Systematically Varying Effects in Multilevel Models: Permissible or Problematic?

Lesa Hoffman

University of Nebraska-Lincoln

Jonathan Templin

University of Georgia

Presented in Norman, Oklahoma at the Annual Meeting of the Society of Multivariate Experimental Psychology, 10/15/2011

The Issue

Given this Level 1 model: Height_{ti} = $\beta_{0i} + \beta_{1i}$ (Time_{ti}) + e_{ti}

This level-2 model is ok...

$$\beta_{0i} = \gamma_{00} + \gamma_{01}(Gender_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10} + \gamma_{11}(Gender_i) + U_{1i}$

But is this level-2 model ok?

$$\beta_{0i} = \gamma_{00} + \gamma_{01}(Gender_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10} + \gamma_{11}(Gender_i)$

"Random"

"Systematically Varying"

"Fixed"

Complexity Continuum of Level-1 Effects

Systematically Varying Effects...

Are PERMISSIBLE because:

- Fixed effects have more power than random slope variances, so cross-level interactions like γ_{11} (Gender_i) (Time_{ti}) could be significant even *without* a significant random Time_{ti} slope variance
- May happen if *all* random slope variance is explained (good!)

Are PROBLEMATIC because:

- Without a random $\mathsf{Time}_{\mathsf{ti}}$ slope variance, the cross-level interaction of $\gamma_{11}(\mathsf{Gender}_{\mathsf{i}})(\mathsf{Time}_{\mathsf{ti}})$ would be tested using a different SE and with level-1 instead of level-2 denominator degrees of freedom
- What's the point? (bad!)

Simulation

Design Conditions...

- # Level-1 units: 5, 30
- # Level-2 units: *20, 50, 100*
- Balanced: no, yes
- Denominator DF Method:
 none (Z-test), BW, Satt, KR

.... that didn't really matter (partial $\eta^2 \le .01$)

Analysis Outcomes (using $-2\Delta LL > 5.14$ for p < .05)

Truth in Data	Empirical Decision % Occurrence in Design Conditions	
Small Random Slope Variance	Keep 3-12%	Remove 88-94%
Large Random Slope Variance	Keep 70-100%	Remove 0-30%

Outcome: Type I error rate for a cross-level interaction $(\gamma_{11} \approx 0)$

NS or NPD random slope variance was removed...

NS or NPD random slope variance was removed...

What if we *had* kept the random slope variance?

Do NOT remove a significant random slope variance!

Do NOT remove a significant random slope variance!

What if we *had* kept the significant random slope?

At smallest sample size: Level-2 N=20, Level-1 n=5...

... otherwise DDF method didn't matter at all

Conclusions

Level-2 model with a systematically varying slope:

$$\beta_{0i} = \gamma_{00} + \gamma_{01}(Gender_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10} + \gamma_{11}(Gender_i)$?

Possibly problematic when...

- Not enough power to detect the random slope variance
 - > e.g., 30% wrong here if N=20, n=5; 3% wrong if N=50, n=5
 - > But what can be done to fix this?

Reasonably permissible otherwise...

Type I error ≈ 3% to 7% if the random slope is not needed

Thank you!

Questions or comments?

Email Lesa Hoffman:

LHoffman2@unl.edu

Slides available at:

http://psych.unl.edu/hoffman/Sheets/Talks.htm