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Abstract

This review focuses on the use of multilevel models in psychology and
other social sciences. We target readers who are catching up on current
best practices and sources of controversy in the specification of multilevel
models.We first describe common use cases for clustered, longitudinal, and
cross-classified designs, as well as their combinations. Using examples from
both clustered and longitudinal designs, we then address issues of center-
ing for observed predictor variables: its use in creating interpretable fixed
and random effects of predictors, its relationship to endogeneity problems
(correlations between predictors and model error terms), and its translation
into multivariate multilevel models (using latent-centering within multilevel
structural equation models). Finally, we describe novel extensions—mixed-
effects location–scale models—designed for predicting differential amounts
of variability.
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Cross-level
interaction:
a model-estimated
constant slope for the
multiplicative
combination of two
predictor variables
measured for different
dimensions of
sampling
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CATCHING UP ON MULTILEVEL MODELING

Multilevel models (MLMs) are a versatile family of statistical models used to quantify and predict
the distinct sources of variability that arise when sampling over multiple dimensions simultane-
ously, such as occasions, persons, and groups. Also known as hierarchical linear models, MLMs
are so named for their expression via a layered system of equations that partition variability due to
each sampling dimension into a distinct level of analysis. In MLMs one can simultaneously exam-
ine main effects and interactions of predictors measured for each sampling dimension, as well as
interactions of predictors from different dimensions (the latter are known as cross-level interac-
tions). Like traditional (single-level) regression models, MLMs also include a fixed intercept (for
the expected outcome when all predictors are 0), fixed slopes of predictors (for the expected dif-
ference in the outcome per unit higher in each predictor), and a model residual (for the deviation
of the actual outcome from the model-predicted outcome). But unlike in traditional regression
models, the intercept and slopes of predictors in MLMs can also vary randomly across sampling
units. As elaborated below, the latter additions are known as random effects (and thus the term
random coefficients model is also a synonym for MLMs, as is mixed-effects model, a term used
for models that include both fixed and random effects).
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Fixed intercept:
a model-estimated
constant that provides
the expected
(conditional mean)
outcome when all
predictor variables are
0, as also used in
single-level regression
models

Fixed slope:
a model-estimated
constant that provides
the expected difference
in an outcome variable
per unit difference in a
predictor variable

Residual: the
deviation between the
outcome predicted by
the model’s fixed and
random effects and the
actual outcome, with
model-estimated
variance across
lowest-level units

Random effect:
a latent (unobserved)
variable (e.g., intercept
or slope) with
model-estimated
variance used in linear
combination with
predictors to create an
expected outcome for
each observation

Clustered sample:
the sampling of
subjects from
preexisting groups,
such as children in
schools, patients in
hospitals, and siblings
within families

Longitudinal sample:
the repeated sampling
of observations from
the same unit (e.g.,
person or group), such
as over time, over
conditions, or over
stimulus-specific trials

MLMs have become a prominent tool in psychology and many other areas (for historical
overviews, see Eckardt et al. 2021, Hox & Roberts 2011), but the breadth and depth of this field
can be intimidating for those looking to join in for the first time. This is similar to watching the
fifth season of a television show without having watched the first four seasons, in which the char-
acters and their plot lines can be difficult to follow without having seen every prior episode.Given
that we are writing this review during a pandemic in which binge-watching television has become
our new national pastime, we decided to frame our review from this perspective—what do readers
need to know to start catching up on one of our favorite shows, multilevel modeling?

To help readers from different areas get up to date, we first review common use cases for
MLMs. This is followed by a detailed treatment of centering (a recurring plot line throughout
the series).We then provide advice about specifying random effects in MLMs (including some re-
cent controversies) and using R2 explained variance in assessing effect size. Finally, we try to equip
readers for future MLM episodes by describing a relatively new variant—mixed-effects location–
scale models—by which to answer research questions about differential variability. Throughout,
we reference methodological research and tutorials for MLMs using both clustered and longitu-
dinal designs; readers interested in only one of these can skip the other without losing too much
of the storyline. But one review cannot cover every aspect of MLMs, and so we did not expand on
issues of study planning, power analysis, or missing data. For these and other topics, we recom-
mend two recent comprehensive handbooks (Humphrey & LeBreton 2019, Scott et al. 2013). For
readers with no prior exposure toMLMs, the Supplemental Material provides a list of suggested
introductory textbooks.

PREVIOUS EPISODES: EXAMPLE USE CASES
FOR MULTILEVEL MODELS

Series Trailer

The notion of a simple random sample—in which all observations have unrelated model
residuals—is rarely accurate in characterizing real-life research data. In educational contexts, stu-
dents and teachers may be sampled from multiple schools; in health care settings, patients may
be sampled from multiple hospitals. In fields such as sociology or political science, survey respon-
dents may be sampled from multiple countries. In studying family dynamics, data are deliberately
collected from multiple individuals and from multiple households. In each of these examples of
clustered samples, the residuals of persons from the same cluster (school, hospital, country, or
household) may be more related than those of persons from different clusters. The same is true
in longitudinal samples (in which persons or groups are measured repeatedly over time), in which
correlated residuals occur for occasions from the same person or group.More generally, residuals
from the same sampling unit are likely to be more related than residuals from different sampling
units—these patterns of residual correlation are known as dependency.

Inaccurate inferences can result when outcomes from clustered or longitudinal samples are
analyzed with traditional regression models that only include a single error term (which assumes
independent residuals). To solve this problem,MLMs include additional error terms—random in-
tercepts and slopes, known more generally as random effects—that capture correlations of resid-
uals from the same sampling unit. Random intercepts capture constant correlation through mean
differences between higher-level sampling units. Random slopes capture nonconstant correlation
through differences in the slopes of lower-level predictors across higher-level sampling units. (If
those definitions sound like word salad right now, please stay tuned for more concrete examples.)
MLMs estimate the variances of these random effects (and the covariances of random effects for
the same sampling unit), along with the variance (and possibly covariance) of the lowest-level
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Dependency: the
presence of correlation
among residuals from
the same higher-level
sampling unit (which
can be captured by the
inclusion of random
effects)

Random intercept:
the latent deviation
between the fixed
intercept and the
intercept for a given
higher-level sampling
unit, with model-
estimated variance
across higher-level
sampling units

Random slope:
the latent deviation
between a fixed slope
and the slope for a
given higher-level
sampling unit, with
model-estimated
variance across
higher-level sampling
units

Fixed effect:
a model-estimated
constant (e.g.,
intercept or slope)
used in linear
combination with
predictors to create an
expected outcome for
each observation

residuals. Higher-level random effects are usually assumed to have a multivariate normal distri-
bution, but other conditional distributions can be paired with link (transformation) functions to
predict nonnormal outcomes within generalized MLMs (e.g., a logit link and Bernoulli distribu-
tion for binary responses or a log link and Poisson distribution for count responses).

Season 1: Clustered Samples

To describe the use of MLMs for clustered samples, consider a two-level example of level-1 per-
sons nested in level-2 clusters. The level-1 residual variance captures within-cluster differences
across persons to be explained by fixed slopes of person-level-1 predictors and their interac-
tions. The level-2 random intercept variance captures between-cluster differences in the outcome
mean across persons to be explained by fixed slopes of cluster-level-2 predictors and their inter-
actions. Level-2 random slope variances capture between-cluster differences in the slopes of the
person-level-1 predictors, which can be explained by cross-level interactions of each person-level-
1 predictor with cluster-level-2 predictors. Although the sources of remaining outcome variance—
level-1 residual, level-2 random intercept, and level-2 random slopes—are usually assumed con-
stant over all observations, options for nonconstant variances are afforded by location–scale vari-
ants of MLMs (stay tuned).

More complex sampling designs can require additional levels of analysis. For example, if mul-
tiple family members are sampled in different cities, then level-1 persons are nested in level-2
families, and level-2 families are nested in level-3 cities. Level-1 (within-family) residual vari-
ance can be explained by fixed slopes of person-level-1 predictors and their interactions, level-2
(between-family,within-city) random intercept variance can be explained by fixed slopes of family-
level-2 predictors and their interactions, and level-3 (between-city) random intercept variance can
be explained by fixed slopes of city-level-3 predictors and their interactions. The slopes of person-
level-1 predictors can vary randomly over level-2 families and/or level-3 cities, and each random
slope variance can be explained by cross-level interactions of that person-level-1 predictor with
family-level-2 and/or city-level-3 predictors. Likewise, the slopes of family-level-2 predictors can
vary randomly over level-3 cities, and each random slope variance can be explained by cross-level
interactions of that family-level-2 predictor with city-level-3 predictors.

Season 2: Longitudinal Samples

The flexibility of MLMs for capturing patterns of dependency when sampling over multiple di-
mensions also extends to longitudinal (i.e., panel) designs in which level-1 occasions are modeled
as nested in level-2 persons (also known as growth curve models). MLMs pool time series data
across multiple persons to examine average time trends and variability in and around those trends.
In this case, the level-1 residual variance captures within-person fluctuation over time to be ex-
plained by fixed slopes of time-varying predictors—time, other time-level-1 variables, and their
interactions. The level-2 random intercept variance captures between-person differences in the
outcome mean over time to be explained by fixed effects of time-invariant predictors—person-
level-2 variables and their interactions. Level-2 random slope variances capture between-person
slope differences for time or other time-level-1 predictors, each of which can be explained by
cross-level interactions of that time-level-1 predictor with person-level-2 predictors. Longitudi-
nal data over shorter intervals (e.g., daily) can also be analyzed with the same type of two-level
model to examine between-person differences in slopes capturing shorter time trends (e.g., cycles
by day of the week).

Longitudinal designs with more intensive measurement schedules may require additional lev-
els of analysis. For instance, when multiple occasions per day are collected across multiple days,
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level-1 occasions from the same day are nested in level-2 days, and level-2 days are nested in
level-3 persons. One could examine how level-1 within-day changes (e.g., circadian rhythms) vary
across days within persons (as captured by level-2 random slopes) and/or between persons on
average (as captured by level-3 random slopes), as well as day-level-2 or person-level-3 modera-
tors of those within-day changes (via corresponding cross-level interactions). Level-1 (within-day)
residual variance can be explained by fixed slopes of time-level-1 predictors and their interactions,
level-2 (between-day, within-person) random intercept variance can be explained by fixed slopes
of day-level-2 predictors and their interactions, and level-3 (between-person) random intercept
variance can be explained by fixed slopes of person-level-3 predictors and their interactions. The
slopes of time-level-1 predictors can vary across level-2 days and/or level-3 persons, the slopes of
day-level-2 predictors can vary across level-3 persons, and each of these random slope variances
can be explained by corresponding cross-level interactions.

Season 3: Clustered Longitudinal Samples

MLMs can also be extended for combinations of clustered and longitudinal samples. In clustered
longitudinal designs of repeatedly measured persons in clusters, level-1 occasions are nested in
level-2 persons, and level-2 persons are nested in level-3 clusters. But if the same cluster is mea-
sured by different persons over time, level-1 persons are instead nested in level-2 occasions, and
level-2 occasions are nested in level-3 clusters. In these types of hierarchical three-level models,
in addition to a level-1 residual variance and the level-2 and level-3 random intercept variances,
the slopes of level-1 predictors can vary randomly over level-2 units and/or level-3 units, and the
slopes of level-2 predictors can vary randomly over level-3 units.

Season 4: Cross-Classified Samples

For nested sampling designs that are not strictly hierarchical,MLMs with cross-classified random
effects can be used when two (or more) sampling dimensions are crossed at the same level. In fact,
many longitudinal designs are actually crossed designs—when observations are nested in both
sampling units and occasions, units are actually crossed by occasions at level 2. But after capturing
mean differences over time through the inclusion of fixed slopes for time, the random occasion di-
mension is no longer needed, resulting in a purely nested design of time-specific outcomes nested
in units (often abbreviated as level-1 occasions in level-2 units).

As a clustered example of cross-classification, consider children sampled from multiple neigh-
borhoods and schools, in which not all children who live in the same neighborhood attend the
same school. Level-1 children are nested in crossed level-2 dimensions of neighborhoods and
schools. Mean differences across each dimension can be captured by a random intercept vari-
ance (to be explained by per-neighborhood or per-school predictors). As a longitudinal example,
cross-classification also occurs when cluster membership changes over time, such as when pa-
tients change therapy groups over time. After mean differences over time by fixed time slopes are
accounted for, level-1 occasions are nested in crossed level-2 dimensions of patients and groups.
Mean differences across each level-2 dimension can be captured by a random intercept variance (to
be explained by per-patient or per-group predictors). In such cross-classified designs, the slopes
of level-1 predictors can vary randomly over each level-2 dimension, and the slopes of level-2
predictors can also vary randomly over the other crossed level-2 dimensions.

MLMs with cross-classified random effects are also applicable to repeated measures experi-
ments. If each subject responds to the same items once, level-1 trials are nested in both level-2
subjects and level-2 items, and mean differences across each dimension can be captured by a ran-
dom intercept variance (to be explained by per-subject or per-item predictors). The slopes of
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Constant-centering:
subtraction of a
constant that relocates
the meaning of a 0
value for a predictor;
used to aid in the
interpretation of fixed
and random intercepts,
as well as of fixed
slopes of predictors
that are also part of
interactions

trial-level-1 predictors can vary over level-2 subjects and/or level-2 items, the slopes of subject-
level-2 predictors can vary over level-2 items, and the slopes of item-level-2 predictors can vary
over level-2 subjects. Additional random slopes are possible if subjects respond to the same items
more than once (e.g., items are presented under different within-subjects conditions).

Finally, cross-classified MLMs can also be useful in analyzing multi-rater data, such as when
each person provides a response (as a rater) about each other person (as a target).Level-1 responses
are then nested in both level-2 raters and level-2 targets.Unlike other cross-classified designs, this
scenario requires covariances for the across-dimension random effects for the same person (i.e.,
for a person’s random intercept as a rater and as a target, given that people who provide more
favorable ratings of others on average may also be rated more favorably by others).

Recap: Seasons 1–4

To summarize, multilevel modeling is useful for designs that include multiple dimensions of sam-
pling simultaneously. Typical use cases for MLMs include clustered samples (of persons nested in
groups), longitudinal samples (of occasions nested in persons and/or groups), and cross-classified
samples (of observations nested inmultiple crossed dimensions). Like single-level regressionmod-
els, MLMs use fixed intercepts and predictor slopes (which are constants) to create expected out-
comes. ButMLMs also use random intercepts and predictor slopes (which are variables) to capture
correlations among residuals from the same sampling unit. Said differently, MLMs partition the
unexplained outcome variance into distinct levels of sampling, attributed either to higher-level
random intercepts and slopes or to lowest-level residuals. The sources of variance for each level
of sampling can then be explained by predictors at that level.

A RECURRING PLOT LINE: CENTERING IN MULTILEVEL MODELS

We now introduce one of the most salient plot lines in the history of MLMs—the use of cen-
tering for lower-level variables. In single-level models, centering refers only to the rescaling of a
predictor by subtracting a constant so that 0 becomes meaningful. Centering is used to create an
interpretable intercept (the expected outcome when all predictors equal 0), as well as interpretable
main effect slopes of predictors that are also included in interaction terms (in which those main
effect slopes become conditional on their interacting predictors equaling 0). A common choice
for a centering constant is the sample mean (known as grand-mean-centering), but any constant
can be used (e.g., 12 years of education so that 0 indicates a high school degree). Consequently,
this strategy can be labeled more generally as constant-centering (Hoffman 2019), or centering-
at-a-constant (Rights & Sterba 2019), in which special cases are centering at the grand mean or
at 0 (leaving predictors uncentered). Critically, constant-centering changes a predictor’s mean,
but it does not change its model predictions or variability. In MLMs, level-2 predictors can be
constant-centered for the same interpretational conveniences as in single-level models, but greater
consideration is needed in centering level-1 predictors (and lower-level predictors in general), as
described in the next section.

Season 1 Director Commentary: Centering in Clustered Samples

To illustrate the centering of level-1 predictors in clustered samples, let us consider a two-level
example of patients (p) nested in clinics (c), in which we aim to predict a patient outcome (anxiety)
from patient compliance with therapy activities (comp) in clinics that use one of two treatments
(type; 0 = old, 1 = new) for all of their patients. Although compliance is measured per level-1

664 Hoffman • Walters

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

02
2.

73
:6

59
-6

89
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Io

w
a 

on
 0

1/
05

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



patient, a predictor for patient compliance must be included at each level, as explained below. An
example MLM for this clustered design is shown in Equation 1,

Level 1 (L1) : anxietypc = β0c + β1c
(
L1comppc

) + epc
Level 2 (L2) : β0c = γ00 + γ01 (L2compc ) + γ02 (typec ) +U0c

β1c = γ10 +U1c

, 1.

in which anxietypc is the level-1 outcome for level-1 patient p from level-2 clinic c.
In the level-1 model, the β terms are placeholders for the two clinic outcomes: β0c holds the

overall clinic intercept, and β1c holds the overall clinic slope of patient-level-1 compliance. Next,
epc is the level-1 residual—the deviation of the actual outcome from the model-predicted patient
outcome (with constant variance σ 2

e over patients and clinics). Each β clinic outcome is defined
by a level-2 equation using fixed effects (the γ terms, which are constants) and random effects
(the U terms, which vary over clinics). The first subscript of each effect indexes the level-1 β to
which it belongs: All effects predicting β0c begin with 0, and all effects predicting β1c begin with
1. For the γ fixed effects, the second subscript indexes its order in the level-2 equation: The fixed
effects predicting β0c begin with γ00, followed by γ01 and γ02 for its first and second predictors.
For the U random effects, the second subscript indicates the sampling unit it varies over (e.g.,
c for level-2 clinics here). In predicting the level-2 β0c clinic intercept, γ00 is the fixed intercept
(the expected outcome when all predictors equal 0), whereas γ01 and γ02 are the fixed slopes of the
clinic-level-2 predictors (the intercept difference per unit higher of each predictor).U0c is the level-
2 random intercept—the deviation of the actual intercept from the predicted clinic intercept (with
constant variance τ 2

U0
over clinics). In predicting the level-2 β1c per-clinic slope of patient-level-1

compliance, γ10 is the average slope across clinics, andU1c is a level-2 random slope—the deviation
of the actual slope from the predicted clinic slope (with constant variance τ 2

U1
over clinics).

Figure 1 displays example results for the model in Equation 1, in which the prediction of
patient anxiety for five example patients in each of 12 clinics is shown using separate lines (with
3 clinics in each of four combinations from typec by L2compc). The fixed intercept of γ00 = 18 is
shown by the y-axis value for the center open square in the top black line (for typec = 0,L2compc =
0, and for patient comppc = 0 on the x-axis).

Let us examine the fixed slopes. Because typec varies between clinics only, the meaning of γ02

is straightforward—it is the between-clinic difference in mean anxiety for clinics that use the
new treatment (typec = 1) instead of the old treatment (typec = 0). In Figure 1, the typec slope
γ02 = −5.0 is shown by the vertical distance between the black lines whose symbols have the same
fill (i.e., between the open triangles and open squares, or between the filled triangles and filled
squares, holding L2compc constant). In contrast, the meaning of the level-1 and level-2 slopes of
patient compliance depends on how their predictor variables are created, which requires an ex-
planation of why two versions of the predictor are needed in the first place! The rationale is as
follows: Just as any person-level-1 outcome has both between- and within-cluster variability (as
captured for anxietypc by the level-2 random intercept variance τ 2

U0
and the level-1 residual variance

σ 2
e , respectively), so do most person-level-1 predictors. Here, if some clinics have more compliant

patients, then level-1 comppc will contain between-clinic mean differences beyond just within-clinic
patient differences. Each source of predictor variance (between-level-2 and within-level-1) has a
distinct potential relation with the outcome, and so most level-1 predictors are really two vari-
ables, not one. Here, we represent between-clinic mean differences using the level-2 predictor:
L2compc = compc −C2, in which compc is the level-2 mean compliance for patients in clinic c and
C2 is a centering constant. In Figure 1, separate lines distinguish the six clinics with L2compc = 0
(open symbols) from the six clinics with L2compc = 1 (filled symbols).
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Variable-centering:
subtraction of a
variable that not only
relocates the meaning
of a value of 0 for a
predictor but also
removes higher-level
unit differences (such
as mean differences)

Patient compliance
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type = 0
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Within-level-1 slope = –1.0
Between-level-2 slope = –3.5
Contextual-level-2 slope = –2.0

Figure 1

Example results for the two-level clustered model in Equation 1. The x-axis is original uncentered patient
compliance (comppc). The three lines within each combination depict theU0c random intercept and theU1c
random slope: Each middle dashed line (black) depicts values of 0, each top solid line (various colors) depicts
positive values (resulting in relatively higher intercepts and shallower slopes), and each solid bottom line
(various colors) depicts negative values (resulting in relatively lower intercepts and steeper slopes).The distances
from the lines to the same-colored circles (the actual outcomes) show the patient-level-1 epc residuals.

In deciding how to center a level-1 predictor, an alternative strategy—centering at an ob-
served variable rather than at a constant—creates not only a meaningful 0 but also a within-level-
only version of the predictor. In so-called variable-centering (Hoffman 2019), level-1 predictors
are usually centered using their level-2 means (as shown below), but other options are possible,
such as using the baseline variable of time-level-1 predictors in longitudinal designs (Algina &
Swaminathan 2011) or centering level-1 predictors using more than one level-2 variable simul-
taneously (e.g., double decomposition; O’Keefe & Rodgers 2017). When used for clustered data,
variable-centering using the cluster-level-2mean has many names, such as cluster-mean-centering
(e.g., Antonakis et al. 2021, Brincks et al. 2017, Loeys et al. 2018, Rights & Sterba 2019), group-
mean-centering (e.g., Algina & Swaminathan 2011; Hofmann&Gavin 1998; Raudenbush& Bryk
2002, chapter 5; Snijders & Bosker 2012, chapter 5), centering-within-clusters (e.g., Enders &
Tofighi 2007), and centering-within-contexts (e.g., Enders 2013, Kreft et al. 1995). Here, we can
variable-center patient compliance by subtracting its clinic-level-2mean, creating a new predictor:
L1comppc = comppc − compc.

Centering patient compliance at a level-2 variable instead of at a constant alters its variabil-
ity in a helpful way. If level-2 clinics differ only in mean patient compliance, variable-centered
L1comppc will then contain only within-clinic level-1 variance. As such, its fixed slope γ10 can
only be a within-clinic level-1 effect—the difference in patient anxiety per unit higher compli-
ance than other patients in the same clinic. In Figure 1, a within-level-1 slope γ10 = −1.0 is the
slope of the black lines across the five example patients (whose L1comppc values are ±2 of their

666 Hoffman • Walters

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

02
2.

73
:6

59
-6

89
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Io

w
a 

on
 0

1/
05

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Smushed effect: the
unintended blending
of a predictor variable’s
slopes across multiple
levels of sampling by
which distinct
predictor slopes are
constrained equal

Table 1 Predictor effect type by model specification

Centering strategy for level-1 predictor
(constant-centered level-2 predictor)

Fixed effect type by predictors included
Level-1 only Level-2 only Both levels

Variable-centered level-1
Level-1 predictor: L1xwb = xwb − x̄b Within (= 0) Within
Level-2 predictor: L2xb = x̄b −C2 (= 0) Between Between
Constant-centered level-1
Level-1 predictor: L1xwb = xwb −C1 Smushed (= 0) Within
Level-2 predictor: L2xwb = x̄b −C2 (= Within) Between Contextual

Abbreviations: w, within; b, between; C1, level-1 centering constant; C2, level-2 centering constant.
Parentheses indicate assumptions about the fixed slopes of omitted predictors.

clinic-level-2 mean, creating the original patient comppc values on the x-axis). Further, given that
L2compc (= compc −C2) has only between-clinic level-2 variance, its fixed slope γ01 can only be a
between-clinic level-2 effect—the difference in clinic-mean anxiety per unit higher average pa-
tient compliance than other clinics. In Figure 1, a between-level-2 slope γ01 = −3.5 is shown
by the slope of the dashed gray lines connecting the clinics with L2compc = 0 and 1 (i.e., a one-
unit difference in L2compc) with the same symbol (holding typec constant) when patient-level-1
compliance is at the clinic mean (L1comppc = 0).

Although some have cautioned against variable-centering lower-level predictors (e.g., Hox
2010, chapter 4; Snijders & Bosker 2012, chapter 5), we actively encourage it because it sim-
plifies interpretation. Variable-centering leads to an orthogonal between–within partitioning of a
level-1 predictor’s variance that directly parallels what happens to a level-1 outcome: The level-2
mean predictor approximates its level-2 random intercept (which contains between-level-2 vari-
ance only), and the variable-centered level-1 predictor approximates its level-1 residual (which
contains within-level-1 variance only).This partitioning greatly simplifies themeaning of the fixed
slopes of the level-1 and level-2 predictors into one possible interpretation for each, as shown in
Table 1. It also simplifies the interpretation of the random slope for the level-1 predictor (stay
tuned).

What if we had chosen to constant-center patient-level-1 compliance instead, as L1comppc =
comppc −C1 (in which C1 is the constant)? As shown in Table 1, the meaning of its fixed slope
will depend on whether a fixed slope for L2compc is still included. On the surface, a fixed slope for
L2compc may then seem unnecessary given that clinic-level-2 mean variability is still included in
this version of patient-level-1 compliance. But as described in many sources (e.g., Raudenbush &
Bryk 2002, chapter 5), without a fixed slope for its corresponding level-2 mean predictor, the
fixed slope of a constant-centered level-1 predictor is an uninterpretable blend of its within-
level-1 and between-level-2 fixed slopes. This useless blended effect has many names, including
total effect (e.g., Burstein 1980; Raudenbush & Bryk 2002, chapter 5; Snijders & Bosker 2012,
chapter 3), conflated effect (e.g., Preacher et al. 2010), composite effect (e.g., Wang & Maxwell
2015), convergence effect (e.g., Hoffman 2012, Sliwinski et al. 2010), and smushed effect (e.g.,
Hoffman 2015, chapter 8); we adopt the informal (yet descriptive) term smushed effect here as
well.

Adding a fixed slope for the level-2 mean of the constant-centered level-1 predictor prevents its
smushed effect (with respect to its fixed slope; stay tuned for what happens to its random slope), but
the fixed slope for the level-2mean predictor is then not a between-level-2 effect as before. Instead,
it is a contextual-level-2 effect—it is how the between-level-2 fixed slope differs from the within-
level-1 fixed slope (as given by γ01 − γ10 in the variable-centered level-1 model using L1comppc
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Endogeneity:
the presence of an
unmodeled relation
between a model
predictor and a
random effect or
residual term (which
can be caused by
smushed lower-level
fixed slopes)

instead). Also known as an emergent-level-2 effect, a contextual-level-2 effect is the incremental
between-level-2 effect after controlling for the level-1 predictor. Here, a contextual-level-2 fixed
slope is the difference in clinic-mean anxiety per unit higher average patient compliance than other
clinics after controlling for patient compliance. In Figure 1, a contextual-level-2 slope of γ01 −
γ10 = −3.5 + 1.0 = −2.0 is shown by the vertical distance of the solid gray lines connecting the
clinics with L2compc = 0 and 1 (a one-unit difference in L2compc) with the same symbol (holding
typec constant) when the original patient comppc = 0 on the x-axis. More generally, a contextual-
level-2 effect indicates to what extent cluster membership still matters after controlling for each
person’s predictor, a quantity often of interest in clustered designs (Blaklock 1984, Burstein 1980,
Hofmann & Gavin 1998). Excellent examples of real-world contextual-level-2 effects are given in
Antonakis et al. (2021) and Bliese et al. (2018).

Crossover Episode: Smushed Effects and Endogeneity

The need to disaggregate fixed slopes across levels of analysis parallels debates of fixed versus ran-
dom effects (e.g., in sociology, econometrics) for preventing endogeneity bias, which can occur
if a level-1 predictor is correlated with a level-2 random intercept. One solution is to remove all
level-2 mean differences using a fixed effects model—by including level-2 cluster membership as a
categorical predictor (i.e., by includingC− 1 dummy codes for theC clusters). Although useful for
making inferences about each specific level-2 unit (see Cushing et al. 2014), an unfortunate limita-
tion is that other cluster-level-2 predictors then cannot be examined. Recent work has shown how
endogeneity tests indicating the superiority of a fixed effects model over a random effects model
actually indicate that fixed slopes of constant-centered level-1 predictors have been smushed (Bell
et al. 2019, Hamaker & Muthén 2020, McNeish & Kelly 2019, Townsend et al. 2013). The term
correlated random effects model describes the addition of a contextual-level-2 fixed slope to re-
move the correlation of a constant-centered level-1 predictor with a level-2 random intercept,
thus preventing predictor endogeneity bias (Antonakis et al. 2021).

Season 2 Director Commentary: Centering in Longitudinal Samples

Spoiler alert: In MLMs for longitudinal samples, the same centering process described above for
clustered samples may not be sufficient to create purely within-level-1 predictors. Let us begin
a new example—a two-level longitudinal model of level-1 occasions (t) nested in level-2 patients
(p)—in which we predict a time-varying outcome (anxiety) from time-varying patient compliance
with therapy activities (comp) and time-in-treatment (time) in which patients (from the same clinic)
were given one of two treatments (type; 0 = old, 1 = new). A predictor for time-level-1 compliance
is needed at both levels to properly specify its effects. As in all MLMs, this model requires a long
data structure, with one row per level-1 unit (here, occasion) and one column per variable. An
example MLM for this longitudinal design is shown in Equation 2,

Level 1 (L1) : anxietyt p = β0p + β1p
(
L1compt p

) + β2p
(
timet p

) + et p
Level 2 (L2) : β0p = γ00 + γ01

(
L2compp

) + γ02
(
typep

)
+ γ03

(
L2compp

) (
typep

) +U0p

β1p = γ10 + γ12
(
typep

) +U1p

β2p = γ20 + γ22
(
typep

) +U2p

, 2.

in which anxietyt p is now the level-1 outcome for level-1 occasion t from level-2 patient p.
In the level-1 model, β0p holds the overall patient intercept, β1p and β2p hold the overall

patient slopes of time-level-1 compliance and time-in-treatment, and et p is the level-1 residual
(the deviation of the actual outcome from the model-predicted per-occasion outcome, with con-
stant variance σ 2

e over occasions and persons). In predicting the level-2 β0p intercept, γ00 is the
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fixed intercept; γ01, γ02, and γ03 are the fixed slopes of the patient-level-2 predictors; andU0p is the
level-2 random intercept (the deviation of the actual intercept from the predicted patient inter-
cept, with constant variance τ 2

U0
over patients). In predicting the level-2 β1p slope of time-level-1

compliance, γ10 is the slope for patients given the old treatment, γ12 is the slope difference for pa-
tients given the new treatment, andU1p is a level-2 random slope (the deviation of the actual slope
from the predicted patient slope, with constant variance τ 2

U1
over patients). Likewise, in predicting

the level-2 β2p slope of time-in-treatment, γ20 is the slope for patients given the old treatment, γ22

is the slope difference for patients given the new treatment, andU2p is a level-2 random time slope
(the deviation of the actual slope from the predicted patient slope, with constant variance τ 2

U2
over

patients).
Figure 2 displays example results for the model in Equation 2, in which the prediction of

time-varying anxiety for five example occasions in each of 12 patients is shown using separate
lines (with 3 patients in each of four combinations from typep by L2compp). Figure 2a depicts the
effects of time-level-1 compliance (L1compt p) at timet p = 4; Figure 2b depicts change over time-
in-treatment (timet p) holding L1compt p = 0. In Figure 2b, the fixed intercept of γ00 = 26 is shown
by the y-axis value for the first open square in the top black line (for typec = 0 and L2compc = 0).
Also in Figure 2b, the typep slope of γ02 = −0.5 is shown by the vertical distance from the first
open square to the first open triangle (at timet p = 0 and conditional on L2compp = 0).

Following the clustered example from Season 1, the time-level-1 compliance predictor can
be constant-centered or variable-centered. When using the person-level-2 mean in longitudinal
studies, the latter is called person-mean-centering (e.g., Algina & Swaminathan 2011; Curran &
Bauer 2011; Hoffman 2015, chapter 8; Wang & Maxwell 2015) or subject-mean-centering (e.g.,
Loeys et al. 2018). Here, we center time-varying compliance using its patient-level-2 mean, creat-
ing time-level-1 compliance as L1compt p = compt p − compp. If level-2 patients differ randomly only
in their mean compliance over time (and not in their change in compliance over time; stay tuned),
the new variable-centered L1compt p will contain only within-patient level-1 variance. If so, the
γ10 fixed slope of L1compt p must be a within-patient level-1 effect: the difference in that occasion’s
anxiety per unit greater compliance than usual (for typep = 0). In Figure 2a, a within-level-1 slope
γ10 = −1.5 for typep = 0 is shown by the slope of the black lines with squares across five values
of time-varying compliance (with L1compt p values ±2 of the patient-level-2 mean, creating the
original time-varying compt p values on the x-axis).

In turn, the γ01 fixed slope of L2compp (= compp −C2) must be a between-patient level-2 effect:
the difference in patient anxiety per unit greater compliance on average than other patients (in
typep = 0). In Figure 2a, a between-level-2 slope γ01 = −3.5 for typep = 0 is shown by the slope
of the dashed gray lines with squares connecting the patients with L2compp = 0 and 1 (a one-unit
difference in L2compp) when time-level-1 compliance is at the patient mean (L1compt p = 0). But
if time-level-1 compliance were constant-centered (L1compt p = compt p −C1), then the fixed slope
of L2compp would instead carry a contextual-level-2 effect: the incremental between-patient level-
2 compliance effect after controlling for time-varying compliance (compt p). Also in Figure 2a, a
contextual-level-2 slope for typep = 0 of γ01 − γ10 = −3.5 + 1.5 = −2.0 is shown by the vertical
distance of the solid gray lines with squares connecting the patients with L2compp = 0 and 1 (a
one-unit difference in L2compp) when the original time-varying compt p = 0 on the x-axis. But given
that occasions are not distinct entities like persons are, contextual-level-2 effects are often of less
interest in longitudinal designs than they might be in clustered designs (see Hoffman & Stawski
2009).

The models in Equations 1 and 2 differ in two notable ways. First, the longitudinal model
in Equation 2 includes level-1 timet p without a predictor for its level-2 mean. This practice will
yield pure level-1 effects only for predictors that do not contain any level-2 variance, such as
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b

a
L2comp = 0
type = 0

L2comp = 1
type = 0

L2comp = 0
type = 1

L2comp = 1
type = 1

Within-level-1 slope = –1.5 (type = 0) or –1.0 (type = 1)
Between-level-2 slope = –3.5 (type = 0) or –2.5 (type = 1)
Contextual-level-2 slope = –2.0 (type = 0) or –1.5 (type = 1)

Time-varying patient compliance
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Figure 2

Example results for the two-level longitudinal model in Equation 2 by (a) time-varying patient compliance
(compt p) and (b) time-in-treatment (timet p). The three lines within each combination depict theU0p random
intercept and theU1p (panel a) orU2p (panel b) random slope: Each middle dashed line (black) depicts values
of 0, each top solid line (various colors) depicts positive values (resulting in relatively higher intercepts and
shallower slopes), and each bottom solid line (various colors) depicts negative values (resulting in relatively
lower intercepts and steeper slopes). The distances from the lines to their same-colored circles (the actual
outcomes) show the time-level-1 et p residuals.

the time predictor in balanced designs (in which everyone is measured at the same occasions).
Otherwise, if persons differ at baseline in their place along the metric of time (e.g., in age or grade,
as found in accelerated longitudinal designs; Estrada et al. 2020), then the fixed slope for the level-
1 time predictor has the same potential for a smushed effect as any other constant-centered level-1
predictor (Hoffman 2012, 2015, chapter 10; Sliwinski et al. 2010).
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Second, the longitudinal model in Equation 2 adds three interactions with treatment type.Two
are cross-level interactions whose fixed slopes are straightforward: They describe how patients
given treatment typep = 1 differ from those given treatment typep = 0 in their within-patient fixed
slopes of time-level-1 compliance (γ12) and time-in-treatment (γ22). In Figure 2a, the typep by
L1compt p interaction of γ12 = 0.5 is shown by how much shallower the L1compt p slopes are for
typep = 1 (triangles) than for typep = 0 (squares)—there is a weaker effect of greater compliance
than usual on that occasion’s anxiety for patients given the new treatment (whose L1compt p slope is
then γ10 + γ12 = −1.5 + 0.5 = −1.0). In Figure 2b, the typep by timet p interaction of γ22 = −2.0
is shown by how much steeper the timet p slopes are for typep = 1 (triangles) than for typep = 0
(squares)—there is a stronger effect of time-in-treatment on that occasion’s anxiety for patients
given the new treatment (whose timet p slope is then γ20 + γ22 = −0.5 − 2.0 = −2.5).

In contrast, the meaning of the level-2 interaction of treatment type with patient-level-
2 compliance (γ03) depends on how time-level-1 compliance is centered. Because it has been
variable-centered (at the patient-level-2 mean), here γ03 describes treatment type differences in
the between-level-2 fixed compliance slope. In Figure 2a, the typep by L2compp interaction of
γ03 = 1.0 is shown by how much shallower the slope of the dashed gray line is for typep = 1 (tri-
angles) than for typep = 0 (squares)—there is a weaker effect of higher average compliance than
others on mean anxiety for patients given the new treatment (whose between-level-2 compli-
ance slope is then γ01 + γ03 = −3.5 + 1.0 = −2.5). But if time-level-1 compliance were constant-
centered instead, then γ03 would describe treatment type differences in the contextual-level-2
fixed compliance slope. Also in Figure 2a, this implied typep by contextual-level-2 slope interac-
tion (given by the variable-centered level-1 model as γ03 − γ12 = 1.0 − 0.5 = 0.5) is shown by the
smaller vertical distance of the solid gray line connecting the patients given typep = 1 (triangles)
compared with the solid gray line connecting patients given typep = 0 (squares). For typep = 1,
the implied contextual-level-2 compliance slope would then be given as γ01 − γ10 + γ03 − γ12 =
−3.5 + 1.5 + 1.0 − 0.5 = −1.5. Said differently, if level-1 compliance were constant-centered and
the γ03 level-2 interaction were omitted, the γ12 cross-level interaction would be smushed—it
would force equal moderation of the between-patient and within-patient fixed compliance slopes
by treatment type (for elaboration, see Hoffman 2015, chapter 8, 2019). Analogous problems
of smushed cross-level interactions have been described elsewhere for clustered MLMs (Enders
2013, Hofmann & Gavin 1998, Preacher et al. 2016). Likewise, interactions among level-1 pre-
dictors must also include interactions among their level-2 mean counterparts to prevent smushed
level-1 interactions (Hoffman 2015, chapter 8; Loeys et al. 2018).

Plot Twist: When Centering with Observed Variables Can Fail

As hinted at above, variable-centering using a level-2 mean may not remove all between-level-
2 variance from a level-1 predictor, especially in longitudinal designs. Just as time-level-1 out-
comes may contain between-person level-2 differences in both the intercept and the slopes for
change over time, so may time-level-1 predictors. For instance, if persons change differently in
compliance during treatment (some grow more compliant, whereas others grow less compliant),
then the time-level-1 compliance predictor will contain two sources of level-2 variance. While
person-mean-centering removes between-person mean (intercept) variance, the between-person
time slope variance remaining in the time-level-1 predictor will be confounded with its within-
person variance (see Curran & Bauer 2011). This confounding can cause two problems.

First, as noted by Hedeker & Gibbons (2006, chapter 4), artifactual interactions of time with
time-level-1 predictors may result from their unequal variance across occasions (which can be
caused by between-person time slope differences in the time-level-1 predictor). Second, to the
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Latent-centering:
model-based
partitioning of a
lower-level predictor
into latent variables
(e.g., a random
intercept and a
residual), the same as
that which occurs for
lower-level outcome
variables in multilevel
models

extent that the time-level-1 predictor’s random time slope relates to that of the outcome, that
between-person level-2 time-to-time slope relationship will be conflated with the within-person
level-1 effect of the time-level-1 predictor, resulting in a time-smushed effect (Hoffman 2015,
chapter 9; 2021). The same problem can also occur in shorter-term longitudinal studies, in which
relations of between-person differences in cyclic patterns (e.g., day-of-the-week trends) can con-
found within-level-1 effects (Lui &West 2015), and potentially in clustered designs (although this
is less likely in the absence of a third variable as salient as time). The solution to this problem is a
multivariate extension to MLMs (with many different names), as described in the next section.

A New Character: Latent-Centering within Multivariate MLMs

Given that variable-centering using an observed level-2 mean may fail to fully partition the
between-level-2 and within-level-1 sources of a level-1 predictor’s variance, why not just treat
the level-1 predictor the same as the level-1 outcome? We can do so using a multivariate MLM
in three steps: (a) replace the level-1 predictor’s observed level-2 mean with its latent analog, a
model-estimated level-2 random intercept; (b) replace the variable-centered observed level-1 pre-
dictor with its latent analog, a model-estimated level-1 residual; and (c) add any level-2 random
slopes needed to capture other sources of between-level-2 variance (e.g., in change over time).
This results in separate but simultaneous models predicting each level-1 variable—the level-1
predictor is now another level-1 outcome. This multivariate MLM strategy for level-1 predictors
is also known as latent-centering (e.g., Asparouhov &Muthén 2019), in which the level-2 random
intercept that replaced the observed level-2 mean of the level-1 predictor is called a latent mean
(e.g., Preacher et al. 2016) or a latent covariate (e.g., Lüdtke et al. 2008).

The correspondence between univariate and multivariate treatments of level-1 predictors in
MLMs is shown in Figure 3, which borrows graphical conventions used in structural equation
models (SEMs).Figure 3a (univariate) depicts the use of observed predictors (created by variable-
centering level-1 compliance with the patient-level-2 mean), whereas Figure 3b (multivariate)
shows their replacement by latent predictors (and adds a third subscript to distinguish the fixed
intercept, random intercept, and residual for each outcome).

How the relations across multivariate outcomes can be modeled differs by software. If mul-
tivariate MLMs are estimated using software for univariate MLMs (SAS, SPSS, or Stata mixed;
HLM; lme in R; see Hoffman 2015, chapter 9), across-variable relations (among the level-2 ran-
dom effects or among the level-1 residuals) can only be phrased as covariances. For directed effects
instead (e.g., compliance predicting anxiety, as in Figure 3), multivariate MLMs require software
for single-level SEMs or multilevel SEMs (M-SEMs), such as Mplus, Stata gsem, and the R pack-
ages lavaan, OpenMx, and xxM. Many sources have described how fixed and random effects in
MLM can be represented equivalently by latent factor means and variances in SEMs and M-
SEMs (Bauer 2003, Berry &Willoughby 2017, Curran et al. 2012, Hamaker et al. 2015, Hoffman
2019, McNeish & Matta 2018, Mehta & Neale 2005). One distinction is that SEMs use a wide
data structure, with one row per level-2 sampling unit and one column per level-1 unit per vari-
able. In contrast, M-SEMs use the same long data structure as MLMs, with one row per level-1
sampling unit and one column per variable. Accordingly, M-SEMs can be more convenient than
SEMs for unbalanced designs (of different numbers of level-1 units per level-2 unit), more than
two levels of analysis, cross-classified samples, and when including random slopes.

Even for predictors in which an observed level-2 mean would be sufficient to capture all
between-level-2 variability (i.e., using a univariate MLM), there are several situations in which
a multivariate MLM estimated as a SEM or M-SEM (via latent-centering) may be preferable.
First, by treating predictors as outcomes (bringing them into the model likelihood), cases with
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L2 BP treatment
(typep)

L2 BP treatment
(typep)

L2 BP
timetp
slope

(γ20 + U2p)

L2 BP
timetp
slope

(γ20 + U2p)

L1 WP time-
in-treatment

(timetp)

L1 WP time-
in-treatment

(timetp)

L1 WP anxiety
residual (etp)

L1 WP anxiety
residual (etpy)

L1 WP
compliance

residual (etpx)

L2 BP
L1comptp

slope
(γ10 + U1p)

L2 BP
intercept
(γ00 + U0p)

L2 BP
L1comptp

slope
(γ10 + U1p)

L2 BP
intercept

(γ00y + U0py)

Intercept
(= 1)

Intercept
(= 1)

L2 BP compliance
by treatment

(typep × L2compp)

a   Univariate MLM with person-mean-centering
       for compliance

b   Multivariate MLM with latent centering for compliance

γ22 γ02 γ12 γ01 γ03 γ22 γ02 γ12 γ01 γ03

L2 BP compliance
L2compp

(compp – C2) 

β0p

β2p β1p

β0py β0px

β2p β1pL1 WP compliance
(L1comptp =

comptp – compp)

L2 BP
compliance
(γ00x + U0ix)

L2 BP
compliance
× treatment

Observed variables
Latent variables

Fixed effects
Covariances

Level-2 variables
Level-1  variables

Level-1 β placeholders for
fixed and random effects

Figure 3

(a) Univariate and (b) multivariate MLMs for level-1 predictors based on Equation 2. Abbreviations: BP, between-person; MLM,
multilevel model; L, level; WP, within-person.

missing predictors can then be included under the same assumptions as for missing outcomes (see
Grund et al. 2019). Second, using an observed level-2mean assumes it is a perfectly reliable version
of a variable’s level-2 random intercept, when in reality the level-2 mean’s reliability is a function
of the size of the level-2 unit and the variable’s intraclass correlation (ICC) (i.e., the proportion of
its total variance due to level-2 mean differences). Consequently, using an observed level-2 mean
can result in too-small level-2 fixed effects relative to those provided by a latent level-2 mean,
more so with fewer level-1 units and smaller predictor ICCs (Lüdtke et al. 2008). In the context
of multilevel mediation, the same problem can result in too-small level-2 indirect fixed effects
when using observed rather than latent level-2 means (Preacher et al. 2011). Third, M-SEMs can
be expanded into so-called dynamic SEMs to include autoregressive and cross-lag effects given
unbalanced occasions (see McNeish & Hamaker 2020). Last, SEMs can be expanded to include
item-level measurement models for latent constructs, and M-SEMs can do so at multiple levels
(e.g.,Vandenberg&Richardson 2019), although in practice this extensionmay be limited to larger
level-2 samples (Lüdtke et al. 2011, Meuleman & Billiet 2009).

Yet SEM and M-SEM approaches are not a panacea. Using a latent level-2 mean can provide
level-2 fixed effects that are more inconsistent than those provided by an observed level-2 mean,
more so with smaller level-2 samples and smaller predictor ICCs (Lüdtke et al. 2008), as well as
lower power for level-2 indirect fixed effects (McNeish 2017a, Zigler & Ye 2019). Further, SEM
andM-SEM software do not offer residual maximum-likelihood estimation, which provides more
accurate random effects variances in smaller level-2 samples (McNeish 2017b). Bayesian estima-
tion has been proposed as a solution for SEMs and M-SEMs with small samples, but different
choices for noninformative prior distributions can have a large unintended impact on the results
(Smid et al. 2020, Zitzmann et al. 2020).
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Finally, there is potential for much greater confusion regarding which type of level-2 fixed
effect—between or contextual—is provided by SEMs andM-SEMs, as detailed inHoffman (2019).
In SEMs that include within-level-1 fixed effects, directed paths among the random effect latent
variables will be contextual-level-2 fixed effects by default. Between-level-2 fixed effects can be
created instead by using level-1 structured residuals (i.e., by moving the level-1 residual variances
and their paths to new latent variables; Curran et al. 2014), but this strategy may not be possible
for level-1 effects with random slopes. In M-SEMs, which level-2 effect is provided differs by
software, estimator, and whether the level-1 effect also has a random slope! Thus, the onus is on
the analyst to ensure they know exactly what the software is doing.

Recap and Recommendations: Centering

This section’s examples showed how to create distinct within-level-1 and between-level-2 fixed
effects of observed level-1 predictors—this occurs in two-level MLMs whenever a fixed slope
for the level-2 mean of a level-1 predictor is included, but in different ways on the basis of how
the level-1 predictor is centered. Direct within-level-1 and between-level-2 fixed slopes result in
variable-centered level-1models from using level-specific uncorrelated predictors; the contextual-
level-2 effect for their difference can be found as between – within. But in constant-centered level-1
models, distinct effects per level are a by-product of controlling for covariance among predictors:
For a constant-centered level-1 predictor, its unique effect (after controlling for the level-2 mean
predictor) is a purely within-level-1 effect; for the level-2 mean predictor, its unique effect (after
controlling for the level-1 predictor) is a contextual-level-2 effect. The between-level-2 effect
can be found as within + contextual. Similar equivalences can be found across centering strategies
for MLMs with interactions so long as the same interactions specified with the level-1 predictor
are also specified with the level-2 mean predictor. Fortunately, routines that provide estimates
and standard errors of such linear combinations of fixed effects in MLMs, SEMs, or M-SEMs
are widely available (e.g., using ESTIMATE in SAS MIXED, TEST in SPSS MIXED, lincom
in Stata mixed, general linear hypothesis in HLM, glht or contest1D in R, and NEW in Mplus).
Multivariate MLMs using latent-centering (in software for SEMs or M-SEMs) may offer some
advantages over univariate MLMs using observed predictors, the particulars of which remain an
active area of research.

In general, smushed fixed slopes can be prevented by including predictors at each level of
the model at which they have variability. In three-level nested models, level-1 predictors may
need fixed slopes for their level-2 and level-3 means, and level-2 predictors may need fixed slopes
for their level-3 means (see Brincks et al. 2017; Hoffman 2015, chapter 11). In cross-classified
models, level-1 predictors may need fixed slopes for the level-2 mean of each crossed dimension.
Avoiding smushed effects is also important in testing mediation, which can logically only occur
for variables at the same level. For instance, consider a 2-1-1 design (Preacher et al. 2010) with a
level-2 predictor, a level-1 mediator, and a level-1 outcome. Only between-level mediation is then
logical, the indirect effect for which would start at the level-2 predictor, go to the level-2 random
intercept for the mediator, and then to the level-2 random intercept for the outcome. In a 1-1-1
design, separate indirect effects would be logical at both the between and the within levels. All
multilevel analyses should begin by carefully examining the sources of variability for each variable
of interest—regardless of whether it is conceptualized as a predictor or an outcome—to inform at
which levels of the model each predictor has the potential to provide a distinct effect.

There are (at least) two reasons why the same predictor can have different effects across levels.
The first reason is conceptual—different effects result from different theoretical causes of predic-
tor variability at each level. For instance, the more transient reasons why a patient may differ in
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compliance from occasion to occasion are likely not the same reasons why patients differ in com-
pliance on average from each other (e.g., due to stable traits, beliefs, and lifestyle differences). The
second reason predictor effects differ across levels is simply because of scaling—fixed slopes are
unstandardized estimates scaled in units of the outcome per units of the predictor. To the extent
that the standard deviations of either the predictor or the outcome differ across levels, this dis-
crepancy will result in different fixed slope coefficients for their relations at each level (Hoffman
2015, chapter 8).

The insistence on avoiding smushed effects endorsed here continues to gain support (e.g.,
Antonakis et al. 2021, Bliese et al. 2018, Curran et al. 2012, Hoffman 2019, Preacher et al. 2016,
Wang & Maxwell 2015). It does not matter whether a lower-level predictor is of theoretical in-
terest, is merely a control (Rights et al. 2020), or is quantitative or categorical (Yaremych et al.
2021). What matters is whether the lower-level predictor contains systematic higher-level vari-
ability. If it does, and only if a lowest-level fixed slope is included, that smushed slope (which
forces between-level-2 and within-level-1 fixed slopes to be equal) will likely result in a mis-
specified level-2 model. Because smushed effects are usually heavily weighted toward the within-
level-1 fixed slope (Raudenbush & Bryk 2002, chapter 5), the level-1 model will be less affected.
But the model will have the wrong between-level-2 fixed slope, which can bias the random ef-
fects variances and thus may result in incorrect inferences for their corresponding fixed effects.
Consumers of research using MLMs should be wary whenever results using constant-centered
lower-level predictors (that still contain higher-level variability) are reported without separate
fixed slopes for their higher-level means, as this assumes no higher-level contextual effects are
missing!

What if the between-level-2 and within-level-1 fixed slopes do not differ significantly—then is
a single smushed level-1 slope okay to retain? Perhaps so in that particularmodel, but their tenuous
equivalence may be broken upon adding other predictors or interactions, which can create unique
effects or conditional main effects that are no longer equivalent across levels. In models with
constant-centered lower-level predictors, retaining nonsignificant contextual higher-level fixed
slopes can help maintain clarity when interpreting the lower-level fixed slopes. In models with
variable-centered lower-level predictors, we suggest between-higher-level fixed slopes be retained
when possible as well, although they are not needed to prevent smushed lower-level fixed slopes.
Because the higher-level mean variables carry the differential reference point for what is usual with
respect to the lower-level predictor (more than a person’s own average in longitudinal designs,
more than the cluster average in clustered designs), it can be awkward to ignore the effect of
variability in this usual reference point in describing the model results.

ANOTHER RECURRING PLOT LINE: SPECIFICATION
OF RANDOM EFFECTS

In the previous sections we focused on fixed slopes and centering strategies by which to ensure
their correct interpretations. But the accuracy of the standard errors (SEs) of these fixed slopes
(and thus their p-values) depends on having the right model for the variance—the set of random
effects and residuals needed to accurately capture the unexplained outcome variance and covari-
ance across observations (but without adding unnecessary parameters). But given that in real data
one can never know what the right model is, there are a variety of opinions on how to avoid the
wrong model. We now turn to recent developments and recommendations on this topic, includ-
ing how to know when a random intercept or random slope might be needed, how to make sure
a random slope is interpretable as intended, and how to provide effect sizes for fixed and random
slopes through measures of explained variance (indices of R2 values for MLMs).
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Conflict on the Set: Which Random Effects Are Needed?

Determining the optimal set of random effects for a given design is not always easy, but we offer
some guiding principles, first for random intercepts (for mean differences between units) and then
for random slopes (for differences between units in the effects of predictors).

A random intercept (that creates a new level) is needed for each sampling dimension in which
mean differences remain after accounting for the fixed slopes of predictors. Consider a clustered
example of persons nested in one of two treatments (type; old = 0, new = 1). A random intercept
is not needed here because after including a fixed slope for type, the residuals of persons from
the same treatment should be independent. But what if there were multiple clusters within each
treatment type? After controlling for type, mean differences may still remain among clusters of the
same type, in which case the residuals of persons from the same cluster will still be related. Adding a
random intercept to capture cluster mean differences creates a two-level model of level-1 persons
in level-2 clusters (with type as a level-2 predictor, as in Equation 1).

The same logic applies to cross-classified samples, such as when countries are measured over
multiple years but different respondents are used in each year (Schmidt-Catran & Fairbrother
2016). Level-1 persons are nested in level-2 country-years (years from the same country), and
country-years are nested within crossed level-3 dimensions of years and countries. Thus, mean
differences across years and countries require a level-3 random intercept; mean differences across
country-years require a level-2 random intercept. Alternatively, fixed slopes for year could replace
the level-3 year random intercept, creating a three-level nested model. Likewise, fixed slopes for
country could replace the level-3 country random intercept, creating a two-level nested model (of
level-1 persons in level-2 country-years). Otherwise, if a sampling dimension’s mean differences
are unaccounted for (a random intercept is forgotten), the SEs of the fixed slopes will be too
large or too small, depending on the level(s) at which a predictor contains variability (Berkhof
& Kampen 2004, Luo & Kwok 2009, Moerbeek 2004, Van Landeghem et al. 2005). A random
intercept for mean differences by combinations of crossed sampling dimensions (e.g., country-
years) is needed whenever there is more than one observation per combination (Shi et al. 2010).
Custom random intercepts are also needed to address cross-classification created by changing
clusters or multiple cluster memberships (Meyers & Beretvas 2006, Ye & Daniel 2017).

Analogously, a random slope is needed for each sampling dimension in which variability in
a predictor’s slope remains after accounting for the fixed slopes of cross-level interactions. For
instance, consider the longitudinal model in Equation 2. After a fixed slope for level-1 timet p ac-
counts for occasion mean differences, level-1 occasions are nested in level-2 patients, which at a
minimum should include a level-2 random intercept to capture patient mean differences (U0p). But
if patients differ in change over time, then a level-2 random time slope across patients (U2p) is also
needed to ensure correct SEs for fixed slopes of level-1 timet p (γ20) and its cross-level interaction
(γ22) with patient-level-2 typep. Likewise, a level-2 random slope (U1p) is needed for accurate SEs
of the fixed slopes of within-level-1 compliance (γ10) and its cross-level interaction with typep (γ12).
Otherwise, ignoring sizeable remaining random slope differences will underestimate the SEs for
that predictor’s level-1 fixed slope and its cross-level interactions (Algina & Swaminathan 2011,
Barr et al. 2013, Bell et al. 2019, Heisig & Schaeffer 2019, LaHuis et al. 2020, Ye & Daniel 2017).
Parallel concerns for random slope variability in repeated measures experiments are described by
Judd et al. (2017) and Brauer & Curtin (2018).

In practice, the need for random effects to capture unexplained variability can be assessed using
likelihood ratio tests (LRTs) (the difference in the−2 log-likelihood of nestedmodels; Ke&Wang
2015, Snijders & Bosker 2012). But what if the test indicates that a random slope variance is not
needed? This can happen when it is tested initially (i.e., no random slope variance is detectable to
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begin with), or it can result from adding cross-level interactions (i.e., no detectable unexplained
slope variance remains). In such cases, can one proceed safely without the random slope?

Lower-level effects that vary deterministically via cross-level interactions but not randomly
otherwise are called systematically or nonrandomly varying effects (Raudenbush & Bryk 2002,
chapter 9). Several authors have suggested these effects are permissible (Aguinis et al. 2013; LaHuis
& Ferguson 2009; Snijders & Bosker 2012, chapter 6), given that fixed slopes of cross-level inter-
actions can have greater power than the random slope variances they should have explained. To
prevent Type I errors for their level-1 fixed slopes and cross-level interactions, other authors have
suggested all random slopes be included by default (Barr et al. 2013,Heisig & Schaeffer 2019). But
this so-called maximal model strategy may result in more nonconvergence or lower power than
when using LRTs or related fit indices to select which random slopes are needed (Matuschek et al.
2017, Park et al. 2020). As a compromise, using effect size (slope reliability) rather than LRTs as a
basis for retaining random slopes in small level-2 samples may prevent inflated Type I error rates
for their level-1 fixed slopes and cross-level interactions (L. Hoffman & J. Templin, unpublished
manuscript).

Conflict Resolution: How to Avoid Smushed Random Slopes

As promised, we now turn to the interpretation of random slopes of level-1 predictors. Variable-
centering avoids smushed level-1 and level-2 fixed slopes and simplifies interpretation, and it also
prevents smushed random slopes, a topic we have ignored so far. As shown in many sources (e.g.,
Kreft et al. 1995; Preacher et al. 2016; Raudenbush & Bryk 2002, chapter 5; Snijders & Bosker
2012, chapter 5), adding fixed slopes for the level-2 means of level-1 predictors creates equiv-
alent models across level-1 centering strategies for the fixed effects but not for the random ef-
fects. For instance, in Equation 2, the random slope term for L1compt p when variable-centered
is U1p(compt p − compp), but when constant-centered it is U1p(compt p −C1). Because level-2 mean
predictor variance is still included in the latter random slope term, the estimated variances and
covariances for a model’s random effects can differ across level-1 centering strategies.

Raudenbush & Bryk (2002, chapter 5) indicated that discrepancies in the random intercept
variance across models could result from different interpretations of what 0 means for the level-
1 predictor with the random slope: at the centering variable = 0 (e.g., at the patient-level-2
mean in L1compt p = compt p − compp) or at the centering constant = 0 (e.g., at C1 in L1compt p =
compt p −C1). If the centering constant is not observed for some level-2 units, this could lead to
greater shrinkage to the mean for their random intercepts, which could homogenize their random
slopes. In support of this conjecture, in their example Raudenbush & Bryk (2002, p. 144) found
a smaller random slope variance in their constant-centered level-1 models than in their variable-
centered level-1 models (a pattern also reported anecdotally by Hoffman 2012). Raudenbush &
Bryk recommended variable-centering all lower-level predictors to be given random slopes, espe-
cially those with large mean variation.

An alternative explanation for the discrepancy in random slope variances across level-1 cen-
tering strategies was provided by Rights and Sterba ( J.D. Rights & S.K. Sterba, unpublished
manuscript). They showed that the discrepancy can result from smushed random slopes in the
constant-centered level-1 model, a problem parallel to but separate from that of smushed fixed
slopes described above. More specifically, a random slope predicts outcome variance with a
quadratic form of heterogeneity along its predictor (Hedeker & Gibbons 2006, chapter 4). For
example, in the longitudinal model in Equation 2, the total variance (holding timet p = 0) at a
givenL1comp is predicted to beVar|L1comp = σ 2

e + τ 2
U0

+ 2τU01 (L1comp) + τ 2
U1
(L1comp)2. If a level-

2 random slope variance is estimated for variable-centered L1compt p, this quadratic variance het-
erogeneity applies only to within-level-1 compliance, and the level-2 random slope variance τ 2

U1
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contains only between-level-2 differences in the slope of within-level-1 compliance as intended.
But when estimating a level-2 random slope variance for constant-centered L1compt p instead, this
forces the same variance heterogeneity for within-level-1 compliance as for between-level-2 mean
compliance because both variables are still included in constant-centered L1compt p. The level-2
random slope variance τ 2

U1
is then smushed—its estimate conflates between-level-2 differences in

the slope of within-level-1 compliance with quadratic variance heterogeneity for between-level-2
mean compliance. Thus, τ 2

U1
will be inaccurate whenever these sources of variance differ in reality.

Rights and Sterba showed how to resolve the discrepancy between models by adding a second
random slope for the level-2mean predictor, e.g.,U3p(L2compp) ( J.D.Rights& S.K.Sterba, unpub-
lished manuscript).When added to the constant-centered level-1 model, it serves as a contextual-
level-2 random slope that allows differential quadratic variance heterogeneity for the level-2
mean predictor. When added to the variable-centered level-1 model, it introduces between-level
quadratic variance heterogeneity for the level-2 mean predictor. But given that level-2 terms re-
lated to variance heterogeneity can be difficult to estimate, the easiest way to prevent smushed
random slopes is to estimate them using a variable-centered lower-level predictor. We note that
a constant-centered lower-level predictor could still be used to estimate the fixed slope (and fixed
cross-level interactions) for a desired interpretation (i.e., to create contextual-level-2 fixed slopes
as direct parameters or when using lower-level predictors that already have a natural value of 0,
such as binary variables).

Bonus Material: Effect Sizes Using Explained Variance

A proper specification of random intercepts and unconfounded random slopes is important not
only for fixed slope inference but also for using explained variance (R2) indices of effect size.Multi-
ple sources of variance are quantified and explained simultaneously in MLMs, leading to multiple
R2 values. Early attempts to create an overall R2 that aggregated the random intercept and residual
variances (Snijders & Bosker 2012, chapter 7) were not easily extendable to models with random
slopes. An alternative total-R2 (Hoffman 2015, chapter 7; Singer & Willett 2003, chapter 4) can
be created by the square of the correlation between the actual outcome and the model-predicted
outcome (using only the fixed effects). But total-R2 does not inform how well the model fixed
effects have explained each source of variability. For that purpose, one can also compute separate
pseudo-R2 indices for the proportion of explained variance for each source—random intercepts,
random slopes, and residuals—in a target model relative to a null model without the fixed slopes of
interest (Hoffman 2015, chapter 7; Raudenbush & Bryk 2002, chapter 4; Singer & Willett 2003,
chapter 4).Unfortunately, pseudo-R2 values can become negative, such as for predictors with small
effects, which can result in confusion and less precision in practice.

An alternative strategy was introduced by Rights & Sterba (2019, 2020, 2021), who provided
formulas (and R packages) for computing R2 values that use model-implied total variance rather
than null model variance. This strategy eliminates negative R2 values while still following the
same logic for which source of variance should be reduced by fixed slopes at each level as given
in the MLM use cases above. Their R2 indices include total and level-specific marginal versions
(for fixed slopes only) and conditional versions (that also include random slopes, which seem less
useful given that random slopes are actually unexplained differences across units in the slopes
of predictors). However, they do not provide an R2 for the random slope variance explained by
cross-level interactions, a quantity that is frequently of interest.

Recap: Random Effects

Our goal in the previous section was to describe how careful attention to the presence and con-
tents of MLM variance components (higher-level random intercept and slopes and lowest-level
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Mixed-effects
location–scale model
(MELSM):
a statistical model that
extends the multilevel
model by relaxing the
assumption of
homogeneity of
variance and allowing
fixed and random
effects to predict both
the amount and the
variability of an
outcome

Location model:
the part of the mixed-
effects location–scale
model that allows
quantification and
prediction of
between-unit
differences in the
mean outcome and in
the effects of
predictors (like the
traditional multilevel
model)

Scale model: the part
of the mixed-effects
location–scale model
that allows
quantification and
prediction of
between-unit
differences in the
variability (dispersion)
of an outcome or in
the effects of
predictors (unlike the
traditional multilevel
model)

residuals) can help capture all sampling-related dependency, thereby protecting our inferences
about the significance and effect size of our model predictors. Given that we are largely caught up
to date on the MLM show, it is now time to introduce a more current storyline.

CURRENT EPISODES: MIXED-EFFECTS LOCATION–SCALE MODELS

In each of our examples so far, we have implicitly assumed constant (also known as homogeneous)
variances—that the same estimated variance components (e.g., residual variance, random effect
variances) apply equally to all observations. Like any model assumption, this one is testable, and
such testing also introduces the potential for a whole new type of research question. We now
consider a new extension of MLMs for predicting differences in the extent of variability.

For instance, why might clusters differ in the similarity of their members? Why do persons
differ in the inconsistency of their behavior over time? Such questions about the presence of (and
reasons for) heterogeneity of variance across sampling units can be answered using mixed-effects
location–scale models (MELSMs), whose purpose is to extend MLMs to concurrently quantify
and predict differences in the amounts of outcome variability. Although MELSMs have existed
for decades (Cleveland et al. 2000, Foulley & Quaas 1995, Lee & Nelder 2006), recent efforts
have made their estimation and practical use more feasible (Hedeker & Nordgren 2013; Hedeker
et al. 2008, 2009; Leckie et al. 2014; Lester et al. 2021; Rast et al. 2012; Walters et al. 2018).
Consequently, we see MELSMs as an important new storyline in the future of MLMs.

AMELSM contains fixed and random effects in its location model, as well as in multiple possi-
ble scale models. The location model is the traditional MLM as described previously in Seasons 1
and 2 (Equations 1 and 2, respectively), and it quantifies and explains distinct sources of outcome
variability across sampling units. In contrast, a scale model quantifies and explains differences be-
tween sampling units in the amounts of outcome variability. MLMs with only location models
assume that the same variance components apply to all sampling units (an assumption known as
homogeneity of variance or homoscedasticity). MELSMs relax these assumptions through scale
models that create heterogeneity of each variance component as a function of fixed and random
effects of predictor variables (which may or may not also be included in the location model). In ex-
plaining amounts of variance, scale models can include predictors only at the same level or higher.
Further, because variances have a lower bound at 0, scale models ensure that all predicted variances
remain positive by using nonnegative distributions, such as the lognormal or gamma distributions,
or nonlinear transformations of the predicted variances using link functions, such as the log link
(Culpepper 2010, Hamaker & Klugkist 2011, Hedeker et al. 2008, Lee & Noh 2012, Rast et al.
2012, Wang et al. 2012). MELSMs are applicable to both clustered and longitudinal designs, as
illustrated in the next two sections.

Season 5: MELSMs for Clustered Samples

We can build a clustered MELSM by returning to Equation 1 (from Season 1), in which anxietypc
is the outcome for level-1 patient p from level-2 clinic c, comppc is patient-level-1 compliance that
has been variable-centered using the clinic mean into L1comppc and L2compc, and typec is a binary
clinic treatment indicator. In Season 1, we had assumed that the level-1 residual epc had constant
variance σ 2

e over patients and clinics (shown in Figure 1 by the equal dispersion of circles around
the same-colored line for each clinic) and that the level-2 random effectsU0c andU1c (for between-
clinic variability in the intercept and within-clinic slope of patient compliance, respectively) had
constant variances τ 2

U0
and τ 2

U1
over clinics. This is no longer a requirement.

Using Equation 1 as our MELSM location model, we can add scale models to predict different
amounts of each variance. For instance, what if there are fewer differences between patients from
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the same clinic (as captured by the level-1 residual variance in the location model) in patients with
better compliance or who attend clinics using the old treatment? To test these hypotheses, a scale
model for the level-1 residual variance is shown in Equation 3,

Level 1 (L1) : loge
(
σ 2
epc

)
= T0c + T1c

(
L1comppc

)

Level 2 (L2) : T0c = τ00 + τ01 (L2compc ) + τ02 (typec ) + ω0c

T1c = τ10

, 3.

in which loge(σ
2
epc ) is the natural log of the level-1 residual variance for level-1 patient p in level-2

clinic c. Rather than predicting the level-1 anxiety outcome, Equation 3 predicts the amount of
level-1 residual variance for each patient and clinic, and it does so on the natural log scale to ensure
the predicted variances remain positive, as they should be.

The scale-model fixed and random effects have interpretations similar to those in the location
model in Equation 1 (in Season 1). In this level-1 model, T0c holds the overall clinic intercept
and T1c holds the overall clinic slope of patient-level-1 compliance (analogous to location-model
β terms). Each T clinic outcome is defined in a level-2 model using τ fixed effects (analogous
to location-model γ terms) and possibly ω random effects that vary over clinics (analogous to
location-model U terms). In predicting the level-2 T0c clinic intercept, τ00 is the fixed intercept
for the expected log level-1 residual variance when all predictors equal 0, τ01 and τ02 are the
between-clinic fixed slopes of the clinic-level-2 predictors, and ω0c is the scale-model level-2
random intercept (the deviation of the actual intercept from the predicted clinic intercept with
variance τ 2

ω0
). Analogous to the location-model level-2 random intercept variance τ 2

U0
, the scale-

model level-2 random intercept variance τ 2
ω0

captures between-clinic differences in log level-1
residual variance that remain after controlling for the clinic-level-2 predictors. In predicting
the level-2 T1c clinic slope of patient-level-1 compliance, τ10 is the scale-model fixed slope for
within-level-1 compliance. We also could have included a scale-model level-2 random slope for
within-level-1 compliance, which would have allowed unexplained differences across clinics in
the effect of greater compliance on log level-1 residual variance than other patients in the same
clinic (Leckie et al. 2014, Lester et al. 2021).

Example results for the model in Equation 3 are displayed in Figure 4, in which the prediction
of patient anxiety is shown for five example patients in each of four clinics. Instead of focusing
on differences in the outcome per unit change in compliance or clinic treatment type (as were
defined by the location model in Equation 1 and illustrated in Figure 1), the scale model for the
log level-1 residual variance focuses on the dispersion of patient anxiety outcomes around their
clinic-predicted anxiety (shown in Figure 4 as the spread of the circles around their same-colored
lines). The scale-model fixed intercept τ00 = −1 is the expected log level-1 residual variance for
a patient with compliance at their clinic’s mean (L1comppc = 0) in a clinic with reference mean
compliance (L2compc = 0) that uses the old treatment (typec = 0), represented in Figure 4 by the
amount of dispersion of the third dark green circle from the dark green line.

Focusing on the fixed slopes, the typec slope τ02 = 1 is the between-clinic difference in log
level-1 residual variance for clinics that use the new treatment (typec = 1) instead of the old treat-
ment (typec = 0). This effect is shown in Figure 4 by the greater dispersion of circles around
their same-colored lines for clinics with typec = 1 than for clinics with typec = 0 (holding L2compc
constant). In addition, because patient compliance was clinic-mean-centered for each patient,
the fixed effects for L1comppc and L2compc represent level-specific effects on log level-1 resid-
ual variance. The L1comppc slope τ10 = −0.25 indicates that log level-1 residual variance is lower
by 0.25 per unit higher patient compliance beyond the clinic’s mean: Anxiety in more compliant
patients is more consistent (less variable). This effect is shown in Figure 4 by circles closer to their
same-colored line for patients with higher compliance (higher x-axis values). The L2compc slope
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Patient compliance
–3 –2 –1 3210

L2comp = 0
type = 0

L2comp = 1
type = 0

L2comp = 1
type = 1

Within-level-1 slope = –0.25
Between-level-2 slope = –0.50

L2comp = 0
type = 1

Figure 4

Example results for the mixed-effects location–scale model for clustered data in Equation 3 for four clinics
each with five patients. Circles represent an individual patient outcome and lines represent the clinic-specific
slopes across patient outcomes. The scale model for the level-1 residual variance is shown, with residual
variance represented by the dispersion of the circles around the lines.

τ01 = −0.5 indicates that log level-1 residual variance is lower by 0.5 per unit higher clinic mean
compliance: Patient anxiety is less variable in clinics with more compliant patients overall. This
effect is shown in Figure 4 by circles that are closer to their same-colored lines for clinics with
L2compc = 1 than for clinics with L2compc = 0 (holding typec constant).

In addition to (or separate from) the scale model for the level-1 residual variance, what if there
are fewer differences in average anxiety between clinics (as captured by the location-model level-2
random intercept) that use the old treatment? To test this hypothesis, a second scale model—this
time for the location-model level-2 random intercept variance—is shown in Equation 4,

Level 2 (L2) : loge
(
τ 2
U0c

)
= α00 + α01 (typec ), 4.

in which loge(τ
2
U0c

) is the natural log location-model level-2 random intercept variance for clinic c.
This scale model focuses on the dispersion of each clinic’s mean anxiety around its treatment type
mean (specifically when patient compliance is at the clinic’s mean, given that the location-model
random intercept variance is conditional on the location-model random slope for clinic-mean-
centered patient compliance equaling 0; see Equation 1). As an example, a scale-model fixed in-
tercept α00 = −0.5 would be the expected log location-model level-2 random intercept variance
for clinics using the old treatment, and the typec slope α01 = 0.75 would indicate that log location-
model level-2 random intercept variance is higher by 0.75 in clinics using the new treatment. As
such, clinics using the new treatment would differ more from each other in average anxiety than
from clinics using the old treatment. Further, although it would substantially increase model com-
plexity, it would also be possible for each location-model random effect variance and covariance
to have their own scale-model fixed effects as well (Leckie et al. 2014).

Season 6: MELSMs for Longitudinal Samples

We can build a longitudinal MELSM by returning to Equation 2 (from Season 2), in
which anxietyt p is the outcome for level-1 occasion t from level-2 patient p, timet p is level-1
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time-in-treatment, compt p is level-1 time-varying patient compliance that has been variable-
centered using the patient mean into L1compt p and L2compp, and typep is the binary treatment
indicator for patient p. In Season 2 we assumed that the level-1 residual et p had constant vari-
ance σ 2

e over occasions and patients (shown in Figure 2a,b as equal dispersion of circles around
their same-colored lines for each patient) and that the level-2 random effects U0p, U1p, and U2p

(for between-patient variability in the intercept and for between-patient slope variability in the
within-patient effects of compliance and time-in-treatment, respectively) had constant variances
τ 2
U0
, τ 2

U1
, and τ 2

U2
over patients. Below, we remove some of these restrictions to the model.

Using Equation 2 as our MELSM location model, we can add scale models to predict differ-
ences in the amounts of each variance. For instance, what if there is less fluctuation over time in
anxiety (as captured by the level-1 residual variance in the location model) given longer time-in-
treatment or better compliance, or in patients who were given the old treatment? To test these
hypotheses, a scale model for the level-1 residual variance is shown in Equation 5,

Level 1 (L1) : loge
(
σ 2
et p

)
= T0p + T1p

(
L1compt p

) + T2p
(
timet p

)

Level 2 (L2) : T0p = τ00 + τ01
(
L2compp

) + τ02
(
typep

)
+ τ03

(
L2compp

) (
typep

) + ω0p

T1p = τ10 + τ12
(
typep

)
T2p = τ20 + τ22

(
typep

)
, 5.

in which loge(σ
2
et p ) is the natural log of the level-1 residual variance for level-1 occasion t in level-2

patient p. Rather than predicting the level-1 anxiety outcome, Equation 5 predicts the amount
of level-1 residual variance for each occasion and patient on the natural log scale to ensure the
predicted variances remain positive, as they should be.

The scale-model fixed and random effects have interpretations similar to those in the location
model in Equation 2 from Season 2. In this level-1 model,T0p holds the overall intercept, whereas
T1p and T2p hold the overall slope of time-level-1 compliance and time-in-treatment (analogous to
location-model β terms). EachT patient outcome is defined in a level-2 model using τ fixed effects
(analogous to location-model γ terms) and possibly ω random effects that vary over patients (anal-
ogous to location-model U terms). In predicting the level-2 T0p patient intercept, τ00 is the fixed
intercept; τ01, τ02, and τ03 are the scale-model fixed slopes of the patient-level-2 predictors; and
ω0p is the scale-model level-2 random intercept (the deviation of the actual intercept from the pre-
dicted patient intercept with variance τ 2

ω0
). Analogous to the location-model level-2 random inter-

cept variance τ 2
U0
, the scale-model level-2 random intercept variance τ 2

ω0
captures between-patient

differences in log level-1 residual variance that remain after controlling for the patient-level-2
predictors. In predicting the level-2 T1p slope of time-level-1 compliance, τ10 is the within-patient
fixed slope for patients given the old treatment and τ12 is the difference in the within-patient
compliance slope for patients given the new treatment. In predicting the T2p slope of time-in-
treatment, τ20 is the change in log level-1 residual variance at each subsequent occasion for patients
given the old treatment and τ22 is the time slope difference for patients given the new treatment.
And, as if this model were not already complex enough, we could have added scale-model level-2
random slopes for the within-level-1 effect of compliance and/or time-in-treatment (which would
have allowed unexplained differences across level-2 patients in the effect on log level-1 residual
variance of greater compliance than usual and/or time-in-treatment; see Rast et al. 2012).

Example results for the model in Equation 5 are displayed in Figure 5, in which the prediction
of patient anxiety is shown at five occasions for one patient in each of four clinics.Figure 5a depicts
the effect of time-level-1 compliance specifically at timet p = 4, whereas Figure 5b depicts change
over time-in-treatment holding L1compt p = 0. Instead of focusing on differences in anxiety per
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Time in treatment

L2comp = 0
type = 0

L2comp = 1
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L2comp = 1
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b

Time slope = –0.15 (type = 0) or –0.20 (type = 1)

L2comp = 0
type = 0

L2comp = 1
type = 0

L2comp = 0
type = 1

L2comp = 1
type = 1

Within-level-1 slope = –0.4 (type = 0) or –0.5 (type = 1)
Between-level-2 slope = –0.2 (type = 0) or –0.3 (type = 1)

Figure 5

Example results for the mixed-effects location–scale model for longitudinal data in Equation 5 for four
individual patients each with five occasions. Circles represent within-patient outcomes and lines represent
the patient-specific slopes across their outcomes. The scale model for the level-1 residual variance is shown
for (a) time-varying patient compliance and (b) time-in-treatment, with residual variance represented by the
dispersion of the circles around the lines.

unit change in time-in-treatment, compliance, or treatment type (as were defined by the location
model in Equation 2 and shown in Figure 2), the scale model for the level-1 residual variance
focuses on the dispersion of level-1 residuals around predicted anxiety, as shown in Figure 5a,b
by the dispersion of the circles around their same-colored lines.

The scale-model fixed intercept τ00 = −0.2 is the expected log level-1 residual variance specifi-
cally at the first occasion (timet p = 0) for a patient with compliance at their ownmean (L1compt p =
0) who is at the reference patient mean compliance (L2compp = 0) and was given the old treat-
ment (typep = 0), represented in Figure 5b by the amount of dispersion of the first dark green
circle from the dark green line. The typep slope τ02 = 0.75 is the between-patient difference in
log level-1 residual variance for patients given the new treatment instead of the old treatment
(for L2compp = 0, L1compt p = 0, and timet p = 0, given their interactions with typep, as described
below). This typep effect is shown in Figure 5b by the greater dispersion of the first brown circle
compared with that of the first dark green circle.
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Because patient compliance was patient-mean-centered at each occasion, the scale-model fixed
effects for L1compt p and L2compp represent level-specific effects on log level-1 residual variance,
each of which is moderated by typep. The L1compt p slope τ10 = −0.4 indicates that, for patients
given the old treatment, log level-1 residual variance is lower by 0.4 per unit higher patient
compliance than the patient’s mean; the L1compt p by typep cross-level interaction indicates that
this effect is more negative (stronger) by τ12 = −0.1 in patients given the new treatment (whose
L1compt p slope is then τ10 + τ12 = −0.4 − 0.1 = −0.5). As such, anxiety is more consistent (less
variable) when patients are more compliant than usual, more so in patients given the new treat-
ment, as shown in Figure 5a by the greater reduction in dispersion as time-varying compliance
increases from –1 to 2 for typep = 1 compared with that for typep = 0. Similarly, the L2compp slope
τ01 = −0.2 indicates that, for patients given the old treatment, the log level-1 residual variance is
lower by 0.2 per unit higher patient mean compliance; the L2compp by typep level-2 interaction
indicates that this effect is more negative (stronger) by τ03 = −0.1 in patients given the new treat-
ment (whose L2compp slope is then τ01 + τ03 = −0.2 − 0.1 = −0.3). Thus, anxiety is more similar
for patients with greater average compliance across occasions, more so for patients given the new
treatment (as shown in Figure 5a by the smaller dispersions of circles for L2compp = 1 than for
L2compp = 0) and slightly more so for patients with typep = 1 instead of typep = 0.

The level-1 time slope τ20 = −0.15 (also moderated by treatment type) indicates that log level-
1 residual variance decreases by an average of 0.15 per occasion in patients given the old treatment;
the timet p by typep cross-level interaction indicates that this effect is more negative (stronger) by
τ21 = −0.05 in patients given the new treatment (whose timet p slope is then τ20 + τ22 = −0.15 −
0.05 = −0.20). Thus, anxiety becomes more consistent with each subsequent occasion, as shown
in Figure 5b by circles closer to their same-colored lines at later occasions, more so in patients
given the new treatment instead of the old treatment.

In addition to (or separate from) the scale model for the level-1 residual variance, what if
there are fewer differences in average anxiety between patients (as captured by the location-model
level-2 random intercept) who were given the new treatment? To test this hypothesis, a second
scale model—this time for the location-model level-2 random intercept variance—is shown in
Equation 6,

Level 2 (L2) : loge
(
τ 2
U0p

)
= α00 + α01

(
typep

)
, 6.

in which loge(τ 2
U0p

) is the natural log of the location-model level-2 random intercept variance for
patient p. This scale model focuses on the dispersion of each patient’s mean anxiety around their
treatment type mean (specifically at time 0 and when time-varying compliance is at the patient’s
mean, given that the location-model random intercept variance is conditional on the location-
model random slopes for both time and patient-mean-centered compliance; see Equation 2). As
an example, the scale-model fixed intercept α00 = −0.10would be the expected log location-model
level-2 random intercept variance for patients given the old treatment, and the typep slope α01 =
−0.15 would indicate that log location-model level-2 random intercept variance is lower by 0.15
units in patients given the new treatment. As such, patients given the new treatment would have
less variable levels of anxiety (at time 0 and when patient compliance is at the patient’s mean) than
patients given the old treatment. Finally, we note that each location-model random slope variance
and covariance could also have their own scale model (Rast et al. 2012, Walters 2015).

Recap and Spin-Offs: MELSMs

In this section, we described MELSMs by which to formally test variability-related hypotheses.
MELSMs extend traditional MLMs (as location models) to concurrently estimate separate scale
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models that allow the level-1 residual variance and/or level-2 random effect variance(s) to be het-
erogeneous across sampling units as a function of predictors. Scale-model random effects can
quantify between-cluster differences in within-cluster variance in clustered designs; they can also
quantify between-person differences in within-person fluctuation over time in longitudinal de-
signs. Scale-model random effects can have covariances with location-model random effects (or
directed relationships can be specified between them, depending on software).

In our examples, both the clustered models and the longitudinal models were specific to con-
tinuous, conditionally normally distributed outcomes with fixed effects that had a linear functional
form. However, MELSMs are more broadly applicable, such as for ordinal outcomes (Hedeker
et al. 2016), time-to-event and censored outcomes (Courvoisier et al. 2019, Lu 2018), semicon-
tinuous outcomes (i.e., with excess zeros; Blozis et al. 2020), or random effects (Ma et al. 2021).
MELSMs have also been extended to dyadic data (Rast & Ferrer 2018), cross-classified designs
(Brunton-Smith et al. 2017), three-level designs (Li & Hedeker 2012, Lin et al. 2018), and to in-
clude nonlinear fixed effects (Bürkner 2018, Williams et al. 2019). Finally, MELSMs can also be
estimated using latent-centering inM-SEMs (McNeish 2021), which enables scale-model random
effects to become predictors or outcomes as needed.

CONCLUSION

Catching up on a series as long running as multilevel modeling is not an easy task. But we hope
our readers have gained the background and encouragement necessary to believe that keeping up
with future seasons of MLMs will be worth their while!
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Smid SC, McNeish D, Miočević M, van de Schoot R. 2020. Bayesian versus frequentist estimation for struc-

tural equation models in small sample contexts: a systematic review. Struct. Equ. Model. 27(1):131–61
Snijders TAB, Bosker RJ. 2012.Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling.

London: Sage. 2nd ed.
Townsend Z, Buckley J, Harada M, Scott MA. 2013. The choice between fixed and random effects. See Scott

et al. 2013, pp. 73–88
Van Landeghem G, De Fraine B, Van Damme J. 2005. The consequence of ignoring a level of nesting in

multilevel analysis: a comment.Multivar. Behav. Res. 40(4):423–34
Vandenberg RJ, Richardson HA. 2019. A primer on multilevel structural modeling: user-friendly guidelines.

See Humphrey & LeBreton 2019, pp. 449–72
Walters RW. 2015.Mixed-effects location-scale models for conditionally normally distributed repeated-measures data.

PhD Diss., Univ. Nebraska-Lincoln
Walters RW, Hoffman L, Templin J. 2018. The power to detect and predict individual differences in intra-

individual variability using the mixed-effects location-scale model.Multivar. Behav. Res. 53(3):360–74
Wang L, Hamaker E, Bergeman CS. 2012. Investigating inter-individual differences in short-term intra-

individual variability. Psychol. Methods 17(4):567–81
Wang L, Maxwell SE. 2015. On disaggregating between-person and within-person effects with longitudinal

data using multilevel models. Psychol. Methods 20(1):63–83
Williams DR, Zimprich DR, Rast P. 2019. A Bayesian nonlinear mixed-effects location scale model for learn-

ing. Behav. Res. Methods 51:1968–86
Yaremych HE, Preacher KJ, Hedeker D. 2021. Centering categorical predictors in multilevel models: best

practices and interpretation. Psychol. Methods. In press
Ye F, Daniel L. 2017. The impact of inappropriate modeling of cross-classified data structures on random-

slope models. J. Mod. Appl. Stat. Methods 16(2):458–84
Zigler CK,Ye F. 2019.A comparison of multilevel mediationmodelingmethods: recommendations for applied

researchers.Multivar. Behav. Res. 54(3):338–59
Zitzmann S, Lüdtke O, Robitzsch A, Hecht M. 2020. On the performance of Bayesian approaches in small

samples: a comment on Smid, McNeish, Miocevic, and van de Schoot. Struct. Equ. Model. 28(1):40–50

www.annualreviews.org • Catching Up on Multilevel Modeling 689

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

02
2.

73
:6

59
-6

89
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Io

w
a 

on
 0

1/
05

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PS73_Front_Matter ARjats.cls November 10, 2021 11:46

Annual Review of
Psychology

Volume 73, 2022

Contents

Recollecting What We Once Knew: My Life in Psycholinguistics
Lila R. Gleitman and Claire Gleitman � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

Memory and Reward-Based Learning: A Value-Directed Remembering
Perspective
Barbara J. Knowlton and Alan D. Castel � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �25

Normative Principles for Decision-Making in Natural Environments
Christopher Summerfield and Paula Parpart � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �53

Speech Computations of the Human Superior Temporal Gyrus
Ilina Bhaya-Grossman and Edward F. Chang � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �79

Cognitive, Systems, and Computational Neurosciences
of the Self in Motion
Jean-Paul Noel and Dora E. Angelaki � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 103

Exploring Cognition with Brain–Machine Interfaces
Richard A. Andersen, Tyson Aflalo, Luke Bashford, David Bjånes,
and Spencer Kellis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 131

Brain Mechanisms Underlying the Subjective Experience
of Remembering
Jon S. Simons, Maureen Ritchey, and Charles Fernyhough � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 159

Neurophysiology of Remembering
György Buzsáki, Sam McKenzie, and Lila Davachi � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 187

The Basis of Navigation Across Species
Cody A. Freas and Ken Cheng � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 217

Computational Psychiatry Needs Time and Context
Peter F. Hitchcock, Eiko I. Fried, and Michael J. Frank � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 243

Persistence and Disengagement in Personal Goal Pursuit
Veronika Brandstätter and Katharina Bernecker � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 271

Social Motivation at Work: The Organizational Psychology of Effort for,
Against, and with Others
Adam M. Grant and Marissa S. Shandell � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 301

vi

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

02
2.

73
:6

59
-6

89
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Io

w
a 

on
 0

1/
05

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PS73_Front_Matter ARjats.cls November 10, 2021 11:46

Attitudes, Habits, and Behavior Change
Bas Verplanken and Sheina Orbell � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 327

Childhood Antisocial Behavior: A Neurodevelopmental Problem
Stephanie H.M. van Goozen, Kate Langley, and Christopher W. Hobson � � � � � � � � � � � � � � � � 353

Human Cooperation and the Crises of Climate Change, COVID-19,
and Misinformation
Paul A.M. Van Lange and David G. Rand � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 379

Diversity Training Goals, Limitations, and Promise: A Review of the
Multidisciplinary Literature
Patricia G. Devine and Tory L. Ash � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 403

Psychology and Indigenous People
Roberto González, Héctor Carvacho, and Gloria Jiménez-Moya � � � � � � � � � � � � � � � � � � � � � � � � � 431

Psychology Within and Without the State
H. Clark Barrett � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 461

Personality Psychology
Brent W. Roberts and Hee J. Yoon � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 489

Personal Values Across Cultures
Lilach Sagiv and Shalom H. Schwartz � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 517

Educational Psychology Is Evolving to Accommodate Technology,
Multiple Disciplines, and Twenty-First-Century Skills
Arthur C. Graesser, John P. Sabatini, and Haiying Li � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 547

Cultivating Resilience During the COVID-19 Pandemic:
A Socioecological Perspective
Ning Zhang, Shujuan Yang, and Peng Jia � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 575

What Are the Health Consequences of Upward Mobility?
Edith Chen, Gene H. Brody, and Gregory E. Miller � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 599

The Social Effects of Emotions
Gerben A. van Kleef and Stéphane Côté � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 629

Catching Up on Multilevel Modeling
Lesa Hoffman and Ryan W.Walters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 659

Optimizing Research Output: How Can Psychological Research Methods
Be Improved?
Jeff Miller and Rolf Ulrich � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 691

Replicability, Robustness, and Reproducibility in Psychological Science
Brian A. Nosek, Tom E. Hardwicke, Hannah Moshontz, Aurélien Allard,
Katherine S. Corker, Anna Dreber, Fiona Fidler, Joe Hilgard,
Melissa Kline Struhl, Michèle B. Nuijten, Julia M. Rohrer, Felipe Romero,
Anne M. Scheel, Laura D. Scherer, Felix D. Schönbrodt, and Simine Vazire � � � � � � � � � 719

Contents vii

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

02
2.

73
:6

59
-6

89
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Io

w
a 

on
 0

1/
05

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PS73_Front_Matter ARjats.cls November 10, 2021 11:46

Quantum Cognition
Emmanuel M. Pothos and Jerome R. Busemeyer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 749

Indexes

Cumulative Index of Contributing Authors, Volumes 63–73 � � � � � � � � � � � � � � � � � � � � � � � � � � � 779

Cumulative Index of Article Titles, Volumes 63–73 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 784

Errata

An online log of corrections to Annual Review of Psychology articles may be found at
http://www.annualreviews.org/errata/psych

viii Contents

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

02
2.

73
:6

59
-6

89
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Io

w
a 

on
 0

1/
05

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 


