
One of the most important pieces in the toolbox of the 
experimental psychologist is the ANOVA model. ANOVA 
models are well suited to an analysis of the impact on a 
continuous response variable of categorical design factors 
(independent variables) that are manipulated or measured 
between subjects, within subjects, or some combination 
of both (e.g., split-plot). Examples of such categorical de-
sign factors include the number of items held in memory 
during completion of a second task (e.g., 3, 6, or 9 items) 
and the types of distractors surrounding a visual target 
(e.g., none, similar, dissimilar). For many investigators, 
ANOVA models are more than adequate to examine the 
research hypotheses of interest from their experimental 
design. However, in other instances, ANOVA models may 
not be appropriate. For example, although ANOVA mod-
els can be extended in order to examine the main effect of 
continuous person-level covariates such as age or ability, 
the analysis of covariance (ANCOVA) model is only ap-
propriate if interactions between the categorical design 
factors and continuous covariates do not exist (i.e., the 
assumption of homogeneity of regression). In some ap-
plications, however, such interactions may very well be 
the focus of interest (e.g., the extent to which the effects 
of memory load or type of distractor vary across age or 
ability levels).

The matter may be further complicated in the case of 
continuous within-subjects factors. In real-world experi-
mental stimuli such as photographs, text passages, or au-
tobiographical memories, the design features of interest 
(e.g., visual complexity of the photograph, difficulty of 
the text passage, or strength of the memory) must be mea-

sured instead of manipulated. As a result, these experi-
mental stimuli may vary continuously in their levels of a 
design feature, just as persons may vary continuously in 
characteristics or abilities. Manipulated variables (e.g., 
dosage levels) may also be continuous. What if an interac-
tion between a continuous person variable and a continu-
ous design factor were of substantive interest? Such inter-
actions of continuous between-subjects design factors or 
person variables can readily be examined within a general 
linear modeling framework using multiple regression, of 
which between-groups ANOVA is a special example.

If the design factor were administered within subjects 
instead, however, there would be fewer options for exam-
ining its main effect and its interaction with continuous 
person-level covariates. An all too common solution to 
this dilemma is to categorize the continuous independent 
variables (either stimulus-level design factors or subject-
level individual-difference variables) in order to fit them 
within an ANOVA model. However, because the catego-
rization of continuous independent variables substantially 
reduces the power to detect effects and inflates Type I error 
rates, methodologists strongly discourage doing so (e.g., 
Cohen, 1983; MacCallum, Zhang, Preacher, & Rucker, 
2002; Maxwell & Delaney, 1993).

Alternative approaches for analyzing repeated mea-
sures data with continuous design factors have made use 
of variations on linear regression methods. Although typi-
cal regression models cannot be used on the pooled data 
set of within-subjects data due to violation of the assump-
tion of independence (i.e., model residuals from the same 
person may be more related than those from different 
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people), several methods for circumventing this problem 
have been suggested. One alternative is known as fixed ef-
fects regression (see Allison, 1994; Lorch & Myers, 1990;  
Snijders & Bosker, 1999, pp. 41–45), in which n21 
dummy indicator variables for n persons and n21 per-
son 3 design feature interaction variables are included in 
order to control for any within-subjects residual correla-
tion. Because the dummy indicator variables will account 
for all of the between-subjects differences, however, a sig-
nificant limitation of this approach is that no other person-
level independent variables can be examined within the 
model. Additionally, this approach draws no inferences 
from a population of individuals, which is often in con-
trast with the intentions of the analyst, who may indeed 
wish to generalize to other samples. 

A second alternative is a two-stage approach known as 
slopes as outcomes (see Lorch & Myers, 1990; Singer & 
Willett, 2003, pp. 28–44), in which regressions are per-
formed separately for each person in the first step, and the 
individual regression estimates are then used as data in a 
between-subjects analysis (i.e., ANOVA or regression). 
Although intuitively appealing, this method does not ac-
count for the differential reliability of the individual re-
gression estimates, which can result in biases in unknown 
directions. Such two-stage procedures are also statistically 
inefficient and are generally not recommended (Singer & 
Willett, 2003; Snijders & Bosker, 1999).

A third alternative is the univariate approach to repeated 
measures using modified error terms within a general lin-
ear model framework, in which the significance of effects 
is assessed using customized error terms that properly ac-
count for between-subjects variation (see Lorch & Myers, 
1990; O’Brien & Kaiser, 1985; Rovine & von Eye, 1991, 
pp. 26–28). The selection of the correct error term for a 
given contrast can be challenging for a less sophisticated 
user, and there are two significant limitations to the uni-
variate approach given that it is based on least squares 
estimation: (1) It assumes a particular pattern of variances 
and covariances, and (2) it assumes that data are missing 
completely at random. These limitations will be discussed 
later in greater detail.

Although not commonly used in experimental psychol-
ogy, state of the art multilevel modeling approaches often 
used in other disciplines represent a viable alternative 
to ANOVA or regression-based approaches for repeated 
measures designs. The purpose of this article is to illus-
trate how multilevel models can fit into the toolbox of the 
experimental psychologist in order to answer substantive 
questions about design features that simply don’t fit within 
traditional repeated measures models. Multilevel models 
(MLMs, also known as hierarchical linear, random coef-
ficients, or general linear mixed models; Laird & Ware, 
1982) are often used in the literature of educational, family, 
developmental, and organizational psychology to analyze 
data in which there are sources of nesting, and for which 
assumptions of independence are likely to be violated. For 
example, students from the same school, members of the 
same family, and people in the same organization may be 
more alike in their responses than people from different 
schools, families, or organizations. In the developmental 

literature, multilevel models are often used to examine 
individual differences in change over time, where time 
points are nested within individuals (i.e., growth curve 
models). These higher order groupings are specified as 
varying randomly from one another, however, not treated 
as fixed; thus, predictors of this random variation between 
higher order units, as well as within higher order units, 
may be evaluated explicitly.

What may not be immediately obvious is how experi-
mental stimuli such as trials or items can also be nested 
within individuals (i.e., in designs in which only certain 
individuals receive certain items), or crossed with indi-
viduals (i.e., in designs in which every individual receives 
every item). In this article, the foundations of the multi-
level model as it relates to more familiar ANOVA and re-
gression models will be presented as it applies to analysis 
of data from experimental designs, along with two illus-
trative examples. For a technically rigorous treatment, the 
reader is invited to consult one of the many excellent texts 
dealing with multilevel models in the clustered or nested 
cases (Raudenbush & Bryk, 2002; Snijders & Bosker, 
1999) and in the growth-curve cases (Fitzmaurice, Laird, 
& Ware, 2004; Singer & Willett, 2003). Although many 
excellent MLM tutorials are also available (Diez-Roux, 
2000; Quené & van den Bergh, 2004; Sayer & Klute, 2004; 
Singer, 1998), the present article differs from them in two 
respects: (1) Our focus is on the specific advantages of 
the multilevel model for use with experimental designs, as 
discussed in greater detail below; and (2) our exposition is 
designed to be accessible to researchers familiar only with 
ANOVA and regression. As a result, we think the detailed 
presentation of these methods within a familiar context, as 
well as the availability of example syntax and data in elec-
tronic appendices (see the Author Note at the end of this 
article), will help to facilitate adoption of these methods 
by interested experimental psychologists. Estimation of 
multilevel models is now widely available within popular 
software packages such as SPSS, SAS, HLM, MLwiN, 
and Mplus. Some, such as SAS and Mplus, are syntax-
based, and some—SPSS, HLM, MLwiN—are Windows 
based (although syntax may also be used in some of the 
latter packages). These packages also differ in how the 
model is programmed, with SPSS and SAS implementing 
the general linear mixed model as a single equation and 
the others doing so as multilevel equations. The more in-
tuitive multilevel equation presentation is used here.

Advantages of the Multilevel 
Model for Experimental Designs

The multilevel model can be conceptualized as a series 
of interrelated regression models that explain sources of 
variance at multiple levels of analysis, such as at the ex-
perimental stimuli and person levels. As will be explained 
in further detail, one of the hallmarks of the multilevel 
model is its distinction between fixed effects and random 
effects. Fixed effects are most familiar to general users, 
and are effects of variables that are specified as constant, 
or fixed, over all individuals in the sample (e.g., regression 
weights, mean differences). In contrast, random effects are 
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effects of variables that are specified as varying over all 
individuals in the sample. As will be shown, the repeated 
measures ANOVA model is merely a restricted version of 
the multilevel or general linear mixed model. The removal 
of these restrictions has the following advantages for the 
analysis of data from experimental designs:

1. Great f lexibility is possible in addressing dependen-
cies among observations (i.e., correlated residuals) with 
alternative covariance structures or random effects.

2. Main effects and interactions of categorical, continu-
ous, or semicontinuous independent variables for stimuli 
or for individuals may be examined simultaneously.

3. Listwise deletion is not required; data from individu-
als with only partial response (by accident or by design) 
can still be included in the model to maximize power.

4. Multivariate models can be used in order to achieve 
greater power in testing fixed effects, to examine differ-
ences in fixed effects across response variables, and to 
examine correlations among response variables at the 
stimuli or individual levels.

Let us consider as background for our discussion an 
example experiment in which 50 observers (denoted by i) 
are each presented with 30 sentences (denoted by t), and 
the speed with which the sentences are read aloud is the 
outcome measure. The predictors that pertain to the sen-
tences are active versus passive voice (scores of 0 or 1; de-
noted as Vti) and syntactic complexity (continuous scores 
of 1 to 20; denoted as Cti). The predictor that pertains to 
the individuals is verbal f luency (continuous scores of 10 
to 50; denoted as Fi). In order to fit these data into an 
ANOVA model, one might collapse sentence complex-
ity and verbal f luency each into categories of low (0) or 
high (1). (Note that this is done here for pedagogical pur-
poses, and is not recommended.) The split-plot ANOVA 
model in multilevel form is shown in Equation 1:
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where yti is the observed reading time and eti is the re-
sidual (i.e., the difference between observed and model-
predicted reading time) for sentence t and individual i. 
The Level 1 residuals (eti) are assumed to be normally 
distributed overall and with constant variance across the 
sentences. All 1,500 potential reading times (i.e., 30 sen-
tences 3 50 individuals) are modeled simultaneously. The 
Level 1 model describes the relation between each reading 
time and the sentence predictors. The effects of the sen-
tence predictors (the βis) are then themselves outcomes 
for each subject in each equation of the Level 2 model.

Fixed effects are denoted with γs: γ00 is the fixed inter-
cept, or the expected reading time for a sentence of active 
voice and low complexity for a person of low f luency (i.e., 
when Vti, Cti, and Fi 5 0), and γ10 and γ20 are the fixed 
(main) effects of the sentence predictors, or the mean dif-
ference of active versus passive voice (when Cti 5 0) and 
low versus high complexity (when Vti 5 0), and γ30 is the 

fixed effect for the voice by complexity interaction, or 
the expected additional effect on reading time when voice 
is passive and complexity is high (i.e., when Vti 5 1 and 
Cti 5 1). Note that the effects of voice and complexity in 
the Level 2 model (γ10, γ20, and γ30) are replaced directly 
by β1i, β2i, and β3i in the Level 1 model. This implies that 
the main effects of voice and complexity and their two-
way interaction are expected to be the same across indi-
viduals, the definition of a fixed effect. In contrast, the 
Level 2 model for the intercept (β0i) contains two terms 
besides the fixed intercept (γ01): γ01, the fixed (main) ef-
fect for f luency, or the mean difference between low and 
high f luency (i.e., when Fi 5 1), and U0i, the individual 
random intercept, or individual-specific deviation from 
the fixed intercept.

It is important to discuss at this point the implications 
of including all observations (i.e., 30 sentences 3 50 in-
dividuals) within the same model. In a typical ANOVA, 
observations within the same condition are averaged and 
these condition means then analyzed. This procedure im-
plicitly considers the sentences to be fixed effects; that 
is, variation in reading time due to systematic differences 
among sentences within the same condition is removed 
prior to analysis (see Raaijmakers, Schrijnemakers, & 
Gremmen, 1999, for an extended discussion). Rather than 
artificially removing that sentence variability, however, in 
this example it is retained in the analysis but must be in-
corporated specifically into the model. One way in which 
to address the systematic effect of sentence on reading 
time that remains after accounting for the effects of voice 
and complexity is to include a random effect for sentence, 
as in Equation 2:
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where all parameters are as in Equation 1, and the new pa-
rameter Wt is the random effect for sentence. Because each 
individual was presented with each sentence, sentences 
are actually crossed with individuals at Level 2, such that 
each trial (i.e., sentence 3 subject combination) is nested 
within sentences and within subjects. If each individual 
had received a different sentence (e.g., if individuals each 
had written their own sentences), then sentences would 
be strictly nested within individuals, rather than crossed 
with individuals at Level 2, as in this example. For con-
venience the random sentence effect is included directly 
in the Level 1 model, rather than in its own Level 2 equa-
tion. Each reading time is thus modeled as a function of 
the fixed effects of sentence type (voice, complexity, and 
their interaction), the fixed effect of f luency, the random 
effect of individual i, and the random effect of sentence t. 
The trial-to-trial variation that remains after accounting 
for the systematic effects of sentences and of individuals 
is represented by eti.

The advantages of the multilevel model for the analy-
sis of experimental designs as outlined above will now be 
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presented in greater detail as they relate to the previous 
example.

Dependencies Among Observations
Alternative covariance structures. In a typical 

ANOVA, items are averaged into condition means (e.g., for 
voice by complexity), which are then subjected to analy-
sis. One of the assumptions of this ANOVA model is that 
individuals differ in only one way (e.g., in overall reading 
times). This implies that the residual variance within con-
dition (as well as the covariances between the residuals 
from each condition) should be equal after controlling for 
the random intercepts, a condition known as compound 
symmetry, as shown in the first part of Table 1. Compound 
symmetry is slightly more restrictive than the condition 
of sphericity, in which the variances and covariances of 
orthogonal contrasts of the original repeated measures 
are assumed to be equal (Huynh & Feldt, 1980). When 
sphericity does not hold (i.e., when residual variances are 
larger in some conditions than in others, or more related 
across some conditions than others), then tests of the fixed 
effects from the ANOVA model may be incorrect.

An alternative is the multivariate approach to repeated 
measures ANOVA, in which the orthogonal contrasts 
are analyzed simultaneously, and in which no assump-
tions are made regarding the structure of the residual 
variance–covariance matrix (analogous to all variances 

and covariances being estimated separately; i.e., an un-
structured matrix, as seen in the second part of Table 1). 
Thus, rather than assuming a common error term for all 
fixed effect comparisons, a condition-specific error term 
is used for each separate contrast. This results in greater 
power for each univariate test, but can result in less power 
for the overall multivariate test when compared to an om-
nibus test adjusted for the degree of violation of sphericity 
(Maxwell & Delaney, 2003).

Multilevel models—or general linear mixed models, as 
they are often referred to in this context—can be used as al-
ternatives to ANOVA when the assumption of sphericity is 
likely to be violated (e.g., Littell, Pendergast, & Natarajan, 
2000; Maas & Snijders, 2003; Wallace & Green, 2002), 
because they have been shown to have greater power in de-
tecting fixed effects than ANOVA models when conditions 
of sphericity are not met (Quené & van den Bergh, 2004). 
Multilevel models can also provide a useful compromise 
between the nonparsimonious option of estimating all pos-
sible residual variances and covariances—the multivariate 
approach—and the overly-restrictive option of assuming 
sphericity—the univariate approach. One such alternative 
is compound symmetry with heterogeneous variances, as 
seen in the third part of Table 1, which allows unequal 
residual variances across conditions but still assumes the 
correlation among the residuals to be the same across con-
ditions. An advantage of multilevel models over ANOVA 

Table 1 
Alternative Structures of the Residual Variances and Covariances in Multilevel Models
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models is that one need not make any assumptions about 
the structure of the residual variances and covariances. 
A variety of alternative structures can be estimated and 
their fit compared empirically in order to ensure the most 
appropriate tests of the fixed effects. It is also possible to 
estimate separate residual variance–covariance matrices 
for different values of a person-level predictor (see Littell, 
Milliken, Stroup, & Wolfinger, 1996).

Random effects. The direct specification of an alter-
native structure for the residual variance–covariance ma-
trix is one way to account for variances and covariances 
that differ across conditions. Yet when the source of the 
heterogeneity across conditions is thought to arise from 
individual differences in a meaningful process, another 
variant of the multilevel model may be more useful in-
stead in accounting for the dependency among observa-
tions: the random effects model, as seen in the bottom part 
of Table 1. This model can be estimated without requiring 
any averaging into condition means. In a random effects 
model, heterogeneity of the variances and covariances is 
modeled by two matrices: one matrix of random effects 
(the G matrix; here, a random intercept and random effects 
for sentence voice and complexity, as described below), 
and one matrix for the residuals (the R matrix), which are 
assumed to have constant variance and be uncorrelated 
across individuals and observations after accounting for 
the random effects. As with alternative structures for the 
residual variance–covariance matrix, separate random ef-
fects matrices can also be estimated for different values of 
person-level predictors, as warranted.

The ANOVA model given in Equation 1 is also known 
as a random intercept model, given that the individual 
intercepts (β0i) were comprised of the sample intercept 
(fixed effect γ00) and the person-specific random devia-
tions (U0i) from the fixed intercept. Because the effects 
of sentence voice and complexity were assumed to be 
fixed, any differences among subjects in the magnitude 
of these effects are considered residual error. Thus, to the 
extent that individuals differ systematically in the extent 
to which their reading times vary by sentence voice or 
complexity, the ANOVA model will not be appropriate. 
Such a restriction is not required in the multilevel model, 
of which the repeated measures ANOVA model is merely 
a special case. The restriction of fixed effects only for sen-
tence voice and complexity is relaxed in Equation 3:
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where all terms are as in Equation 2, except that the in-
dividual effects of sentence voice (β1i) and complexity 
(β2i) now comprise the fixed effects (γ10 and γ20) as well 
as person-specific random effects (U1i and U2i), or devia-
tions from the fixed effects. In other words, subjects are 
permitted to vary systematically from one another in the 

magnitude of their response to sentence voice and com-
plexity. By convention, random effects are not estimated 
for the interaction of voice 3 complexity, but instead are 
estimated only for their main effects. The random effects 
are assumed to have a multivariate normal distribution 
across individuals. It is important to note that random 
variation over higher level units (i.e., if individuals are 
themselves nested in groups) can also be accommodated 
as a multilevel model with three or more levels.

In repeated measures ANOVA, the random intercepts 
are modeled directly as differences across persons in their 
overall level. Their variance is then partialed out of the 
error terms used in the F tests, but is otherwise not of direct 
interest. In contrast, in the multilevel model, rather than es-
timating the random effects directly (for the individual in-
tercepts, as well as for effects of other predictors or for the 
sentences), the magnitude of the variance of the random ef-
fects is estimated instead, and the random effects can then 
be predicted after the fact, on the basis of the model.

Two questions are relevant for each individual random 
effect: (1) Is the variance of the random effect significant? 
That is, does the size of the effect differ systematically 
among individuals, or should it instead be considered 
fixed across individuals? and (2) To what extent can the 
variance of the individual random effects be reduced by 
including individual-level predictors in the model? The 
parameters for the individual random effects are them-
selves outcomes (i.e., are error variances) at Level 2. 
Similarly, the parameters for the random sentence effects 
are also outcomes at Level 2. That is, just as there is a 
single error variance to be reduced by predictor variables 
within regression, similarly, there are multiple such error 
variances (i.e., individual random effects and random 
sentence effects at Level 2, trial-to-trial residual variance 
at Level 1) to be reduced by predictors at each level in a 
multilevel model. This partitioning of the total variance in 
the outcome (e.g., reading times) has direct implications 
for the kinds of predictor variables that can be examined 
within the model, as described next.

Multilevel Model Specification of Fixed Effects
Unlike the general linear model in which there is a 

single error term to be reduced, the multilevel model can 
make it easier to examine the effects of predictors at multi-
ple levels of analysis, because separate error variances are 
specified at each level. Thus, the inclusion of sentence-
level predictors (e.g., voice and complexity) serves to re-
duce the random sentence variance, and the inclusion of 
individual-level predictors (e.g., verbal f luency) serves to 
reduce the individual random-effects variance. However, 
the multilevel model is similar to the general linear model, 
in that it allows tests of both main effects and interac-
tions among predictors that are categorical, continuous, 
or semicontinuous (i.e., piecewise linear effects). The re-
sult of such f lexibility is that the distorted, dichotomous 
versions of sentence complexity and verbal f luency that 
have been used thus far are no longer necessary. Instead 
of dummy variables for low or high, the predictors are in-
cluded in the model in their original continuous metric, 
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but were centered by subtracting a constant of 10 from 
complexity (with a range of 1 to 20) and a constant of 30 
from f luency (with a range of 10 to 50) for reasons ex-
plained below. The model in Equation 3 can be modified 
to include continuous predictors and their interactions, as 
shown in Equation 4:
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where yti and eti still represent the observed reading time 
and residual error for individual i and sentence t. However, 
the individual intercept (β0i) now represents the expected 
reading time for a sentence of active voice and moderate 
complexity (i.e., Vti 5 0 and Cti 2 10 5 0) for a person of 
moderate verbal f luency (i.e., Fi 2 30 5 0). It is important 
to note that the location of the intercept is arbitrary within 
any model, and its interpretation can often be facilitated by 
centering any continuous predictors, as we have done here, 
by subtracting a constant in order to place the origin within 
the observed range of the variable. For example, if the vari-
able for f luency with an observed range of 10 to 50 were 
included as is, the intercept would represent the expected 
reading time for someone with a f luency score of 0, which 
is not possible given the scale of the variable. By subtract-
ing a constant (e.g., the sample mean) from each individu-
al’s f luency score, the scale of the predictors is shifted, such 
that the intercept then represents the expected reading time 
for an individual of average f luency. Any constant within 
the range of the predictor could be used as a centering point, 
but the mean is commonly used for ease of interpretation. 
See Kreft, de Leeuw, and Aiken (1995), or Snijders and Bos
ker (1999) for a more thorough discussion of centering.

In Equation 4, the fixed (main) effect for sentence voice 
(γ10) refers to the mean difference between active and pas-
sive voice (when both Cti 5 0 and Fi 5 0). However, the 
fixed (main) effect for sentence complexity (γ20) now rep-
resents a one-unit change in expected reading time for a 
one-unit change in complexity (when both Vti 5 0 and Fi 5 
0); that is, γ20 is a regression slope. The fixed effect for the 
voice 3 complexity interaction (γ30) now represents the ex-
pected difference in the size of the complexity slope (when 
Fi 5 0) when reading sentences written in the passive voice 
instead of the active voice—or, similarly, the expected 
change in the difference between active and passive voice 
for a one-unit change in complexity (also when Fi 5 0). The 
fixed (main) effect of verbal f luency (γ01) now represents 
a one-unit change in the intercept for a one-unit change in 
f luency. The fixed effects for the interactions of voice 3 
f luency (γ11), complexity 3 f luency (γ21), and voice 3 
complexity 3 f luency (γ31) represent one-unit changes in 
the effects of voice, complexity, and voice 3 complexity 
for a one-unit change in fluency. Thus, the main effects of 
sentence voice and complexity (β1i and β2i) are now a func-

tion of the overall fixed effects (γ10 and γ20), the effects of 
verbal fluency (γ11 and γ21), and individual-specific random 
effects (U1i and U2i). In other words, although individuals 
are allowed to vary randomly in their overall level for read-
ing time and in the extent to which their reading times are 
systematically affected by sentence voice and complexity, 
these random effects for sentence voice and complexity are 
predicted in part by individual differences in verbal fluency. 
Further, although the voice 3 complexity interaction is not 
considered random, the effect of f luency on the two-way 
interaction can still be evaluated. Finally, sentences are al-
lowed to vary randomly (Wt) after accounting for the effects 
of voice and complexity.

Incomplete Responses
Thus far, we have assumed that all possible reading 

times, 30 sentences 3 50 individuals, are included in the 
model. However, this need not be the case. Incomplete 
data, one of the greatest challenges to any researcher, can 
arise in longitudinal studies because of attrition or vari-
able measurement occasions, and within experimental 
studies can also result from observer fatigue or equip-
ment failure. In these cases, because a repeated measures 
ANOVA requires complete data, individuals providing 
partial responses across stimuli cannot be included. Such 
listwise deletion has long been known to result in reduced 
power to detect effects (i.e., a loss of efficiency), as well as 
potential bias in the estimates if the incomplete responses 
are not missing completely at random (Schafer, 1997). 
The latter scenario may be particularly likely in certain 
experimental studies, as when the accuracy of response 
time data is below ceiling. If incorrect responses are more 
likely for more difficult items, and response times for in-
correct responses are not included (as they almost never 
are), the response time distribution may no longer be rep-
resentative, because the highest response times—those for 
the more difficult stimuli—are likely to be missing. Col-
lapsing across stimuli into condition means (in which dif-
ferent numbers of stimuli are included for each individual) 
serves only to mask the problem.

The multilevel model addresses missing data by using 
full-information maximum likelihood to estimate model pa-
rameters reflective of those parameters that would have been 
observed if the data were complete. Maximum likelihood 
estimation has been shown to provide unbiased and efficient 
estimates when the data are missing at random, or when the 
probability of missingness is not related to what the outcome 
would have been, once predictors related to the missingness 
are in the model. Thus, rather than eliminating incomplete 
cases or assuming that missing responses are representative 
of the distribution of responses, as is required in ANOVA, 
one can estimate a multilevel model using all available data. 
Although the assumption of missing at random cannot be 
formally tested, the inclusion of all stimulus- or individual-
level predictors (as well as other responses from the indi-
vidual) should help to obtain the most accurate estimates 
possible. The assumption of missing at random is also likely 
to be satisfied when data are incomplete by design, a situa-
tion called planned missingness, in which different combi-
nations of stimuli are randomly assigned to all individuals. 
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Schafer (1997) and Schafer and Graham (2002) provide a 
more thorough treatment of issues in incomplete data.

Just as multivariate versions of the general linear model 
can be used to analyze multiple outcomes simultaneously, 
so can a multilevel model, as described below.

Multivariate Models
The multilevel models discussed thus far have been 

univariate models, in that only one outcome variable 
(e.g., reading times) has been modeled at a time; however, 
the multilevel model can be extended to the multivariate 
case, so that the effects of stimuli-level or individual-level 
predictors can be tested on multiple outcome variables 
simultaneously. Multivariate multilevel models have the 
following advantages over univariate multilevel models 
(Snijders & Bosker, 1999): First, if the outcomes are cor-
related, tests of the fixed effects of predictors on each out-
come will be more powerful in a multivariate model than 
the same tests in a univariate model, particularly if the 
outcomes have incomplete data.

Second, the multivariate test of the effect of a predictor 
on all outcomes (which can help to reduce Type I error com-
pared to performing separate tests for each outcome) is only 
possible within a multivariate model. Note that a multivariate 
test of the predictors requires that the outcomes be on a com-
mon scale, since the coefficients are in an unstandardized 
metric. Transformation of the metric of the dependent vari-
ables (e.g., to z-scores) may be required in order to perform 
multivariate tests of fixed effects, although the metrics need 
not be the same if multivariate tests are not of interest.

Third, one can test hypotheses regarding the differences in 
magnitude of the effects of the predictors across outcomes. 
For example, let us assume that our experiment also moni-
tored sentence reading with an eyetracker, so that reading 
time and total number of fixations for each sentence were 
both outcome variables of interest. One might conduct two 
sets of analyses, one for reading times and one for number 
of fixations, in order to examine the effects on each out-
come of sentence voice, sentence complexity, and individual 
verbal f luency. Although they would reveal whether or not 
each effect was significant for each outcome, these sepa-
rate analyses would not reveal whether the predictors had a 
larger effect on reading times than on number of fixations, 
or vice versa. For example, if the effect of sentence com-
plexity is significant for reading times but not for number of 
fixations, whether the magnitude of the complexity effect 
(i.e., the effect size for complexity) is significantly different 
across outcomes is optimally tested within a multivariate 
model. Such comparisons of effect sizes across outcomes 
are often of interest in experimental studies.

Finally, the multivariate model can be used to examine 
correlations across outcomes at multiple levels of analy-
sis. Specifically, at the between-subjects level of analysis 
(Level 2), individual random effects for the intercept and 
other predictors can be estimated for each outcome, and their 
covariance can be estimated directly within the multivariate 
model. This can be useful in examining how much someone 
who shows a greater than average effect of a given predic-
tor on one outcome is more likely to show a greater than 
average effect of that predictor on another outcome, as well. 

At the between-item level of analysis (crossed at Level 2), 
random item effects for each outcome and their covariances 
can be estimated in order to examine the extent to which 
the item deviations are related across outcomes. Finally, at 
the within-subjects trial level of analysis (Level 1), the es-
timated covariance among the residuals for each outcome 
reflects the extent to which response patterns are similar 
across trials, after controlling for the systematic effects of 
the predictors, the persons, and the items. In designs without 
crossed random effects, the multivariate analysis simplifies 
to between- and within-subjects levels only.

Two in-depth examples are presented in the following 
section. In the first example, univariate multilevel models 
for items crossed with individuals are estimated in order 
to illustrate how to examine the effects of continuous and 
semicontinuous predictors at multiple levels of analysis, 
as well as how to accommodate differences in the magni-
tude of variation across groups. In the second example, 
multivariate multilevel models (i.e., for experimental con-
ditions nested within individuals) are estimated in order 
to examine differences in the magnitude of the effects of 
predictors on response times versus error rates, as well as 
to examine the possibility of speed–accuracy trade-offs at 
multiple levels of analysis.

TWO ILLUSTRATIVE EXAMPLES

Example 1: Continuous and Semicontinuous 
Effects of Items and Persons

Research design. Example 1 was taken from a study 
that examined the speed with which changes to digital pho-
tographs of driving scenes were detected by younger and 
older adults (Hoffman & Atchley, 2001). Scenes (items) 
were presented within the f licker paradigm (Rensink, 
O’Regan, & Clark, 1997), in which original (A) and modi-
fied (A′) digital photographs are presented for 280 msec, and 
blank screens are interspersed for 80 msec. In this presenta-
tion (A–blank–A–blank–A′–blank–A′–blank, etc.), search 
for a change between repeated presentations of an other-
wise identical scene must be conducted through controlled 
attentional processing, because local luminance cues at the 
change location are unable to direct attention in the presence 
of a global luminance change (the blank screen). Each item 
was presented for 60 sec or until the observer responded, 
whichever came first. Misses (i.e., failure to respond within 
60 sec) were more common for the more difficult items, 
such that observers who missed more scenes would have 
artificially lower mean response times (RTs), given that the 
longest RTs (those to the difficult items that were missed) 
would be absent from their distribution. To avoid this speed–
accuracy trade-off, only 51 items with accuracy rates over 
90% within each age group were analyzed.

Of primary interest was the interaction of age with two 
item characteristics: the meaningfulness to driving of the 
change—that is, the extent to which the driver in the scene 
would need to pay attention to the changed object—and the 
salience of the change—that is, how visually conspicuous 
the change was within the scene. Item characteristics were 
obtained from a previous study in which independent ob-
servers rated each change on a scale of 0 to 5 for meaning 
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and for salience; ratings were then averaged to create one 
rating for each item (Pringle, Irwin, Kramer, & Atchley, 
2001). Data were collected from 153 persons: 96 younger 
adults (41 men and 55 women, M 5 19.7 years, SD 5 2.3 
years, range, 18–32) and 57 older adults (20 men and 37 
women, M 5 75.7 years, SD 5 5.4 years, range, 63–86). 
The analysis was originally planned as a 2 (age group: 
young, old) 3 2 (change meaning: low, high) 3 2 (change 
salience: low, high) split-plot factorial ANOVA. Several 
issues would need to be addressed before proceeding with 
such an analysis, however.

Analytic treatment. The first issue has to do with the 
inf luence of accuracy on the available RTs. Although only 
scenes with accuracy levels over 90% were included, the 
data are still unbalanced because accuracy is not perfect, 
and the responses that are missing (because the change 
was not detected within 60 sec) are likely to be the re-
sponses to the most difficult items. Thus, the most diffi-
cult conditions, low meaning and low salience, are likely 
to have fewer responses contributing to the condition 
mean. As a result, those individual condition means may 
be less reliable or artificially improved (i.e., individual 
mean RTs would be too low because the items that would 
have had the highest RTs were not included), or may be 
missing entirely for some individuals, resulting in listwise 
deletion for those persons. Analyzing individual condition 
means without accounting for item missingness within 
the conditions will likely lead to biased estimates of the 
effects of the variables that are related to the probability 
of missingness (i.e., of nonresponse due to the imposed 
time limits in this case). A multilevel model would likely 
provide more accurate estimates in the presence of miss-
ing responses than would an ANOVA model; and, because 
listwise deletion would not be required, more observers 
could be included in the model, resulting in greater statis-
tical power to detect the effects of interest.

The second issue is how to include the variable of age 
in the model. Although two distinct age groups were sam-
pled, one ranging from 18 to 32 years and the other from 
63 to 86 years, the older adults are likely to be consider-
ably more heterogeneous in their RTs than the younger 
adults. Treating age as a dichotomous variable would 
therefore likely misrepresent the differences among older 
individuals varying in age, so that a 63-year-old might be 
expected to have the same score as an 86-year-old. Sepa-
rating the older adults into two groups of “young-old” 
(under age 75) and “old-old” (age 75 or older), as is often 
done in experimental studies of aging, would also be inap-
propriate, because this assumes that a person of 74 is more 
like a person of 63 than like a person of 75. A multilevel 
model can allow a more accurate depiction of the effect of 
age on RTs as a semicontinuous (or piecewise) effect. The 
continuous age variable is therefore recoded into two vari-
ables: old age, in which persons 18 to 30 years old were 
coded as 0 and persons 65 and older were coded as 1; and 
years over 65, in which persons 18 to 30 years old were 
again coded as 0 but persons 65 and older were coded as 
their current age minus 65. Thus, the main effect of age on 
response time is represented with two piecewise slopes: 
(1) the slope of old age, representing the mean difference 

between the younger adults and 65-year-olds; and (2) the 
slope of years over 65, representing the additional increase 
in RT per year of age over 65. Additionally, because older 
adults are often more variable from one another than are 
younger adults (i.e., greater between-person variation), 
and also show more variability in their own responses 
across trials than do younger adults (i.e., greater within-
person variation), separate random intercept and residual 
variances will be estimated for younger and older adults.

A similar problem concerns the distributions of change 
meaning and change salience across scenes. The assign-
ment of items into low and high conditions for an ANOVA 
assumes bimodal distributions of change meaning and 
change salience, such that all items within each low or 
high condition are expected to have equivalent RTs. In this 
study, however, change meaning and change salience were 
measured in natural scenes, not manipulated, resulting in 
a continuous distribution for each. Thus, a median split 
would have been needed to create (artificial) categories 
of low and high, a practice with well-known problems of 
reduced power and increased Type I error, as discussed 
earlier. However, such distortion of the item-level or 
individual-level predictors is unnecessary in a multilevel 
model, in which categorical or continuous predictors can 
be easily accommodated at any level.

A multilevel analysis requires data to be structured dif-
ferently than in repeated measures ANOVA, in which the 
data often need to be structured as multivariate, wide, or 
person-level, where each person’s data is in a single row 
and the response variables per scene are in separate col-
umns. In contrast, Table 2 provides an example of the data 
structure required for a multilevel analysis. In this struc-
ture, known as stacked, long, or person-period, each row 
contains the data for a single item for a single person. The 
current study has 7,803 rows of data, or 51 items multi-
plied by 153 persons. Variables relating to each person 
(e.g., ID, age) are copied down throughout the rows for 
each person, and variables relating to the items, such as 
change meaning, salience, and response time, are in each 
row. Item response times vary across subjects, but item 
characteristics are the same. SPSS and SAS syntax for 
combining multivariate data sets of subjects’ responses 
and scene characteristics into a single stacked data set are 
available online (see Author Note).

Model specification. Five multilevel models were esti-
mated using maximum likelihood (syntax available online; 
see the Author Note). The presence of incomplete data 
requires a choice in estimating denominator degrees of 
freedom, although differences among methods are likely to 
be trivial, except with small sample sizes. We used a com-
monly implemented strategy, the Satterthwaite method (see 
Fitzmaurice et al., 2004). Model 1 is an intercept-only or 
empty model, to be used as a baseline with which to assess 
the fit of more complex models, as given in Equation 5:
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where yti is the natural log of RT in seconds of individual i 
and item t. RT was natural-log-transformed to reduce skew-
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ness and to prevent spurious interactions with age due to 
baseline differences between younger and older adults (see 
Faust, Balota, Spieler, & Ferraro, 1999). In these equations, 
gs are used for fixed effects, Uis are used for individual ran-
dom effects, and Wt is used for the random item effect. In the 
Level 1 model, β0i is the intercept for individual i, derived 
from the following two parameters in the Level 2 model: 
the fixed intercept γ00, or the grand mean across individuals 
and items; and the random intercept U0i, or the individual-
specific expected deviation about the grand mean. Finally, 
eti is the prediction error (Level 1 residual) for individual 
i and item t, or the difference between the observed and 
expected yti after accounting for individual i and item t. 
Thus, the variance of y is partitioned into three sources: 
the Level 2 between-subjects random intercept variance, 
which can be accounted for by subject-level variables such 
as age; the Level 2 between-items variance (i.e., random 
item variance), which can be accounted for by item-level 
variables such as change meaning and change salience; and 
the Level 1 trial-to-trial residual variance, which could be 
accounted for by trial-specific variables (e.g., order), but 
which will remain unaccounted for in this example.

Model 2A is a main effects model with homogeneous 
variances, as given in Equation 6:
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where γ00, γ10, and γ20 represent the fixed (main) effects 
of the intercept, meaning, and salience, respectively; γ01 
and γ02 represent the fixed (main) effects of old age and 
years over 65 on the intercept, respectively. Meaning 
and salience were each centered at 3 (range, 0–5). Note 
that the interpretation of the fixed effect intercept γ00 
has shifted, given that the intercept represents the ex-

pected value of yti when all other terms equal 0. Thus, γ00 
now represents the expected RT for a younger adult (old 
age 5 0; years over 65 5 0) for an item with meaning 5 
3 and salience 5 3 (centered meaning 5 0; centered sa-
lience 5 0). The individual intercept β0i is now a func-
tion of the fixed intercept γ00, the fixed slope for old age 
γ01, the fixed slope for years over 65 γ02, and the random 
intercept U0i representing the individual intercept devia-
tion after controlling for age. Individual random effects 
were included for the intercept only. This assumption of 
only one source of individual differences (i.e., in the in-
tercept) is a useful starting point, as estimation becomes 
considerably more difficult with multiple random ef-
fects. However, individual random effects for meaning 
and salience were examined in preliminary analyses and 
did not contribute significantly to the model, which sug-
gests that these effects should be fixed.

Model 2A assumes that the magnitude of each compo-
nent of variance is comparable across younger and older 
adults. However, it is reasonable that the sample of older 
adults will show greater variability than the sample of 
younger adults, both between subjects and across trials. 
The tenability of this assumption is tested in Model 2B, 
as seen in Equation 7:
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where Y is a dummy variable for old age 5 0, and O is 
a dummy variable for old age 5 1. Thus, although the 
fixed part is the same as in Model 2A, the error part of 
Model 2B now includes separate Level 1 (residual) and 
Level 2 (random intercept) variances for each age group.

Table 2 
Age Group Stacked Data Structure for Three Individuals and Five Items

Individual-Level Variables Item-Level Variables

ID  Age  OldAge  Yrs65   Item  Meaning  Salience  C_Mean  C_Sal  LN_RT

1 20 0   0 1 1 1 ]2 ]2 2.44
1 20 0   0 2 1 3 ]2 ]0 2.37
1 20 0   0 3 3 3 ]0 ]0 2.29
1 20 0   0 4 3 1 ]0 ]2 2.21
1 20 0   0 5 4 4 ]1 ]1 2.13

2 65 1   0 1 1 1 ]2 ]2 2.21
2 65 1   0 2 1 3 ]2 ]0 2.13
2 65 1   0 3 3 3 ]0 ]0 2.06
2 65 1   0 4 3 1 ]0 ]2 1.98
2 65 1   0 5 4 4 ]1 ]1 1.90

3 80 1 15 1 1 1 ]2 ]2 1.78
3 80 1 15 2 1 3 ]2 ]0 1.64
3 80 1 15 3 3 3 ]0 ]0 1.50
3 80 1 15 4 3 1 ]0 ]2 1.36
3  80  1  15  5  4  4  ]1  ]1  1.22
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Table 3 
Multilevel Model Parameters From Example 1

Model 2A Model 2B Model 3B

Parameter  Est  SE  Est  SE  Est  SE

Fixed Effects
  Intercept (γ00) ]1.307*** 0.045 ]1.306*** 0.044 ]1.308*** 0.046
  Meaning (γ10) ]0.052*** 0.023 ]0.055*** 0.023 ]0.064*** 0.023
  Salience (γ20) ]0.132*** 0.040 ]0.134*** 0.040 ]0.143*** 0.041
  Old age (γ01) ]0.590*** 0.055 ]0.590*** 0.070 ]0.614*** 0.070
  Years over 65 (γ02) ]0.020*** 0.004 ]0.020*** 0.006 ]0.020*** 0.006
  Meaning 3 salience (γ30) ]0.003*** 0.019
  Meaning 3 old age (γ11) ]0.038*** 0.009
  Salience 3 old age (γ21) ]0.013 0.015
  Meaning 3 salience 3 old age (γ31) ]0.025*** 0.007
Variance Components†

  Random item variance (Wt) ]0.087*** 0.018 ]0.088*** 0.018 ]0.088*** 0.018
  Random intercept variance (U0i) ]0.023*** 0.004 ]0.011*** 0.002 ]0.011*** 0.003

]0.043*** 0.010 ]0.043*** 0.010
  Residual variance (eti) ]0.390*** 0.007 ]0.324*** 0.007 ]0.323*** 0.007

]0.507*** 0.014 ]0.502*** 0.014
Fit Statistics
  ML deviance (number of parameters) 14,885 (8) 14,692 (10) 14,657 (14)
  AIC; BIC 14,901; 14,917 14,712; 14,732 14,687; 14,712

Note—AIC, Akaike information criterion; BIC, Bayesian information criterion.  *p , .05.  ***p , .001.  †First 
value 5 younger; second value 5 older when two values are given.

Model 3A includes all two- and three-way interactions 
among meaning, salience, and old age, and among mean-
ing, salience, and years over 65, as given in Equation 8:
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where model parameters are the same as in the main ef-
fects Model 2B, although they are conditional on the 
higher order interactions that have now been added: γ30 
represents the fixed effect of the two-way interaction of 
meaning 3 salience; γ11, γ21, and γ31 represent the fixed 
effects of the two-way interactions of old age 3 meaning, 
old age 3 salience, and the three-way interaction of old 
age 3 meaning 3 salience, respectively; and γ12, γ22, and 
γ32 represent the fixed effects of the two-way interactions 
of years over 65 3 meaning, years over 65 3 salience, and 
the three-way interaction of years over 65 3 meaning 3 
salience, respectively. Thus, each individual slope for 
meaning, salience, and the two-way interaction of mean-
ing 3 salience (β1i, β2i, and β3i, respectively) depends on 

the fixed effect for the sample and the individual’s values 
of old age and years over 65. A restricted version of Mod-
el 3A will also be estimated without any nonsignificant 
interactions (Model 3B).

Results
In the empty Model 1, the fixed intercept was 1.62, the 

expected natural-log-transformed RT in seconds for an av-
erage individual on an average item (i.e., the grand mean). 
The random intercept variance was 0.18, which represents 
the magnitude of the differences in overall RT across in-
dividuals. The random intercept variance can be inter-
preted in a standard deviation metric within a confidence 
interval, such that 95% of the sample would be expected 
to have an individual intercept between 0.77 and 2.47 
(1.62 6 2√ 0.18), assuming an average item. The random 
item variance was 0.12, such that 95% of the items would 
be expected to have an intercept between 0.93 and 2.31, 
assuming an average individual. The residual variance is 
0.39, the trial-to-trial variance in RT not accounted for by 
individuals or items. Thus, of the total variance (0.69), 
26% is between subjects, 17% is between items, and 57% 
is between trials (i.e., an item by individual interaction; 
see also Raudenbush & Bryk, 2002).

Model 2A included main effects of meaning, salience, 
old age, and years over 65, each of which was significant. 
As seen in Table 3, the fixed effects for meaning (] 0.05) 
and salience (] 0.13) represent the expected linear rate of 
decline in response time for a one-unit increase in mean-
ing or salience, respectively. The fixed effects for old age 
(0.59) and years over 65 (0.02) represent the expected dif-
ference in RT between younger adults and adults age 65 
and the expected linear rate of increase in RT per year over 
65, respectively.

In addition to significance tests for the fixed effects, 
however, the overall model ]2 log likelihood value, or 
deviance, can be used to assess improvements in model 
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fit. However, the models to be compared must include 
the exact same cases for the model deviance values to 
be comparable. The difference between two nested mod-
els in their deviance values is chi-square distributed as a 
function of the difference in the number of parameters 
estimated. Models that differ in fixed or random effects 
must be compared under maximum likelihood instead of 
restricted maximum likelihood, which is used for compar-
ing models that differ in random effects or error structures 
only. Because we wanted to compare models differing in 
fixed effects, maximum likelihood was used to estimate 
each model. In addition, the AIC and BIC statistics also 
assess model fit relative to degrees of freedom, such that 
smaller values indicate a relatively better model. See 
Singer and Willett (2003) or Snijders and Bosker (1999) 
for more information about assessing model fit.

A comparison of model deviances suggested that main 
effects Model 2A was a significant improvement over 
the empty Model 1 [χ2 difference (4) 5 293, p , .001] 
and had smaller AIC and BIC values as well. Heteroge-
neity of variance across age groups was then examined 
in Model 2B. By comparing model deviances, it appears 
that the heterogeneous errors Model 2B was a significant 
improvement over homogeneous errors Model 2A [χ2 dif-
ference (2) 5 193, p , .001] and had smaller AIC and 
BIC values as well. As shown in Table 3, younger adults 
had significantly less between-subjects variation and less 
trial-to-trial variability as well.

The interaction Model 3A was then estimated (i.e., 
all two- and three-way fixed effect interactions among 
meaning, salience, and old age, and among meaning, sa-
lience, and years over 65). Although it was a significant 
improvement over Model 2B [χ2 difference (7) 5 40, p , 
.001] all of the interaction terms were nonsignificant. As 
such, beginning with the highest order, interaction terms 
were removed separately in sequential models in order to 
improve the parsimony of the overall model. The revised 

Model 3B (as seen in Table 3) did not include any interac-
tions with years over 65, and was still a significant improve-
ment over Model 2B [χ2 difference (4) 5 35, p , .001] and 
had smaller AIC and BIC values than Model 2B as well. All 
of the main effects and the interaction of meaning 3 old 
age were significant. Although the interactions of mean-
ing 3 salience and salience 3 old age were not significant, 
the three-way interaction of meaning 3 salience 3 old age 
was significant. Figure 1 displays the expected fixed effects 
of salience at levels of low (1) and high (4) meaning for a 
younger adult, a person of 65, and a person of 80. As shown, 
RT increased with age and decreased with salience. For 
younger adults, RT decreased with meaning equivalently 
across levels of salience. For all older adults, however, the 
effect of meaning increased with salience.

Discussion
Example 1 used a crossed random effects multilevel 

model to examine the effects of between-subjects predic-
tors (age) and between-item predictors (change meaning 
and salience) on RT in a change detection task. Because the 
multilevel model does not require listwise deletion for miss-
ing responses, using instead full-information maximum 
likelihood to estimate parameters on the basis of all avail-
able data, the multilevel model is likely to be more powerful 
than repeated measures ANOVA. The multilevel model also 
offers greater f lexibility in examining the effects of cat-
egorical, semicontinuous, or continuous predictors at each 
level of analysis, as well as in allowing between-person and 
residual variances of different magnitudes across groups.

Example 2: Multivariate Analysis of RT and 
Error Rate

Research design. The second example was taken from 
part of a larger study (Hoffman, 2004) that used a visual 
search task to examine the effects of age and number of 
distractors on target detection time and error rate. Observ-

Figure 1. Results from Example 1. Expected effects of salience at low (1) and 
high (4) levels of meaning for an 80-year-old, 65-year-old, and younger adult.
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ers searched for either an “L” or an “R” in a circular display 
of 3, 6, or 9 distractor letters. The initial task display had 
a fixation cross in the center surrounded by a black ring 
with a diameter of 3º visual angle presented for 750 msec, 
followed by 3, 6, or 9 black capital letters in 16-point bold 
font displayed for 294 msec. Each letter randomly occu-
pied 1 of 18 places around the ring, with no two adjacent 
positions occupied. Participants responded to the “L” or 
the “R” by pressing a key with their left or right hand, re-
spectively, within 5 sec. After practicing the task, 15 trials 
per target and set size were completed in a random order 
by 148 older adults (63 men, 85 women, M 5 75.3 years, 
SD 5 4.7 years; range, 63–87).

Analytic treatment. The analysis was envisioned as a 
2 (target letter) 3 3 (set size) repeated measures ANOVA 
with the effect of age as a covariate (i.e., ANCOVA). In 
Example 1, the units at the within-subjects level consisted 
of digital photographs with design factors measured along 
two continuous dimensions, which could, however, differ 
considerably in unmeasured dimensions. Conversely, in the 
present example, the design factors that differentiated the 
trials were manipulated by the experimenter, and thus trials 
of the same type (letter 3 set size) were expected to differ 
only slightly in their RTs. Given that the effects of target 
letter and increasing numbers of distractors could be seen 
through increased error rates as well as through increased 
RTs, however, it is important to consider both as indica-
tors of performance. Only responses for correct trials were 
included; therefore, RTs and errors could not be modeled 
simultaneously at the trial level. The mean RT and error rate 
of the 15 trials in each condition were therefore modeled 
instead, as is typical in experimental studies. In contrast to 
typical analyses in experimental studies, however, RTs and 
error rates were modeled simultaneously in a multivariate 
model for the 6 conditions administered to each of the 148 
subjects, rather than in separate univariate analyses. Condi-
tions were treated as nested within subjects, given that the 
specific trials with correct RTs that were included in the 
condition means varied across subjects. Syntax for trans-
forming the multivariate data set into a stacked data set for a 
multivariate analysis is available online (see Author Note).

Because error rate was the only source of missing data 
and was explicitly included in the model as a second out-
come, any negative bias in the individual condition mean 
RTs across trials due to missing data (i.e., the noninclusion 
of incorrect trials in a more difficult condition) should be 
ref lected in higher error rates for that condition. To that 
end, a multivariate model of RTs and error rates will be 
useful in evaluating a common concern in experimental 
studies, the speed–accuracy trade-off: the possibility that 
observers will slow down in order to preserve accuracy. It 
is important to note that, although multivariate analyses 
are possible within a repeated measures framework (e.g., 
by including a multivariate ANOVA test for a particular 
orthogonal trend across all dependent variables), separate 
analyses for each outcome are usually conducted instead. 
Further, although speed–accuracy trade-offs are thought 
to operate at the individual level, they are usually exam-
ined at the level of the aggregate sample. Mean differ-
ences in opposite directions for RT than for error rates 

are often taken as evidence of a speed–accuracy trade-off, 
the existence of which at the individual level—as is of 
primary interest—cannot be evaluated.

In the multivariate model, however, speed–accuracy 
trade-offs in terms of a correlation between mean RTs 
and error rates can be examined both within-subjects and 
between subjects. A negative within subjects correlation 
indicates that, within an individual, conditions that have 
lower RTs relative to the individual’s RTs in other condi-
tions are more likely to have relatively higher error rates. 
In contrast, a negative between-subjects correlation indi-
cates that, if an individual has a lower overall RT relative 
to the rest of the sample he or she is also likely to have a 
relatively higher overall error rate. The consideration of 
both levels of analysis is likely to provide a more complete 
picture of speed–accuracy trade-offs than simply examin-
ing condition mean differences in the aggregate sample.

The multivariate model also permits comparisons of the 
magnitude of predictor effects across outcomes, provided 
that the outcomes are on the same metric. For example, 
the extent to which target letter and set size have greater 
effects on RTs than on error rates will be examined after 
transforming each outcome separately onto a unit-normal 
metric (i.e., z-score). Finally, although continuous age 
could be included as a main effect in a repeated measures 
analysis, its interaction with other predictors is much eas-
ier to examine in a multilevel model.

Model specification. Five multilevel models were es-
timated (SAS and SPSS syntax available online; see the 
Author Note). Model 1 is an intercept-only or empty multi-
variate model, to be used as a baseline with which to assess 
the fit of more complex models, as given in Equation 9:
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where ytik and etik are the observed and residual values for 
condition t, individual i, and outcome k, where k 5 1 in-
dicates natural log response time in milliseconds, and k 5 
2 indicates proportion errors. DV1 and DV2 are dummy 
variables for each outcome. DV1 5 1 for RT and 0 for 
error rate, and DV2 5 0 for RT and 1 for error rate. The 
inclusion of the DV1 and DV2 dummy variables serves as 
a programming trick with which to obtain separate param-
eter estimates for the effects of the independent variables 
for each outcome. To illustrate, the expected values for 
each outcome are written out in Equation 10:
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where the terms not pertaining to each outcome (i.e., when 
k 5 2 for RT, or k 5 1 for error rate) are reduced to zero 
when multiplied by DV1 for error rate, or DV2 for RT.
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Returning to Equation 9, β0i1 and β0i2 are the individual 
intercepts for RT and error rate, respectively, as derived 
from the fixed intercepts (i.e., grand means) for RT, γ001, 
and error rate, γ002, and the random intercept for individual 
i for response time, U0i1, and error rate, U0i2. The variance 
in each outcome is thus partitioned into between-subjects 
random intercept variance (the U0is) and within-subjects 
residual variance (the etis). By estimating unconstrained 
matrices for the random effects and residual variances (G 
and R, respectively), each variance component is permitted 
to correlate across outcomes, as shown in Equation 11:
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  Model 2 is a main effects only model, as given in 
Equation 12:
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where γ001, γ101, and γ201 represent the fixed (main) ef-
fects for response time of the intercept, set size, and target, 
respectively, and γ011 represents the fixed (main) effect 
of age on the intercept. The γs with k 5 2 as a subscript 
represent the same parameters for error rates. Set size was 
centered at 6 and age was centered at 75 years, such that 
the fixed intercepts γ001 and γ002 now represent the ex-
pected RT and error rate, respectively, for a 75-year-old 
for Set Size 6, Target L. The individual intercepts for RT 
and error rate, β0i1 and β0i2, are now a function of the fixed 
effect intercept for each outcome, γ001 and γ002, the fixed 
(main) effect for age for each outcome, γ011 and γ012, and 
the random intercepts for each outcome, U011 and U012, 
which represent the individual’s systematic deviation from 
the expected fixed intercepts after controlling for age. The 
individual effects of set size for each outcome, β1i1 and 
β1i2, are derived from the fixed (main) effects of set size 
γ101 and γ201 and the random effects of set size U1i1 and 
U1i2, which represent the individual’s systematic deviation 
from expected effect of set size. The individual effects of 
target for each outcome, β2i1 and β2i2, are similarly de-
rived from the fixed (main) effects of target γ101 and γ201, 
and the random effects of target U2i1 and U2i2. Thus, in 
Model 2, the variance in RT and error rate is partitioned 
into four components: three between-subjects variances 
of the individual intercepts, slopes for set size, and slopes 
for target, and one within-subjects residual variance. Each 

variance component is again permitted to correlate across 
outcomes, as shown in Equation 13:
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  Model 3A includes all interactions among set size, tar-
get, and age, as seen in Equation 14:
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where model parameters are the same as in the main effects 
Model 2, although they are conditional on the higher order 
interactions that have now been added: γ301 represents the 
fixed effect for RT of the interaction of set size 3 target; 
γ111, γ211, and γ311 represent the fixed effects for RT of 
the interactions of age 3 set size, age 3 target, and the 
three-way interaction of age 3 set size 3 target, respec-
tively. The γs with k 5 2 as a subscript represent the same 
parameters for error rates. Thus the individual slopes of 
set size and target for each outcome depend on the fixed 
effect, the random effect, and the individual’s value of age. 
The individual slopes of the interaction of set size and tar-
get for each outcome depend only on the fixed effect and 
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the individual’s value of age (random effects were again 
not included for the interaction). A restricted version of 
Model 3A will also be estimated without any nonsignifi-
cant interactions (Model 3B).

Finally, the multivariate model can be reparameterized 
into Model 4 in order to examine whether each fixed ef-
fect is of different magnitude across outcomes, as shown 
in Equation 15:
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where the DV1 dummy variable is no longer included in 
the fixed effects (although it remains in the random effects 
and residual errors so that separate variance components 
are estimated for each outcome), and there is now only 
one true fixed intercept. Although statistically equivalent 
to Model 3A, this model parameterization allows for tests 
of the differences in the magnitude of the fixed effects 
across outcomes. Specifically, the γs with k 5 1 represent 
the same parameters as before (i.e., fixed effects for RT), 
whereas the γs with k 5 2 now represent the difference in 
the fixed effects between outcomes. For example, a signifi-
cant γ012 parameter would indicate that the main effect of 
age is different for RT than for error rate.

Recall that because both outcomes must be on the same 
metric in order for this specification to be meaningful, 
RT and error rate were thus each transformed onto a unit-
normal (z-score) metric prior to estimating Model 4, so 
that all parameter estimates refer to standard deviation 
units (i.e., standardized coefficients). This transformation 
does remove any differences in the magnitude of variabil-

ity across outcomes, however. If one is interested in differ-
ential magnitudes of variability across response variables 
on different metrics, then multivariate tests cannot be used 
as described here.

Results
Table 4 provides the parameter estimates and fit sta-

tistics from each model. Model 1 is an empty baseline 
model. The fixed RT intercept was 6.73 (95% CI 5 6.37 
to 7.01), and for error rate was .17 (95% CI 5 0.02 to 
0.33), which are the expected natural-log-transformed 
RT in milliseconds and proportion error rate for any in-
dividual for any condition (i.e., the grand means), respec-
tively. The intraclass correlations for RT and error rate, 
calculated by dividing the random intercept variance by 
the total variance (Snijders & Bosker, 1999), were .57 and 
.34, indicating that 57% and 34% of the variance in RT 
and error rate was between subjects and 43% and 66% 
was within subjects, respectively. Model 1 also provides 
unconditional covariances between RT and error rate at 
the between- and within-subjects levels (i.e., before con-
trolling for any predictors), from which correlations may 
be calculated (covariance / [SQRT(var1) * SQRT(var2)]). 
Although the between-subjects or random intercept cova-
riance was not significant (r 5 .05, p . .05), the within-
subjects or residual covariance was significant (r 5 .42, 
p , .001), indicating that within individuals, conditions 
with higher response times also had higher error rates.

Model 2 included main effects of set size, target, and 
age, each of which was significant, as shown in Table 4. 
The fixed effects of set size for response time (.04, random 
effects 95% CI 5 .02 to .06) and error rate (.03, random 
effects 95% CI 5 .01 to .05) represent the expected linear 
rate of increase in each outcome per additional distractor. 
The confidence intervals for the random effects around the 
fixed effect of set size indicate that most individuals were 
predicted to experience greater RTs and error rates with 
increasing set size, with the rate of increase varying across 
individuals. The fixed effects of target for RT (.08, random 
effects 95% CI 5 ].11 to .27) and error rate (.04, random 
effects 95% CI 5 ].09 to .17) represent the expected dif-
ference in each outcome between the conditions, with the 
target R instead of L. The confidence intervals for the ran-
dom effects around the effect of target indicate that not all 
individuals were predicted to experience greater RTs and 
error rates for Target R than for L, although this was true on 
average, as indicated by the direction of the fixed effect. The 
fixed effects of age for RT (.007) and error rate (.004) rep-
resent the expected linear rate of increase in each outcome 
per additional year of age. A comparison of Model 2 to a 
version with random effects for the intercept only revealed 
a significant decrease in fit [χ2 difference (18) 5 126, p , 
.001], as well as larger AIC and BIC values, indicating that 
the effects of set size and target should be random, and thus 
do vary significantly over individuals.

It is important to note, however, that Model 2 assumes 
a linear effect of set size, in that only one slope for set 
size was specified. To test this assumption, a piecewise 
model specifying two fixed set size slopes (3–6 and 6–9) 
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was compared to Model 2. Both models included random 
intercepts only, however, due to estimation problems with 
the random effects with the piecewise model. Although the 
piecewise model had marginally better fit than the linear 
model [χ2 difference (2) 5 6.8, p 5 .04], the BIC value 
favored the linear model. The linear model was retained on 
the basis of parsimony (i.e., to limit the number of param-
eters in estimating interactions with other variables) and in 
order to include random effects for set size and target.

The interaction Model 3A (all two- and three-way fixed 
effect interactions among set size, target, and age) was then 
estimated. Although it was a significant improvement over 
Model 2 [χ2 difference (8) 5 33, p , .001], only the inter-
action terms of set size 3 target and age 3 set size were 
significant for RT, and no interaction terms were signifi-
cant for error rate. The nonsignificant interaction terms 
were then removed separately in sequential models in 
order to improve the parsimony of the model. The revised 
Model 3B still had significantly better fit than Model 2 
[χ2 difference (2) 5 24, p , .001], and had smaller AIC 
and BIC values than Model 2 as well. All fixed effects 
were significant, as shown in Table 4. Figures 2A and 2B 
display the expected fixed effects of set size for each tar-
get letter for a 65-, 75-, and 85-year-old, for RT and error 
rate, respectively. RT increased with age and set size, and 
the effect of set size increased with age. RTs were higher 
to the Target R than L, and this difference increased with 
set size. Error rates also increased with age and set size, 
and error rates were higher when responding to a Target R 
than L, but no interactions were present.

Model 3B also provides correlations between RT and 
error rate at the between-subjects (random effects of in-
tercept, set size, and target) and within-subjects (residual) 
levels, conditional on the effects of set size and target. 
The within-subjects covariance was no longer significant, 
indicating that there was no relationship between RT and 
error rate across conditions within individuals, after con-
trolling for the effects of set size and target. Neither of 
the covariances between the random effects for set size 
and target was significant, indicating that individuals who 
displayed a larger effect of set size for RT, relative to the 
rest of the sample, did not necessarily display a relatively 
larger effect of set size for error rates, with a similar inter-
pretation for the random effects of target. The covariance 
between the random intercepts between persons was mar-
ginally significant, however (r 5 .17, p 5 .05), indicating 
that individuals with higher overall RTs relative to the rest 
of the sample also had relatively higher overall error rates. 
This is the opposite of a speed–accuracy trade-off.

Finally, the extent to which the effects of set size, tar-
get, and age were different across outcomes was exam-
ined in Model 4 using the standardized response variables, 
although only the interactions of set size 3 target and 
age 3 set size were included based on previous results. 
The interaction with DV2 of set size was significant, in-
dicating that the effect of set size on response time (.13 
SD) was significantly smaller than the effect of set size on 
error rate (.17 SD). The interactions with DV2 of target, 
age, and set size 3 target were not significant, however, 
indicating the effects of target on RT (.33 SD) and error 

Table 4 
Response Time (RT) and Error Rate (ER) Multilevel Model Parameters From Example 2 

Model 1 Model 2 Model 3B

Parameter  Est  SE  Est  SE  Est  SE

Fixed Effects
  RT intercept (γ001) 6.732*** 0.016 6.690***0 0.016 6.689***0 0.016
  RT set size (γ101) 0.036***0 0.002 0.030***0 0.002
  RT target letter (γ201) 0.080***0 0.010 0.080***0 0.010
  RT age (γ011) 0.007***0 0.003 0.010***0 0.003
  RT set size by target letter (γ301) 0.012***0 0.003
  RT age by set size (γ111) 0.001***0 0.000
  ER intercept (γ002) 0.172*** 0.008 0.152***0 0.008 0.152***0 0.008
  ER set size (γ102) 0.027***0 0.001 0.026***0 0.001
  ER target letter (γ202) 0.039***0 0.008 0.039***0 0.008
  ER age (γ012) 0.004***0 0.002 0.003***0 0.001
Variance Components
  RT intercept variance (U0i1) 0.0331*** 0.0043 0.0332*** 0.0042 0.0333*** 0.0042
  RT set size variance (U1i1) 0.0001*** 0.0003 0.0001*** 0.0000
  RT target letter variance (U2i1) 0.0095*** 0.0019 0.0098*** 0.0019
  RT residual variance (eti1) 0.0250*** 0.0013 0.0098*** 0.0007 0.0093*** 0.0006
  ER intercept variance (U0i2) 0.0060*** 0.0010 0.0070*** 0.0012 0.0069*** 0.0012
  ER set size variance (U1i2) 0.0001*** 0.0000 0.0001*** 0.0000
  ER target letter variance (U2i2) 0.0042*** 0.0012 0.0042*** 0.0012
  ER residual variance (eti2) 0.0161*** 0.0010 0.0088*** 0.0006 0.0087*** 0.0006
  RT–ER intercept covariance 0.0007*** 0.0010 0.0024*** 0.0016 0.0026*** 0.0016
  RT–ER set size covariance 0.0000*** 0.0000 0.0000*** 0.0000
  RT–ER target letter covariance 0.0008*** 0.0011 0.0008*** 0.0011
  RT–ER residual covariance 0.0084*** 0.0010 0.0001*** 0.0004 0.0000*** 0.0004
Fit Statistics
  ML deviance (number of parameters) ]1,550 (8) ]2,308 (32) ]2,331 (34)
  AIC; BIC ]1,534; ]1,510 ]2,244; ]2,148 ]2,263; ]2,160
*p , .05.  ***p , .001.  Values of .0000 are 0 to the fourth decimal place, but are not exactly 0.
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Figure 2. Results from Example 2. Expected effects of set size for target letter 
R and L for an 85-year-old, 75-year-old, and 65-year-old for response time (RT) 
(A) and error rate (B).

7.25

7.00

6.75

6.50

6.25

N
at

u
ra

l L
o

g
 R

T 
(m

se
c)

2 43 5 6 87 9 10

Set Size

Age 85, target R

Age 75, target R

Age 65, target R

Age 85, target L

Age 75, target L

Age 65, target LA

.35

.30

.25

.15

.20

.10

.05

0

Pe
rc

en
t 

o
f E

rr
o

r R
at

e

2 43 5 6 87 9 10

Set Size

Age 85, target R

Age 75, target R

Age 65, target R

Age 85, target L

Age 75, target L

Age 65, target LB

rate (.26 SD) were equivalent, as were the effects of age on 
RT (.04 SD) and error rate (.02 SD), as well as the effects 
of set size 3 target on RT (.05 SD) and error rate (.03 SD). 
The interaction with DV2 of age 3 set size was marginally 
significant ( p 5 .06), such that the interaction of age 3 set 
size on response time (.003 SD, which was significant) was 
significantly larger than the interaction of age 3 set size 
on error rate (2.002 SD, which was not significant).

Discussion
Example 2 used a multivariate multilevel model to 

examine the effects of between-subjects variables (age) 
and within-subjects variables (set size, target letter) si-
multaneously on RT and error rate in a visual search task. 
In addition to the general advantages of the multilevel 
model discussed in Example 1 (e.g., inclusion of incom-
plete responses, categorical or continuous predictors at 

each level), the multivariate multilevel model can estimate 
correlations between outcomes at the within-subjects and 
between-subjects levels, and can also permit tests of dif-
ferences in the magnitude of the predictor effects across 
outcomes. In Example 2, no evidence of a speed–accuracy 
trade-off was found—in fact, the correlations between RT 
and error rate were actually marginally positive instead of 
significantly negative—and effect sizes of the predictors 
were shown to be equivalent across outcomes, with the 
exception of the effect of set size (significantly smaller for 
RT) and the effect of age 3 set size (significantly larger 
for RT).

SUMMARY AND CONCLUSIONS

The purpose of this article was to illustrate how the 
multilevel or general linear mixed model can be used in 
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the analysis of data from experimental designs. The mul-
tilevel model is relatively common in the educational and 
developmental literatures, but is less well known in other 
areas of psychology, with a few exceptions (see Allen, 
Sliwinski, & Bowie, 2002; Quené & van den Bergh, 
2004; Wright, 1998). Although the repeated measures 
ANOVA model has a well earned place in the toolbox of 
the experimental psychologist, there are many scenarios 
in which the assumptions of a repeated measures ANOVA 
may not be met, or the model may be too restrictive, and 
in which case a multilevel model might be more useful. 
These scenarios include: (1) main effects and interactions 
of continuous or semicontinuous predictors pertaining to 
experimental stimuli or individuals, (2) different magni-
tudes of between-subjects and within-subjects residual 
variances across groups, (3) violations of compound 
symmetry resulting from sources of variance related to 
individual differences, (4) the presence of nested obser-
vations or crossed random effects, (5) the presence of 
incomplete data that would require listwise deletion or 
otherwise result in bias and loss of power, and (6) the de-
sire to examine differences in effect sizes and multivariate 
relations across outcomes at multiple levels of analysis. In 
presenting two in-depth examples from the experimental 
literature along with SAS and SPSS program syntax for 
data restructuring and analysis, we hope this article will be 
useful in providing guidance to investigators dealing with 
similar scenarios in the future.
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