
Generalized Linear Models 
for Non-Normal Data
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• Today’s Class:
 3 parts of a generalized model
 Models for binary outcomes
 Complications for generalized multivariate or multilevel 

models



Dimensions for Organizing Models
• Outcome type: General (normal) vs. Generalized (not normal)
• Dimensions of sampling: One (so one variance term per outcome) 

vs. Multiple (so multiple variance terms per outcome)

• General Linear Models: conditionally normal outcome distribution, 
fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 
fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 
fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)

• “Linear” means fixed effects predict the link-transformed conditional mean 
of DV in a linear combination of (effect*predictor) + (effect*predictor)…

SPLH 861: Lecture 9 2

Note: Least 
Squares is 
only for GLM



Generalized Linear Models
• Generalized linear models: link-transformed conditional 

mean of yti is predicted instead; ML estimator uses not-normal 
distributions to calculate the likelihood of the outcome data
 Level-1 conditional outcomes follow some not-normal distribution that 

may not have a residual variance, but level-2 random effects are MVN

• Many kinds of non-normally distributed outcomes have some 
kind of generalized linear model to go with them via ML:
 Binary (dichotomous)
 Unordered categorical (nominal)
 Ordered categorical (ordinal)
 Counts (discrete, positive values)
 Censored (piled up and cut off at one end)
 Zero-inflated (pile of 0’s, then some distribution after)
 Continuous but skewed data (long tail)
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These two may get grouped 
together as “multinomial”



3 Parts of Generalized (Multilevel) Models

1. Non-normal conditional distribution of yti:
 General MLM uses a normal conditional distribution to describe the yti

variance remaining after fixed + random effects  we called this the 
level-1 residual variance, which is estimated separately and usually 
assumed constant across observations (unless modeled otherwise)

 Other distributions will be more plausible for bounded/skewed yti,
so the ML function maximizes the likelihood using those instead

 Why? To get the most correct standard errors for fixed effects 

 Although you can still think of this as model for the variance, not all 
conditional distributions will actually have a separately estimated 
residual variance (e.g., binary  Bernoulli, count  Poisson)
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3 Parts of Generalized (Multilevel) Models

2. Link Function = ࢍሺ⋅ሻ: How the conditional mean to be predicted is 
transformed so that the model predicts an unbounded outcome instead

 Inverse link ିࢍ૚ሺ⋅ሻ= how to go back to conditional mean in yti scale 

 Predicted outcomes (found via inverse link) will then stay within bounds

 e.g., binary outcome: conditional mean to be predicted is probability of 
a 1, so the model predicts a linked version (when inverse-linked, the 
predicted outcome will stay between a probability of 0 and 1)

 e.g., count outcome: conditional mean is expected count, so the log of 
the expected count is predicted so that the expected count stays > 0

 e.g., for normal outcome: an “identity” link function (yti * 1) is used given 
that the conditional mean to be predicted is already unbounded…
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3 Parts of Generalized (Multilevel) Models

3. Linear Predictor: How the fixed and random effects of predictors 
combine additively to predict a link-transformed conditional mean

 This works the same as usual, except the linear predictor model 
directly predicts the link-transformed conditional mean, which we 
then convert (via inverse link) back into the original conditional mean

 That way we can still use the familiar “one-unit change” language to 
describe effects of model predictors (on the linked conditional mean)

 You can think of this as “model for the means” still, but it also includes 
the level-2 random effects for dependency of level-1 observations

 Fixed effects are no longer determined: they now have to be found 
through the ML algorithm, the same as the variance parameters
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Normal GLM for Binary Outcomes?
• Let’s say we have a single binary (0 or 1) outcome…

(concepts for multilevel data will proceed similarly)
 Expected mean is proportion of people who have a 1, so the 

probability of having a 1 is the conditional mean we’re 
trying to predict for each person: ࢖ሺܑܡ ൌ ૚ሻ

 General linear model: ࢖ሺܑܡ ൌ ૚ሻ ൌ ઺૙ ൅ ઺૚ܑ܆ ൅ ઺૛ܑ܈	 ൅ ܑ܍
 ઺૙ = expected probability when all predictors are 0
 ઺’s = expected change in ࢖ሺܑܡ ൌ ૚ሻ for a one-unit ∆ in predictor
 ܑ܍ = difference between observed and predicted binary values

 Model becomes ܑܡ	 ൌ ሺ܌܍ܜ܋ܑ܌܍ܚܘ	ܡܜܑܔܑ܊܉܊ܗܚܘ	܎ܗ	૚ሻ 	൅ ܑ܍	
 What could possibly go wrong?
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Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between X and Y??? 
• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 
• Linear relationship needs to shut off  made nonlinear
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We have this… But we need this…
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Generalized Models for Binary Outcomes
• Solution to #1: Rather than predicting ࢖ሺܑܡ ൌ ૚ሻ	directly, we must 

transform it into an unbounded variable with a link function:
 Transform probability into an odds ratio: ௣

ଵି௣
ൌ ୮୰୭ୠ ୷ୀଵ

୮୰୭ୠሺ୷ୀ଴ሻ
 If ݌ y୧ ൌ 1 ൌ .7 then Oddsሺ1ሻ ൌ 2.33; Oddsሺ0ሻ ൌ 0.429
 But odds scale is skewed, asymmetric, and ranges from 0 to +∞  Not helpful

 Take natural log of odds ratio called “logit” link:  ܏ܗۺ ࢖
૚ି࢖

 If ݌ y୧ ൌ 1 ൌ .7, then Logitሺ1ሻ ൌ 0.846; Logitሺ0ሻ ൌ െ0.846
 Logit scale is now symmetric about 0, range is ±∞ DING
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Solution #1:  Probability into Logits
• A Logit link is a nonlinear transformation of probability:

 Equal intervals in logits are NOT equal intervals of probability

 The logit goes from ±∞ and is symmetric about prob = .5 (logit = 0)

 Now we can use a linear model  The model will be linear with respect to 
the predicted logit, which translates into a nonlinear prediction with respect to 
probability  the conditional mean outcome shuts off at 0 or 1 as needed

Probability:
ܑܡሺ࢖ ൌ ૚ሻ

Odds: ࢖
૚ି࢖

Zero-point on 
each scale:

Prob = .5
Odds = 1
Logit = 0
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Normal GLM for Binary Outcomes?
• General linear model:  ࢖ሺܑܡ ൌ ૚ሻ ൌ ઺૙ ൅ ઺૚ܑ܆ ൅ ઺૛ܑ܈ ൅ ܑ܍
• If ܑܡ is binary, then ܑ can only be 2 things:  ܑ܍ ൌ ܑܡ െ ොܑܡ

 If ܑܡ ൌ 0 then (predicted probability − 0) =	ܑ܍

 If ܑܡ ൌ 1 then (predicted probability − 1) =ܑ܍

• Problem #2a: So the residuals can’t be normally distributed
• Problem #2b: The residual variance can’t be constant over X as 

in GLM because the mean and variance are dependent
 Variance of binary variable: ܚ܉܄ ܑܡ ൌ 	࢖ ∗ ሺ૚ െ ሻ࢖
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Mean (݌)
Variance

Mean and Variance of a Binary Variable



Solution to #2:  Bernoulli Distribution
• Rather than using a normal conditional outcome distribution, we 

will use a Bernoulli distribution a special case of a binomial 
distribution for only one binary outcome
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Predicted Binary Outcomes
• Logit:  ࢖ሺܑܡୀ૚ሻ

૚ି࢖ሺܑܡୀ૚ሻ ૙ ૚ ܑ ૛ ܑ

 Predictor effects are linear and additive like in GLM, 
but ઺ = change in logit per one-unit change in predictor

• Odds:  ࢖ሺܑܡୀ૚ሻ
૚ି࢖ሺܑܡୀ૚ሻ ૙ ૚ ܑ ૛ ܑ

or ࢖ሺܑܡୀ૚ሻ
૚ି࢖ሺܑܡୀ૚ሻ ૙ ૚ ܑ ૛ ܑ 

• Probability: ܑ
ܘܠ܍ ઺૙ା઺૚ܑ܆ା઺૛ܑ܈

૚ାܘܠ܍ ઺૙ା઺૚ܑ܆ା઺૛ܑ܈

or           ܑ
૚

૚ାܘܠ܍ ି૚ሺ઺૙ା઺૚ܑ܆ା઺૛ܑ܈ሻ
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“Logistic Regression” for Binary Data
• This model is sometimes expressed by calling the logit(y୧) a 

underlying continuous (“latent”) response of ܑܡ∗ instead:

∗ܑܡ ൌ ࢊ࢒࢕ࢎ࢙ࢋ࢘ࢎ࢚ ൅ ܔ܍܌ܗܕ	ܚܝܗܡ	 ൅ ܑ܍
 In which ܑܡ ൌ ૚ if y୧∗ ൐ ݈݀݋݄ݏ݁ݎ݄ݐ , or ܑܡ ൌ ૙ if y୧∗ ൑ ݈݀݋݄ݏ݁ݎ݄ݐ

So if predicting ܑܡ∗, then

e୧	~	Logistic 0, σୣଶ ൌ 3.29

Logistic Distribution:
Mean = μ, Variance = ஠

మ

ଷ
 ,ଶݏ

where s = scale factor that 
allows for “over-dispersion” 
(must be fixed to 1 in binary 
outcomes for identification)

Logistic 
Distributions
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݈݀݋݄ݏ݁ݎ݄ݐ ൌ ଴ߚ ∗ െ1 is given 
in Mplus, not intercept



Other Link Functions for Binary Data
• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a Probit Regression model:

 A probit link, such that now your model predicts a different transformed ௣ܻ: 
Probit y୧ ൌ 1 ൌ Φିଵሾ݌ y୧ ൌ 1 ሿ ൌ ݈݁݀݋݉	ݎݑ݋ݕ

 Where Φ	= standard normal cumulative distribution function, so the transformed 
y୧ is the z-score that corresponds to the value of cumulative standard normal 
distribution below which the conditional mean probability is found

 Inverse link requires integration to find probability  ݌ y୧ ൌ 1 ൌ Φିଵሺݖሻ

 Same Bernoulli distribution for the conditional binary outcomes, in which 
residual variance cannot be separately estimated (so no e୧ in the model)
 Probit also predicts “latent” response: y୧∗ ൌ threshold ൅ 	your	model ൅ e୧

 But Probit says e୧	~	Normal 0, σୣଶ ൌ 1.00 , whereas Logit	σୣଶ = ஠
మ

ଷ
ൌ 3.29

 So given this difference in variance, probit estimates are on a different scale 
than logit estimates, and so their estimates won’t match… however…

ሺ⋅ሻ܏
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Probit vs. Logit: Should you care? Pry not.

• Other fun facts about probit:
 Probit = “ogive” in the Item Response Theory (IRT) world
 Probit has no odds ratios (because it’s not based on odds)

• Both logit and probit assume symmetry of the probability 
curve, but there are other asymmetric options as well…

Probit ો܍૛ ൌ 1.00
(SD=1)

Logit 
ો܍૛ ൌ 3.29
(SD=1.8)

Rescale to equate 
model coefficients: 
࢚࢏ࢍ࢕࢒ࢼ ൌ
࢚࢏࢈࢕࢘࢖ࢼ ∗ ૚. ૠ

You’d think it would 
be 1.8 to rescale, 
but it’s actually 1.7…
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SPLH 861: Lecture 9 16



Other Models for Binary Outcomes

ૄ ൌ ܔ܍܌ܗܕ Logit Probit Log-Log Complement. Log-Log

gሺ⋅ሻ link Log ௣
ଵି௣

= μ Φିଵ ݌ = μ െLog െLog ݌ = μ Log െLog 1 െ ݌ = μ

gିଵሺ⋅ሻ
inverse link 
(go back to 
probability):

݌ ൌ
exp μ

1 ൅ exp μ
݌ ൌ Φିଵ μ ݌ ൌ exp െexp െμ ݌ ൌ 1 െ exp െexp μ

In SAS LINK= LOGIT PROBIT LOGLOG CLOGLOG

‐5.0
‐4.0
‐3.0
‐2.0
‐1.0
0.0
1.0
2.0
3.0
4.0
5.0

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

Tr
an

sf
or
m
ed

 Y

Original Probability

Logit Probit = Z*1.7

Log‐Log Complementary Log‐Log

Logit = Probit*1.7
which both assume 
symmetry of prediction

Log-Log is for outcomes in 
which 1 is more frequent

Complementary 
Log-Log is for outcomes in 
which 0 is more frequent

e୧~log‐Weibull	extreme	value 0.577, σୣଶ ൌ
πଶ

6

SPLH 861: Lecture 9 17



Generalized MLM: Summary
• Statistical models come from probability distributions
 Conditional outcomes are assumed to have some distribution
 The normal distribution is one choice, but there are lots of others: 

so far we’ve seen Bernoulli (and mentioned log-Weibull)
 ML estimation tries to maximize the height of the data using 

that chosen distribution along with the model parameters

• Generalized models have three parts:
1. Non-normal conditional outcome distribution
2. Link function: how bounded conditional mean of yti gets 

transformed into something unbounded we can predict linearly
 So far we’ve seen identity, logit, probit, log-log, and cumulative log-log

3. Linear predictor: how we predict that linked conditional mean
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Multivariate Data in PROC GLIMMIX
• Multivariate models can be fitted in PROC GLIMMIX using 

stacked data, same as in MIXED… first, the bad news:
 There is no R matrix in true ML, only G, and V can’t be printed, either, 

which sometimes makes it hard to tell what structure is being predicted

 There is no easy way to allow different scale factors given the same link 
and distribution across multivariate outcomes (as far as I know)

 This means that a random intercept can be included to create constant 
covariance across outcomes, but that any differential variance (scale) or 
covariance must be included via RANDOM statement as well (to go in G)

• Now, the good news: 
 It allows different links and distributions across outcomes using 

LINK=BYOBS and DIST=BYOBS (Save new variables called “link” and 
“dist” to your data to tell GLIMMIX what to use per outcome)

 It will do −2∆LL tests for you using the COVTEST option! (not in MIXED)
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From Single-Level to Multilevel…
• Multilevel generalized models have the same 3 parts as 

single-level generalized models:
 Alternative conditional outcome distribution used (e.g., Bernoulli)

 Link function to transform bounded conditional mean into unbounded

 Linear model that directly predicts the linked conditional mean instead

• But in adding random effects (i.e., additional piles of variance) 
to address dependency in longitudinal data:
 Piles of variance are ADDED TO, not EXTRACTED FROM, the original 

residual variance pile when it is fixed to a known value (e.g., 3.29), 
which causes the model coefficients to change scale across models

 ML estimation is way more difficult because normal random effects + 
not-normal residuals does not have a known distribution like MVN

 No such thing as REML for generalized multilevel models
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Empty Multilevel Model for Binary Outcomes

• Level 1:  Logit [p(yti = 1)] = β0i

• Level 2:            β0i = γ00 + U0i

• Composite: Logit [p(yti = 1)] = γ00 + U0i

• σୣଶ residual variance is not estimated  π2/3 = 3.29
 (Known) residual is in model for actual yti, so σୣଶ	= 3.29 is for logit(yti) 

• Logistic	ICC ൌ ୆୔
୆୔ା୛୔

ൌ
ૌ܃
૛
૙

ૌ܃
૛
૙ାો܍

૛ ൌ
ૌ܃
૛
૙

ૌ܃
૛
૙ା૜.૛ૢ

• Can do −2∆LL test to see if ૌ܃૛૙> 0, although the ICC is problematic to 
interpret due to non-constant, not estimated residual variance

• Have not seen equivalent ICC formulas for other outcomes besides binary!

Notice what’s 
NOT in level 1…
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Random Linear Time Model 
for Binary Outcomes

• Level 1:  Logit [p(yti = 1)] = β0i + β1i(timeti)
• Level 2:      β0i = γ00 + U0i

β1i = γ10 + U1i

• Combined: 
Logit [p(yti = 1)] = (γ00 + U0i) + (γ10 + U1i)(timeti)

• σୣଶ residual variance is still not estimated  π2/3 = 3.29
• Can test new fixed or random effects with −2∆LL tests 

(or Wald test p-values for fixed effects as usual)
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New Interpretation of Fixed Effects
• In general linear mixed models, the fixed effects are 

interpreted as the “average” effect for the sample
 γ00 is “sample average” intercept 

 U0i is “individual deviation from sample average”

• What “average” means in generalized linear mixed models is 
different, because of the use of nonlinear link functions:
 e.g., the mean of the logs ≠ log of the means

 Therefore, the fixed effects are not the “sample average” effect, they 
are the effect for specifically for Ui = 0
 So fixed effects are conditional on the random effects
 This gets called a “unit-specific” or “subject-specific” model
 This distinction does not exist for normal conditional outcomes 
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Comparing Results across Models
• NEW RULE: Coefficients cannot be compared across models, 

because they are not on the same scale! (see Bauer, 2009)
• e.g., if residual variance = 3.29 in binary models:

 When adding a random intercept variance to an empty model, the 
total variation in the outcome has increased the fixed effects will 
increase in size because they are unstandardized slopes

 Level-1 predictors cannot decrease the residual variance like usual, 
so all other models estimates have to go up to compensate
 If Xti is uncorrelated with other X’s and is a pure level-1 variable (ICC ≈ 0), 

then fixed and SD(U0i) will increase by same factor

 Random effects variances can decrease, though, so level-2 effects 
should be on the same scale across models if level-1 is the same

0

2
U

mixed fixed

+3.29
γ  ( )

3.29


 
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A Little Bit about Estimation
• Goal: End up with maximum likelihood estimates for all model 

parameters (because they are consistent, efficient)
 When we have a V matrix based on multivariate normally

distributed eti residuals at level-1 and multivariate normally 
distributed Ui terms at level 2, ML is easy

 When we have a V matrix based on multivariate Bernoulli
distributed eti residuals at level-1 and multivariate normally 
distributed Ui terms at level 2, ML is much harder
 Same with any other kind model for “not normal” level 1 residual
 ML does not assume normality unless you fit a “normal” model!

• 3 main families of estimation approaches:
 Quasi-Likelihood methods (“marginal/penalized quasi ML”)

 Numerical Integration (“adaptive Gaussian quadrature”)

 Also Bayesian methods (MCMC, newly available in SAS or Mplus)
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2 Main Types of Estimation
• Quasi-Likelihood methods  older methods

 “Marginal QL”  approximation around fixed part of model
 “Penalized QL”  approximation around fixed + random parts
 These both underestimate variances (MQL more so than PQL)
 2nd-order PQL is supposed to be better than 1st-order MQL
 QL methods DO NOT PERMIT MODEL −2∆LL TESTS
 HLM program adds Laplace approximation to QL, which then does permit 
−2∆LL tests (also in SAS GLIMMIX and STATA melogit)

• ML via Numerical Integration  gold standard
 Much better estimates and valid −2∆LL tests, but can take for-freaking-ever 

(can use PQL methods to get good start values)
 Will blow up with many random effects (which make the model 

exponentially more complex, especially in these models)
 Relies on assumptions of local independence, like usual  all level-1 

dependency has been modeled; level-2 units are independent
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ML via Numerical Integration
• Step 1: Select starting values for all fixed effects
• Step 2: Compute the likelihood of each observation given by the 

current parameter values using chosen distribution of residuals
 Model gives link-predicted outcome given parameter estimates, but the U’s 

themselves are not parameters—their variances and covariances are instead

 But so long as we can assume the U’s are MVN, we can still proceed…

 Computing the likelihood for each set of possible parameters requires removing
the individual U values from the model equation—by integrating across 
possible U values for each level-2 unit

 Integration is accomplished by “Gaussian Quadrature”  summing up rectangles 
that approximate the integral (area under the curve) for each level-2 unit

• Step 3: Decide if you have the right answers, which occurs when the 
log-likelihood changes very little across iterations (i.e., it converges)

• Step 4: If you aren’t converged, choose new parameters values
 Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (U’s =missing data)
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ML via Numerical Integration
• More on Step 2: Divide the U distribution into rectangles

  “Gaussian Quadrature” (# rectangles = # “quadrature points”)

 First divide the whole U distribution into rectangles, then repeat by 
taking the most likely section for each level-2 unit and rectangling that
 This is “adaptive quadrature” and is computationally more demanding, but 

gives more accurate results with fewer rectangles (SAS will pick how many)

The likelihood of each level-2 unit’s 
outcomes at each U rectangle is then 
weighted by that rectangle’s 
probability of being observed (from 
the multivariate normal distribution). 
The weighted likelihoods are then 
summed across all rectangles… 

 ta da! “numerical integration”
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Example of Numeric Integration: Binary DV, 
Fixed Linear Time, Random Intercept Model 
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1. Start with values for fixed effects: intercept: γ00 = 0.5, time: γ10 = 1.5,

2. Compute likelihood for real data based on fixed effects and plausible U0i
(-2,0,2) using model: Logit(yti=1) = γ00 + γ10(timeti) + U0i

• Here for one person at two occasions with yti=1 at both occasions
IF yti=1 IF yti=0 Likelihood Theta Theta  Product

U0i = ‐2  Logit(yti) Prob  1‐Prob if both y=1 prob  width per Theta
Time 0  0.5 + 1.5(0) ‐ 2 ‐1.5  0.18  0.82     0.091213 0.05  2  0.00912
Time 1  0.5 + 1.5(1) ‐ 2 0.0  0.50  0.50 

U0i =  0  Logit(yti) Prob  1‐Prob
Time 0  0.5 + 1.5(0) + 0 0.5  0.62  0.38  0.54826  0.40  2  0.43861
Time 1  0.5 + 1.5(1) + 0 2.0  0.88  0.12 

U0i = 2  Logit(yti) Prob  1‐Prob
Time 0  0.5 + 1.5(0) + 2 2.5  0.92  0.08  0.90752  0.05  2  0.09075
Time 1  0.5 + 1.5(1) + 2 4.0  0.98  0.02                

Overall Likelihood (Sum of Products over All Thetas): 0.53848

(do this for each occasion, then multiply this whole thing over all people)
(repeat with new values of fixed effects until find highest overall likelihood) 
 



Summary: Generalized Multilevel Models
• Analyze link-transformed conditional mean (e.g., via logit, log, log-log…)

 Linear relationship between X’s and transformed conditional mean outcome

 Nonlinear relationship between X’s and original conditional mean outcome
 Conditional outcomes then follow some non-normal distribution

• In models for binary or categorical data, level-1 residual variance is set
 So it can’t go down after adding level-1 predictors, which means that the scale of 

everything else has to go UP to compensate

 Scale of model will also be different after adding random effects for the same 
reason—the total variation in the model is now bigger

 Fixed effects may not be comparable across models as a result

• Estimation is trickier and takes longer
 Numerical integration is best but may blow up in complex models

 Start values are often essential (can get those with pseudo-likelihood estimators)
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