d3 0;
ESTIMATE "T3 Mean" intercept 1 d1 0 d2 0 d3 1;

ESTIMATE "Control vs. T1" d1  1 d2  0 d3 0;
ESTIMATE "Control vs. T2" d1  0 d2  1 d3 0;
ESTIMATE "Control vs. T3" d1  0 d2  0 d3 1;
ESTIMATE "T1 vs. T2" d1 -1 d2  1 d3 0;
ESTIMATE "T1 vs. T3" d1 -1 d2  0 d3 1;
ESTIMATE "T2 vs. T3" d1  0 d2 -1 d3 1;  RUN;
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Note the order of the equations: 
the reference group mean 

is subtracted from
the alternative group mean.

In SAS ESTIMATE statements (or 
SPSS TEST or STATA LINCOM), 

the variables refer to their betas; 
the numbers refer to the 
operations of their betas.

Positive values indicate 
addition; negative values 

indicate subtraction.

Intercepts are used only 
in predicted outcomes.



Using BY/CLASS/i. statements instead
• Designate as “categorical” predictor in program syntax
 If you let SAS/SPSS do the dummy coding via CLASS/BY, 

then the highest/last group is default reference
 In SAS 9.4 you can change reference group: REF=’level’ | FIRST | LAST 

but it changes that group to be last in the data ( confusing)
 “Type III test of fixed effects” provide omnibus tests by default
 LSMEANS/EMMEANS can be used to get all means and comparisons 

without specifying each individual contrast

 If you let STATA do the dummy coding via i.group, 
then the lowest/first group is default reference 
 Can change reference group, e.g., last = ref  ib(last).group
 CONTRAST used to get omnibus tests (not provided by default)
 MARGINS can be used to get all means and comparisons with much less 

code than describing each individual contrast

 No such thing as “categorical” predictors in Mplus 
 You must create contrasts manually for all grouping variables
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Main effects of Categorical Predictors
TITLE "Program-Created Contrasts for 4-Group Diffs via CLASS";
PROC MIXED DATA=dataname ITDETAILS METHOD=REML;
CLASS treatgroup;
MODEL y = treatgroup / SOLUTION;
LSMEANS treatgroup / DIFF=ALL;

The LSMEANS line above gives you ALL of the following… note that one value 
has to be given for each possible level of the categorical predictor in data order
ESTIMATE "Control Mean" intercept 1 treatgroup 1 0 0 0;
ESTIMATE "T1 Mean" intercept 1 treatgroup 0 1 0 0;
ESTIMATE "T2 Mean" intercept 1 treatgroup 0 0 1 0;
ESTIMATE "T3 Mean" intercept 1 treatgroup 0 0 0 1;

ESTIMATE "Control vs. T1" treatgroup -1  1  0  0; 
ESTIMATE "Control vs. T2" treatgroup -1 0  1  0; 
ESTIMATE "Control vs. T3" treatgroup -1 0  0  1;
ESTIMATE "T1 vs. T2" treatgroup 0 -1  1  0; 
ESTIMATE "T1 vs. T3" treatgroup 0 -1  0  1; 
ESTIMATE "T2 vs. T3" treatgroup 0 0 -1  1;

CONTRAST "Omnibus df=3 main effect F-test" treatgroup -1 1 0 0, 
treatgroup -1 0 1 0, 
treatgroup -1 0 0 1;

Can also make up whatever contrasts you feel like using DIVISOR option:
ESTIMATE "Mean of Treat groups" intercept 1 treatgroup 0 1 1 1 / DIVISOR=3;
ESTIMATE "Control vs. Mean of Treat groups" treatgroup -3 1 1 1 / DIVISOR=3;
RUN;
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When predicting 
intercepts, 1 means 

“for that group only”

When predicting group 
differences, contrasts must 
sum to 0; here −1 = ref, 1 

= alt, and 0 = ignore

CLASS statement means “make 
my dummy codes for me”

CLASS also gives this contrast by default



Summary
• Today was about fixed effects in the model for the means 
 Within the context of GLM as a unifying starting point, 

but these concepts will readily apply to MLM
 Output will result from (restricted) ML instead of least squares

• Key points to take with you:
 Fixed effects are tested for significance using univariate or 

multivariate Wald tests (t- or z-value from ratio of estimate / SE)
 All predictors should always have a meaningful 0 value

(adjusting predictor scales is called “centering” or “recoding”)
 When you manually code one categorical predictor variable into 

separate dummy coded variables, they are then “continuous”
 ESTIMATEs can be used to request model-implied fixed effects

(such as predicted outcomes or non-reference group differences)
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