Generalized Multilevel Models for
Non-Normal Longitudinal Data

- Topics:
> Clarifying distribution terminology
> 3 parts of a generalized (multilevel) model
> Models for binary outcomes
> Complications for generalized multilevel models
> A brief tour of other generalized models:

= Models for discrete count or continuous skewed outcomes
= Models for two-part discrete or continuous outcomes
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Clarifying Distribution Terminology

- The MLM variants we've seen so far all fit under the “general”
(= all normal distributions) linear mixed model family:

> @ matrix: Holds variances and covariances of level-2 random effects
(denoted with U), which are assumed multivariate normal

> R matrix: Holds variances and covariances of level-1 residuals
(denoted with e), which are also assumed multivariate normal

. e.g., a random linear time model  Llevel-2 | ayel-1 R matrix:

for four occasions: G matrix: REPEATED TYPE=VC
RANDOM - |
Level 1: Yi = BOI + B1|(T|metl) € TYPE=UN ce 0 0 0
: 0 2.0 0
Level 2: Boi = Yoo + U 21, % 0
=VYq0+ Uy ) 0 0 o O
fw Wl lo 0 0 o2

Composite: yg; = (Yoo + Ug) + (V10 + Uy (Timey) + ey
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The SAME Random Linear Time Model

written another, more combined way

- Scalar "mixed” model equation per person:

Y.

Yii
Yoi

Yii
Yoi

Yii
Yoi

Lecture 4

_in ]

| Ysi

Voi | [ Yoot ¥10(0) | [ Uit Uy (0)

| Yoot Y10 (3)_ _UOi + U (3)_

| Ysi | i
Yoo Y10(0) + Ugi+ Uy (0) + eg; |

_in ]

| Ysi

Xi*y|+|4 = U + K
10] (1 0] _eOi
11700 111Uy €1
12 |:y10i|+ 12 [ 1 " Coi
1 3] 113 | €5
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| Yoot V10(3) T Ugi+ Uy (3) + ey

X; =nx kvalues of predictors with
fixed effects, so can differ per person
(k = 2: intercept, linear time)

v = k x 1 estimated fixed effects,
so will be the same for all persons
(Yoo = Intercept, vy, = linear time)

Z; = n x u values of level-1 predictors
with level-2 random effects, so can differ
per person (u = 2: intercept, linear time)

U, = u x 2 estimated individual level-2
random effects, so can differ per person

E; = n x n time-specific level-1 residuals,
so can differ per person




Clarifying Distribution Terminology

Level 1: yi = Boi + By;(Timey) + e, Y =| Xy |+|ZU +E.
Level 2: Bo; = Yoo + Ui
Bii = Vio+ Uy Model for the Variance creates V; as:

V. = Z * G * ZT + R.
=X,y where; = - | | - | )
Conditional Mean 101, o 0 00

. v_ 11|, T, |[1111],]0 2 0 0O
created by fixed effects |[Vi= 12|, 2 |[0123|" 0 0 &2 0
Uy, U, e
in the model for means 13 |0 0 0 of

- This model says the “marginal” distribution of the total
column of Y outcomesis: Y~ N(Xy,V)

- This model says the “conditional” distribution of the total
column of Y outcomes is: Y|U ~ N(Xy + ZU,R)
> Conditional = after controlling for fixed and random effects

> Marginal and conditional “general” models both have same normal
distribution (which makes ML estimation relatively straightforward)
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Clarifying Terminology

- Conditional distribution: Y|U ~ N(Xy + ZU,R)
- Distribution of level-1 residuals: E=Y — Xy + ZU, E~N(0,R)

- Thus far in “general” linear mixed models, we could have used
the terms “level-1 residual distribution” and “conditional
distribution” interchangeably (and | have used the former)

> "Level-1 residual distribution” is assumed multivariate normal

> "Conditional distribution” is assumed multivariate normal

- This may not be the case for outcomes with non-normal
distributions (and thus, non-normal conditional distributions)

> Level-1 residual variance may not be estimated, so there may not be
such a thing as a separately calculated “level-1 residual”, even though
we still expect the conditional model predictions to be imperfect
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Dimensions for Organizing Models

- Qutcome type: General (normal) vs. Generalized (not normal)

- Dimensions of sampling: One (so one variance term per outcome) vs.
Multiple (so multiple variance terms per outcome) - OUR WORLD

- General Linear Models: conditionally normal outcome distribution, Note Least

fixed effects (identity link; only one dimension of sampling) Squares is
only for GLM

- Generalized Linear Models: any conditional outcome distribution,
fixed effects through link functions, no random effects (one dimension)

- General Linear Mixed Models: conditionally normal outcome distribution,
fixed and random effects (identity link, but multiple sampling dimensions)

- Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)

- "Linear” means fixed effects predict the link-transformed conditional mean
(u) of DV in a linear combination of (effect*predictor) + (effect*predictor)...
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Generalized Linear Mixed Models

- Generalized linear mixed models: both fixed and random
effects predict link-transformed conditional mean; ML
estimator uses not-normal conditional distributions in the

ou

>

tcome data likelihood

Level-1 conditional model uses some not-normal distribution that may
not have a residual variance, but level-2 random effects are still MVN

- Many kinds of non-normally distributed outcomes have some
kind of generalized linear model to go with them via ML:

>

>

>

>

>

>

>
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Binary (dichotomous)

Unordered categorical (nominal)

Ordered categorical (ordinal)

Counts (discrete, positive values)

Censored (piled up and cut off at one end)
Zero-inflated (pile of Os, then some distribution after)
Continuous but skewed data (long tail)



3 Parts of Generalized Multilevel Models

1. Non-Normal > Link 3. Linear Predictor
Conditional < Fu.nction = of Fixed AND
Distribution of Y Random Effects

1. Non-normal conditional distribution of Y:

> General MLM uses a normal conditional distribution to describe the Y
variance remaining after fixed + random effects - we called this the
level-1 residual variance, which is estimated separately and usually
assumed constant across observations (unless modeled otherwise)

> Other distributions will be more plausible for bounded/skewed
outcomes, so ML function maximizes the likelihood using those instead

> Why? To get the most correct standard errors for fixed effects

> Although you can still think of this as model for the variance, not all
conditional distributions will actually have a separately estimated level-1
residual variance (e.g., binary = Bernoulli, count = Poisson)
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3 Parts of Generalized Multilevel Models

1. Non-Normal > Link 3. Linear Predictor
Conditional < Fu.nction = of Fixed AND
Distribution of Y Random Effects

2. Link Function = g(-): How the conditional mean to be predicted is
transformed so that the model predicts an unbounded outcome instead

> Inverse link g~ ()= how to go back to conditional mean in Y scale
> Predicted outcomes (found via inverse link) will then stay within bounds

> e.g., binary outcome: conditional mean to be predicted is probability of
Y =1, so the model predicts a linked version (when inverse-linked, the
predicted outcome will stay between a probability of 0 and 1)

> e.g., count outcome: conditional mean is expected count, so the log of
the expected count is predicted so that the expected count stays > O

> e.g., for normal outcome: an “identity” link function (Y * 1) is used given
that the conditional mean to be predicted is already unbounded...
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3 Parts of Generalized Multilevel Models

1. Non-Normal > Link 3. Linear Predictor
Conditional < Fu.nction = of Fixed AND
Distribution of Y Random Effects

3. Linear Predictor: How the fixed AND random effects of predictors
combine additively to predict a link-transformed conditional mean

> This works the same as usual, except the linear predictor model
directly predicts the link-transformed conditional mean, which we
then convert (via inverse link) back into the original conditional mean

> That way we can still use the familiar “one-unit change” language to
describe effects of model predictors (on the linked conditional mean)

> You can think of this as "“model for the means” still, but it also includes
the level-2 random effects for dependency of level-1 observations

> Fixed effects are no longer determined: they now have to be found
through the ML algorithm, the same as the variance parameters

Lecture 4



Generalized Multilevel Models for
Non-Normal Longitudinal Data

- Topics:
> Clarifying distribution terminology
> 3 parts of a generalized (multilevel) model
> Models for binary outcomes
> Complications for generalized multilevel models
> A brief tour of other generalized models:

= Models for discrete count or continuous skewed outcomes
= Models for two-part discrete or continuous outcomes
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Normal GLM for Binary Outcomes!?

- Let's say we have a single binary (0 or 1) outcome...
(concepts for longitudinal data will proceed similarly)

> Expected mean is proportion of people who have a 1, so the
probability of having a 1 is the conditional mean we're
trying to predict for each person: p(y; = 1)

> General linear model: p(y; = 1) = B, + B.X; + B,Z; + e,

- [, = expected probability when all predictors are 0
= [B’s = expected change in p(y; = 1) for a one-unit A in predictor
- e; = difference between observed and predicted binary values

> Model becomes y, = (predicted probability of 1) + e,
> What could possibly go wrong?
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Normal GLM for Binary Outcomes!?

- Problem #1: A linear relationship between X and Y??7?

- Probability of a 1 is bounded between 0 and 1, but predicted
probabilities from a linear model aren’t going to be bounded

- Linear relationship needs to shut off > made nonlinear

We have this... But we need this...
1.40 1.40
1.20 . Pad 1.20
1.00 / 1.00
~ 0.80 e ~ 0.80 —r
L 0.60 L 0.60 pad
S 0.40 / S 0.40
% 0.20 % 0.20
0.00 /77‘;‘/ 0.00
-0.20 - -0.20
_0.40 I I I I I I I | | | '0.40 I I I I I I | | | |
1 23456 7 8 91011 1 23456 7 8 91011
X Predictor X Predictor
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Generalized Models for Binary Outcomes

- Solution to #1: Rather than predictin%r(yi = 1) directly, we must
transform it into an unbounded variable with a link function:

. Transform probability into an odds ratio: 2 = 2r°2Y=1
1-p  prob(y=0)

If p(y; = 1) = .7 then 0dds(1) = 2.33; 0dds(0) = 0.429
But odds scale is skewed, asymmetric, and ranges from 0 to +co - Not helpful

> Take natural log of odds ratio - called “logit” link: Log [1%9]

If p(y; = 1) =.7, then Logit(1) = 0.846; Logit(0) = —0.846
Logit scale is now symmetric about 0, range is £co 2 DING

2 1€ -
2. Probability |  Logit
A | 0.99 4.6
:*_? S 0.90 2.2 Can you guess
Q : ' would be on
O 0.10 —2.2  |the logit scale?
O s{=—"VvV Vv Vv v

Logit Scale
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Solution #1: Probability into Logits

- A Logit link is a nonlinear transformation of probability:
> Equal intervals in logits are NOT equal intervals of probability
> The logit goes from +oo and is symmetric about prob = .5 (logit = 0)

> Now we can use a linear model - The model will be linear with respect to
the predicted logit, which translates into a nonlinear prediction with respect to
probability > the conditional mean outcome shuts off at 0 or 1 as needed

P

o 0.05 0.12 0.27 0.50 0.73 D88 0.95
Probability: T - Zero-point on
p(yi=1) each scale:
Odds: |-2-

— ll—p] Prob = .5
Logit Odds = 1
(log odds): Logit =0
L L 1 I J: i o

08 ll—p —4 -3 -3 -1 0 1 2 3 4
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Normal GLM for Binary Outcomes!?

General linear model: p(y; = 1) = B, + B, X, + B,Z; + e,

If y, is binary, then e; can only be 2 things: e; =y; — ¥
> Ify; = 0 then e, = (0 - predicted probability)
> Ify; =1 then e,= (1 — predicted probability)

Problem #2a: So the residuals can’'t be normally distributed

Problem #2b: The residual variance can’t be constant over X as
in GLM because the mean and variance are dependent

> Variance of binary variable: Var(y,) = p * (1 — p)

Mean and Variance of a Binary Variable

no
0
NN
)

(op

Mean (p) 0 1 . . : . . 8 9 1.0
Variance -0 09 16 21 24 2 24 21 16 .09 0
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Solution to #2: Bernoulli Distribution

- Rather than using a normal conditional distribution for the
outcome, we will use a Bernoulli conditional distribution - a
special case of a binomial distribution for only one binary outcome

Univariate Normal PDF; T ieo, om02—|
) = ., H=0, 0= 10— 1
| 2" |parameters b one—| ]
1 yi y| o] ]
f(y;))=——="exp| —=* oMl | |
2no, 2 ._CE’ .
- )
=
¥
Bernoulli Distribution PDF — — ; - - — - -
. p: Only 1
. parameter
Bernoulli PDF: :
" =p(1)if1,
i 1-y; 1
fyi)=(p)" (1-p;) | p(0)ifO
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Predicted Binary Outcomes

: =1 i
- Logit: Log Lf;ym:n] =B, + B.X;+B,Z; <«<—g() link

> Predictor effects are linear and additive like in GLM,
but B = change in logit per one-unit change in predictor

. - p(yi=1) - _ * *
- Odds: Tp=D| exp(B,) * (B X)) * (B,Z;)

pyi=1) | _
or sy exp(B, + B X; + B.Z;)

- (B,+B,X+B,Z) -
- Probability: p(y; = 1) = 12?;1)(‘;; TB.X46.2) <8 1()
Corr inverse
or  py=1= 1 linkd

B 1+eXp[_1(Bo+B1Xi+BZZi)]
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“Logistic Regression” for Binary Data

- This model is sometimes expressed by calling the logit(y;) a
underlying continuous (“latent”) response of y;" instead:

threshold = 8, * —1 is given
in Mplus, not intercept

> Inwhichy; = 1if (y{ > threshold), ory; = 0 if (y; < threshold)

0.3

y; = threshold + your model + ¢;

| Logistic —

. p . . 2o .

| Distributions - . So if predicting y; instead,
: : : I
7

then e; ~ Logistic(0, 062 = 3.29)

L1 | I

9 MCO UQD o
w »w »w »

B = W D

0.2 - S R gt -

=
fl
ul\D
V)
I
p—t

Logistic Distribution:

2

. Tt
Mean = y, Variance = ?52,

where s = scale factor that

allows for “over-dispersion”
(must be fixed to 1 in binary
outcomes for identification)

0.1

20
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Other Models for Binary Data

- The idea that a “latent” continuous variable underlies an observed
binary response also appears in a Probit Regression model:

> A probit link, such that now your model predicts a different transformed Y.
Probit(y; = 1) = @ [p(y; = 1)] = your model

= Where & = standard normal cumulative distribution function, so the transformed
y; Is the z-score that corresponds to the value of standard normal curve below
which conditional mean probability is found (requires integration to inverse link)

> Same Bernoulli distribution for the conditional binary outcomes, in which
residual variance cannot be separately estimated (so no e; in the model)

= Probit also predicts “latent” response: y;° = threshold + your model + ¢;

2
= But Probit says e; ~ Normal(0, 62 = 1.00), whereas Logit 62 = ﬂ? = 3.29

> So given this difference in variance, probit estimates are on a different scale
than logit estimates, and so their estimates won't match... however...
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Probit vs. Logit: Should you care! Pry not.

%
Transformed y; (y;) “1Rescale to equate
.50 . .
. model coefficients:
__ v Probit 67 = 1.00 g o
5 .40 (SD=1)\A f;_; logit
0.35 Z . |Bprobit ¥ 1.7
2 oo Logit >
E I:S 0'% — 3.29 E 1 == ’LD?gti)si;[icwith’l.'f
8 .. (SD=1.8) E
o o . C
2 o y O ol You'd think it would
0.05 A be 1.8 to rescale,
0.00 = - s | but it's actually 1.7...
\ | | | | T

4 £ 0 2 4

Transformed y; (y;)
- Other fun facts about probit:

> Probit = “ogive” in the Item Response Theory (IRT) world

> Probit has no odds ratios (because it's not based on odds)

- Both logit and probit assume symmetry of the probability
curve, but there are other asymmetric options as well...

Lecture 4
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Generalized Multilevel Models for
Non-Normal Longitudinal Data

- Topics:
> Clarifying distribution terminology
> 3 parts of a generalized (multilevel) model
> Models for binary outcomes
> Complications for generalized multilevel models
> A brief tour of other generalized models:

= Models for discrete count or continuous skewed outcomes
= Models for two-part discrete or continuous outcomes

Lecture 4
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From Single-Level to Multilevel...

- Multilevel generalized models have the same 3 parts as
single-level generalized models:

> Alternative conditional distribution for the outcome (e.g., Bernoulli)
> Link function to transform bounded conditional mean into unbounded

> Linear model that directly predicts the linked conditional mean instead

- But in adding random effects (i.e., additional piles of variance)
to address dependency in longitudinal data:

> Piles of variance will appear to be ADDED TO, not EXTRACTED FROM,
the original residual variance when fixed to a known value (e.g., 3.29),
which causes all coefficients to change scale across models

> ML estimation is way more difficult because normal random effects +
not-normal residuals does not have a known distribution like MVN

> No such thing as REML for generalized multilevel models with true ML
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New Interpretation of Fixed Effects

- In general linear mixed models, the fixed effects are
interpreted as the “average” effect for the sample

> Yoo IS "sample average” intercept

> Uy Is “individual deviation from sample average”

- What "average” means in generalized linear mixed models is
different, because of the use of nonlinear link functions:

> e.g., the mean of the logs # log of the means

> Therefore, the fixed effects are not the “sample average” effect, they
are the effect for specifically for U, = 0
So fixed effects are conditional on the random effects
= This gets called a “unit-specific” or “subject-specific’ model
« This distinction does not exist when using a normal conditional distribution
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Comparing Results across Models

- NEW RULE: Coefficients cannot be compared directly across
models, because they are not on the same scale! (Bauer, 2009)

- e.g., if residual variance = 3.29 in binary models:

> When adding a random intercept variance to an empty model, the
total variation in the outcome has increased - the fixed effects will
increase in size because they are unstandardized slopes

\/rﬁo *329 o
Y mixed ~ 329 fixed

> Level-1 predictors cannot decrease the level-1 variance like usual,
so all other model estimates have to increase to compensate

If X;; is uncorrelated with other X’s and is a pure level-1 variable (ICC = 0),
then fixed and SD(U,;) will increase by same factor

> Random effects variances can decrease, though, so level-2 effects
should be on the same scale across models if level-1 model is the same
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A Little Bit about Estimation

+ Goal: End up with maximum likelihood estimates for all model
parameters (because they are consistent and most efficient)

> When we have a conditional normal distribution (i.e., V matrix based on
MVN e level-1 residuals and MVN U, level-2 random effects), ML is
relatively easy because we don’t need to know the U; values: the
marginal log-likelihood does not include them

> When we have a non-normal conditional distribution (i.e., binary
outcomes are Bernoulli after conditioning on the MVN U level-2
random effects) ML is much harder because we do need the U; values in
creating linear predictor outcomes and a log-likelihood for each person

- 3 main families of estimation approaches:
> Quasi-Likelihood methods (“marginal/penalized quasi ML")
> Numerical Integration (“adaptive Gaussian quadrature”)

> Also Bayesian methods (MCMC, newly available in SAS or Mplus)
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Quasi-Likelihood Estimation

- Older methods, also known as “pseudo-likelihood”
> Predict link-transformed conditional mean using a general MLM
> "Marginal QL" = linear approximation using fixed part of model
> "Penalized QL" = linear approximation using fixed + random
> Come in ML and REML variants (MSPL and RSPL in SAS GLIMMIX)
> Are the DEFAULT in SAS GLIMMIX and only option in SPSS!

- Why not use them?

> Provide too small random effects variances (2nd-order PQL is
supposed to be better than 1st-order MQL in this regard)

> THEY DO NOT PERMIT MODEL -2ALL TESTS

« Modern software may also add a Laplace approximation to QL, which
then does permit —2ALL tests (also in SAS GLIMMIX and STATA melogit)
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Marginal Maximum Likelihood Estimation

- M

>
>

>

Lecture 4

L via Numeric(al) Integration - gold standard

Synonyms: (adaptive) Gaussian quadrature
Provides much better estimates and valid —2ALL tests (ML flavor only)

Can take forever or not converge at all in models with many random effects;
not available for models with crossed random effects

“Laplace” approximation can be used, which is equivalent to 1 integration point (??7?)
Start values can help speed estimation (i.e., from QL methods)

Relies on assumptions of local independence, like usual - all level-1
dependency has been modeled; level-2 units are independent

So no such thing as an R matrix structure possible, so any differences in

variance or additional sources of covariance must be specified in G
Using _RESIDUAL_ option in SAS GLIMMIX RANDOM statements triggers QL
Also no V matrix, so it can be hard to discern the predicted variance pattern

Multivariate outcomes can have different links and distributions in SAS
GLIMMIX using LINK=BYOBS and DIST=BYOBS (Save new variables called

“link” and “dist” to your data to tell GLIMMIX what to use for each)
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ML via Numeric(al) Integration

- Step 1: Select starting values for all fixed effects
- Step 2: Compute the likelihood of each observation given by the
current parameter values using chosen distribution of residuals

> Model gives link-predicted outcome given parameter estimates, but the U’s
themselves are not parameters—their variances and covariances are instead

> But so long as we can assume the U's are MVN, we can still proceed...

> Computing the likelihood for each set of possible parameters requires removing
the contribution of the individual U values from the model equation—by
integrating across possible U values for each level-2 unit

> Integration is accomplished by “Gaussian Quadrature” - summing up rectangles
that approximate the integral (area under the curve) for each level-2 unit

- Step 3: Decide if you have the right answers, which occurs when the
log-likelihood changes very little across iterations (i.e., it converges)

- Step 4: If you aren’t converged, choose new parameters values

> Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (U’s =missing data)
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ML via Numerical Integration

- More on Step 2: Divide the U distribution into rectangles
> = "Gaussian Quadrature” (# rectangles = # "quadrature points”)

> First divide the whole U distribution into rectangles, then repeat by
taking the most likely section for each level-2 unit and rectangling that

= This is "adaptive quadrature” and is computationally more demanding, but
gives more accurate results with fewer rectangles (SAS will pick how many)

The likelihood of each level-2 unit's
outcomes at each U rectangle is then
weighted by that rectangle’s
probability of being observed (from
the multivariate normal distribution).
The weighted likelihoods are then
summed across all rectangles...

»- Z 7] ° . . "
3 22 0 , 2 3 - ta da! “"numerical integration

= <
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Example of Numeric Integration: Binary DV,
Fixed Linear Time, Random Intercept Model

1. Start with values for fixed effects: intercept: y,, = 0.5, time: y,, = 1.5,

2. Compute likelihood for real data based on fixed effects and plausible U,
(-2,0,2) using model: Logit(y;=1) = Yo + Y1o(time,) + Uy

Here for one person at two occasions with y,;=1 at both occasions

IFy;=1 IFy;=0 Likelihood Theta Theta Product
Ugi=-2 Logit(ys) Prob 1-Prob if bothy=1 prob width per Theta
Time0O 05+1.5(0)-2 -1.5 0.18 0.82 0.091213 0.05 2 0.00912
Timel 0.5+1.5(1)-2 0.0 0.50 0.50
Usi=0 Logit(ys) Prob 1-Prob
TimeO 0.5+1.5(0)+0 0.5 0.62 0.38 0.54826 0.40 2 0.43861
Timel O05+1.5(1)+0 2.0 0.88 0.12
Upi=2 Logit(ys;) Prob 1-Prob
Time0O 0.5+1.50)+2 25 0.92 0.08 0.90752 0.05 2 0.09075
Timel 05+15(1)+2 4.0 0.98 0.02
Overall Likelihood (Sum of Products over All Thetas): 0.53848

(do this for each occasion, then multiply this whole thing over all people)
(repeat with new values of fixed effects until find highest overall likelihood)
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Summary: Complications of
Generalized Multilevel Models

- Analyze link-transformed conditional mean (e.g., via logit, log, log-log...)
> Linear relationship between X's and transformed conditional mean outcome

> Nonlinear relationship between X's and original conditional mean outcome

Conditional outcomes then follow some non-normal distribution

- In models for binary (or categorical) data, level-1 residual variance is fixed and
varies with the conditional mean (smaller at bounds)

> So it can’t go decrease after being explained by level-1 predictors, which means that
the scale of all model parameters has to go UP to compensate

> Scale of model will also be different after adding random effects for the same
reason—the total variation in the model is now bigger

> Fixed effects may not be comparable across models as a result

- Estimation is trickier, takes longer, and true ML does not come in REML flavor
> Numerical integration is best but may blow up in complex models
> Start values are often essential (can get those with pseudo-likelihood estimators)
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Generalized Multilevel Models for
Non-Normal Longitudinal Data

- Topics:
> Clarifying distribution terminology
> 3 parts of a generalized (multilevel) model
> Models for binary outcomes
> Complications for generalized multilevel models
> A brief tour of other generalized models:

= Models for discrete count or continuous skewed outcomes
« Models for two-part discrete or continuous outcomes
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A Taxonomy of Not-Normal Outcomes

- “Discrete” outcomes—all responses are whole numbers

> Categorical variables in which values are labels, not amounts
« Binomial (2 options) or multinomial (3+ options) distributions
» Question: Are the values ordered = which link?
> Count of things that happened, so values < 0 cannot exist
= Sample space goes from 0 to +oo
= Poisson or Negative Binomial distributions (usually)

« Log link (usually) so predicted outcomes can’t go below 0
= Question: Are there extra 0 values? What to do about them?

- “Continuous” outcomes—responses can be any number
> Question: What does the residual distribution look like?

= Normal-ish? Skewed? Cut off? Mixture of different distributions?
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A Revised Taxonomy

- Rather than just separating into discrete vs. continuous, think
about models based on their shape AND kinds of data they fit

> Note: You can use continuous models for discrete data (that only have
integers), but not discrete models for continuous data (non-integers)

1. Skewed-looking distributions
> Discrete: Poisson, Generalized Poisson, Negative Binomial (NB)

> Continuous: Log-Normal, Beta, Gamma

2. Skewed with a pile of 0's: Becomes If 0 and How Much
> These models will differ in how they define the “If 0" part
> Discrete: Zero-Inflated Poisson or NB, Hurdle Poisson or NB

> Continuous: "Two-Part” (with normal or lognormal for how much part)
Better: Gamma for the how much part because it only includes values > 0
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Models for Count Outcomes

- Counts: non-negative integer unbounded responses
> e.g., how many cigarettes did you smoke this week?
> Traditionally uses natural log link so that predicted outcomes stay > 0

- g(¢) Log[E(y;)] = Log(u;) = model - predicts mean of y;
- g7 1(e) E(y;) = exp(model) = to un-log it, use exp(model)

> e.g., if Log(y;) = model provides predicted Log(y;) = 1.098,
that translates to an actual predicted count of exp(1.098) = 3

> e.g., if Log(y;) = model provides predicted Log(y;) = =5,
that translates to an actual predicted count of exp(—5) = 0.006738

- So that's how linear model predicts y;, the conditional mean
for y.,, but what about the conditional (residual) variance?

Lecture 4
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Poisson Conditional Distribution

- Poisson distribution has one parameter, A4, which is both its
mean and its variance (so 4 = mean = variance in Poisson)

- f(yilA) = Prob(y; =

« PDF: Prob(y; =

0.40

0.35}
0.30}
0.25}
0.20}
0.15}
0.10}
0.05}

=)

P(y¢i

0.00
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_ AVxexp(-2)

y|Bo, B1, B2) =

T

y! is factorial of y

The dots indicate that only
integer values are observed.

Distributions with a small
expected value (mean or 1) are
predicted to have a lot of O’s.

Once A > 6 or so, the shape of
the distribution is close to a that
of a normal distribution.
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3 potential problems for Poisson...

The standard Poisson distribution is rarely sufficient, though

Problem #1: When mean # variance
> If variance < mean, this leads to “under-dispersion” (not that likely)
> If variance > mean, this leads to “"over-dispersion” (happens frequently)

Problem #2: When there are no 0 values

> Some 0 values are expected from count models, but in some contexts
y; > 0 always (but subtracting 1 won't fix it; need to adjust the model)

Problem #3: When there are too many 0 values

> Some 0 values are expected from the Poisson and Negative Binomial models
already, but many times there are even more 0 values observed than that

> To fix it, there are two main options, depending on what you do to the 0’s

Each of these problems requires a model adjustment to fix it...
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Problem #1:Variance > mean = over-dispersion

- To fix it, we must add another parameter that allows the variance to
exceed the mean... becomes a Negative Binomial distribution

> Says residuals are a mixture of Poisson and gamma distributions,
such that A itself is a random variable with a gamma distribution

> So expected mean is still given by A, but the variance will differ from Poisson

+ Model: Log[E(y;)] = Log(1;) = Bo + B1X; + B2Z; + ¢’
- Negative Binomial PDF with a new k dispersion parameter is how:

r(y+;) (k)Y | DIST = NEGBIN in SAS;
P b ;= ) ) = k 1 - /
> Prob(y; = y|Bo, B1, B2) F(y+1)*[‘(%) * (1+kui)3’+% MENBREG in STATA

> k is dispersion, such that Var(y;) = y; + kp? So = Poisson if k = 0
> Can test whether k > 0 via -2LL test, although LL for k = 0 is undefined

- An alternative model with the same idea is the generalized Poisson:

> Mean: i—k Variance: ——, that way LL is defined for k = 0 | GPOISSON

| - | | | in STATA
> Isin SAS FMM (and in GLIMMIX via user-defined functions)
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Negative Binomial (NB) =“Stretchy” Poisson...

Percent of Observations

0.20

0.15

[\

Poisson and Negative Binomial ——"Ppoisson"

Distribution by Mean and

Dispersion Parameters

0.00 T L L L L L L L L L L L L L

10 15 20 25
Original Count Variable

30

Mean=5, k=0,
Variance=5

_IINBIl
Mean=5, k=0.25,
Variance=11.25

"Poisson"
Mean=10,k =0,
Variance=10

_uNB"
Mean=10,k =0.25,
Variance =35

Mean =1
Dispersion = k&

Var(y;) = A + ka?

A Negative Binomial
model can be useful
for count outcomes
with extra skewness,
but that otherwise
follow a Poisson
conditional
distribution.

- Because its k dispersion parameter is fixed to 0, the Poisson model is
nested within the Negative Binomial model—to test improvement in fit:

+ Is —=2(LLpoisson — LLnegpin) > 3.84 for df = 1? Thenp < .05, keep NB

Lecture 4

40



Problem #2:There are no 0 values

- "Zero-Altered" or “"Zero-Truncated” Poisson or Negative
Binomial: ZAP/ZANB or ZTP/ZTNB (used in hurdle models)

> Is usual count distribution, just not allowing any 0 values

> Single-level models are in SAS PROC FMM using DIST=TRUNCPOISSON
for ZTP or DIST=TRUNCNEGBIN for ZTNB

> Single-level TPOISSON (for ZTP) and TNBREG (for ZTNB) in STATA
> Multivariate versions could be fitted in SAS NLMIXED or Mplus, too

[ rexp(— )

« Poisson PDF was: Prob(y; =y|u;) = - y!

- Zero-Truncated Poisson PDF is:

u xexp(—p;)

[1-exp(—py)]

> Prob(y; = 0) = exp(—;), so Prob(y; > 0) = 1 — exp(—p;)

> Divides by probability of non-0 outcomes so probability still sums to 1

> Prob(y; = y|uy; > 0) = ;

Lecture 4
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Modeling Not-Normal Outcomes

- Previously we examined models for skewed distributions
> Discrete: Poisson, Generalized Poisson, Negative Binomial (NB)

> See also for continuous: Log-Normal, Gamma, Beta

- Now we will see additions to these models when the outcome
also has a pile of 0's: Model becomes If 0 and How Much

> These models will differ in how they define the “If 0" part

> Discrete = Zero-Inflated: Poisson, Generalized Poisson, or NB;
Hurdle: Poisson, Generalized Poisson, or NB

> Continuous = Two-Part (with normal, lognormal, gamma for how much)

> Many of these can be estimated directly in Mplus or SAS GLIMMIX,
but some will need to be programmed in SAS GLIMMIX or NLMIXED

> More options for single-level data in SAS PROC FMM and in STATA
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Problem #3:Too many 0 values, Option #1|

- "Zero-Inflated” Poisson (DIST=ZIP) or NB(DIST=ZINB) in SAS
GENMOD or Mplus; ZIP/ZI Generalized Poisson (ZIGP) in STATA

> Distinguishes two kinds of 0 values: expected/structural and inflated
(“structural”) through a mixture of distributions (Bernoulli + Poisson/NB)

> Creates two submodels to predict “if extra 0" and “if not, how much”?

Does not readily map onto most hypotheses (in my opinion)
But a ZIP example would look like this... (ZINB would add k dispersion, too)

- Submodel 1: Logit[p(y; = extra 0)] = Bo; + B11X; + B21Z;
> Predict being an extra 0 using Link = Logit, Distribution = Bernoulli

> Don’t have to specify predictors for this part, can simply allow an intercept
(but need ZEROMODEL option to include predictors in SAS GENMOD)

» Submodel 2: Log[E(y;)] = Boz + B12Xi + B22Z;

> Predict rest of counts (including Q's) using Link = Log, Distribution = Poisson
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Example of Zero-Inflated Outcomes

e “Extra” 0’'s relative to . e
: i Poisson or Ned Bin Zero-inflated distributions
P rve S g have extra “structural
\ -— "
S |~€s5T 0 z° zeros" not expected from
° . . u
Y \ Poisson or NB (“stretched
\ . . N 1 4 e .
A o °\ Poisson”) distributions.
= -_—y A
< | o \ . .
S ;/ ‘e This can be tricky to
' o -"4-. f'\‘ . .
Z : -7 Ny estimate and interpret
5 ‘ [*] N
3 \ K . \ because the model
= . / s o; .o .
S —, e distinguishes between
\ N .
L - ‘N \ kinds of zeros rather than
o .
SN N zero or not...
S °~.\<o
o ~ “w
. B .\
\ .
SN Image borrowed
s g from Atkins &
0O— IS8~
o 8o=c-g rom Atkins
S | | | | | | Gallop, 2007
0 2 4 6 8 10
Steps taken toward divorce
Figure 1. Histogram of Marital Status Inventory with predicted probabilities from regressions.

NB = negative binomial; ZIP = zero-inflated Poisson; ZINB = zero-inflated negative binomial.

Lecture 4
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Problem #3:Too many 0 values, Option #1

- The Zero-Inflated models get put back together as follows:

> wj IS the predicted probability of being an extra 0, from:
exp|Logit[p(y; = extra 0)]]
1 + exp|Logit[p(y; = extra 0)]]

> W Is the predicted count for the rest of the distribution, from:
W = exp|Log(y;)]

W =

> ZIP: Mean (original y;) = (1 — i)ui

> ZIP: Variance(original y;) = y; + o wl) —L_f

> ZINB: Mean (original y;) = (1 — w;)y;

> ZINB: Variance(original y;) = y; + [(1 w) ] TH
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Problem #3:Too many 0 values, Option #2

“Hurdle” models for Poisson or Negative Binomial

> PH or NBH: Explicitly separates 0 from non-0 values through a mixture of
distributions (Bernoulli + Zero-Altered Poisson/NB)

> Creates two submodels to predict “if any 0” and “if not 0, how much”?
Easier to think about in terms of prediction (in my opinion)

Submodel 1: Logit[p(y; = 0)] = Bo1 + B11Xi + B21Zi
> Predict being any 0 using Link = Logit, Distribution = Bernoulli
> Don't have to specify predictors for this part, can simply allow it to exist

Submodel 2: Log[E(y;)|y; > 0] = Boz + B12X; + B22Z;
> Predict rest of positive counts using Link = Log, Distribution = ZAP/ZANB

These models are not readily available in SAS, but NBH is in Mplus
> Could be fit in SAS NLMIXED (as could ZIP/ZINB)
> Can also split DV into each submodel and estimate separately (in STATA)
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Two-Part Models for Continuous Outcomes

- A two-part model is an analog to hurdle models for zero-inflated count
outcomes (and could be used with count outcomes, too)

> Explicitly separates 0 from non-0 values through a mixture of distributions
(Bernoulli + Normal or LogNormal or Gamma)

> Creates two submodels to predict “if any not 0” and “if not 0, how much”?

Easier to think about in terms of prediction (in my opinion)

- Submodel 1: Loglt[p(yl > O)] = 601 + Bllxi + BZlZi
> Predict being any not 0 using Link = Logit, Distribution = Bernoulli

> Usually do specify predictors for this part

- Submodel 2: (yily; > 0) = Boz + B11Xi + B21Z;

> Predict rest of positive amount using Link = Identity, Distribution = Normal
or Log-Normal (often rest of distribution is skewed, so log works better)

- Two-part is in Mplus, but parts can be estimated separately in SAS/STATA
> Logit of 0/1 for “if part” + log-transformed DV for "how much” part
> |s related to “tobit” models for censored outcomes (for floor/ceiling effects)
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Log-Normal Distribution (Link=Ildentity)

6
o Log-N | Distribution b
0 -
g-Normal Distribution .y Mean=1, 5 /
Mean and SD Parameters in — > 4
SD=0.6 )
A Natural Log (LN) Scale 2, /
© ——Mean =1, 3 2 /
-t
SD=1.2 e
2 \ i
3 0'4 O LI LI T LI LI LI LI LI T LI T
e
o) Mean = 2, 0 4 8 12 16X-2§) 24 28 32 36
k2 /] SD=0.6
- 4 -y 140
g 02 ,
o — . 120 /
Q ——Mean = 2, g 100 /
— SD=1.2 Z 80
0.0 T T T T T T T T T T T T T 1 | | LI 1 LB 1 1 T 1 T 1 -8 60 /
0.00 161 220 256 283 304 322 3.37 % 40 /
. . . . o
Original (Bottom) and LN (Top) Continuous Variable £ ) /
1 5 10 13 17 21 25 29 0 MT LI LI T 1
0 4 8 12 16 20 24 28 32 36
X-1

- e;~LogNormal(0, 02) = log of residuals is normal
> |s same as log-transforming your outcome in this case...

> The log link keeps the predicted values positive, but slopes then
have an exponential (not linear) relation with original outcome
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- W

>

> Stretchy Count & Generalized Poisson or Negative Binomial

>

- W

>

Lecture 4

Pile of O’s Taxonomy

hat kind of amount do you want to predict?
Discrete: Count = Poisson

Continuous: Normal, Log-Normal, Gamma

hat kind of If 0 do you want to predict?

Discrete: Extra “structural” 0 beyond predicted by amount?
- Zero-inflated Poisson or Zero-inflated Negative Binomial

Discrete: Any 0 at all?
- Hurdle Poisson or Hurdle Negative Binomial

Continuous: Any 0O at all?
- Two-Part with Continuous Amount (see above)

Note: Given the same amount distribution, these alternative
ways of predicting 0 will result in the same empty model fit
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Generalized MLM: Summary

- There are many options for “amount” variables whose
residuals may not be normally distributed

> Discrete: Poisson, Negative Binomial
> Continuous: Lognormal, Gamma, Beta
> Too many 0’s: Zero-inflated or hurdle for discrete; two-part

- Multivariate and multilevel versions of all the generalized
models we covered can be estimated...

> But it's harder to do and takes longer due to numeric integration
(trying on all combinations of random effects at each iteration)

> But there are fewer ready-made options for modeling differential
variance/covariance across DVs (fewer R matrix structures in true ML)

« Program documentation will always be your friend to
determine exactly what a given model is doing!
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