Other Kinds of Effects in General Linear Models (and Beyond)

- Today's Class:
 - Nonlinear effects: polynomial and exponential
 - Semi-continuous (piecewise) effects
 - > Nested effects of mean differences or slopes

General "Linear" Model (Regression)

• Effects of continuous (quantitative) variables are usually described via a fixed linear slope relating X to Y

> For example: $y_i = \beta_0 + \beta_1 X_i + \cdots + e_i$

- However, that the X–Y relationship should be linear only is a testable hypothesis
- Many kinds of curvilinear functions—here are two examples:
 - > **Polynomial**: effects of X^2 (predicts 1 bend) or X^3 (predicts 2 bends)
 - > **Exponential**: effects of $LOG(X) \rightarrow$ predicts 1 bend that asymptotes
- However, these terms are still part of a "linear" model
 - "Linear" means the fixed effects predict the conditional mean of the DV in a linear combination of (effect*predictor) + (effect*predictor)...

Quadratic Effects (e.g., of X=time)

A Quadratic effect is a two-way interaction: time*time

- Fixed quadratic time = "<u>half</u> the rate of acceleration/deceleration"
- So to interpret it as how the linear time effect changes per unit time, you must multiply the quadratic coefficient by 2
- If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?
 - > Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6...
- The "twice" part comes from taking the derivatives of the function:

Intercept (Position) at Time T: $\hat{y}_T = 50.0 + 4.0T + 0.3T^2$ First Derivative (Velocity) at Time T: $\frac{d\hat{y}_T}{d(T)} = 4.0 + 0.6T$ Second Derivative (Acceleration) at Time T: $\frac{d^2\hat{y}_T}{d(T)} = 0.6$

Interpreting Quadratic Effects

A Quadratic time effect is a two-way interaction: time*time

- Fixed quadratic = "<u>half</u> the rate of acceleration/deceleration"
- So to interpret it as how the linear time effect changes per unit time, you must multiply the quadratic coefficient by 2
- If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?
 - > Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6...
- The "twice" part also comes from what you remember about the role of interactions with respect to their constituent main effects:

 $\hat{\mathbf{y}} = \beta_0 + \beta_1 \mathbf{X} + \beta_2 \mathbf{Z} + \beta_3 \mathbf{X} \mathbf{Z}$ Effect of $\mathbf{X} = \beta_1 + \beta_3 \mathbf{Z}$ Effect of $\mathbf{Z} = \beta_2 + \beta_3 \mathbf{X}$ $\hat{\mathbf{y}}_{\mathrm{T}} = \beta_0 + \beta_1 \mathrm{Time}_{\mathrm{T}} + \underline{\qquad} + \beta_3 \mathrm{Time}_{\mathrm{T}}^2$ Effect of $\mathrm{Time}_{\mathrm{T}} = \beta_1 + 2\beta_3 \mathrm{Time}_{\mathrm{T}}$

 Because time is interacting with itself, there is no second main effect in the model for the interaction to modify as usual. So the quadratic time effect gets applied <u>twice</u> to the <u>one</u> (main) linear effect of time.

Examples of Quadratic Effects

SPLH 861: Lecture 4

Examples of Cubic Effects

Exponential Effects of LOG(X)

- Useful when the linear effect is expected to "shut off" as it moves towards extreme values (as opposed to change direction, which is what polynomial models predict instead)
- Example predictors: trial order, income, really skewed variables

Semi-Continuous (Piecewise) Effects

- So far we've called predictors "continuous" or "categorical" but hybrid kinds are also possible
- **Semi-continuous** predictors will contain both qualitative and quantitative distinctions of "if" and "how much"
 - » e.g., abuse severity, # chronic illnesses
- Example with "younger" and "older" adults: because age differences matter in the "older" group, 2 effects are needed:
 - > "Age Group" \rightarrow dummy code for difference of younger=0 and older=1
 - > "Years over 65" \rightarrow slope of age in the older group only

No age slope for younger: IF AgeGroup=0 THEN years65=0; Create age slope for older: IF AgeGroup=1 THEN years65=age-65;

Piecewise (Semi-Continuous) Effects of Age on Response Time

Piecewise (Semi-Continuous) Effects of Age on Response Time

Categorical Predictors with Issues

- Experimental designs with fully crossed conditions lend themselves to analysis of variance-type models
- What happens when things go wrong? Two examples:
 - > ANOVA with a hole in it
 - > Predictors that don't apply to everyone
- These designs can be analyzed using nested effects
 - Software specifies these differently, so I'll show them via a common language of pseudo-interaction terms
 - "Interactions" act as switches instead to turn effects on/off

A Traditional View of ANOVA

ANOVAs are usually focused on F-tests for marginal mean differences...

Means	1	2	3
ā	a1	a2	a3
b	b1	b2	b3

ANOVA as a Linear Model

$$y = \beta_0 + \beta_1(a1 v. b1) + \beta_2(a1 v. a2) + \beta_3(a1 v. a3) + \beta_4(a1 v. b1)(a1 v. a2) + \beta_5(a1 v. b1)(a1 v. a3) + e$$

The focus is now on differences between specific conditions as created by the ß fixed effects.

Means	1	2	3
ā	a1	a2	a3
b	<u>b1</u>	b2	b 3

ANOVA as a Linear Model

- Software will find any simple effects you ask for
 - > TEST in SPSS; ESTIMATE in SAS
 - > LINCOM in STATA; NEW in Mplus
- Seeing research questions through linear models saves nontraditional research designs
 - > Not fully crossed on purpose or by accident...

Means	1	2	3
ā	β ₀	$\beta_0 + \beta_2$	$\beta_0 + \beta_3$
b	$\beta_0 + \beta_1$	$ \begin{array}{c} \beta_0 + \beta_1 \\ + \beta_2 + \beta_4 \end{array} $	$ \begin{array}{c} \beta_0 + \beta_1 \\ + \beta_3 + \beta_5 \end{array} $

A Nontraditional ANOVA Design

y = "ANOVA with a hole in it"

Problem: What can we do about Group 3?

Solution: Change the model to match the design

Means	Cohort 1	Cohort 2	Cohort 3
Control			
Treatment			

A Nontraditional ANOVA Design

$$y = \beta_0 + \beta_1(t3 v.t1) + \beta_2(t2 v.t1) + \beta_3(t1)(t v.c) + \beta_4(t2)(t v.c) + \epsilon$$

 β_3 and β_4 are not interaction terms. Instead, they are *nested* effects.

You are allowed to use any *n* effects you want to represent the *n* means, even in fully crossed designs!

Means	Cohort 1	Cohort 2	Cohort 3
Control	$\beta_0 + \beta_1 + \beta_3$	$\beta_0 + \beta_2 + \beta_4$	
Treatment	$\beta_0 + \beta_1$	$\beta_0 + \beta_2$	β ₀

A Nested-Effects General Linear Model

- Example: predicting outcomes by dementia type and timing in persons with OR without dementia
 - > Type and timing do not apply to persons without dementia
 - > So this requires the following new variables...

* Create a switch variable and nested type variable; IF demtype="none" THEN DO; demYes=0; demAorV= 0; END; IF demtype="AD" THEN DO; demYes=1; demAorV=-.5; END; IF demtype="VA" THEN DO; demYes=1; demAorV= .5; END; * Create a timing variable (0=5 years) when applicable; IF demtype="none" THEN DO; demtime5=0; END; IF demtype="AD" THEN DO; demtime5=demtime-5; END; IF demtype="VA" THEN DO; demtime5=demtime-5; END;

A Nested-Effects General Linear Model

• Example results would be interpreted as follows:

Fixed Effect	Interpretation
Intercept	Expected outcome for persons without dementia
demYes	Simple main effect for difference between persons without dementia or with dementia for 5 years (averaged across AD and VA dementia types)
demAorV	Simple main effect for difference between persons with AD or VA type dementia (for 5 years)
demYes* demtime5	Is NOT an interaction term: Slope for difference in outcome per year of dementia <i>only in persons with dementia</i> (averaged across AD and VA dementia types)
demAorV* demtime5	IS an interaction term: Difference in slope for effect of years between persons with AD or VA type

Wrapping Up...

- Effects of predictors can be specified in many ways
 - Continuous predictors: linear or nonlinear slopes
 - Categorical predictors: differences of whatever kind is of interest given your hypotheses and design (not just as in ANOVA formats)
- Predictor effects can be specified for only the persons for whom they are relevant using nested effects instead
 - Omit main effects that do not apply to everyone, and replace with interactions that act as switches to let effects apply only to those persons for whom they are relevant
 - Make sure to fill in all irrelevant predictor values, too, otherwise the non-relevant people won't get included in the model