
Describing Within-Person 
Change over Time
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• Topics:
 Multilevel modeling notation and terminology
 Fixed and random effects of linear time
 Predicted variances and covariances from random slopes
 Dependency in random effects models
 Fun with model comparisons and likelihood estimation
 Describing nonlinear change: polynomial, piecewise models, 

and truly nonlinear models



Modeling Change vs. Fluctuation

Model for the Means:
• WP Change   describe pattern of average change (over “time”)
• WP Fluctuation  *may* not need anything (if no systematic change)

Model for the Variance:
• WP Change   describe individual differences in change (random effects)

 this allows variances and covariances to differ over time
• WP Fluctuation  describe pattern of variances and covariances over time
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Time

Pure WP Change

Time

Pure WP FluctuationOur focus for today 
using random 
effects models

Uses alternative 
covariance structure 

models instead



The Big Picture of Longitudinal Data: 
Models for the Means
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• What kind of change occurs on average over “time”? 
There are two baseline models to consider:
 “Empty”  only a fixed intercept (predicts no change)
 “Saturated”  all occasion mean differences from time 0

(ANOVA model that uses # fixed effects= n)
*** may not be possible in unbalanced data

Empty Model:
Predicts NO 
change over time 
1 Fixed Effect

Saturated Means:
Reproduces mean 

at each occasion

# Fixed Effects 
=  # Occasions

Name… that… Trajectory!

In-between options:
polynomial slopes, 
piecewise slopes, 
nonlinear models…



The Big Picture of Longitudinal Data: 
Models for the Variance
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Unstructured (UN)Compound Symmetry (CS)

Name ...that … Structure!

Most useful 
model: likely 
somewhere 
in between!

Univariate
RM ANOVA

Multivariate 
RM ANOVA

What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available 
within MLM, including random effects models (for change) 
and alternative covariance structure models (for fluctuation).
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Empty +Within-Person Model
Variance of Y  2 sources:

Level 2 Random Intercept 
Variance (of U0i, as ૌ܃૛૙):

 Between-Person Variance

 Differences from GRAND mean

 INTER-Individual Differences

Level 1 Residual Variance
(of eti, as ો܍૛):

 Within-Person Variance

 Differences from OWN mean

 INTRA-Individual Differences
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Empty Means, Random Intercept Model
GLM Empty Model:
• yi = β0 + ei

MLM Empty Model:
• Level 1:  

yti = β0i + eti

• Level 2: 
β0i = γ00 + U0i

3 Total Parameters: 
Model for the Means (1): 
• Fixed Intercept γ00

Model for the Variance (2):
• Level-1 Variance of eti  ો܍૛

• Level-2 Variance of U0i  ૌ܃૛૙
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Fixed Intercept 
=grand mean 
(because no 
predictors yet) 

Random Intercept 
= individual-specific 
deviation from 
predicted intercept

Residual = time-specific deviation 
from individual’s predicted outcome 

Composite equation:  
yti =  (γ00 + U0i ) + eti



Saturated Means, Random Intercept Model
• Although rarely shown this way, a saturated means, random 

intercept model would be represented as a multilevel model 
like this (for n = 4 here, in which the time predictors are 
dummy codes to distinguish each occasion from time 0):

• Level 1:  
yti = β0i + β1i(Time1ti) + β2i(Time2ti) + β3i(Time3ti) + eti

• Level 2: 
β0i = γ00 + U0i
β1i = γ10
β2i = γ20 
β3i = γ30
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Composite equation (6 parameters):  
yti =  γ00 + γ10(Time1ti) + γ20(Time2ti) + γ30(Time3ti)

+ U0i + eti

This model is also known as univariate repeated 
measures ANOVA. Although the means are perfectly 
predicted, the random intercept assumes parallel 
growth (and equal variance/covariance over time).



Describing Within-Person 
Change over Time
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• Topics:
 Multilevel modeling notation and terminology
 Fixed and random effects of linear time
 Predicted variances and covariances from random slopes
 Dependency in random effects models
 Fun with model comparisons and likelihood estimation
 Describing nonlinear change: polynomial, piecewise models, 

and truly nonlinear models



Augmenting the empty means, 
random intercept model with time

• 2 questions about the possible effects of time:

1. Is there an effect of time on average?
 If the line describing the sample means not flat?
 Significant FIXED effect of time

2. Does the average effect of time vary across 
individuals?

 Does each individual need his or her own line?
 Significant RANDOM effect of time
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Fixed and Random Effects of Time
(Note:  The intercept is random in every figure)
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No Fixed, No Random Yes Fixed, No Random

No Fixed, Yes Random Yes Fixed, Yes Random



Fixed Linear Time, Random Intercept Model 
(4 total parameters: effect of time is FIXED only)

Multilevel Model
Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10

Composite Model
yti = (γ00 + U0i) + (γ10)(Timeti) + eti
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Fixed Intercept 
= predicted mean 
outcome at time 0

Fixed Linear Time Slope
= predicted mean rate 
of change per unit time

Random Intercept = individual-specific deviation 
from fixed intercept  estimated variance of ૌ܃૛૙

Residual = time-specific deviation from individual’s 
predicted outcome  estimated variance of ો܍૛

β0i β1i

Because the effect of 
time is fixed, everyone is 
predicted to change at 
exactly the same rate.



Explained Variance from Fixed Linear Time
• Most common measure of effect size in MLM is Pseudo-R2

 Is supposed to be variance accounted for by predictors

 Multiple piles of variance mean multiple possible values of pseudo R2

(can be calculated per variance component or per model level)

 A fixed linear effect of time will reduce level-1 residual variance σୣଶ in R

 By how much is the residual variance σୣଶ	reduced? 

 If time varies between persons, then level-2 random intercept variance 
τ୙ଶ ଴	in G may also be reduced:

 But you are likely to see a (net) INCREASE in τ୙ଶ ଴ instead…. Here’s why:
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2 fewer more
e

fewer

residual variance  - residual variancePseudo R  = 
residual variance

2 fewer more
U0

fewer

random intercept variance  - random intercept variancePseudo R  = 
random intercept variance



Increases in Random Intercept Variance
• Level-2 random intercept variance τ୙ଶ ଴	will often increase 

as a consequence of reducing level-1 residual variance σୣଶ

• Observed level-2 τ୙ଶ ଴ is NOT just between-person variance
 Also has a small part of within-person variance (level-1 σୣଶ), or:

Observed ૌ܃૛૙ = True ૌ܃૛૙ + (ો܍૛/n)
 As n occasions increases, bias of level-1 σୣଶ is minimized

 Likelihood-based estimates of “true” τ୙ଶ ଴ use (σୣଶ/n) as correction factor:
True ૌ܃૛૙ = Observed ૌ܃૛૙ − (ો܍૛/n)

• For example: observed level-2 τ୙ଶ ଴=4.65, level-1 σୣଶ=7.06, n=4
 True τ୙ଶ ଴= 4.65 −(7.60/4) = 2.88 in empty means model

 Add fixed linear time slope  reduce σୣଶ from 7.06 to 2.17 (R2 = .69)

 But now True τ୙ଶ ଴= 4.65 −(2.17/4) = 4.10 in fixed linear time model
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Random Intercept Models Imply…
• People differ from each other systematically in only ONE way—

in intercept (U0i), which implies ONE kind of BP variance, which 
translates to ONE source of person dependency (covariance or 
correlation in the outcomes from the same person)

• If so, after controlling for BP intercept differences (by estimating the 
variance of U0i as τ୙ଶ ଴in the G matrix), the eti residuals (whose 
variance and covariance are estimated in the R matrix) should be 
uncorrelated with homogeneous variance across time, as shown:
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Level-2 
G matrix: 
RANDOM 
TYPE=UN

Level-1 R matrix: 
REPEATED TYPE=VC

G and R matrices combine to create 
a total V matrix with CS pattern



Matrices in a Random Intercept Model
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Total predicted data matrix is called V matrix, created from 
the G [TYPE=UN] and R [TYPE=VC] matrices as follows:

1 ICC ICC ICC
ICC 1 ICC ICC
ICC ICC 1 ICC
ICC ICC ICC 1
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VCORR then provides the intraclass 
correlation, calculated as: 
ICC = ૌ܃૛૙	/ (ૌ܃૛૙ + ો܍૛)

assumes a 
constant 
correlation 
over time

For any random effects model: 

G matrix = BP variances/covariances

R matrix = WP variances/covariances

Z matrix = values of predictors with 
random effects (just intercept here), 
which can vary per person

V matrix = Total variance/covariance



Summary so far…
• Regardless of what kind of model for the means you have…

 Empty means = 1 fixed intercept that predicts no change
 Saturated means = 1 fixed intercept + n−1 fixed effects for mean differences 

that perfectly predict the means over time
 Is a description, not a model, and may not be possible with unbalanced time

 Fixed linear time = 1 fixed intercept, 1 fixed linear time slope that predicts 
linear average change across time
 Is a model that works with balanced or unbalanced time
 May cause an increase in the random intercept variance by explaining residual variance

• A random intercept model… 
 Predicts constant total variance and covariance over time in V using G

 Should be possible in balanced or unbalanced data

 Still has residual variance (always there via default R matrix TYPE=VC)

• Now we’ll see what happens when adding other kinds of random 
effects, such as a random linear effect of time…
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Random Linear Time Model (6 total parameters)

Multilevel Model
Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10 + U1i

Composite Model
yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Fixed Intercept 
= predicted mean 
outcome at time 0

Fixed Linear Time Slope
= predicted mean rate 
of change per unit time

Random Intercept = 
individual-specific deviation 
from fixed intercept at time 0 
 estimated variance of ૌ܃૛૙

Random Linear Time Slope= 
individual-specific deviation 
from fixed linear time slope 
 estimated variance of ૌ܃૛૚

Residual = time-specific deviation from individual’s 
predicted outcome  estimated variance of ો܍૛

β0i β1i

Also has an 
estimated 
covariance
of random 
intercepts 
and slopes  
of ૌ܃૙૚



Random Linear Time Model
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yti = (γ00 + U0i) +  (γ10+ U1i)(Timeti) +  eti

U0i = -4

γ00 =10

γ10 = 6
u1i = +2

eti = -1

Fixed
Intercept

Random 
Intercept 
Deviation

Fixed
Slope

Random 
Slope 
Deviation

error for 
person i 
at time t

6 Parameters:

2 Fixed Effects:
γ00 Intercept, γ10 Slope

2 Random Effects 
Variances:
U0i Intercept Variance 
ൌ ૌ܃૛૙
U1i Slope Variance 
ൌ ૌ܃૛૚
Int-Slope Covariance 
ൌ ૌ܃૙૚
1 eti Residual Variance 
= ો܍૛



Unbalanced Time  Different time 
occasions across persons? No problem!
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Rounding 
time can lead 
to incorrect 
estimates!

Code time as 
exactly as 
possible.

MLM uses 
each complete 
time point for 
each person.

This red predicted slope will 
probably be made steeper 
because it is based on less 
data, though – the term for 
this is “shrinkage”.



Quantification of Random Effects Variances
• We can test if a random effect variance is significant, but the 

variance estimates are not likely to have inherent meaning
 e.g., “I have a significant fixed linear time effect of γ10 = 1.72, so people 

increase by 1.72/time on average. I also have a significant random linear 
time slope variance of ૌ܃૛૚= 0.91, so people need their own slopes 
(people change differently). But how much is a variance of 0.91, really?”

• 95% Random Effects Confidence Intervals can tell you
 Can be calculated for each effect that is random in your model

 Provide range around the fixed effect within which 95% of your sample 
is predicted to fall, based on your random effect variance: 

 So although people improve on average, individual slopes are predicted 
to range from −0.15 to 3.59 (so some people may actually decline)
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Random Effect 95% CI = fixed effect ± 1.96* Random Variance

Linear Time Slope 95% CI = γ  ± 1.96* τ   1.72  ± 1.96* 0.91  = 0.15 to 3.59     



Summary: Sequential Models for Effects of Time

Level 1:  yti = β0i + eti

Level 2: β0i = γ00 + U0i

Composite: yti = γ00 + U0i + eti

Level 1:  yti = β0i + β1i(Timeti)+ eti

Level 2: β0i = γ00 + U0i
β1i = γ10

Composite: yti = (γ00 + U0i) + γ10(Timeti) + eti

Level 1:  yti = β0i + β1i(Timeti)+ eti

Level 2: β0i = γ00 + U0i
β1i = γ10 + U1i

Composite: yti = (γ00 + U0i) + (γ10+ U0i)(Timeti) + eti
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Empty Means, 
Random Intercept Model: 
3 parms = γ00, ો܍૛, ૌ܃૛૙

Fixed Linear Time, 
Random Intercept Model: 
4 parms = γ00, γ10, ો܍૛, ૌ܃૛૙

Random Linear Time Model: 
6 parms = γ00, γ10, ો܍૛, ૌ܃૛૙,
ૌ܃૛૚, ૌ܃૙૚( cov of U0i and U1i)



Describing Within-Person 
Change over Time
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• Topics:
 Multilevel modeling notation and terminology
 Fixed and random effects of linear time
 Predicted variances and covariances from random slopes
 Dependency in random effects models
 Fun with model comparisons and likelihood estimation
 Describing nonlinear change: polynomial, piecewise models, 

and truly nonlinear models



Random Linear Time Models Imply:
• People differ from each other systematically in TWO ways—in 

intercept (U0i) and slope (U1i), which implies TWO kinds of BP 
variance, which translates to TWO sources of person dependency 
(covariance or correlation in the outcomes from the same person)

• If so, after controlling for both BP intercept and slope differences 
(by estimating the τ୙ଶ ଴ and τ୙ଶଵ	variances in the G matrix), the eti
residuals (whose variance and covariance are estimated in the R
matrix) should be uncorrelated with homogeneous variance 
across time, as shown:
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Level-2 
G matrix: 
RANDOM 
TYPE=UN

Level-1 R matrix: 
REPEATED TYPE=VC G and R combine to create a total 

V matrix whose per-person 
structure depends on the specific 
time occasions each person has 

(very flexible for unbalanced time)
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

• How the model predicts each element of the V matrix:
Level 1:  yti = β0i + β1i(Timeti) + eti

Level 2:  β0i = γ00 + U0i
β1i = γ10 + U0i

Composite Model: yti = (γ00 + U0i) + (γ10 + U0i)(Timeti) + eti
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

• How the model predicts each element of the V matrix:
Level 1:  yti = β0i + β1i(Timeti) + eti

Level 2:  β0i = γ00 + U0i
β1i = γ10 + U1i

Composite Model: yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Predicted Time-Specific Covariances (Time A with Time B):



Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

• Scalar “mixed” model equation per person:
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Xi = n x k values of predictors with 
fixed effects, so can differ per person 
(k = 2: intercept, linear time)

γ = k x 1 estimated fixed effects, 
so will be the same for all persons
(γ00 = intercept, γ10 = linear time)

Zi = n x u values of predictors with 
random effects, so can differ per person 
(u = 2: intercept, linear time)

Ui = u x 2 estimated individual random 
effects, so can differ per person

Ei = n x n time-specific residuals, 
so can differ per person
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

• Predicted total variances and covariances per person:
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Zi = n x u values of predictors with 
random effects, so can differ per 
person (u = 2: int., time slope)

Zi
T = u x n values of predictors with 

random effects (just Zi transposed)

Gi = u x u estimated random 
effects variances and covariances, 
so will be the same for all persons
(τ୙ଶ ଴ = int. var., τ୙ଶଵ = slope var.)

Ri = n x n time-specific residual 
variances and covariances, so will 
be same for all persons 
(here, just diagonal σୣଶ)
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• V for two persons with unbalanced time observations:

• The giant combined V matrix across persons is how the 
multilevel or mixed model is actually estimated

• Known as “block diagonal” structure  predictions are 
given for each person, but 0’s are given for the elements 
that describe relationships between persons (because 
persons are supposed to be independent here!)

Building V across persons: 
Random Linear Time Model
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• V for two persons also with different n per person:

• The “block diagonal” does not need to be the same size 
or contain the same time observations per person…

• R matrix can also include non-0 covariance or differential 
residual variance across time (as in ACS models), although 
the models based on the idea of a “lag” won’t work for 
unbalanced or unequal-interval time

Building V across persons: 
Random Linear Time Model
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G, R, and V:  The Take-Home Point
• The partitioning of variance into piles…

 Level 2 = BP  G matrix of random effects variances/covariances
 Level 1 = WP  R matrix of residual variances/covariances
 G and R combine via Z to create V matrix of total variances/covariances
 Many flexible options that allows the variances and covariances to vary 

in a time-dependent way that better matches the actual data
 Can allow differing variance and covariance due to other predictors, too
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Describing Within-Person 
Change over Time
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• Topics:
 Multilevel modeling notation and terminology
 Fixed and random effects of linear time
 Predicted variances and covariances from random slopes
 Dependency in random effects models
 Fun with model comparisons and likelihood estimation
 Describing nonlinear change: polynomial, piecewise models, 

and truly nonlinear models



How MLM “Handles” Dependency
• Common description of the purpose of MLM is that it 

“addresses” or “handles” correlated (dependent) data…
• But where does this correlation come from? 

3 places (here, an example with health as an outcome):

1. Mean differences across persons
 Some people are just healthier than others (at every time point)
 This is what a random intercept is for

2. Differences in effects of predictors across persons
 Does time (or stress) affect health more in some persons than others?
 This is what random slopes are for

3. Non-constant within-person correlation for unknown reasons
 Occasions closer together may just be more related 
 This is what alternative covariance structure models are for
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MLM “Handles” Dependency
• Where does each kind of person dependency go? Into a new 

random effects variance component (or “pile” of variance):

Residual
Variance

(ો܍૛)

Residual
Variance

(ો܍૛)

Residual
Variance

(ો܍૛)

BP Int
Variance

(ૌ܃૛૙)

BP Slope
Variance

(ૌ܃૛૚)

Level 2, Between-
Person Differences

Level 1, Within-
Person Differences

BP Int
Variance

(ૌ܃૛૙)

01U covariance
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Piles of Variance
• By adding a random slope, we carve up our total variance into 3 piles:

 BP (error) variance around intercept

 BP (error) variance around slope

 WP (error) residual variance

• But making piles does NOT make error variance go away…
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Level 2 (two sources of) 
Between-Person Variation:
gets accounted for by 
person-level predictors

Level 1 (one source of) 
Within-Person Variation:
gets accounted for by 
time-level predictors

Residual
Variance

(ો܍૛)

BP Slope
Variance

(ૌ܃૛૚)

BP Int
Variance

(ૌ܃૛૙)

FIXED effects make variance 
go away (explain variance).

RANDOM effects just make 
a new pile of variance.

These 2 piles are 1 pile of “error 
variance” in Univ. RM ANOVA

ૌ
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Fixed vs. Random Effects of Persons
• Person dependency: via fixed effects in the model for the 

means or via random effects in the model for the variance?
 Individual intercept differences can be included as:

 N-1 person dummy code fixed main effects OR 1 random U0i 

 Individual time slope differences can be included as:
 N-1*time person dummy code interactions  OR 1 random U1i*timeti

 Either approach would appropriately control for dependency (fixed 
effects are used in some programs that ‘control’ SEs for sampling)

• Two important advantages of random effects:
 Quantification: Direct measure of how much of the outcome variance is 

due to person differences (in intercept or in effects of predictors)

 Prediction: Person differences (main effects and effects of time) then 
become predictable quantities – this can’t happen using fixed effects

 Summary: Random effects give you predictable control of dependency
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Describing Within-Person 
Change over Time
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• Topics:
 Multilevel modeling notation and terminology
 Fixed and random effects of linear time
 Predicted variances and covariances from random slopes
 Dependency in random effects models
 Fun with model comparisons and likelihood estimation
 Describing nonlinear change: polynomial, piecewise models, 

and truly nonlinear models



3 Decision Points for Model Comparisons
1.   Are the models nested or non-nested?

 Nested: have to add OR subtract effects to go from one to other
 Can conduct significance tests for improvement in fit

 Non-nested: have to add AND subtract effects
 No significance tests available for these comparisons

2.  Differ in model for the means, variances, or both?
 Means? Can only use ML −2∆LL tests (or p-value of each fixed effect)

 Variances? Can use ML (or preferably REML) −2∆LL tests, no p-values

 Both sides? Can only use ML −2∆LL tests

3.  Models estimated using ML or REML?
 ML: All model comparisons are ok

 REML: Model comparisons are ok for the variance parameters only
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Likelihood-Based Model Comparisons
• Relative model fit is indexed by a “deviance” statistic  −2LL

 −2LL indicates BADNESS of fit, so smaller values = better models
 Two estimation flavors (given as −2 log likelihood in SAS, SPSS, but given as LL 

instead in STATA): Maximum Likelihood (ML) or Restricted (Residual) ML (REML) 

• Nested models are compared using their deviance values: −2∆LL Test 
(i.e., Likelihood Ratio Test, Deviance Difference Test)

1. Calculate −2∆LL:   (−2LLfewer)  – (−2LLmore)
2. Calculate  ∆df:  (# Parmsmore)  – (# Parmsfewer)
3. Compare −2∆LL to χ2 distribution with df = ∆df

CHIDIST in excel will give exact p-values for the difference test; so will STATA

• Nested or non-nested models can also be compared by Information 
Criteria that reflect −2LL AND # parameters used and/or sample size
 AIC = Akaike IC     = −2LL +        2 *(#parameters)
 BIC = Bayesian IC  = −2LL + log(N)*(#parameters)  penalty for complexity

 No significance tests or critical values, just “smaller is better”
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ML vs. REML
Remember “population” 
vs. “sample” formulas for 
calculating variance?
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All comparisons 
must have same N!!!

ML REML

To select, type… METHOD=ML
(-2 log likelihood)

METHOD=REML default
(-2 res log likelihood)

In estimating 
variances, it treats 
fixed effects as…

Known (df for having to 
also estimate fixed effects 
is not factored in)

Unknown (df for having 
to estimate fixed effects 
is factored in)

So, in small samples, 
L2 variances will be…

Too small (by a factor of 
(N – k) / N,  N=# persons)

Unbiased (correct)

But because it indexes 
the fit of the…

Entire model
(means + variances)

Variances model only 

You can compare 
models differing in…

Fixed and/or random 
effects (either/both)

Random effects only 
(same fixed effects)



Rules for Comparing Multilevel Models
All observations must be the same across models!
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Type of 
Comparison:

Means Model      
(Fixed) 
Only

Variance Model 
(Random) 

Only

Both Means and 
Variance Model 

(Fixed and Random)

Nested?
YES, can do 
significance 
tests via…

Fixed effect 
p-values from 
ML or REML 

-- OR --
ML −2∆LL only 

(NO REML −2∆LL)

NO p-values

REML −2∆LL
(ML −2∆LL is 
ok if big N)

ML −2∆LL only 
(NO REML −2∆LL)

Non-Nested?
NO signif. tests, 
instead see…

ML AIC, BIC
(NO REML AIC, BIC)

REML AIC, BIC
(ML ok if big N)

ML AIC, BIC only
(NO REML AIC, BIC)

Compare Models Differing In:

Nested = one model is a direct subset of the other
Non-Nested = one model is not a direct subset of the other



Summary: Model Comparisons
• Significance of fixed effects can be tested with EITHER their 

p-values OR ML −2∆LL (LRT, deviance difference) tests
 p-value  Is EACH of these effects significant? (fine under ML or REML)

 ML −2∆LL test  Does this SET of predictors make my model better? 

 REML −2∆LL tests are WRONG for comparing models differing in fixed effects

• Significance of random effects can only be tested with −2∆LL tests
(preferably using REML; here ML is not wrong, but results in too small 
variance components and fixed effect SEs in smaller samples)
 Can get p-values as part of output but *shouldn’t* use them

 #parms added (df) should always include the random effect covariances

• My recommended approach to building models:
 Stay in REML (for best estimates), test new fixed effects with their p-values

 THEN add new random effects, testing −2∆LL against previous model
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Two Sides of Any Model: Estimation
• Fixed Effects in the Model for the Means:

 How the expected outcome for a given observation varies as a function 
of values on known predictor variables

 Fixed effects predict the Y values per se but are not parameters that are 
solved for iteratively in maximum likelihood estimation

• Random Effects in the Model for the Variances:
 How model residuals are related across observations 

(persons, groups, time, etc) – unknown things due to sampling
 Random effects variances and covariances are a mechanism by which 

complex patterns of variance and covariance among the Y residuals can 
be predicted (not the Y values, but their dispersion)

 Anything besides level-1 residual variance σୣଶ must be solved for 
iteratively – increases the dimensionality of estimation process

 Estimation utilizes the predicted V matrix for each person
 In the material that follows, V will be based on a random linear model
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End Goals of Maximum Likelihood Estimation

1. Obtain “most likely” values for each unknown model 
parameter (random effects variances and covariances, 
residual variances and covariances, which then are used to 
calculate the fixed effects)  the estimates

2. Obtain an index as to how likely each parameter value 
actually is (i.e., “really likely” or pretty much just a guess?) 
 the standard error (SE) of the estimates

3. Obtain an index as to how well the model we’ve specified 
actually describes the data  the model fit indices

How does all this happen? The magic of multivariate 
normal…(but let’s start with univariate normal first)
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Univariate Normal
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Multivariate Normal for Yi
(height for all n outcomes for person i)

• In a random linear time model, the only fixed effects (in γ) that predict the 
Yi outcome values are the fixed intercept and fixed linear time slope

• The model also gives us Vi  the model-predicted total variance and 
covariance matrix across the occasions, taking into account the time values

• Uses |Vi| = determinant of Vi = summary of non-redundant info
 Reflects sum of variances across occasions controlling for covariances

• (Vi)-1  matrix inverse  like dividing (so can’t be 0 or negative)
 (Vi)-1 must be “positive definite”, which in practice means no 0 random variances 

and no out-of-bound correlations between random effects

 Otherwise, software uses “generalized inverse”  questionable results
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Now Try Some Possible Answers... 
(e.g., for the 4 V parameters in this random linear model example)
• Plug Vi predictions into log-likelihood function, sum over persons:

• Try one set of possible parameter values for Vi, compute LL
• Try another possible set for Vi, compute LL….

 Different algorithms are used to decide which values to try given that 
each parameter has its own distribution  like an uncharted mountain

 Calculus helps the program scale this multidimensional mountain
 At the top, all first partial derivatives (linear slopes at that point) ≈ 0
 Positive first partial derivative? Too low, try again. Negative? Too high, try again.
 Matrix of partial first derivatives = “score function” = “gradient” 

(as in NLMIXED output for models with truly nonlinear effects)
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End Goals 1 and 2: Model Estimates and SEs

• Process terminates (the model “converges”) when the next set 
of tried values for Vi don’t improve the LL very much…
 e.g., SAS default convergence criteria = .00000001 

 Those are the values for the parameters that, relative to the other 
possible values tried, are “most likely”  the variance estimates

• But we need to know how trustworthy those estimates are…
 Precision is indexed by the steepness of the multidimensional mountain, 

where steepness  more negative partial second derivatives

 Matrix of partial second derivatives = “Hessian matrix”

 Hessian matrix * -1 = “information matrix”

 So steeper function = more information = more precision = smaller SE
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What about the Fixed Effects?
• Likelihood mountain does NOT include fixed effects as additional 

search dimensions (only variances and covariances that make Vi)
• Fixed effects are determined given the parameters for Vi:

• This is actually what happens in regular regression (GLM), too:

• Implication: fixed effects don’t cause estimation problems…
(at least in general models with normally distributed residuals)
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What about ML vs. REML?

• Extra part in REML is the sampling variance of the fixed effects… it is added 
back in to account for uncertainty in estimating fixed effects

• REML maximizes the likelihood of the residuals specifically, so models with 
different fixed effects are not on the same scale and are not comparable
 This is why you can’t do -2∆LL tests in REML when the models to be compared 

have different fixed effects  the model residuals are defined differently
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End Goal #3: How well do the model 
predictions match the data?

• End up with ML or REML LL from predicting Vi  so how good is it?

• Absolute model fit assessment is only possible when the Vi matrix is 
organized the same for everyone – in other words, balanced data
 Items are usually fixed, so can get absolute fit in CFA and SEM 
 ߯ଶ test is based on match between actual and predicted data matrix

 Time is often a continuous variable, so no absolute fit provided in MLM 
(or in SEM when using random slopes or T-scores for unbalanced time)
 Can compute absolute fit when the saturated means, unstructured variance model is 

estimable in ML  is -2∆LL versus “perfect” model for time

• Relative model fit is given as −2LL in SAS, in which smaller is better
 −2* needed to conduct “likelihood ratio” or “deviance difference” tests

 Also information criteria: 
 AIC: -2LL + 2*(#parms) ; BIC: -2LL + log(N)*(#parms)
 ML #parms = all parameters;  REML #parms = variance model parameters only
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What about testing variances > 0?
• −2∆LL between two nested models is χଶ-distributed only when 

the added parameters do not have a boundary (like 0 or 1)
 Ok for fixed effects (could be any positive or negative value)

 NOT ok for tests of random effects variances (must be > 0)

 Ok for tests of heterogeneous variances and covariances 
(extra parameters can be phrased as unbounded deviations)

• When testing addition of parameters that have a boundary, 
−2∆LL will follow a mixture of χଶ distributions instead
 e.g., when adding random intercept variance (test > 0?)

 When estimated as positive, will follow χଶ with df=1
 When estimated as negative… can’t happen, will follow χଶ with df=0

 End result: −2∆LL will be too conservative in boundary cases
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χ2 Distributions
small pictures from Stoel et al., 2006

χ2 for df=1

χ2 for mixture 
of df=0, df=1

χ2 for df=2

χ2 for mixture 
of df=1, df=2

df

obtained χ2 value 

2.71 vs. 3.84 5.14 vs. 5.99
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Critical Values for 50:50 Mixtures
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Significance Level 
df (q) 0.10 0.05 0.025 0.01 0.005

0 vs. 1 1.64 2.71 3.84 5.41 6.63
1 vs. 2 3.81 5.14 6.48 8.27 9.63
2 vs. 3 5.53 7.05 8.54 10.50 11.97
3 vs. 4 7.09 8.76 10.38 12.48 14.04
4 vs. 5 8.57 10.37 12.10 14.32 15.97
5 vs. 6 10.00 11.91 13.74 16.07 17.79
6 vs. 7 11.38 13.40 15.32 17.76 19.54
7 vs. 8 12.74 14.85 16.86 19.38 21.23
8 vs. 9 14.07 16.27 18.35 20.97 22.88

9 vs. 10 15.38 17.67 19.82 22.52 24.49
10 vs. 11 16.67 19.04 21.27 24.05 26.07

This may work ok if only 
one new parameter is 
bounded … for example:

+ Random Intercept 
df=1: 2.71 vs. 3.84

+ Random Linear
df=2: 5.14 vs. 5.99

+ Random Quad
df=3: 7.05 vs. 7.82

Critical values such that the right-hand tail probability = 
0.5 x Pr (χ2

q > c) + 0.5 x Pr (χ2
q+1 > c)

Source: Appendix C (p. 484) from Fitzmaurice, Laird, & Ware (2004). 
Applied Longitudinal Analysis. Hoboken, NJ: Wiley



Solutions for Boundary Problems 
when using −2∆LL tests

• If adding random intercept variance only, use p < .10; χଶ(1) > 2.71
 Because χଶ	(0) = 0, can just cut p-value in half to get correct p-value

• If adding ONE random slope variance (and covariance with random 
intercept), can use mixture p-value from χଶ(1) and χଶ(2)

• However—using a 50/50 mixture assumes a diagonal information matrix 
for the random effects variances (assumes the estimated values for each 
are arrived at independently, which pry isn’t the case)

• Two options for more complex cases:
 Simulate data to determine actual mixture for calculating p-value

 Accept that −2∆LL is conservative in these cases, and use it anyway
 I’m using ~ to acknowledge this: e.g., −2∆LL(~2) > 5.99, p < .05 

Lecture 3

2 2
1 2Mixture -value = 0.5*prob( 2 LL) 0.5*prob( 2 LL)        p

so critical χ2 = 
5.14, not 5.99
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Predicted Level-2 Ui Random Effects
(aka Empirical Bayes or BLUP Estimates)

• Level-2 Ui random effects require further explanation... 
 Empty two-level model: yti = γ00 + U0i + eti

 U0i’s are deviated person means, right? Well, not exactly…

• 3 ways of representing size of individual differences in 
individual intercepts and slopes across people:
 Get individual OLS intercepts and slopes; calculate their variance
 Estimate variance of the Ui’s (what we do in MLM)
 Predict individual Ui’s; calculate their variance (2-stage MLM)

• Expected order of magnitude of variance estimates:
 OLS variance > MLM variance > Predicted Ui’s variance
 Why are these different? Shrinkage.
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What about the U’s?
• Individual Ui values are NOT estimated in the ML process

 G matrix variances and covariances are sufficient statistics for the 
estimation process assuming multivariate normality of Ui values

 Individual Ui random effects are predicted by asking for the SOLUTION 
on the RANDOM statement as:
 Which then create individual estimates as β0i = γ00 + U0i and β1i = γ10 + U1i

• What isn’t obvious: the composite βi values are weighted 
combinations of the fixed effects (γ) and individual OLS 
estimates (βOLSi) :

 The more “true” variation in intercepts and slopes there is in the data 
(in G), the more the βi estimates are based on individual OLS estimates

 But the more “unexplained” residual variation there is around the 
individual trajectories (in R), the more the fixed effects are heavily 
weighted instead
 = SHRINKAGE (more so for people with fewer occasions, too)
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What about the U’s?
• Point of the story – Ui values are NOT single scores:

 They are the mean of a distribution of possible values for each person 
(i.e., as given by the SE for each Ui, which is also provided)

 These “best estimates” of the Ui values are shrunken anyway

• Good news: you don’t need those Ui values in the first place!
 Goal of MLM is to estimate and predict the variance of the Ui values 

(in G) with person-level characteristics directly within the same model
 If you want your Ui values to be predictors instead, then you need to 

buy your growth curve model at the SEM store instead of the MLM store
 We can use the predicted Ui values to examine potential violations of 

model assumptions, though…
 Get Ui values by adding: ODS OUTPUT SolutionR=dataset;
 Get eti residuals by adding OUTP=dataset after / on MODEL statement
 Add RESIDUAL option after / on MODEL statement to make plots
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Estimation: The Grand Finale
• Estimation in MLM is all about the random effects 

variances and covariances
 The more there are, the harder it is to find them (the more 

dimensions of the likelihood mountain there are to scale)
 “Non-positive-definite” G matrix means “broken model”
 Fixed effects are solved for after-the-fact, so they rarely cause 

estimation problems (at least in general models)
 Individual random effects are not model parameters, but can be 

predicted after-the-fact (with some problems in doing so)

• Estimation comes in two flavors:
 ML  maximize the data; compare any nested models
 REML  maximize the residuals; compare models that differ in 

their model for the variance only 
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Describing Within-Person 
Change over Time
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• Topics:
 Multilevel modeling notation and terminology
 Fixed and random effects of linear time
 Predicted variances and covariances from random slopes
 Dependency in random effects models
 Fun with model comparisons and likelihood estimation
 Describing nonlinear change: polynomial, piecewise 

models, and truly nonlinear models



Summary: Modeling Means and Variances
• We have two tasks in describing within-person change:

• Choose a Model for the Means
 What kind of change in the outcome do we have on average?
 What kind and how many fixed effects do we need to predict 

that mean change as parsimoniously but accurately as possible?

• Choose a Model for the Variances
 What pattern do the variances and covariances of the outcome 

show over time because of individual differences in change?
 What kind and how many random effects do we need to predict 

that pattern as parsimoniously but accurately as possible?
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The Big Picture of Longitudinal Data:
Model for the Means (Fixed Effects)

• What kind of change occurs on average over “time”?

 What is the most appropriate metric of time?
 Time in study (with predictors for BP differences in time)?
 Time since birth (age)? Time to event (time since diagnosis)?
 Measurement occasions need not be the same across persons or 

equally spaced (code time as exactly as possible)

 What kind of theoretical process generated the observed 
trajectories, and thus what kind of model do we need?
 Linear or nonlinear? Continuous or discontinuous? Does change 

keep happening or does it eventually stop?
 Many options: polynomial, piecewise, and nonlinear families
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Name that trajectory… Polynomial?
• Predict mean change with polynomial fixed effects of time: 

 Linear        constant amount of change (up or down)
 Quadratic  change in linear rate of change (acceleration/deceleration) 
 Cubic        change in acceleration/deceleration of linear rate of change

(known in physics as jerk, surge, or jolt)
 Terms work together to describe curved trajectories

• Can have polynomial fixed time slopes UP TO: n – 1*
 3 occasions = 2nd order (time2)= Fixed Quadratic Time or less
 4 occasions = 3rd order (time3) = Fixed Cubic Time or less

• Interpretable polynomials past cubic are rarely seen in practice 

*n−1 rule can be broken in unbalanced data (but cautiously)
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Interpreting Quadratic Fixed Effects
A Quadratic time effect is a two-way interaction: time*time

• Fixed quadratic time = “half the rate of acceleration/deceleration”

• So to interpret it as how the linear time effect changes per unit time, 
you must multiply the quadratic coefficient by 2

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?
 Instantaneous linear rate of ∆ at time 0 = 4.0, at time 1 = 4.6…

• The “twice” part comes from taking the derivatives of the function:
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Interpreting Quadratic Fixed Effects
A Quadratic time effect is a two-way interaction: time*time

• Fixed quadratic time = “half the rate of acceleration/deceleration”

• So to interpret it as how the linear time effect changes per unit time, 
you must multiply the quadratic coefficient by 2

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?
 Instantaneous linear rate of ∆ at time 0 = 4.0, at time 1 = 4.6…

• The “twice” part also comes from 
what you remember about the
role of interactions with respect 
to their constituent main effects:

• Because time is interacting with itself, there is no second main effect in the 
model for the interaction to modify as usual. So the quadratic time effect 
gets applied twice to the one (main) linear effect of time.
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Examples of Fixed Quadratic Time Effects
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Conditionality of Polynomial Fixed Time Effects

• We’ve seen how main effects become conditional simple 
effects once they are part of an interaction

• The same is true for polynomial fixed effects of time:
 Fixed Intercept Only?

 Fixed Intercept = predicted mean of Y for any occasion (= grand mean)
 Add Fixed Linear Time?

 Fixed Intercept = now predicted mean of Y from linear time at time=0
(would be different if time was centered elsewhere)

 Fixed Linear Time = mean linear rate of change across all occasions 
(would be the same if time was centered elsewhere)

 Add Fixed Quadratic Time?
 Fixed Intercept = still predicted mean of Y at time=0 (but from quadratic model)

(would be different if time was centered elsewhere)
 Fixed Linear Time = now mean linear rate of change at time=0

(would be different if time was centered elsewhere)
 Fixed Quadratic Time = half the mean rate of acceleration or deceleration of 

change across all occasions (i.e., the linear slope changes the same over time)
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Polynomial Fixed vs. Random Time Effects
• Polynomial fixed effects combine to describe mean 

trajectory over time (can have fixed slopes up to n – 1):
 Fixed Intercept = Predicted mean level (at time 0)
 Fixed Linear Time = Mean linear rate of change (at time 0)
 Fixed Quadratic Time = Half of mean acceleration/deceleration in linear 

rate of change (2*quad is how the linear time slope changes per unit 
time if quadratic is highest order fixed effect of time)

• Polynomial random effects (individual deviations from the 
fixed effect) describe individual differences in those change 
parameters (can have random slopes up to n – 2):
 Random Intercept = BP variance in level (at time 0)
 Random Linear Time = BP variance in linear time slope (at time 0)
 Random Quadratic Time = BP variance in half the rate of 

acceleration/deceleration of linear time slope 
(across all time if quadratic is highest-order random effect of time)
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Random Quadratic Time Model
Level 1:  yti =   β0i +  β1iTimeti + β2iTimeti

2 +  eti

Level 2 Equations (one per β):
β0i = γ00 +      U0i

β1i = γ10 +      U1i

β2i = γ20 +      U2i
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Fixed Effect Subscripts:
1st = which Level 1 term
2nd = which Level 2 term

Number of Possible Slopes 
by Number of Occasions (n):

# Fixed slopes = n – 1
# Random slopes = n – 2

Need n = 4 occasions to fit 
random quadratic time model

Intercept
for person i

Linear Slope
for person i

Quad Slope
for person i

Fixed (mean) 
Intercept

Fixed (mean)
Linear Slope

Fixed (mean)
Quad Slope

Random 
(Deviation) 
Intercept

Random 
(Deviation) 
Linear Slope

Random 
(Deviation)
Quad Slope



Conditionality of Polynomial Random Effects
• We saw previously that lower-order fixed effects of time are 

conditional on higher-order polynomial fixed effects of time
• The same is true for polynomial random effects of time:

 Random Intercept Only?
 Random Intercept = BP variance for any occasion in predicted mean Y 

(= variance in grand mean because individual lines are parallel)
 Add Random Linear Time?

 Random Intercept = now BP variance at time=0 in predicted mean Y
(would be different if time was centered elsewhere)

 Random Linear Time = BP variance across all occasions in linear rate of change 
(would be the same if time was centered elsewhere)

 Add Random Quadratic Time?
 Random Intercept = still BP variance at time=0 in predicted mean Y 
 Random Linear Time = now BP variance at time=0 in linear rate of change 

(would be different if time was centered elsewhere)
 Random Quadratic Time = BP variance across all occasions in half of accel/decel

of change (would be the same if time was centered elsewhere)
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Random Effects Allowed by #Occasions
G Matrix R Matrix
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Predicted V Matrix from 
Polynomial Random Effects Models

• Random linear model? Variance has a quadratic dependence on time

 Variance will be at a minimum when time = –Cov(U0,U1)/Var(U1), 
and will increase parabolically and symmetrically over time 

 Predicted variance at each occasion and covariance between A and B:
Var(ytime)  = Var(et) + Var(U0) + 2Cov(U0,U1)(timet) + Var(U1)(timet

2)
Cov(yA,yB) = Var(U0) + Cov(U0,U1)(A + B) + Var(U1)(AB)

• Random quadratic model? Variance has a quartic dependence on time
Var(ytime)  = Var(et) + Var(U0) + 2Cov(U0,U1)(timet) + Var(U1)(timet

2) +
2Cov(U0,U2)(timet

2) + 2Cov(U1,U2)(timet
3) + Var(U2)(timet

4) 

Cov(yA,yB) = Var(U0) + Cov(U0,U1)(A + B) + Var(U1)(AB) + Cov(U0,U2)(A2 + B2) +
Cov(U1,U2)[(AB2)+(A2B)] + Var(U2)(A2B2)

• The point of the story: random effects of time are a way of allowing the 
variances and covariances to differ over time in specific, time-dependent 
patterns (that result from differential individual change over time).
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Rules for Polynomial Models 
(and in general for fixed and random effects)

• On the same side of the model (means or variances side), lower-order 
effects stay in EVEN IF NONSIGNIFICANT (for correct interpretation)
 e.g., Significant fixed quadratic? Keep the fixed linear
 e.g., Significant random quadratic? Keep the random linear

• Also remember—you can have a significant random effect EVEN IF the 
corresponding fixed effect is not significant (keep it anyway):
 e.g., Fixed linear not significant, but random linear is significant?
 No linear change on average, but significant individual differences in change

• Language: A random effect supersedes a fixed effect:
 If Fixed = intercept, linear, quad; Random = intercept, linear, quad?

 Call it a “Random quadratic model” (implies everything beneath those terms)
 If Fixed = intercept, linear, quad; Random = intercept, linear?

 Call it a “Fixed quadratic, random linear model" (distinguishes no random quad)

• Intercept-slope correlation depends largely on centering of time…
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Example Sequence for Testing Fixed 
and Random Polynomial Effects of Time 

Build up fixed and random effects simultaneously:
1. Empty Means, Random Intercept  to calculate ICC

2. Fixed Linear, Random Intercept  check fixed linear p-value

3. Random Linear  check −2∆LL(df≈2) for random linear variance

4. Fixed Quadratic, Random Linear  check fixed quadratic p-value

5. Random Quadratic  check −2∆LL(df≈3) for random quadratic variance

6. …….

*** In general: Can use REML for all models, so long as you:

 Test significance of new fixed effects by their p-values

 Test significance of new random effects in separate step by −2∆LL

 Also see if AIC and BIC are smaller when adding random effects
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Correlation between Random Intercept and 
Random Linear Slope depends on time 0
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r = -1

r = +1

!! Nonparallel lines will eventually cross.

r = 0

Which intercept-
slope correlation 
is the ‘right’ one?



Correlations among polynomial slopes
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Session Linear Quadratic Session Linear Quadratic Session Linear Quadratic
1 0 0 1 -5 25 1 -2.5 6.25
2 1 1 2 -4 16 2 -1.5 2.25
3 2 4 3 -3 9 3 -0.5 0.25
4 3 9 4 -2 4 4 0.5 0.25
5 4 16 5 -1 1 5 1.5 2.25
6 5 25 6 0 0 6 2.5 6.25

Session Centered at 1: Session Centered at 6: Session Centered at Mean:
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Centered at 1 Centered at 6 Centered at Mean
Correlations among 
polynomial effects of 
time can be induced by 
centering time near the 
start or near the end. 

Therefore, these 
correlations will be 
*most* interpretable 
when centering time 
at its mean instead.



Summarizing so far…
• Modeling within-person change involves specifying 

effects of time for both sides of the model
 Fixed effects in model for the means:

 What kind of change am I observing on average?
 What kind of trajectory will reproduce those means?

 Random effects (and residuals) in model for the variances:
 What kind of individual differences in change am I observing?
 How many random effects do I need to reproduce the observed 

pattern of variances and covariances over time?

• One option: Polynomial models (linear, quadratic, cubic)
 Terms work together to describe non-linear trajectories

 Careful with the covariances among random effects, though

• Coming next: Piecewise slopes and nonlinear change…
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Other Random Effects Models of Change
• Piecewise models: Discrete slopes for discrete phases of time

 Separate terms describe sections of overall trajectories

 Useful for examining change in intercepts and slopes before/after 
discrete events (changes in policy, interventions)

 Must know where the break point is ahead of time!

 
5th Grade
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Baseline 1                Treat 1   Baseline 2    Treat 2

Piecewise Model:

4 slopes 
(one per phase)

3 “jumps”
(shift in intercept 
between phases)
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Example of Daily Cortisol Fluctuation: 
Morning Rise and Afternoon Decline
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Average Trajectories

This piecewise model 
is structured using 
“Time Since Waking”

SAS Code to create two piecewise slopes from 
continuous time of day in stacked data:
IF occasion=1 THEN DO; 

P1=0; P2=0; END; 
IF occasion=2 THEN DO; 

P1= time2-time1; P2=0; END;
IF occasion=3 THEN DO; 

P1= time2-time1; P2=time3-time2; END; 
IF occasion=4 THEN DO; 

P1= time2-time1; P2=time4-time2; END;

Note that a quadratic slope may be necessary 
for the afternoon decline slope!

Wake  +30min    lunch               bed



Random Two-Slope Piecewise Model
Level 1:  yti =  β0i + β1iSlope1ti + β2iSlope2ti + eti

Level 2 Equations (one per β):
β0i = γ00 +      U0i

β1i = γ10 +      U1i

β2i = γ20 +      U2i 
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Fixed Effect Subscripts:
1st = which Level 1 term
2nd = which Level 2 term

Number of Possible Slopes 
by Number of Occasions (n):

# Fixed slopes = n – 1
# Random slopes = n – 2

Need n = 4 occasions to fit 
random two-slope model

Intercept
for person i

Slope1
for person i

Slope2
for person i

Fixed (mean) 
Intercept

Fixed (mean)
Slope1

Fixed (mean)
Slope2

Random 
(Deviation) 
Intercept

Random 
(Deviation) 
Slope1

Random 
(Deviation)
Slope2



1,500

1,550

1,600

1,650

1,700

1,750

1,800

1,850

1,900

1,950

2,000

1 2 3 4 5 6

RT
 in

 m
se

c

Session

What kind of piecewise model could predict 
our example data mean change across sessions?

“Early” 
Practice 
Effect

“Later” 
Practice 
Effect

Saturated Means (ANOVA) Model 
= 6 parameters (1 mean per session)

Number Match 3 Mean Response Times by Session
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Piecewise Models:  Two Direct Slopes

• “Early Practice Slope” and 
“Later Practice Slope”

• Use to specify slopes through 
each discrete phase directly 
(can request test of difference)

• Session (1-6) gets recoded 
into 2 new time predictor 
variables, as shown below:

Session 1 2 3 4 5 6

Early Practice  Slope12  = 0 1 1 1 1 1

Later Practice  Slope26  = 0 0 1 2 3 4

1       2       3       4       5       6

Slope12 = linear 
change from 1-2

Slope26 = linear 
change from 2-6
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2 Direct Slopes Model: Random Effects
• Parameters directly represent each part of trajectory:

• Fixed effects for mean change over time (3):
 Fixed Intercept = expected Y when both slopes = 0 (Session 1)
 Fixed Slope12 = expected linear rate of change from 1 to 2
 Fixed Slope26 = expected linear rate of change from 2 to 6

• Leads to possible random effects (up to 3 var+3 cov):
 Random Intercept = BP variance in expected level 

when both slopes = 0 (at Session 1)
 Random Slope12 = BP variance in linear slope from 1 to 2
 Random Slope26 = BP variance in linear slope from 2 to 6
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Piecewise Models: Slope +Deviation Slope

• “Linear Time Slope” and 
“Deviation Slope” 

• Use to test if multiple slopes 
are needed directly in model

• Initial slope predictor is coded 
differently, second slope 
predictor is same:

Session 1 2 3 4 5 6
Time            Slope16  = 0 1 2 3 4 5
Deviation    Slope26  = 0 0 1 2 3 4

1       2       3       4       5       6

Slope16 = linear 
trend for 1-2 only
after controlling 
Slope26

Slope26 = now difference
in linear trend from 2-6 
(test of needing 2 pieces) 
after controlling for time
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Slope + Deviation Slope: Random Effects
• Parameters directly differences across parts of trajectory:

• Fixed effects for mean change over time (3):
 Fixed Intercept = expected Y when both slopes = 0 (Session 1)
 Fixed Slope16 = expected linear rate of change from 1 to 2 

(after controlling for slope26)
 Fixed Slope26 = expected extra linear rate of change from 2 to 6 

(after controlling for slope16, which is just time)

• Leads to possible random effects (up to 3 var+3 cov):
 Random Intercept = BP variance in expected level 

when both slopes = 0 (at Session 1)
 Random Slope16 = BP variance in linear slope from 1 to 2
 Random Slope26 = BP variance in extra linear slope from 2 to 6
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Saturated Means via Piecewise Slopes Models

• You can fit fixed piecewise slopes up to n–1, 
but only random piecewise slopes up to n–2:
 3 occasions? up to 2 fixed pieces, but only 1 random piece
 4 occasions? up to 3 fixed pieces, but only 2 random pieces
 n–1 fixed pieces will perfectly reproduce observed means

• Given this constraint (and balanced data), you should 
consider some of the ACS models as well:
 Example: n=3  Model for the means = 2 fixed pieces, 

Model for the Variances could be….
 UN, CSH, CS (Random Intercept Only), Random Intercept + Random 

Slope12, OR  Random Intercept + Random Slope23
 Everything is nested within UN; can also use AIC and BIC to choose
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Other Random Effects for Change
• Truly nonlinear models: Non-additive terms to describe change

 Models can include asymptotes (so change can “shut off” as needed)
 Include power and exponential functions (see chapter 6 for references)
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(Negative) Exponential Model Parameters
1) Different Asymptotes, 

same amount and rate

2) Different Amounts, same 
asymptote and rate

3) Different Rates, same 
asymptote and amount

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6

1)
Asymptote=1.8
Asymptote=1.5
Asymptote=1.2

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6

2)
Amount=1.3
Amount=1.0
Amount=0.7

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6

3)
Rate= -0.5
Rate= -1.0
Rate= -1.5
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Exponential Model (3 Random Effects)
Level 1: yti =  β0i +  β1i*exp(β2i*Timeti) +  eti

Level 2 Equations (one per β):
β0i = γ00 +      U0i

β1i = γ10 +      U1i

β2i = γ20 +      U2i
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Fixed Effect Subscripts:
1st = which Level 1 term
2nd = which Level 2 term

Number of Possible Slopes 
by Number of Occasions (n):

# Fixed slopes = n – 1
# Random slopes = n – 2

Also need 4 occasions to fit 
random exponential model

(Likely need way more 
occasions to find U2i, though)

Asymptote 
for person i

Amount 
for person i

Rate for 
person i

Fixed (mean) 
Asymptote

Fixed (mean)
Amount

Fixed (mean)
Rate

Random 
(Deviation) 
Asymptote

Random 
(Deviation) 
Amount

Random 
(Deviation)
Rate



Summary: Nonlinear Models
• Not all forms of change fit polynomial models
 What goes up must come back down (and vice-versa)
 Sometimes change needs to “shut off” (need asymptotes)

• Many kinds of truly nonlinear models can be used for 
longitudinal data
 Linear in variables vs. linear in parameters (exp nonlinear)
 Logistic, power, exponential… see end of chapter 6 for ideas

• Require extra steps to evaluate estimation quality
 Special software routines: SAS PROC NLMIXED
 Start values are needed, especially for random effects variances
 Check that “gradient” values are as close to 0 as possible 

(partial first derivative of that parameter in LL function)
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Which family should I choose?
• Within a given family of models of change, nested models 

can usually be compared to judge the need for each term
 e.g., linear vs. quadratic? one slope vs. two slopes?
 Usual nested model comparison rules apply (p-values for fixed 

effects, −2∆LL tests for assessing random effects)

• Between families, however, alternative models of change 
may not be nested, so deciding among them can be tricky
 e.g., quadratic vs. two-slope vs. exponential?
 Use ML AIC and BIC to see what is “preferred” among the families
 In balanced data, can also compare each alternative to a 

saturated means, UN model using ML as test of exact fit
 Also consider plausibility of alternative models in terms of both 

data predictions and theoretical predictions in deciding
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