Introduction to Multilevel Models for Longitudinal and Repeated Measures Data

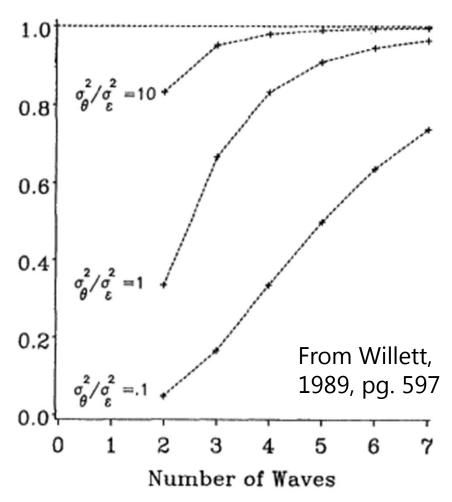
- Today's Class:
 - > Features of longitudinal data
 - > Features of longitudinal models
 - What can MLM do for you?
 - What to expect in this course (and the next course)

What is CL(D)P 944 about?

- "Longitudinal" data
 - Same individual units of analysis measured at different occasions (which can range from milliseconds to decades)
- "Repeated measures" data (if time permits)
 - > Same individual units of analysis measured via different items, using different stimuli, or under different conditions
- Both of these fall under a more general category of "multivariate" data of varying complexity
 - > The link between them is the use of **random effects** to describe covariance of outcomes from the same unit

Data Requirements for Our Models

- A useful outcome variable:
 - Has an interval scale*
 - A one-unit difference means the same thing across all scale points
 - In subscales, each contributing item has an equivalent scale
 - *Other kinds of outcomes will be analyzed using generalized multilevel models instead, but estimation will be more challenging
 - > Has scores with the same meaning over observations
 - Includes meaning of construct
 - Includes how items relate to the scale
 - Implies measurement invariance
- FANCY MODELS CANNOT SAVE BADLY MEASURED VARIABLES OR CONFOUNDED RESEARCH DESIGNS.

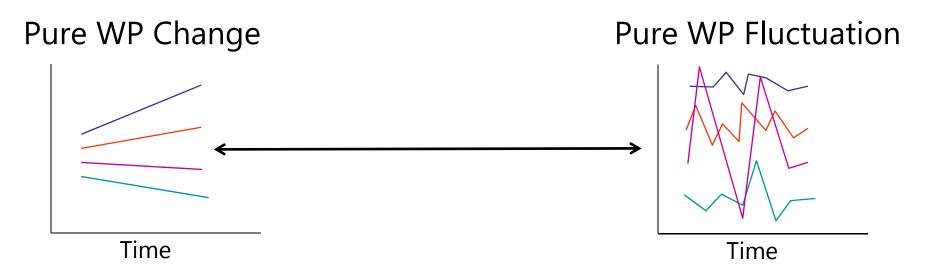

Requirements for Longitudinal Data

- Multiple <u>OUTCOMES</u> from same sampling unit (person)
 - > 2 is the minimum, but just 2 can lead to problems:
 - Only 1 kind of change is observable (1 difference)
 - Can't distinguish "real" individual differences in change from error
 - Repeated measures ANOVA is just fine for 2 observations
 - Necessary assumption of "sphericity" is satisfied with only 2 observations even if compound symmetry doesn't hold
 - More data is better (with diminishing returns)
 - More occasions → better description of the form of change
 - More persons → better estimates of amount of individual differences in change; better prediction of those individual differences
 - More items/stimuli/groups → more power to show effects of differences between items/stimuli/groups

Power in Longitudinal Data

- More occasions are better!
 - Can examine more complex growth functions
 - Can get more reliable individual growth parameters
- More people are better!
 - Can get more reliable measures of individual differences

Reliability of Slopes by Signal to Noise Ratio and # Occasions



Levels of Analysis in Longitudinal Data

- Between-Person (BP) Variation:
 - > **Level-2** "**INTER**-individual Differences" Time-Invariant
 - > All longitudinal studies begin as cross-sectional studies
- Within-Person (WP) Variation:
 - Level-1 "INTRA-individual Differences" Time-Varying
 - > Only longitudinal studies can provide this extra information
- Longitudinal studies allow examination of both types of relationships simultaneously (and their interactions)
 - > Any variable measured over time usually has both BP and WP variation
 - > BP = more/less than other people; WP = more/less than one's average
- I use "person" here, but level-2 units can be anything that is measured repeatedly (like animals, schools, countries...)

A Longitudinal Data Continuum

- Within-Person Change: Systematic change
 - > Magnitude or direction of change can be different across individuals
 - > "Growth curve models" -> Time is meaningfully sampled
- Within-Person Fluctuation: No systematic change
 - Outcome just varies/fluctuates over time (e.g., emotion, stress)
 - > Time is just a way to get lots of data per individual

What is a Multilevel Model (MLM)?

- Same as other terms you have heard of:
 - General Linear Mixed Model (if you are from statistics)
 - Mixed = Fixed and Random effects
 - > Random Coefficients Model (also if you are from statistics)
 - Random coefficients = Random effects = latent variables/factors
 - Hierarchical Linear Model (if you are from education)
 - Not the same as hierarchical regression
- Special cases of MLM:
 - Random Effects ANOVA or Repeated Measures ANOVA
 - (Latent) Growth Curve Model (where "Latent" implies SEM)
 - Within-Person Fluctuation Model (e.g., for daily diary data)
 - Clustered/Nested Observations Model (e.g., for kids in schools)
 - Cross-Classified Models (e.g., "value-added" models)
 - Psychometric Models (e.g., factor analysis, item response theory)

The Two Sides of Any Model

Model for the Means:

- > Aka Fixed Effects, Structural Part of Model
- > What you are used to caring about for testing hypotheses
- How the expected outcome for a given observation varies as a function of values on predictor variables

Model for the Variance:

- > Aka Random Effects and Residuals, Stochastic Part of Model
- > What you are used to making assumptions about instead
- ➤ How residuals are distributed and related across observations (persons, groups, time, etc.) → these relationships are called "dependency" and this is the primary way that multilevel models differ from general linear models (e.g., regression)

Dimensions for Organizing Models

- Outcome type: General (normal) vs. Generalized (not normal)
- <u>Dimensions of sampling</u>: One (so one variance term per outcome) vs.
 <u>Multiple</u> (so multiple variance terms per outcome)

 OUR WORLD
- General Linear Models: conditionally normal outcome distribution, fixed effects (identity link; only one dimension of sampling)

Note: Least Squares is only for GLM

- Generalized Linear Models: any conditional outcome distribution, fixed effects through link functions, no random effects (one dimension)
- General Linear Mixed Models: conditionally normal outcome distribution, fixed and random effects (identity link, but multiple sampling dimensions)
- Generalized Linear Mixed Models: any conditional outcome distribution, fixed and random effects through link functions (multiple dimensions)
 - > Same concepts as for this course, but with more complexity in estimation
- "Linear" means fixed effects predict the *link-transformed* conditional mean of DV in a linear combination of (effect*predictor) + (effect*predictor)...

CLDP 944: Lecture I

Options for Longitudinal Models

- Although models and software are logically separate, longitudinal data can be analyzed via multiple analytic frameworks:
 - "Multilevel/Mixed Models"
 - Dependency over time, persons, groups, etc. is modeled via random effects (multivariate through "levels" using stacked/long data)
 - Builds on GLM, generalizes easier to additional levels of analysis
 - "Structural Equation Models"
 - Dependency over time only is modeled via latent variables (single-level analysis using multivariate/wide data)
 - Generalizes easier to broader analysis of latent constructs, mediation
 - Because random effects and latent variables are the same thing, many longitudinal models can be specified/estimated either way
 - And now "Multilevel Structural Equation Models" can do it all (maybe)...

What can MLM do for you?

1. Model dependency across observations

- Longitudinal, clustered, and/or cross-classified data? No problem!
- Tailor your model of sources of correlation to your data

2. Include categorical or continuous predictors at any level

- Time-varying, person-level, group-level predictors for each variance
- Explore reasons for dependency, don't just control for dependency

3. Does not require same data structure for each person

Unbalanced or missing data? No problem!

4. You already know how (or you will soon)!

- Use SPSS Mixed, SAS Mixed, Stata, Mplus, R, HLM, MlwiN...
- What's an intercept? What's a slope? What's a pile of variance?

1. Model Dependency

- Sources of dependency depend on the sources of
 variation created by your sampling design: residuals for
 outcomes from the same unit are likely to be related,
 which violates the GLM "independence" assumption
- "Levels" for dependency = "levels of random effects"
 - Sampling dimensions can be **nested**
 - e.g., time within person, time within group, trial within person
 - > If you can't figure out the direction of your nesting structure, odds are good you have a **crossed sampling design** instead
 - e.g., persons crossed with items, raters crossed with targets
 - > To have a "level", there must be random outcome variation due to sampling that **remains** after including the model's fixed effects
 - e.g., treatment vs. control does not create another level of "group" (but it would if you had multiple treatment and multiple control groups)

Longitudinal dependency comes from...

- Mean differences across sampling units (e.g., persons)
 - > Creates constant dependency over time
 - > Will be represented by a random intercept in our models
- Individual differences in effects of predictors
 - > Individual differences in change over time, stress reactivity
 - > Creates <u>non-constant</u> dependency, the size of which depends on the value of the predictor at each occasion
 - > Will be represented by random slopes in our models
- Non-constant within-person correlation for unknown reasons (time-dependent autocorrelation)
 - > Can add other patterns of correlation as needed for this

Why care about dependency?

- In other words, what happens if we have the wrong model for the variances (assume independence instead)?
- Validity of the tests of the predictors depends on having the "most right" model for the variances
 - ➤ Estimates will usually be ok → come from model for the means
 - > Standard errors (and thus *p*-values) can be compromised
- The sources of variation that exist in your outcome will dictate what kinds of predictors will be useful
 - Between-Person variation needs Between-Person predictors
 - Within-Person variation needs Within-Person predictors
 - > Between-whatever variation needs Between-whatever predictors...

2. Include categorical or continuous predictors at any level of analysis

- "ANOVA" test differences among discrete groups
- "Regression" tests slopes for continuous predictors
- What if a predictor is assessed repeatedly but can't be characterized by discrete "conditions"?
 - ➤ ANOVA or Regression won't work → you need MLM
- Some things don't change over time → time-invariant
- Some things do change over time → time-varying
- Some things are measured at higher levels
- Interactions are possible at same level or across levels

3. Does not require same data structure per person (by accident or by design)

RM ANOVA: uses multivariate (wide) data structure:

טו	Sex	11	12	13	14
100	0	5	6	8	12
101	1	4	7		11

<u>People</u> missing any data are excluded (data from ID 101 are not included at all)

MLM: uses	ID	Sex	Time	Υ
stacked (long) data structure:	100	0	1	5
	100	0	2	6
Only <u>rows</u>	100	0	3	8
missing data are excluded	100	0	4	12
	101	1	1	4
100 uses 4 cases	101	1	2	7
101 uses 3 cases	101	1	3	
	101	1	4	11

Time can also be **unbalanced** across people such that each person can have his or her own measurement schedule: Time "0.9" "1.4" "3.5" "4.2"...

4. You already know how!

- If you can do GLM, you can do MLM (and if you can do general<u>ized</u> linear models, you can do general<u>ized</u> multilevel models, too)
- How do you interpret an estimate for...
 - the intercept?
 - > the effect of a continuous variable?
 - > the effect of a categorical variable?
 - > a variance component ("pile of variance")?

CLDP 944: This Semester's Topics

- Make Friends with SAS
- Review of single-level linear models
- Within-person analysis via ANOVA
- Describing within-person fluctuation via alternative covariance structure models
 - > R matrix structures with and without a random intercept
- Describing within-person change via random effects
 - > Polynomial, piecewise, and nonlinear models
- Review of interactions in single-level linear models
- Time-invariant (level-2) predictors
- If time permits, crossed random effects models for other kinds of repeated measures data (subjects by items)

CLDP 945: Next Semester's Topics

- Two-level models for persons in groups
- Time-varying predictors that show WP fluctuation
- Local-scale models for predicting heterogeneity of variance
- Multivariate models
 - > For multiple outcomes
 - > For time-varying predictors that show WP change
 - For "multilevel SEM"
- Models for accelerated longitudinal data
- Cross-classified models for persons in time-varying groups or other kinds of repeated measures designs (subjects by items)
- Three-level models
 - > For measurement burst designs
 - > For persons in time-invariant groups