
A (Brief) Introduction to 
Crossed Random Effects Models 

for Repeated Measures Data
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• Today’s Class:
 Review of concepts in multivariate data
 Introduction to random intercepts
 Crossed random effects models for repeated measures



The Two Sides of *Any* Model
• Model for the Means:
 Aka Fixed Effects, Structural Part of Model
 What you are used to caring about for testing hypotheses
 How the expected outcome for a given observation varies as a 

function of values on predictor variables

• Model for the Variance:
 Aka Random Effects and Residuals, Stochastic Part of Model
 How residuals are distributed and related across observations
 What you are used to making assumptions about instead… 
 For general linear models, that residuals come from a normal

distribution, are independent across persons, and have constant 
variance across persons and predictors (“identically distributed”)
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The Two Sides of a General Linear Model

୧ ଴ ଵ ୧ ଶ ୧ ଷ ୧ ୧ ୧

• Model for the Variance:
• e୧ ∼ N 0, σୣଶ  ONE residual (unexplained) deviation
• e୧ has a mean of 0 with some estimated constant variance
σୣଶ, is normally distributed, is unrelated to predictors, and is 
unrelated across observations (across all people here)

• Estimated parameter is residual variance (not each e୧)
• What happens when each person has more than one y୧? 

A single independent e୧ will not be sufficient because:
• Each outcome may have a different amount of residual variance
• Residuals of outcomes from the same person will be correlated
• So we need multivariate models with a new model for the variance
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Our new focus



Comparing Models for the Variance
• Relative model fit is indexed by 2*sum of individual LL values =−2LL

 −2LL indicates BADNESS of fit (shortness), so smaller values = better models
 LL indicates GOODNESS of fit (tallness), so larger values = better models

• Nested variance models are compared using −2LL values: −2∆LL Test 
(aka, “χ2 test” in SEM; “deviance difference test” in MLM)

1. Calculate −2∆LL =  (−2LLfewer)  – (−2LLmore) OR −2∆LL = −2 *(LLfewer – LLmore) 
2. Calculate  ∆df:  (# Parmsmore)  – (# Parmsfewer)
3. Compare −2∆LL to χ2 distribution with df = ∆df

CHIDIST in excel will give exact p-values for the difference test; so will STATA lrtest

• Nested or non-nested models can also be compared by Information Criteria
that reflect −2LL AND # parameters used and/or sample size
 AIC = Akaike IC     = −2LL +        2 *(#parameters)
 BIC = Bayesian IC  = −2LL + log(N)*(#parameters)  penalty for complexity

 No significance tests or critical values, just “smaller is better”
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Results of 1. and 2. 
must be positive values!

“fewer” = from model with fewer parameters
“more” = from model with more parameters



Types of Multivariate Models
When ܑ is still a single outcome conceptually, but:
• You have 2+ outcomes per person as created by multiple 

conditions (e.g., longitudinal or repeated measures designs)
 If there really is only one outcome per condition, then “ANOVA” models 

are potentially problematic restrictions of more general multivariate 
models in which there is a “right answer” for the residual variance and 
covariance across conditions (as shown in Lecture 5 and Example 5)

 If each condition has more than one outcome (e.g., per trial), do NOT
aggregate them into a condition mean outcome! Up next is what to do 
instead, although there will not be a “right answer” of variance and 
covariance against which to judge the fit of your model for the variance

• When your y୧ comes from people nested/clustered in groups 
(e.g., children nested in teachers, people nested in families)
 You really have multivariate outcomes of a group, and there also won’t 

be a single “right answer” for the model for the variance (up next time)
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From a “Multivariate” to “Stacked” Data

SPLH 861: Lecture 6 6

ID Girl Time Y

100 0 1 5

100 0 2 6

100 0 3 8

100 0 4 12

101 1 1 4

101 1 2 7

101 1 3 .

101 1 4 11

ML/REML in MIXED
uses “long” or 
stacked data 
structure instead:

A case is now one 
outcome per person
Only cases missing 
data are excluded

ID 100 uses 4 cases
ID 101 uses 3 cases

RM ANOVA uses “wide” 
multivariate data structure:

A row = a case = a person
So people missing any data 
are excluded (data from ID 
101 are not included at all)

ID Girl T1 T2 T3 T4

100 0 5 6 8 12

101 1 4 7 . 11

Time can also be unbalanced across people such that each person can 
have his or her own measurement schedule: Time “0.9” “1.4” “3.5” “4.2”…

New data structure so that ܑ is still a single outcome….



Multivariate = Multilevel Models
• When ܑ is still a single outcome conceptually, but you 

have more than one ܑ per person or per group, the 
models (for the variance) used for these data are usually 
referred to as “multilevel” models 
 aka, hierarchical linear models, general linear mixed models

• They are based on the idea of separating what was just a 
single “residual variance” into multiple “kinds” of variance 
that arise from different dimensions of sampling, each of 
which can be explained by predictors of that same kind
 e.g., between-person, between-item, between-group variances
 A “level” is a set of variances that are unrelated to the other sets 

of variances, but we won’t worry about this notation for now…
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An Empty Between-Person Model 
(i.e., Single-Level)
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Std. Dev. = 15.114
N = 1,334

yi =  β0 +  ei

Filling in values:
32  =  90 + −58

Model 
for the 
Means

୧ error variance:
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Adding Within-Person Information… 
(i.e., to become a Multilevel Model)
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Full Sample Distribution
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N = 1,334

3 People, 5 Occasions each

Now yi per person 
becomes yti per 

time per person…



Empty +Within-Person Model for yti

Start off with mean of yti as 
“best guess” for any value:

= Grand Mean

= Fixed Intercept

Can make better guess by 
taking advantage of 
repeated observations:

= Person Mean 

 Random Intercept
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Empty +Within-Person Model
yti variance  2 sources:

Between-Person (BP) Variance:
 Differences from GRAND mean

 INTER-Individual Differences

Within-Person (WP) Variance:
 Differences from OWN mean

 INTRA-Individual Differences

 This part is only observable 
through longitudinal data.

Now we have 2 piles of 
variance in yti to predict.
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Hypothetical Longitudinal Data
(black line = sample mean)
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“Error” in a BP Model for the Variance:
Single-Level Model
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eti represents all yti variance

e1i
e2i e3i

e4i
e5i



“Error” in a +WP Model for the Variance:
Multilevel Model
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U0i

U0i = random intercept that represents BP mean variance in yti
eti = residual that represents WP variance in yti

e1i
e2i e3i

e4i e5i

In other words: U0i represents a source of 
constant dependency (covariance) due to 

mean differences in yti across persons



Empty +Within-Person Model
yti variance  2 sources:

Level 2 Random Intercept 
Variance (of U0i, as ૌ܃૛૙):

 Between-Person Variance

 Differences from GRAND mean

 INTER-Individual Differences

Level 1 Residual Variance
(of eti, as ો܍૛):

 Within-Person Variance

 Differences from OWN mean

 INTRA-Individual Differences
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BP vs. +WP Empty Models
• Empty Between-Person Model (used for 1 occasion):

yi =   β0 +  ei

 β0 = fixed intercept = grand mean

 ei = residual deviation from GRAND mean

• Empty +Within-Person Model (for >1 occasions):

yti =   β0 +  U0i + eti

 β0 = fixed intercept = grand mean

 U0i = random intercept = individual deviation from GRAND mean

 eti = time-specific residual deviation from OWN mean
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BP and +WP Conditional Models
• Multiple Regression, Between-Person ANOVA: 1 PILE
 yi = (β0 + β1Xi + β2Zi…) + ei

 ei  ONE residual, assumed uncorrelated with equal variance 
across observations (here, just persons)  “BP (all) variation”

• Repeated Measures, Within-Person ANOVA: 2 PILES
 yti = (β0 + β1Xi + β2Zi…) + U0i + eti

 U0i  A random intercept for differences in person means, 
assumed uncorrelated with equal variance across persons 
 “BP (mean) variation”= ૌ܃૛૙ is “leftover” after BP predictors

 eti  A residual that represents remaining time-to-time variation, 
usually assumed uncorrelated with equal variance across 
observations (now, persons and time)  “WP variation”
= ો܍૛ is also now “leftover” after WP predictors
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ANOVA works well when…
• Experimental stimuli are controlled and exchangeable

 Controlled  Constructed, not sampled from a population
 Exchangeable  Stimuli vary only in dimensions of interest
 …What to do with non-exchangeable stimuli (e.g., words, scenes)?

• Experimental manipulations create discrete conditions
 e.g., set size of 3 vs. 6 vs. 9 items 
 e.g., response compatible vs. incompatible distractors
 …What to do with continuous item predictors (e.g., time, salience)?

• One has complete data
 e.g., if outcome is RT and accuracy is near ceiling
 e.g., if responses are missing for no systematic reason
 …What if data are not missing completely at random (e.g., inaccuracy)?
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Motivating Example:
Psycholinguistic Study Designs

• Word Recognition Tasks (e.g., Lexical Decision) 
 Word lists are constructed based on targeted dimensions while 

controlling for other relevant dimensions
 Outcome = RT to decide if the stimulus is a word or non-word 

(accuracy is usually near ceiling) 

• Tests of effects of experimental treatment are typically 
conducted with the person as the unit of analysis…
 Average the responses over words within conditions

 Contentious fights with reviewers about adequacy of experimental 
control when using real words as stimuli

 Long history of debate as to how words as experimental stimuli should 
be analyzed… F1 ANOVA or F2 ANOVA (or both)?

 F1 only creates a “Language-as-Fixed-Effects Fallacy” (Clark, 1973)
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ANOVAs on Summary Data

B1 B2

A1
Trial 001
Trial 002

………
Trial 100

Trial 101
Trial102

………
Trial 200

A2
Trial 201
Trial 202

………
Trial 300

Trial 301
Trial302

………
Trial 400

B1 B2
A1 Mean 

(A1, B1)
Mean 

(A1, B2)

A2 Mean 
(A2, B1)

Mean 
(A2, B2)

Original Data per Subject

Subject Summary Data

Trial Summary Data

B1
A1, B1 Trial 001 = Mean(Subject 1, Subject 2,… Subject N)

Trial 002 = Mean(Subject 1, Subject 2,… Subject N)
……… Trial 100

A1, B2 Trial 101 = Mean(Subject 1, Subject 2,… Subject N)
Trial 102 = Mean(Subject 1, Subject 2,… Subject N)
……… Trial 200

A2, B1 Trial 201 = Mean(Subject 1, Subject 2,… Subject N)
Trial 202 = Mean(Subject 1, Subject 2,… Subject N)
……… Trial 300

A2, B2 Trial 301 = Mean(Subject 1, Subject 2,… Subject N)
Trial 302 = Mean(Subject 1, Subject 2,… Subject N)
……… Trial 400

“F1” Repeated Measures ANOVA on N subjects:
RTୡୱ ൌ γ଴ ൅ γଵAୡ ൅ γଶBୡ ൅ γଷAୡBୡ ൅ ܛ૙܃ ൅ eୡୱ

“F2” Between-Groups ANOVA on T trials:
RT୲ ൌ γ଴ ൅ γଵA୲ ൅ γଶB୲ ൅ γଷA୲B୲ ൅ e୲
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Choosing Amongst ANOVA Models
• F1 RM ANOVA on subject summary data:
 Assumes trials are fixed—within-condition trial variability is gone

• F2 ANOVA on trial summary data:
 Assumes persons are fixed—within-trial subject variability is gone

• Proposed ANOVA-based resolutions:
 F′ quasi-F test that treats both trials and subjects as random 

(Clark, 1973), but requires complete data (least squares)
 Min F′ lower-bound of F′ derived from F1 and F2 results, which 

does not require complete data, but is (too) conservative
 F1 x F2 criterion  effects are only “real” if they are significant in 

both F1 and F2 models (aka, death knell for psycholinguists)

 But neither model is complete (two wrongs don’t make a right)…
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Multilevel Models to the Rescue?

Level	1: 			y୲ୱ ൌ β଴ୱ ൅ βଵୱA୲ୱ ൅ βଶୱB୲ୱ ൅ βଷୱA୲ୱB୲ୱ ൅ e୲ୱ

Level	2: 			β଴ୱ ൌ γ଴଴ ൅ U଴ୱ
	βଵୱ	ൌ γଵ଴
βଶୱ ൌ γଶ଴
βଷୱ ൌ γଷ଴

B1 B2

A1
Trial 001
Trial 002

………
Trial 100

Trial 101
Trial102

………
Trial 200

A2
Trial 201
Trial 202

………
Trial 300

Trial 301
Trial302

………
Trial 400

Original Data per Person Pros:
• Use all original data, not summaries
• Responses can be missing at random
• Can include continuous trial predictors
Cons:
• Is still wrong

Level 1 = Within-Subject Variation 
(Across Trials) 

Level 2 = Between-Subject Variation
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Multilevel Models to the Rescue?
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Between-
Subject

Variation
ૌ૙܁૛

Between-
Item

Variation
ૌ૙૙۷૛

Within-
Subject

Variation
ો܍૛

Level 1 

Level 2 

Trial 
(Subject*Item)

Variation
ો܍૛



Empty Means, Crossed Random Effects Models

• Residual-only model:
 RTtis = γ000 + etis
 Assumes no effects (dependency) of subjects or items

• Random subjects model:
 RTtis = γ000 + U00s + etis
 Models systematic mean differences between subjects

• Random subjects and items model: 
 RTtis = γ000 + U00s + U0i0 + etis
 Also models systematic mean differences between items
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Note the new symbol for a fixed 
effect: now ࢽ (gamma) instead 
of ࢼ (beta) to follow traditional 

multilevel model notation…



A Better Way of (Multilevel) Life

• Multilevel Model with Crossed Random Effects:
୲୧ୱ ଴଴଴ ଴ଵ଴ ୧ ଴ଶ଴ ୧ ଴ଷ଴ ୧ ୧

૙૙ܛ ૙ܑ૙ ܛܑܜ

• Both subjects and items as random effects:
 Subject predictors explain between-subject mean variation: ૌ૙૙܁૛

 Item predictors explain between-item mean variation: ૌ૙૙۷૛

 Trial predictors explain trial-specific residual variation: ો܍૛

Between-
Subject

Variation
L2 ૌ૙૙܁૛

Between-
Item

Variation
L2 ૌ૙૙۷૛

Random effects over 
subjects of item or
trial predictors can also 
be tested and predicted.

t trial
i item
s subject

Trial 
(Subject*Item)

Variation
ો܍૛
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Example Psycholinguistic Study
(Locker, Hoffman, & Bovaird, 2007)
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• Crossed design: 38 subjects by 39 items (words or nonwords)

• Lexical decision task: RT to decide if word or nonword

• 2 word-specific predictors of interest: 
 A: Low/High Phonological Neighborhood Frequency

 B: Small/Large Semantic Neighborhood Size

Trials 
(Subject*Item 
Residual)

65%

Subjects
24%

Items
11%

Empty Means
Decomposition 
of RT Variance 

(note: % of total 
is used, not ICC)

Model and Results
RT୲୧ୱ ൌ γ଴଴଴ ൅ γ଴ଵ଴A୧ ൅ γ଴ଶ଴B୧ ൅ γ଴ଷ଴A୧B୧

																												൅܃૙૙ܛ ൅ ૙ܑ૙܃ ൅ ܛܑܜ܍
Pseudo-R2:
Residual ≈ 0%
Subjects ≈ 0%
Items ≈ 30%*
Total R2 ≈ 3.3%

*Significant item
variability remained

580

600

620

640

660

680

700

Small Large

RT
 (m

s)
Neighborhood Size

Low Freqency High Frequency



Tests of Fixed Effects by Model
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A: Frequency 
Marginal Main 

Effect

B: Size 
Marginal Main 

Effect

A*B: Interaction 
of Frequency 

by Size

F1 Subjects
ANOVA

F (1,37) = 16.1
p = .0003

F (1,37) = 14.9
p = .0004

F (1,37) = 38.2
p < .0001

F2 Words
ANOVA

F (1,35) = 5.3
p = .0278

F (1,35) = 4.5
p = .0415

F (1,35) = 5.7
p = .0225

F′ min 
(via ANOVA)

F (1,56) = 4.0
p = .0530

F (1,55) = 3.5
p = .0710

F (1,45) = 5.0
p = .0310

Crossed MLM 
(via REML)

F (1,32) = 5.4
p = .0272

F (1,32) = 4.6
p = .0393

F (1,32) = 6.0
p = .0199



Simulation: Type 1 Error Rates
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Condition Models

Item 
Variance

Subject 
Variance

1: 
Both 

Random 
Effects

2: Random 
Subjects 
Only

3: Random 
Items 
Only

4: 
No 

Random 
Effects

5: 
F1 

Subjects 
ANOVA

6: 
F2 
Item 

ANOVA
Item Effect:

2 2 0.03 0.09 0.03 0.09 0.09 0.03
2 10 0.05 0.14 0.05 0.12 0.15 0.05
10 2 0.04 0.32 0.04 0.31 0.32 0.04
10 10 0.05 0.31 0.05 0.29 0.33 0.05

Subject Effect:
2 2 0.04 0.04 0.12 0.11 0.04 0.12
2 10 0.05 0.05 0.34 0.34 0.05 0.36
10 2 0.04 0.03 0.12 0.09 0.03 0.12
10 10 0.06 0.06 0.34 0.31 0.05 0.37



Model Items as Fixed Wrong Item Effect
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Condition Models

Item 
Variance

Subject 
Variance

1: 
Both 

Random 
Effects

2: Random 
Subjects 
Only

3: Random 
Items 
Only

4: 
No 

Random 
Effects

5: 
F1 

Subjects 
ANOVA

6: 
F2 
Item 

ANOVA
Item Effect:

2 2 0.03 0.09 0.03 0.09 0.09 0.03
2 10 0.05 0.14 0.05 0.12 0.15 0.05
10 2 0.04 0.32 0.04 0.31 0.32 0.04
10 10 0.05 0.31 0.05 0.29 0.33 0.05

Subject Effect:
2 2 0.04 0.04 0.12 0.11 0.04 0.12
2 10 0.05 0.05 0.34 0.34 0.05 0.36
10 2 0.04 0.03 0.12 0.09 0.03 0.12
10 10 0.06 0.06 0.34 0.31 0.05 0.37



Model Subjects as Fixed Wrong Subject Effect
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Condition Models

Item 
Variance

Subject 
Variance

1: 
Both 

Random 
Effects

2: Random 
Subjects 
Only

3: Random 
Items 
Only

4: 
No 

Random 
Effects

5: 
F1 

Subjects 
ANOVA

6: 
F2 
Item 

ANOVA
Item Effect:

2 2 0.03 0.09 0.03 0.09 0.09 0.03
2 10 0.05 0.14 0.05 0.12 0.15 0.05
10 2 0.04 0.32 0.04 0.31 0.32 0.04
10 10 0.05 0.31 0.05 0.29 0.33 0.05

Subject Effect:
2 2 0.04 0.04 0.12 0.11 0.04 0.12
2 10 0.05 0.05 0.34 0.34 0.05 0.36
10 2 0.04 0.03 0.12 0.09 0.03 0.12
10 10 0.06 0.06 0.34 0.31 0.05 0.37



Random Slopes
• In addition to allowing each subject his or her own intercept for a mean 

difference, we can also test (using a −2LL LRT) whether subjects show 
individual differences in their effect of an item predictor random slope

• For example: RT୲୧ୱ ൌ γ଴଴଴ ൅ γ଴ଵ଴A୧ ൅ γ଴ଶ଴B୧ ൅ γ଴ଷ଴A୧B୧
																																														൅܃૙૙ܛ ൅ A୧ܛ૙૚܃ ൅ ૙ܑ૙܃ ൅ ܛܑܜ܍
 The new ܃૙૚ܛA୧ term is a subject-specific deviation that creates a 

subject-specific effect of item predictor A 

 As with all random effects, we estimate its variance (as τ୙଴ଵଶ ) instead of 
the separate subject values—this variance can then be predicted via 
interactions of A by subject predictors, allowing us to test why some 
subjects show a stronger effect of the item predictor

 It also creates heterogeneity of variance and covariance across outcomes 
as a function of the levels of the A predictor

• Random slopes of predictor effects over people are also technically 
possible (but harder to envision in practice)
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Explanation of Random Effects Variances
• We can test the significance of a random intercept or slope 

variance, but the variances do not have inherent meaning
 e.g., “I have a significant fixed effect of item predictor A of γ010 = 70, so 

the slope for predictor A is 70 on average. I also have a significant 
random slope variance of ૌ܃૛૙૚= 372, so people need their own slopes 
for the effect of A. But how much is a variance of 372, really?”

• 95% Random Effects Confidence Intervals can tell you
 Can be calculated for each effect that is random in your model

 Provide range around the fixed effect within which 95% of your sample 
is predicted to fall, based on your random effect variance: 

 Predictor A has a positive slope = 70 on average, and people’s individual 
slopes for A are predicted to range from 32 to 107 (the A effect varies)
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 
   10

2
010 U

Random Effect 95% CI = fixed effect ± 1.96* Random Variance

Slope for A 95% CI = γ  ± 1.96* τ   70  ± 1.96* 372  = 32 to 107    



Conclusions
• A RM ANOVA model may be less than ideal when:
 Stimuli are not completely controlled or exchangeable
 Experimental conditions are not strictly discrete
 Missing data may result in bias, a loss of power, or both

• RM ANOVA is a special case of a more general family of 
multivariate/multilevel models (with nested or crossed 
effects as needed) that can offer additional flexibility:
 Useful in addressing statistical problems 

 Dependency, heterogeneity of variance, unbalanced or missing data
 Examine predictor effects pertaining to each source of variation more 

accurately given that all variation is properly represented in the model
 Useful in addressing substantive hypotheses 

 Examining individual differences in effects of experimental manipulations
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