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• Topics:

 Concepts and terminology in longitudinal models

(and their estimation in current software)

 Fixed and random effects of time

(and their analog through latent variables)

 Significance testing and effect size for 

fixed and random effects (in MLM or SEM)

 Modeling time-invariant predictors



Levels of Analysis in Longitudinal Data

• Between-Person (BP) Variation:

 “INTER-individual Differences” – Time-Invariant (“macro” level 2)

 All longitudinal studies that begin as cross-sectional studies have this

• Within-Person (WP) Variation:

 “INTRA-individual Differences” – Time-Varying (“micro” level 1)

 Only longitudinal studies can provide this extra type of information

• Longitudinal studies allow examination of both types of 
relationships simultaneously (and their interactions)

 Any variable measured over time usually has both BP and WP variation

 BP = more/less than other people; WP = more/less than one’s average

• I use “person” here, but ”between” units can be anything that 
is measured repeatedly (like animals, schools, countries…)
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A Longitudinal Data Continuum
• Within-Person (WP) Change: Expect systematic effect(s) of time

 Magnitude or direction of change can be different across individuals

 e.g., “(Latent) Growth Curve Models”  Time is meaningfully sampled

• Within-Person (WP) Fluctuation: No expected effects of time*

 Outcome just varies/fluctuates over time (e.g., emotion, mood, stress)

 Time is just a way to get lots of data per person (e.g., EMA studies)

 * Need to consider reactivity, day of the week, circadian/schedule effects
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Characterizing Longitudinal Data
• What should “time” be?

 WP change: e.g., time in study, age, grade, time to/from event

 WP fluctuation: e.g., time of day, day of week, day in study

• Does time vary within persons (WP) AND between persons (BP)?

 If people differ in time at the study beginning (e.g., accelerated designs), 

the model needs to differentiate BP from WP time effects

 If there is more than one kind of WP “time” (e.g., occasions within days), 

the model needs to differentiate levels of WP time effects

• Is time balanced or unbalanced?

 Balanced = shared measurement schedule (not necessarily equal interval)

 Although some people may miss occasions, making their data “incomplete”

 Unbalanced = people have different time values possible

 By definition, observations are “incomplete” across persons

 This may be a consequence of using a time metric that also varies between persons 
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The Two Sides of *Any* Model

• Model for the Means:

 Aka Fixed Effects, Structural Part of Model

 What you are used to caring about for testing hypotheses

 How the expected outcome for a given observation varies 

as a function of values on known predictor variables

• Model for the Variance:

 Aka Random Effects and Residuals, Stochastic Part of Model

 What you *were* used to making assumptions about instead

 How residuals are distributed and related across sampling 

dimensions (persons, occasions)  these relationships are known 

as “dependency” and this is the primary way that longitudinal 

models differ from general linear models (e.g., regression)
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Modeling Longitudinal Dependency
• Sources of dependency (reasons for the correlation of occasions 

from same person) can be captured by a model in three main ways:

• Fixed effects: Add Person ID as a predictor (N-1 dummy codes)

 ID main effects capture dependency due to mean differences; interactions of ID with 

time-level predictors capture other predictor-specific types of person dependency

 Does not allow prediction of why any of those person differences occurred 

• Alternative multivariate variance–covariance structures (ACS):

Just allow/describe patterns over time (for unknown reasons)

 e.g., Compound Symmetry Heterogeneous; Unstructured as the “answer key”

 Only possible for balanced longitudinal data; those using time-lagged covariances 

also require equal interval occasions: AR1(H), ANTE(1), TOEP(H)

• Add a level (or more): Use random effect (latent factor) variances

 Capture patterns of non-constant variance and covariance for different, testable 

reasons even with unbalanced longitudinal data  LET’S TALK ABOUT THIS…
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Two* Analytic Frameworks for the 

Estimation of Longitudinal Models
* Possible because random effects and latent variables are the same thing

• “Multilevel/Mixed/Hierarchical Linear Models: MLM”

 MLM builds directly from regression, so I always start here for longitudinal modeling

 Dependency is captured primarily by random effects (through “levels” in stacked/long 
data, so occasions can be unbalanced and cover multiple types of WP time)

 Software for univariate MLMs (single outcome over time) is common (SAS, SPSS, STATA 
MIXED), has REML and denominator DF for small samples, but can’t do some variants 

 Software for multivariate MLMs (2+ outcomes over time) is more flexible, less common 
(Mplus), and is more likely to break down in small samples (no REML; more parameters)

 What I call “multivariate MLM” is “multilevel SEM” to others, even with no measurement models!

• “Structural Equation Models: SEM”

 Dependency is captured primarily by latent variables (through multivariate outcomes 
in wide, single-level data, so univariate or multivariate occasions are treated as boxes)

 General SEM software is common, but no REML or denominator DF for small samples

 SEM is flexible with respect to model variants, but may not work for unbalanced data 
or designs with more than one level of time (e.g., occasions within days within persons)
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A Statistician’s World View
• Outcome type: General (normal) vs. Generalized (not normal)

• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome)  OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 

fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 

fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 

fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution,

fixed and random effects through link functions (multiple dimensions)

 Many of the same concepts, but with more complexity in estimation

• “Linear” means fixed effects predict the link-transformed conditional mean 

of DV in a linear combination of (effect*predictor) + (effect*predictor)…
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Note: Least 

Squares is 

only for GLM



For Example:  A Single-Level (BP) Model

yi = β0 + β1Xi + β2Zi + β3XiZi + ei

• Model for the Means (Predicted Values):

• Each person’s expected (predicted) outcome is a weighted linear 
function of his/her values on X and Z (and here, their interaction), 
each measured once per person (i.e., this is a between-person model)

• Estimated parameters are called fixed effects (here, β0, β1, β2, and β3)

• Model for the Variance (“Piles” of Variance):

• ei ∼ N 0, σe
2
 ONE residual (unexplained) deviation, so 

estimated parameter is residual variance in single-level (BP) model

• ei residuals have a mean of 0 with some estimated constant variance
σe
2, are normally distributed, are unrelated to X and Z, and are 

independent across all observations

• We should change models when any of these assumptions do not hold…
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= Single-Level



An Empty Means, BP-Only Model 

(i.e., Single-Level)
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Hypothetical Longitudinal Data
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“Error” in a BP-Only Model for the 

Variance: Single-Level Model
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eti represents all yti variance

e1i

e2i e3i
e4i

e5i



Adding Within-Person Information… 

(i.e., to become a Two-Level Model)
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Empty Means, BP+WP (Two-Level) Model

yti variance (V)  2 sources:

Level-2 Random Intercept 

Variance (of U0i, as 𝛕𝐔
𝟐
𝟎
):

 Between-Person Variance (in G)

 Differences from GRAND mean

 INTER-Individual Differences

Level-1 Residual Variance

(of eti, as 𝛔𝐞
𝟐):

 Within-Person Variance (in R)

 Differences from OWN mean

 INTRA-Individual Differences
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“Error” in a BP+WP Model for the Variance:

Multilevel Model (two levels)
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U0i

U0i = random intercept that represents BP mean variance in yti

eti = residual that represents WP variance in yti

e1i

e2i e3i
e4i

e5i

In other words: U0i represents a source of 

constant dependency (covariance) due to 

mean differences in yti across persons



BP-Only vs. BP+WP Empty Models

• Empty Means, BP-Only Model (used for 1 occasion):

yi = β0 + ei

 β0 = fixed intercept = grand mean

 ei = residual deviation from GRAND mean

• Empty Means, BP+WP Model (for 2+ occasions):

yti = β0 + U0i + eti

 β0 = fixed intercept = grand mean

 U0i = random intercept = individual deviation from GRAND mean

 eti = time-specific residual deviation from OWN mean

Lecture 1 16



Same Model Using Multilevel Notation:

Empty Means, Random Intercept Model

GLM Empty Model:

• yi = β0 + ei

MLM Empty Model:

• Level 1:  

yti = β0i + eti

• Level 2: 

β0i = γ00 + U0i
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3 Parameters: 
Model for the Means (1): 

• Fixed Intercept γ00

Model for the Variance (2):

• Level-1 Variance of eti  𝛔𝐞
𝟐

• Level-2 Variance of U0i  𝛕𝐔
𝟐
𝟎

Fixed Intercept 

= mean of means 

(=mean because 

no predictors yet) 

Random Intercept 

= individual-specific 

deviation from 

predicted intercept

Residual = time-specific deviation 

from individual’s predicted outcome 

Composite equation:  

yti =  (γ00 + U0i ) + eti



A “Random Intercept” Model for the Variance
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Unstructured G Matrix

(RANDOM statement)
Each person has same 1 x 1 G

matrix (no covariance across 

persons in two-level model)

Diagonal (VC) R Matrix
(REPEATED statement)

Each person has same n x n R
matrix  equal variances and 0 

covariances across time (and 
no covariance across persons)

Level 2, BP Variance Level 1, WP Variance

Total Predicted 

Data Matrix is 

called V Matrix, 

of which each 

person gets 

their own

1 Random 

Intercept 

Variance only 1 Residual 

Variance only

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 2 2 2 2 2
U e U U U U

2 2 2 2 2 2
U U e U U U

2 2 2 2 2 2
U U U e U U

2 2 2 2 2 2
U U U U e U

2 2 2 2 2 2
U U U U U e

       
 
       
 
       
 

       
 

        

2
e

2
e

2
e

2
e

2
e

σ 0 0 0 0

0 σ 0 0 0

0 0 σ 0 0

0 0 0 σ 0

0 0 0 0 σ

 
 
 
 
 
 
 
  

To be added to R in order to form V, G is pre-

and post-multiplied by an N x 1 Z matrix that 

holds the values of the predictors with random 

effects (just the intercept here): 

N = total obs

n = # occasions

(5 here)

T
i i i i i  V Z G Z R



Intraclass Correlation (ICC)

ICCs are frequently used for longitudinal data:

ICC =
BP

BP +WP
=

Intercept Var.

Intercept Var. +Residual Var.
=

𝛕𝐔
𝟐
𝟎

𝛕𝐔
𝟐
𝟎
+ 𝛔𝐞

𝟐

• ICC = Proportion of total variance that is between persons

• ICC = Correlation of occasions from same person (in VCORR)

• ICC is a standardized way to express dependency due to person mean 

differences  effect size for constant person dependency
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Review of Concepts 

and Terminology in 

Longitudinal Modeling
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• Topics:

 Concepts and terminology in longitudinal models

(and their estimation in current software)

 Fixed and random effects of time

(and their analog through latent variables)

 Significance testing and effect size for 

fixed and random effects (in MLM or SEM)

 Modeling time-invariant predictors



Augmenting the Empty Means, 

Random Intercept model with Time
• 2 questions about the possible effects of “time” (e.g., time 

in study in WP change; time of day or day of week in WP fluctuation):

1. Is there an effect of time on average?

 Is the line connecting the sample means over time something 
other than flat?

 If so, you need FIXED effect(s) of time

2. Does the average effect of time vary across 
individuals?

 Does each individual need his or her own version of that line?

 If so, you need RANDOM effect(s) of time

• Let’s look at examples using linear time effects to start…

Lecture 1 21



Fixed and Random Effects of Time
(Note:  The intercept is random in every figure)
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A. No Fixed, No Random B. Yes Fixed, No Random

C. No Fixed, Yes Random D. Yes Fixed, Yes Random



B. Fixed Linear Time, Random Intercept Model 
(4 parameters: effect of time is FIXED only)

Multilevel Model

Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10 

Composite Model

yti = (γ00 + U0i) + (γ10)(Timeti) + eti
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Fixed Intercept 

= predicted mean 

outcome at time 0

Fixed Linear Time Slope

= predicted mean rate 

of change per unit time

Random Intercept = individual-specific deviation 

from fixed intercept  estimated variance of 𝛕𝐔
𝟐
𝟎

Residual = time-specific deviation from individual’s 

predicted outcome  estimated variance of 𝛔𝐞
𝟐

β0i β1i

Because the effect of 

time is fixed, everyone is 

predicted to change at 

exactly the same rate.



C or D: Random Linear Time Model (6 parms)

Multilevel Model

Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10 + U1i

Composite Model

yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Fixed Intercept 

= predicted mean 

outcome at time 0

Fixed Linear Time Slope

= predicted mean rate 

of change per unit time

Random Intercept = 

individual-specific deviation 

from fixed intercept at time 0 

 estimated variance of 𝛕𝐔
𝟐
𝟎

Random Linear Time Slope= 

individual-specific deviation 

from fixed linear time slope 

 estimated variance of 𝛕𝐔
𝟐
𝟏

Residual = time-specific deviation from individual’s 

predicted outcome  estimated variance of 𝛔𝐞
𝟐

β0i β1i

Also has an 

estimated 

covariance

of random 

intercepts 

and slopes  

of 𝛕𝐔 𝟎𝟏



Random Linear Time Model
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6 Parameters:

2 Fixed Effects:

γ00 Intercept, γ10 Slope

2 Random Effects 

Variances:

U0i Intercept Variance 

= 𝛕𝐔
𝟐
𝟎

U1i Slope Variance =

𝛕𝐔
𝟐
𝟏

Int-Slope Covariance =

𝛕𝐔 𝟎𝟏

1 eti Residual Variance 

= 𝛔𝐞
𝟐



Random Linear Time Models Imply:
• People differ from each other systematically in TWO ways—in 

intercept (U0i) and slope (U1i), which implies TWO kinds of BP 
variance, which translates to TWO sources of person dependency 
(covariance or correlation in the outcomes from the same person)

• If so, after controlling for both BP intercept and slope differences 
(by estimating the τU

2
0

and τU
2
1

variances in the G matrix), the eti

residuals (whose variance and covariance are estimated in the R
matrix) should be uncorrelated with homogeneous variance 
across time, as shown (or else a different R matrix is needed):
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TYPE=UN
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Random Linear Time Model 
(6 parameters: effect of time is RANDOM)

• Scalar “mixed” model equation per person:
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Xi = n x k values of predictors with 

fixed effects, so can differ per person 

(k = 2: intercept, linear time)

γ = k x 1 estimated fixed effects, 

so will be the same for all persons

(γ00 = intercept, γ10 = linear time)

Zi = n x u values of predictors with 

random effects, so can differ per person 

(u = 2: intercept, linear time)

Ui = u x 2 estimated individual random 

effects, so can differ per person

Ei = n x n time-specific residuals, 

so can differ per person
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Random Linear Time Model 
(6 parameters: effect of time is RANDOM)

• Predicted total variances and covariances per person:
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Zi = n x u values of predictors with 

random effects, so can differ per 

person (u = 2: int., time slope)

Zi
T = u x n values of predictors with 

random effects (just Zi transposed)

Gi = u x u estimated random 

effects variances and covariances, 

so will be the same for all persons

(τU
2
0

= int. var., τU
2
1

= slope var.)

Ri = n x n time-specific residual 

variances and covariances, so will 

be same for all persons 

(here, just diagonal σe
2)

0 01

01 1

T
i i i i i

2
e

2 2
U U e

2 2i
U U e

2
e

      *            *                                        

0 0 01 0
0 0 01 1 1 1 1 1

 
1 2 0 1 2 3 0 0 0
1 3 0 0 0

 

  
                         

V Z G Z R

V

 

   

 

   

0 1 01

0 01 1

i time

22 2 2
U U U e

i A B

2 2
U U U

 matrix: Variance y

     time 2 time

 matrix: Covariance y ,y

     A B AB

            

           

V

V

Vi matrix = 

complicated 



T                     *                           *                                                                                                        

1 0.0 0 0
1 1.0 0 0
1 2.0 0 0

 1 3.0 0 0
0 0 1 0.2
0 0 1 1.

 



V Z G Z R

V

0 01

01 1

0 01

01 1

2
e

22
eU U 2

2 e
U U 2

2 e
2U U
e2

2U U
e

2
e

0 0 0 0 0 0

0 0 0 0 0 00 0
1 1 1 1 0 0 0 0 0 0 0 0 00 0 0.0 1.0 2.0 3.0 0 0 0

0 0 0 0 0 00 0 0 0 1 1 10 0
0 0 0 0 0 00 0 0 0 0.2 1.4 3.5

4 0 0 0 0 0 0 0 0
0 0 1 3.5

0 0 0 0 0 0


                                      













• V for two persons also with different n per person:

• The “block diagonal” does not need to be the same size 
or contain the same time observations per person…

• R matrix can also include non-0 covariance or differential 
residual variance across time (as in ACS models), although 
the models based on the idea of a “lag” won’t work for 
unbalanced or unequal-interval time

Building V across persons: 
Random Linear Time Model
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Translating Variance Partitioning in MLM 

into Single-Level SEM

• “Random effects” = “pile of variance’’ = “variance components”

 Random effects represent person*something interaction terms
that create person-caused sources of covariance over time

 Random intercept  person*intercept (person “main effect”)

 Random linear time slope  person*time interaction

• Random effects are the same thing as latent variables

 Latent variable = unobservable ability or trait, created by sources of 
common variance across items (or time-specific outcomes here)

 Latent variables for BP differences can be interpreted as “general tendency” 
(random intercept) and “propensity to change” (random time slope)

 Model-based way of de-trending longitudinal outcomes to distinguish 
BP from WP sources of information (and examine all kinds of relations)

 Uses “wide” data structure in which each occasion = separate variable
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MLM as seen through 

Confirmatory Factor Analysis (CFA)
• CFA model: yis = μi + λiFs + eis (SEM is just relations among F’s)

 Observed response for item i ( outcome at time t) and subject s

= intercept of item i (μ)

+ subject s’s latent trait/factor (F), item-weighted by λ

+ error (e) of item i and subject s

• Four big differences when using CFA/SEM for longitudinal change:

 Usually two factors for “level” and “change” (intercept and slope):

yti = (γ00 + U0i) + (γ10 + U1i)timeti + eti  so the U’s are the F’s

 The separate item (time-specific outcome) intercepts μi cannot be identified 

separately from the “intercept” factor and therefore must be fixed to 0

 The factor loadings λi for how each outcome is predicted by the latent factor are 

usually pre-determined by how much time as passed, and are fixed to the difference 

in time that corresponds to the type of change (e.g., linear, quadratic, piecewise)

 Item (time-specific outcome) residual variances should be constrained equal (not 

default, but changes in variance over time should be captured by random slopes)
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Random Effects as Latent Variables

• BP-only model: eti = model for the variance

 yti = γ00 + eti

 After controlling for the fixed intercept, residuals are 

assumed uncorrelated:  this is a single-level model

Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1 1 1 1

Int Var

𝛕𝐔𝟎
𝟐 = 𝟎

Mean of the intercept factor

= fixed intercept γ00

Loadings of intercept factor = 1 

(all occasions contribute equally)

Item intercepts = 0 (always)

Variance of intercept factor

= 0 so far

Residual variance (e) is assumed to 

be equal across occasions= = =
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Random Effects as Latent Variables

• +WP model: U0i + eti model for the variance

 yti = γ00 + U0i + eti

 After controlling for the random intercept, residuals are 

assumed uncorrelated: now two piles of variance 

(aka, an “empty means, random intercept” model)
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Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1 1 1 1

Int Var 

𝛕𝐔𝟎
𝟐 =?

Mean of the intercept factor

= fixed intercept γ00

Loadings of intercept factor= 1 

(all occasions contribute equally)

Variance of intercept factor

= random intercept variance

Residual variance (e) is assumed to 

be equal across occasions

= = =



Random Effects as Latent Variables

• Fixed linear time, random intercept model:

 yti = γ00 + (γ10Timeti) + U0i + eti

 After controlling for the fixed linear slope and random 

intercept, residuals are assumed uncorrelated
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Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1
1 1

1

Int Var 

𝛕𝐔𝟎
𝟐 =?

Mean of the linear slope factor

= fixed linear slope γ10

Loadings of linear slope factor

= occasions (keep real time)

Variance of linear slope factor

= 0

Linear

Slope0
1

2 3

Linear

Slope Var 

𝛕𝐔𝟏
𝟐 =0

= = =



Random Effects as Latent Variables

• Random linear model:

 yti = γ00 + (γ10Timeti) + U0i + (U1iTimeti) + eti

 After controlling for the random linear slope and random 

intercept, residuals are assumed uncorrelated: now three 

piles of variance to be predicted (BP int, BP slope, WP res)
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Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1
1 1

1

Int Var 

𝛕𝐔𝟎
𝟐 =?

Mean of the linear slope factor

= fixed linear slope γ10

Loadings of linear slope factor

= occasions (keep real time)

Variance of linear slope factor

= random slope variance (and 

covariance with random intercept

Linear

Slope0
1

2 3

Linear

Slope Var 

𝛕𝐔𝟏
𝟐 =?

= = =

τU01



yti = γ00 + (γ10Timeti) + U0i + (U1iTimeti) + eti

Summary: Random Linear Time Model 

as Latent Variables in SEM
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Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1
1 1

1

Int Var 

𝛕𝐔𝟎
𝟐 =?

Linear

Slope0
1

2 3

Linear

Slope Var 

𝛕𝐔𝟏
𝟐 =?

= = =

Level-1 R Matrix

Level-1 

Z Matrix

𝛕𝐔𝟎𝟏= ?

Level-2 G Matrix

MLM matrix version of model

Overall:

Model for the Variance:

i i i i i   =    +        Y X γ Z U E

T
i i i i i  V Z G Z R



Review of Concepts 

and Terminology in 

Longitudinal Modeling
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• Topics:

 Concepts and terminology in longitudinal models

(and their estimation in current software)

 Fixed and random effects of time

(and their analog through latent variables)

 Significance testing and effect size for 

fixed and random effects (in MLM or SEM)

 Modeling time-invariant predictors



Assessing the “Goodness” of the Model
• Model for the Means  which fixed effects of predictors 

should be included in the model (e.g., main effects, interactions)

 Significance tests do not require assessment of relative model fit using 
LL or −2LL (can always use univariate or multivariate Wald tests)

 Effect sizes can come from the significance tests (e.g., F  Cohen’s d), 
or from reductions in variance (pseudo-R2 or total-R2)

• Model for the Variance  what pattern(s) of variance and 
covariance the residuals from the same unit have; what 
random effects are needed to describe these pattern(s)

 Significance tests DO require assessing relative model fit via −2ΔLL

 Cannot use the Wald test p-values for variances on the output because those 
p-values use a two-sided sampling distribution for what the variance could be 
(but variances cannot be negative, so those p-values are not valid)

 Effect sizes (less commonly provided) can come from random effects 
confidence intervals (CI) or random effects reliability measures


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 Random Effect 95% CI = fixed effect ± 1.96* Random Variance   



Statistical Significance of Fixed Effects:

What letter will I get?

Denominator DF 

is assumed infinite

Denominator DF is 

estimated  “Modified”

Numerator DF = 1 

(test one fixed effect) is 

Univariate Wald Test

use z distribution

(e.g., Mplus, STATA)

use t distribution

(e.g., SAS, SPSS)

Numerator DF > 1

(test 2+ fixed effects) is 

Multivariate Wald Test

use χ2 distribution

(e.g., Mplus, STATA)

use F distribution

(e.g., SAS, SPSS)

Denominator DF options

(important in small 

level-2 samples)

not applicable, so 

DDF is not given

SAS, SPSS, and STATA 14: 

Satterthwaite

SAS and Stata 14: 

Between-Within, 

Kenward-Roger (best) 

In ML or REML, fixed effects can be tested via Wald tests: the ratio 

of its estimate/SE forms a statistic we compare to a distribution
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Pseudo-R2 Effect Size of Fixed Effects
• Pseudo-R2  = proportion of variance accounted for by fixed effects of 

predictors in each pile of variance  multiple pseudo-R2 values

• For example, a fixed linear effect of WP time will reduce level-1 residual 

variance σe
2 in R by this much:

• But whenever only level-1 residual variance σe
2 is reduced, the level-2 

random intercept variance τU
2
0

will INCREASE as a result. Why?

 Likelihood-based estimates of “true” τU
2
0

use (σe
2 / level-1 n) as correction factor 

for the amount of between-person difference attributable to chance:

True 𝛕𝐔
𝟐
𝟎

= Observed 𝛕𝐔
𝟐
𝟎

− (𝛔𝐞
𝟐 / level-1 n)

 For example: observed level-2 τU
2
0
=4.65, level-1 σe

2=7.06, n=4

 True τU
2
0
= 4.65 −(7.60/4) = 2.88 in empty means model

 Add fixed linear time slope  reduce σe
2 from 7.06 to 2.17 (Pseudo-R2 = .69)

 But now True τU
2
0
= 4.65 −(2.17/4) = 4.10 in fixed linear time model
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2 fewer more
e

fewer

2

residual variance   residual variance
Pseudo R  =       

residual variance

was  is
More generally, Pseudo R  = 

was





“fewer” = “was” = from 

model with fewer parameters

“more” = “is” = from 

model with more parameters



Variance Accounted for by 

Fixed Effects For Real:  Total-R2

• Pseudo-R2 is named that way for a reason… piles of variance can 
shift around, such that it can be negative or explained for no reason

 Sometimes a sign of model mis-specification (but not always)

 Usually hard to explain when it happens!

• A simpler alternative that always works: Total-R2

 Generate model-predicted outcomes from the fixed effects only (NOT 
including the random effects) and correlate with observed outcomes 

 Then square that correlation  total-R2

 Total-R2 = total reduction in overall outcome variance across all levels

 Can be “unfair” in models with large unexplained sources of variance

• Because R2 does not always mean the same thing, specify which 
kind of R2 you used—provide the formula and a reference!
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Significance Tests for Choosing 

Amongst Models for the Variance
• Requires assessment of relative model fit: how well does the model 

fit relative to other possible models?

 Assessment of absolute model fit is only possible for balanced data

• Relative fit is indexed by overall model log-likelihood (LL):

 Log of likelihood for each person’s outcomes given model parameters

 Sum log-likelihoods across all independent persons = model LL

 Two flavors: Maximum Likelihood (ML) or Restricted ML (REML) 

• What you get for this on your output varies by software…

• Given as −2*log likelihood (−2LL) in SAS or SPSS MIXED:
−2LL gives BADNESS of fit, so smaller value = better model

• Given as just log-likelihood (LL) in STATA MIXED and Mplus:
LL gives GOODNESS of fit, so bigger value = better model
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Comparing Models for the Variance

• Two strategies for choosing a model for the variance:

 Does the more complex model fit better (than a simpler model)?

 Does the simpler model fit worse (than a more complex model)?

• Nested models are compared using a “likelihood ratio test”: 

−2ΔLL test (aka, “χ2 test” in SEM; “deviance difference test” in MLM)

1. Calculate −2ΔLL:  if given −2LL, do −2ΔLL = (−2LLfewer)  – (−2LLmore)

if given LL, do −2ΔLL = −2 *(LLfewer – LLmore)

2. Calculate  Δdf = (# Parmsmore)  – (# Parmsfewer)

3. Compare −2ΔLL to χ2 distribution with df = Δdf

4. Get p-value from CHIDIST in Excel or LRTEST option in STATA
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Results of 1. & 2. must 

be positive values!

“fewer” = from model with fewer parameters

“more” = from model with more parameters



Comparing Models for the Variance

• What your p-value for the −2ΔLL test means:

 If you ADD parameters, then your model can get better

(if −2ΔLL test is significant ) or not better (not significant)

 If you REMOVE parameters, then your model can get worse

(if −2ΔLL test is significant ) or not worse (not significant)

• Nested or non-nested models can also be compared by 

Information Criteria that also reflect model parsimony

 No significance tests or critical values, just “smaller is better”

 AIC = Akaike IC     = −2LL +        2 *(#parameters)

 BIC = Bayesian IC  = −2LL + log(N)*(#parameters) 

 What “parameters” means depends on flavor (except in STATA):

 ML = ALL parameters; REML = variance model parameters only
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Flavors of Maximum Likelihood

• Remember that likelihood estimation comes in two flavors:

• “Restricted (or residual) maximum likelihood”

 Only available for general linear models or general linear mixed models 

(that assume normally distributed residuals); not in SEM software

 Is same as LS given complete outcomes, but it doesn’t require them

 Estimates variances the same way as in LS (accurate) 

• “Maximum likelihood” (ML; also called FIML*)

 Is more general, is available for the above plus for non-normal 

outcomes and latent variable models (CFA/SEM/IRT; multilevel SEM)

 Is NOT the same as LS: it under-estimates variances by 

not accounting for the # of estimated fixed effects 

• *FI = Full information it uses all original data (they both do)
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ML vs. REML Estimation in a Nutshell
Remember “population” 

vs. “sample” formulas 

for calculating variance?
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All comparisons 

must have same N!!!
ML REML

To select, type… METHOD=ML

(-2 log likelihood)

METHOD=REML default

(-2 res log likelihood)

In estimating 

variances, it treats 

fixed effects as…

Known (df for having to 

also estimate fixed effects 

is not factored in)

Unknown (df for having 

to estimate fixed effects 

is factored in)

So, in small samples, 

L2 variances will be…

Too small (less difference 

after N=30-50 or so)

Unbiased (correct)

But because it indexes 

the fit of the…

Entire model

(means + variances)

Variances model only 

You can compare 

models differing in…

Fixed and/or random 

effects (either/both)

Random effects only 

(same fixed effects)

σ yi − ypred
2

N − k

σ yi − ypred
2

N

“Population” “Sample”



Summary: Unconditional Models for Time
• The process of fitting “unconditional models for time” 

(fixed and random effects) can be depicted as follows:

Residual

Variance

(𝛔𝐞
𝟐)

Residual

Variance

(𝛔𝐞
𝟐)

Residual

Variance

(𝛔𝐞
𝟐)

BP Int

Variance

(𝛕𝐔
𝟐
𝟎
)

BP Slope

Variance

(𝛕𝐔
𝟐
𝟏
)

Level 2, Between-

Person Differences

Level 1, Within-

Person Differences

BP Int

Variance

(𝛕𝐔
𝟐
𝟎
)

01U covariance
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Fixed effect(s) 

of WP time



Summary: Unconditional Models for Time

Role of “Time” in the Model for the Means:

• WP Change   describe pattern of average change (e.g., growth curves)

• WP Fluctuation  describe average time-specific trends that may not have 
been expected (e.g., reactivity, day of the week, circadian/schedule effects)

Role of “Time” in the Model for the Variance:

• WP Change   describe individual differences in change (random effects)
 this allows variances and covariances to differ over time

• WP Fluctuation  mostly describe pattern(s) of covariance over time
(may need random effects of time for differing variances)
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Time

Pure WP Change

Time

Pure WP Fluctuation
“Growth Curve 

Modeling”
“EMA”



Summary: Unconditional Models for Time

• Each source of correlation or dependency goes into a new variance 

component (or pile of variance) until each source meets the usual 

assumptions of GLM: normality, independence, constant variance

• Example two-level longitudinal model:

Residual

Variance

(𝛔𝐞
𝟐)

BP Slope

Variance

(𝛕𝐔
𝟐
𝟏
)

BP Int

Variance

(𝛕𝐔
𝟐
𝟎
)

𝛕
𝐔𝟎𝟏

covariance

Level 2 (two sources of) 

Between-Person Variation:

gets accounted for by 

person-level predictors

Level 1 (one source of) 

Within-Person Variation:

gets accounted for by 

time-level predictors

FIXED effects make variance 

go away (explain variance).

RANDOM effects just make 

a new pile of variance.

Next we will add predictors to account for each pile!
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Multiple BP 

time slope 

variances are 

possible…



Review of Concepts 

and Terminology in 

Longitudinal Modeling
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• Topics:

 Concepts and terminology in longitudinal models

(and their estimation in current software)

 Fixed and random effects of time

(and their analog through latent variables)

 Significance testing and effect size for 

fixed and random effects (in MLM or SEM)

 Modeling time-invariant predictors



Beware of Missing Predictors

• Any cases missing model predictors (that are not part of the 
likelihood*) will not be used in that model

 Less than ideal for time or time-varying predictors (MARish)

 Really bad for time-invariant predictors (listwise deletion, MCAR)

• Other options for missing predictors:

 *Bring the predictor into the likelihood (only possible in software for 
multivariate MLMs, such as Mplus, or in SEM programs)

 Its mean, variance, and covariances “get found” as model parameters

 Predictor then has distributional assumptions (default is multivariate normal), 
which may not be plausible for all predictors

 Mplus v. 8 still will not do this for non-normal “predictors” in multivariate MLM

 Multiple imputation (and analysis of *each* imputed dataset)

 Imputation also requires distributional assumptions for imputed variables!

 Also requires all parameters of interest for the analysis model to be in the 
imputation model, too (which is problematic for interactions or random effects)
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Modeling Time-Invariant Predictors
• Which independent variables can be time-invariant predictors?

 Also known as “person-level” or “level-2” or “macro” predictors 

 Includes substantive predictors, controls, and predictors of missingness

 Includes anything that either does not change across time, or that might 
change across time but that you’ve only measured once (you may need to 
argue why this is conceptually ok or limit conclusions accordingly)

 Also includes BP variance in time or time-varying predictors (stay tuned)

• All predictors should be centered so that 0 values are meaningful: 

 This is needed to create a meaningful fixed/random intercept, and/or 
meaningful fixed main effects of predictors also included in interactions 

 e.g., if fixed effects of X, Z, and X*Z, the main effect of X is specifically for Z=0

 Continuous predictors can be centered at any constant, such as the 
sample mean (common and useful if it has an unfamiliar scale) or any 
meaningful reference (better for translating across studies)

 Categorical predictors can have their dummy-code contrasts created for 
you in most programs (e.g., SAS CLASS, SPSS BY, STATA i.), but not in Mplus; 
I do not like ± 1 coding for group differences (because then 0 = ???)
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Variance Accounted For By Level-2,

Person-Level, Time-Invariant Predictors

• Fixed effects of level-2 predictors by themselves:

 Level-2 (BP) main effects reduce L2 (BP) random intercept variance

 Level-2 (BP) interactions also reduce L2 (BP) random intercept variance

• Fixed effects of cross-level interactions (level 1* level 2):

 Always test the level-2 random slope for the corresponding level-1 

predictor BEFORE fitting any cross-level interactions for it!

 If the interacting level-1 predictor is random, any cross-level interaction with 

it will reduce its corresponding level-2 BP random slope variance

 e.g., if L1 time is random, then group*time, ed*time, and group*ed*time can each 

reduce the L2 random linear time slope variance

 If the interacting level-1 predictor not random, cross-level interactions with 

it will reduce the level-1 WP residual variance instead

 The effect of time is then called systematically varying: it’s not fixed

(the same for everybody) or random (different for everybody), but a middle 

ground—each person gets their own slope as a function of the L2 predictor(s)
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Education (12 years = 0) as a Time-Invariant Predictor:

Example using a Random Linear Time Model

Level 1:  yti = β0i + β1iTimeti + eti

Level 2 Equations (one per β):

β0i = γ00 +    γ01Edi      +   U0i

β1i = γ10 +    γ11Edi  +    U1i

We would calculate pseudo-R2 values as follows:

• For the L2 Ed main effect (γ01), using the L2 random intercept U0i variance 

• For the L2 Ed by L1 Time cross-level interaction (γ11):

 Using the L2 random time slope U1i variance if present in the model (as it is here)

 Otherwise using the L1 residual eti variance instead (so time  “systematically varying”)

54

Intercept

for person i

Linear Slope

for person i

Fixed Intercept 

when Time=0 

and Ed=12

Fixed Linear 

Time Slope 

when Ed=12

Random (Deviation) 

Intercept after 

controlling for Ed

Random (Deviation) 

Linear Time Slope after 

controlling for Ed

Δ in Intercept 

per unit Δ in Ed

Δ in Linear Time 

Slope per unit Δ

in Ed (=Ed*time)
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Composite Equation:

yti = (γ00 + γ01Edi + U0i)+

(γ10 + γ11Edi  + U1i)Timeti+ eti



Education (12 years = 0) as a Time-Invariant Predictor:

Example using a Random Quadratic Time Model

Level 1:  yti = β0i +  β1iTimeti + β2iTimeti
2 + eti

Level 2 Equations (one per β):

β0i = γ00 +    γ01Edi  +   U0i

β1i = γ10 +    γ11Edi  +    U1i

β2i = γ20 +    γ21Edi  +    U2i
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Intercept

for person i

Linear Slope

for person i

Quad Slope

for person i

Fixed Intercept 

when Time=0 

and Ed=12

Fixed Linear 

Time Slope 

when Time=0 

and Ed=12

Fixed Quad 

Time Slope 

when Ed = 12

Random (Deviation) 

Intercept after 

controlling for Ed

Random (Deviation) 

Linear Time Slope after 

controlling for Ed

Random (Deviation)

Quad Time Slope after 

controlling for Ed

Δ in Intercept 

per unit Δ in Ed

Δ in Linear Time 

Slope per unit Δ

in Ed (=Ed*time)

Δ in Quad Time 

Slope per unit Δ

in Ed (=Ed*time2)
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Education (12 years = 0) as a Time-Invariant Predictor:

Example using a Random Quadratic Time Model

Level 1:  yti =   β0i +  β1iTimeti + β2iTimeti
2 +  eti

Level 2 Equations (one per β):

β0i = γ00 + γ01Edi  + U0i

β1i = γ10 + γ11Edi  + U1i

β2i = γ20 + γ21Edi  + U2i

• Composite equation: 

• yti = (γ00 + γ01Edi + U0i)+

(γ10 + γ11Edi  + U1i)Timeti + 

(γ20 + γ21Edi  + U2i)Timeti
2 + eti
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Each fixed effect of education 

will predict the U in its 

equation if present, or 

residual variance otherwise.

Lecture 4

γ11 and γ21 are known as 

“cross-level” interactions 

(level-1 predictor by 

level-2 predictor)



Summary:  Time-Invariant Predictors

• Univariate MLMs use ONLY COMPLETE rows (occasions) 
of data—both predictors and outcomes must be there!

 Using whatever data you do have for each person will likely lead 
to better inferences and more statistical power than using only 
complete persons (so avoid listwise deletion if you can)

 Missingness on predictors is possible if they are “outcomes” in 
multivariate software, which implies distributional assumptions

• Time-invariant predictors modify the level-1 created time 
model  predict individual intercepts and slopes

 They account for random effect variances (the predictors are the 
reasons WHY people need their own intercepts and slopes)

 If a level-1 effect is not random, it can still be moderated by a 
cross-level interaction with a time-invariant predictor… 

 … but then it will predict L1 residual variance instead
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