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• Topics:
 The Big Picture
 ACS models using the R matrix only
 Introducing the G, Z, and V matrices
 ACS models combining the G and R matrices



Modeling Change vs. Fluctuation

Model for the Means:
• WP Change   describe pattern of average change (over “time”)
• WP Fluctuation *may* not need anything (if no systematic change)

Model for the Variances:
• WP Change   describe individual differences in change (random effects)

 this allows variances and covariances to differ over time
• WP Fluctuation describe pattern of variances and covariances over time
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Time

Pure WP Change

Time

Pure WP FluctuationOur focus 
right now



Big Picture Framework: Models for 
the Variance in Longitudinal Data
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NAME ...THAT … 
STRUCTURE!

Most useful 
model: likely 
somewhere 
in between!

Univariate
RM ANOVA

Multivariate 
RM ANOVA

What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available 
within MLM, including random effects models (for change) 
and alternative covariance structure models (for fluctuation).
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Alternative Covariance Structure Models
• Useful in predicting patterns of variance and covariance that 

arise from fluctuation in the outcome over time:
 Variances: Same (homogeneous) or different (heterogeneous)?
 Covariances: Same or different? If different, what is the pattern?

 Models with heterogeneous variances predict correlation instead of covariance
 Often don’t need any fixed effects for systematic effects of time in the 

model for the means (although this is always an empirical question)

• Limitations for most of the ACS models:
 Require equal-interval occasions (they are based on idea of “time lag”)
 Require balanced time across persons (no intermediate time values)
 But do not require complete data (unlike when CS and UN are 

estimated via least squares in ANOVA instead of ML/REML in MLM)

• ACS models do require some new terminology to introduce…
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Likelihood-Based Model Comparisons
• Relative model fit is indexed by a “deviance” statistic  −2LL

 −2LL indicates BADNESS of fit, so smaller values = better models

• Nested models are compared using their deviance values: −2∆LL Test 
(i.e., Likelihood Ratio Test, Deviance Difference Test)

1. Calculate −2∆LL:   (−2LLfewer)  – (−2LLmore)

2. Calculate  ∆df:  (# Parmsmore)  – (# Parmsfewer)

3. Compare −2∆LL to χ2 distribution with df = ∆df
CHIDIST in excel will give exact p-values for the difference test; so will STATA

• Nested or non-nested models can also be compared by Information 
Criteria that reflect −2LL AND # parameters used and/or sample size
 AIC = Akaike IC     = −2LL +        2 *(#parameters)

 BIC = Bayesian IC  = −2LL + log(N)*(#parameters)  penalty for complexity

 No significance tests or critical values, just “smaller is better”
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1. & 2. must be 
positive values!



Two Families of ACS Models
• So far, we’ve referred to the variance and covariance matrix of the 

longitudinal outcomes as the R matrix
 We now refer to these as “R-only models” (use REPEATED statement only)
 Although the R matrix is actually specified per individual, ACS models 

usually assume the same R matrix for everyone
 R matrix is symmetric with dimensions n x n, in which n = # occasions per 

person (although people can have missing data, the same set of possible
occasions is required across people to use most R-only models)

• 3 other matrices we’ll see in “G and R combined” ACS models:
 G = matrix of random effects variances and covariances (stay tuned)
 Z = matrix of values for predictors that have random effects (stay tuned)
 V = symmetric n x n matrix of total variance and covariance over time

 If the model includes random effects, then G and Z get combined with R to make V
as ܄ ൌ ୘܈۵܈ ൅ ܀ (accomplished by adding the RANDOM statement)

 If the model does NOT include random effects in G, then ܄ ൌ so, R-only …܀
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Review:  Covariances and Correlations

• Given the standard deviation (as Variance) at each occasion, either the 
correlation and covariance can be calculated given the other

• ACS models with homogeneous variances tend to be specified in terms of 
variance and covariance
 Given same variance over time, same covariance  same correlation

• ACS models with heterogeneous variance tend to be specified in terms of 
variance and correlation
 Different variances over time  different covariances over time, even if the 

correlation is the same (so only correlation is estimated directly)
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R-Only ACS Models
• The R-only models to be presented next are all specified using the 

REPEATED statement only (no RANDOM statement)

• They are explained by showing their predicted R matrix, which 
provides the total variances and covariances across occasions
 Total variance per occasion on diagonal
 Total covariances across occasions on off-diagonals
 I’ve included in “ “ the labels SAS uses for each parameter

• Correlations across occasions can be calculated given variances and 
covariances, which would be shown in the RCORR matrix (available 
in SAS PROC MIXED)
 1’s on diagonal (standardized variables), correlations on off-diagonal

• Unstructured (TYPE=UN) will always fit best by −2LL
 All ACS models are nested within Unstructured (UN = the data)
 Goal: find an ACS model that is simpler but not worse fitting than UN
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R-Only ACS Models: CS/CSH
• Compound Symmetry: TYPE=CS

 2 parameters: 
 1 “residual” variance ો܍૛

 1 “CS” covariance 
across occasions

 Constant total variance: CS ൅ σୣଶ

 Constant total covariance: CS

• Compound Symmetry Heterogeneous: TYPE=CSH
 n+1 parameters: 

 n separate “Var(n)”
total variances ો࢔܂૛

 1 “CSH” total correlation
across occasions

 Separate total variances are estimated directly
 Still constant total correlation: CSH (but has non-constant covariances) 
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R-Only ACS Models:  AR1/ARH1
• 1st Order Auto-Regressive: TYPE=AR(1)

 2 parameters: 
 1 constant total variance 
ો܂૛ (mislabeled “residual”)

 1 “AR1” total auto-correlation rT
across occasions

 r୘ଵ is lag-1 correlation, r୘ଶ is lag-2 correlation, r୘ଷ is lag-3 correlation…. 

• 1st Order Auto-Regressive Heterogeneous: TYPE=ARH(1)
 n+1 parameters: 

 n separate “Var(n)”
total variances ો࢔܂૛

 1 “ARH1” total auto-
correlation rT across occasions

 r୘ଵ is lag-1 correlation, r୘ଶ is lag-2 correlation, r୘ଷ is lag-3 correlation…. 
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R-Only ACS Models:  TOEPn/TOEPHn
• Toeplitz(n): TYPE=TOEP(n)

 n parameters: 
 1 constant total variance 
ો܂૛ (mislabeled “residual”)

 n−1 “TOEP(lag)” cTn banded
total covariances across occasions

 c୘ଵ	is lag-1 covariance, c୘ଶ is lag-2 covariance, c୘ଷ	is lag-3 covariance…. 

• Toeplitz Heterogeneous(n): TYPE=TOEPH(n)
 n + (n−1) parameters: 

 n separate “Var(n)”
total variances ો࢔܂૛

 n−1 “TOEPH(lag)” rTn
banded total correlations 
across occasions

 r୘ଵis lag-1 correlation, r୘ଶ is lag-2 correlation, r୘ଷ is lag-3 correlation…. 
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Comparing R-only ACS Models
• Baseline models: CS =simplest, UN = most complex

 Relative to CS, more complex models fit “better” or “not better”
 Relative to UN, less complex models fit “worse” or “not worse”

• Other rules of nesting and model comparisons:
 Homogeneous variance models are nested within heterogeneous 

variance models (e.g., CS in CSH, AR1 in ARH1, TOEP in TOEPH)
 CS and AR1 are each nested within TOEP (i.e., TOEP can become 

CS or AR1 through restrictions of its covariance patterns)
 CS and AR1 are not nested (because both have 2 parameters)
 R-only models differ in unbounded parameters, so can be compared 

using regular −2∆LL tests (instead of mixture −2∆LL tests)
 Good idea to start by assuming heterogeneous variances until you settle 

on the covariance pattern, then test if het. var. are still necessary
 When in doubt, just compare AIC and BIC (useful even with −2∆LL tests) 
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The Other Family of ACS Models
• R-only models directly predict the total variance and covariance
• G and R models indirectly predict the total variance and covariance 

through between-person (BP) and within-person (WP) sources of 
variance and covariance  So, for this model: yti = β0 + U0i + eti

 BP = G matrix of level-2 random effect (U0i) variances and covariances
 Which effects get to be random (whose variance and covariances are then 

included in G) is specified using the RANDOM statement (always TYPE=UN)
 Our ACS models have a random intercept only, so G is 1x1 scalar of ሾૌ܃૛૙ሿ

 WP = R matrix of level-1 (eti) residual variances and covariances 
 The n x n R matrix of residual variances and covariances that remain after 

controlling for random intercept variance is then modeled with REPEATED
 Total = V = n x n matrix of total variance and covariance over time that 

results from putting G and R together: ܄ ൌ ୘܈۵܈ ൅ ܀
 Z is a matrix that holds the values of predictors with random effects, 

but Z will be an n x 1 column of 1’s for now (random intercept only)
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A “Random Intercept” (G and R) Model
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CS as a “Random Intercept” Model
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RI and DIAG: Total predicted data matrix is called V matrix, created 
from the G [TYPE=UN] and R [TYPE=VC] matrices as follows:
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Does the end result V look 
familiar? It should: CS = ૌ܃૛૙

So if the R-only CS model 
(the simplest baseline) can be 
specified equivalently using 
G and R, can we do the same 
for the R-only UN model
(the most complex baseline)?

Absolutely! ...with one small catch 

Z represents 
n per person



UN via a “Random Intercept” Model
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RI and UNn−1: Total predicted data matrix is called V matrix, created 
from the G [TYPE=UN] and R [TYPE=UN(n−1)] matrices as follows:

This RI and UNn−1 model is equivalent to (makes same predictions as) 
the R-only UN model. But it shows the residual (not total) covariances.

Because we can’t estimate all possible variances and covariances in the R
matrix and also estimate the random intercept variance τ୙ଶ ଴ in the G matrix, 
we have to eliminate the last R matrix covariance by setting it to 0. 

Accordingly, in the RI and UNn−1 model, the random intercept variance 
τ୙ଶ ଴ takes on the value of the covariance for the first and last occasions. 



Rationale for G and R ACS models
• Modeling WP fluctuation traditionally involves using R only (no G) 
 Total BP + WP variance described by just R matrix (so R=V) 
 Correlations would still be expected even at distant time lags because of 

constant individual differences (i.e., the BP random intercept)

 Resulting R-only model may require lots of estimated parameters as a result
e.g., 8 time points? Pry need a 7-lag Toeplitz(8) model

• Why not take out the primary reason for the covariance across 
occasions (the random intercept variance) and see what’s left?
 Random intercept variance ૌ܃૛૙in G control for person mean differences

 THEN predict just the residual variance/covariance in R, not the total

 Resulting model may be more parsimonious (e.g., maybe only lag1 or lag2 
occasions are still related after removing ૌ܃૛૙ as a source of covariance)

 Has the advantage of still distinguishing BP from WP variance 
(useful for descriptive purposes and for calculating effect sizes later)
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Random Intercept + Diagonal R Models
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RI and DIAG: V is created from G [TYPE=UN] and R [TYPE=VC]:
homogeneous residual variances; no residual covariances

RI and DIAGH: V is created from G [TYPE=UN] and R [TYPE=UN(1)]:
heterogeneous residual variances; no residual covariances
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Same fit as 
R-only CS

NOT same fit 
as R-only CSH



Random Intercept + AR1 R Models
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RI and AR1: V is created from G [TYPE=UN] and R [TYPE=AR(1)]:
homogeneous residual variances; auto-regressive lagged residual covariances

RI and ARH1: V is created from G [TYPE=UN] and R [TYPE=ARH(1)]:
heterogeneous residual variances; auto-regressive lagged residual covariances
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Random Intercept + TOEPn−1 R Models
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RI and TOEPn−1: V is created from G [TYPE=UN] and R [TYPE=TOEP(n−1)]: 
homogeneous residual variances; banded residual covariances

RI and TOEPHn−1: V is created from G [TYPE=UN] and R [TYPE=TOEPH(n−1)]: 
homogeneous residual variances; banded residual covariances
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Random Intercept + TOEP2 R Models
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RI and TOEP2: V is created from G [TYPE=UN] and R [TYPE=TOEP(2)]: 
homogeneous residual variances; banded residual covariance at lag1 only

RI and TOEPH1: V is created from G [TYPE=UN] and R [TYPE=TOEPH(2)]: 
homogeneous residual variances; banded residual covariance at lag1 only
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Map of R-only and G and RACS Models
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Stuff to Watch Out For…
• If using a random intercept, don’t forget to drop 1 parameter in: 

 n-1 order UN R: Can’t get all possible elements in R, plus τ୙ଶ ଴ in G
 TOEPn−1: Have to eliminate last lag covariance

• If using a random intercept…
 Can’t do RI + CS R: Can’t get a constant in R, and then another constant in G
 Can often test if random intercept helps (e.g., AR1 is nested within RI + AR1)

• If “time” is treated as continuous in the fixed effects, you will need another 
variable for time that is categorical to use in the syntax:
 “Continuous Time”  on MODEL statement 
 “Categorical Time”  on CLASS and REPEATED statements

• Most alternative covariance structure models assume time is balanced 
across persons with equal intervals across occasions
 If not, holding correlations of same lag equal doesn’t make sense
 Other structures can be used for unbalanced time 

 SP(POW)(time) = AR1 for unbalanced time (see SAS REPEATED statement for others)
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Summary: Two Families of ACS Models
• R-only models:

 Specify R model on REPEATED statement without any random effects 
variances in G (so no RANDOM statement is used)

 Include UN, CS, CSH, AR1, AR1H, TOEPn, TOEPHn (among others)

 Total variance and total covariance kept in R, so R = V

 Other than CS, does not partition total variance into BP vs. WP

• G and R combined models (so G and R V):
 Specify random intercept variance τ୙ଶ ଴ in G using RANDOM statement, 

then specify R model using REPEATED statement

 G matrix = Level-2 BP variance and covariance due to U଴୧, so 
R = Level-1 WP variance and covariance of the eti residuals

 R models what’s left after accounting for mean differences between 
persons (via the random intercept variance τ୙ଶ ଴ in G)
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Syntax for Models for the Variance
• Does your model include random intercept variance ૌ܃૛૙	(for U0i) ? 

 Use the RANDOM statement  G matrix

 Random intercept models BP interindividual differences in mean Y

• What about residual variance ો܍૛	(for eti) ?
 Use the REPEATED statement  R matrix

 WITHOUT a RANDOM statement: R is BP and WP variance together = ો܂૛	
 Total variances and covariances (to model all variation, so R = V)

 WITH a RANDOM statement: R is WP variance only = ો܍૛
 Residual variances and covariances to model WP intraindividual variation
 G and R put back together = V matrix of total variances and covariances

• The REPEATED statement is always there implicitly… 
 Any model always has at least one residual variance in R matrix

• But the RANDOM statement is only there if you write it
 G matrix isn’t always necessary (don’t always need random intercept)
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Wrapping Up:  ACS Models
• Even if you just expect fluctuation over time rather than 

change, you still should be concerned about accurately 
predicting the variances and covariances across occasions

• Baseline models (from ANOVA least squares) are CS & UN:
 Compound Symmetry: Equal variance and covariance over time

 Unstructured: All variances & covariances estimated separately

 CS and UN via ML or REML estimation allows missing data

• MLM gives us choices in the middle
 Goal: Get as close to UN as parsimoniously as possible

 R-only: Structure TOTAL variation in one matrix (R only)

 G+R: Put constant covariance due to random intercept in G, then 
structural RESIDUAL covariance in R (so that G and R V TOTAL)
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