
A great deal of research in cognitive psychology has been 
devoted to the study of word recognition in skilled readers 
(e.g., Locker, Simpson, & Yates, 2003; Pexman & Lupker, 
1999; Rubenstein, Garfield, & Millikan, 1970; Strain, Pat-
terson, & Seidenberg, 1995; Yates, Locker, & Simpson, 
2004). These studies typically involve the selection of a 
set of words that vary on some lexical dimension(s). The 
word list is then presented to a group of participants for the 
purpose of recording relevant dependent measures (e.g., 
response time) that serve as the basis of inferences drawn 
in regard to the processes and structure of the language 
system. For example, Yates et al. (2004) were interested 
in how phonological neighborhood density (i.e., the num-
ber of words that differ from a target word by one pho-
neme) influenced visual word recognition. In each of the 
experiments reported in their study, a list was constructed 
composed of an equal number of words with many phono-
logical neighbors (high-density words) and words with few 
neighbors (low-density words). The words were presented 
along with pronounceable pseudowords in a lexical deci-
sion task (i.e., word/nonword discrimination task). Yates 
et al. found that words with many phonological neighbors 
were responded to more rapidly on average than words 
with few neighbors, supporting the notion that phonology 
is an important component in word processing.

Although such studies are relatively simple in design, 
issues concerning data analysis in this area can be quite 
contentious. Typically, two analyses are conducted for re-
sponse times. In the subjects analysis, or F1, condition 

means are obtained for each subject and submitted to an 
ANOVA. In the items analysis, or F2, condition means are 
obtained for each item and also submitted to an ANOVA. 
Obtaining significant treatment effects in both analyses is 
referred to as meeting the F1 3 F2 criterion (Raaijmakers, 
Schrijnemakers, & Gremmen, 1999). It is commonly be-
lieved that if both F1 and F2 analyses yield significant find-
ings, then the effects will generalize to different samples 
of subjects and items, assuming that the subjects and items 
in the experiment can each be considered random samples 
from larger populations (Raaijmakers et al., 1999). Sim-
ply put, under this belief, one can be confident of a given 
result if both F1 and F2 analyses are significant.

Although the F1 3 F2 criterion is by far the most com-
mon approach to data analysis in psycholinguistic stud-
ies, there has been some resistance. For example, it is not 
uncommon to find studies that report F1 and F2 analy-
ses, but in which conclusions are based primarily on sig-
nificant F1 analyses, ignoring nonsignificant F2 analyses 
(e.g., Locker, Simpson, et al., 2003; Siakaluk, Sears, & 
Lupker, 2002). Although such an approach may be jus-
tified under certain conditions (i.e., that item variability 
has been experimentally controlled; Raaijmakers, 2003; 
Raaijmakers et al., 1999), Clark (1973) argued in a classic 
paper that such an approach implicitly assumes that the 
materials used in an experiment can be treated as fixed 
factors (i.e., the “language-as-fixed-effect fallacy”). In 
reality, a given stimulus set of words may constitute only 
a subset of items that could be utilized in a given experi-
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ment. Random or pseudorandom selection of items results 
in random variance that could lead to a positive bias in the 
F1 test, increasing the likelihood of Type I error. That is, 
unaccounted item variability (nested within treatments) 
could contribute to differences between treatment condi-
tions when, in reality, there is a null effect of the experi-
mental manipulation. As a consequence, Clark advocated 
the use of a quasi-F ratio, or F′, which is a random effects 
model that takes into account both item and subject vari-
ability, as shown in Equation 1:

 F′ 5 (MST 1 MSS3I3T) 4 (MST3S 1 MSI3T), (1)

in which MST represents the mean square for the treat-
ment effect, MSS3I3T represents the error term of the 
subjects by items by treatment interaction, MST3S is the 
error term of the treatment by subjects interaction, and 
MSI3T is the error term of the items by treatment interac-
tion. As illustrated by Equation 1, rather than constitut-
ing separate tests, F′ involves the simultaneous treatment 
of subjects and items as random factors. Unfortunately, 
F′ cannot be computed when the data are unbalanced 
or when responses are missing for certain item/subject 
combinations. Because response times are almost never 
included for incorrect trials, and subjects almost never ex-
hibit perfect accuracy when response time is emphasized, 
this approach is nearly impossible to use in practice. In 
contrast, the minimum bound of the F′ (Clark, 1973) can 
be computed quite easily from the results of separate F1 
3 F2 analyses, as shown in Equation 2:

 F′min (i, j) 5 (F1 3 F2) 4 (F1 1 F2), (2)

in which i represents the numerator degrees of freedom in 
each analysis, and j represents the denominator degrees of 
freedom. If F′min is significant, then F′ is assumed to be 
significant as well (Raaijmakers et al., 1999).

However, despite its initial adoption, researchers have 
largely abandoned F′min and have instead utilized the 
F1 3 F2 criterion (Raaijmakers et al., 1999; Raaijmakers, 
2003). Although compelling arguments have been made 
for both sides (Forster & Dickinson, 1976; Raaijmakers, 
2003; Wike & Church, 1976), the zeitgeist in the field of 
psycholinguistic research is apparently to continue with 
the use of the F1 3 F2 criterion, even though the flaws 
associated with this approach are well known (see Raaij-
makers, 2003). More specifically, because F1 ignores sys-
tematic variability due to the individual items, and F2 ig-
nores systematic variability due to the individual subjects, 
neither is truly an appropriate description of all sources 
of systematic variance within the outcome (e.g., response 
time or accuracy). Therefore, it is necessary to explore al-
ternative methods for analyzing psycholinguistic data that 
do not erroneously treat items as fixed effects, while at the 
same time providing a means by which to treat both sub-
jects and items as random factors within a single analysis, 
as originally advocated by Clark (1973).

The alternative proposed in the present article is the mul-
tilevel model. Multilevel modeling is a tool for the analysis 
of data with nested sources of variability (Raudenbush & 
Bryk, 2002; Snijders & Bosker, 1999). That is, there are 

lower level observations nested within higher level observa-
tions, such as students sampled from multiple classrooms. 
One might be interested in the effect of a student-level 
predictor on academic performance (e.g., socioeconomic 
status on math achievement). However, because the residu-
als of students within the same classroom are likely to be 
correlated, a typical regression analysis is inappropriate. 
Multilevel models properly account for variability at each 
level of analysis and permit the examination of predictors 
of that variability at each level of analysis. For example, 
the effect of student characteristics on variability across 
students in math achievement could be assessed, as well as 
the effect of school characteristics on variability in mean 
math achievement across schools, as well as any cross-
level interactions (e.g., Singer, 1998). Both classrooms 
and students are assumed to be random samples from their 
respective populations, although students are nested within 
classrooms. This approach has also been used by Wright 
(1998), who demonstrated how the multilevel modeling 
of autobiographical memories as nested within individuals 
may be more appropriate than ANOVAs.

In contrast with the above examples, however, a dif-
ferent scenario may arise when sources of variability are 
not strictly nested within one another, such as when sam-
pling students who live in different neighborhoods and 
who attend different schools. Because students from the 
same school may not live in the same neighborhood and 
vice versa, these two random factors are crossed instead 
of nested (Raudenbush, 1993). Random factors that are 
crossed at the same level of analysis can also be included 
within the multilevel modeling framework, however, and 
predictors of each type of variability (i.e., characteristics 
of schools and of neighborhoods) may still be evaluated, 
as well as predictors of student-level variability.

The crossed random factors multilevel model directly 
meets the recommendations of Clark (1973), in that both 
subjects and items can be considered as random effects si-
multaneously within a single model. In this way, effects of 
experimental manipulations (i.e., treatment effects) can be 
assessed without falsely reducing the observed variance in 
the outcome (e.g., response time or accuracy), such as by 
collapsing across items to form cell means for a subjects 
analysis (F1), or by collapsing across subjects to form cell 
means for an items analysis (F2). Treatment effects can 
be modeled as fixed effects or as random effects (i.e., in 
which the magnitude of the treatment effect is specified as 
varying over subjects or items). Critically, the inclusion of 
both subjects and items as random factors provides a more 
complete description of all systematic sources of variance 
in the outcome, whereas the F1 3 F2 criterion does not. 
Another important advantage is that the multilevel model 
also uses full information maximum likelihood as a means 
of directly addressing unbalanced or incomplete data, and 
thus complete cases are not required.

The purpose of the present article is to further dem-
onstrate the application of multilevel modeling to the 
analysis of psycholinguistic data. Although prior research 
has shown the applicability of this approach when treat-
ing subjects and items as nested (Baayen, Tweedie, & 
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Schreuder, 2002), the first aim of the present study is to 
demonstrate the validity of this approach when random 
subject and item variability are treated as crossed at the 
same level, rather than as nested. As argued above and 
elsewhere (Ghisletta & Renaud, 2005), there is reason to 
believe that this constitutes a more appropriate treatment 
of the data in the present context, and fulfills the require-
ments originally advocated by Clark (1973). Furthermore, 
such a demonstration will add to the growing body of lit-
erature demonstrating that multilevel modeling is a vi-
able alternative to data analysis in cognitive research (e.g., 
Baayen et al., 2002; Ghisletta & Renaud, 2005; Hoffman 
& Rovine, 2007; Wright, 1998).

A second aim of the present work is to demonstrate 
the ease with which multilevel modeling can be applied 
in data analysis and to serve as a reference for investiga-
tors who may wish to apply this approach in their own 
research. To this end, the data and analysis syntax for both 
SAS and SPSS, used for the examples below have been 
included in an electronic appendix. Given the capabili-
ties of SAS and SPSS, as well as other packages that can 
estimate these types of models (e.g., HLM, MLwiN, R, 
Mplus), a multilevel approach is a reasonable option for 
the analysis of data in which both subjects and items con-
stitute random factors.

To demonstrate the viability of this approach in terms 
of analysis of data from psycholinguistic research, we pre-
sent F1 and F2 analyses from an experiment conducted by 
Locker, Yates, and Simpson (2003), followed by a crossed 
random factors multilevel analysis. This facilitates a direct 
comparison of the F1 3 F2 and multilevel outcomes, as 
well as demonstrates that multilevel modeling is indeed a 
tenable approach in this context.

ILLustratIve exampLe

F1 3 F2 subjects and Items aNOvas
The purpose of the experiment originally conducted by 

Locker, Yates, et al. (2003) was to assess the interaction of 
phonological neighborhood frequency and semantic neigh-
borhood in a visual lexical decision task.1 Neighborhood 
frequency in this example refers to the average frequency of 
a word’s phonological neighbors (phonological neighbor-
hood frequency values were obtained from the Wordmine 
database; Buchanan & Westbury, 2000). Semantic neighbor-
hood refers to the number of words that are meaningfully re-
lated to a given target word (Nelson, McEvoy, & Schreiber, 
1998). A 39-word list constructed by crossing neighborhood 
frequency (high vs. low) and semantic neighborhood (large 
vs. small)2 was administered to 38 undergraduate students. 
Stimuli were presented on an IBM- compatible PC with E-
Prime software (Schnei der, Eschman, & Zuccolotto, 2002). 
Participants were instructed that a series of letter strings 
that formed words and pronounceable pseudowords would 
be presented on the computer screen one at a time. Partici-
pants were asked to respond as quickly and accurately as 
possible by pressing buttons on the keyboard designated 
“word” and “nonword.”

Response times for the word responses were analyzed 
with both F1 and F2 ANOVAs. Observed means for each 

condition for each analysis are provided in Table 1, and 
results from the ANOVAs are provided in Table 2. Both 
analyses revealed significant main effects of neighbor-
hood frequency and semantic neighborhood size, as well 
as a significant interaction. The calculation of F′min for 
each effect, however, suggests a different pattern of re-
sults. As shown in Table 2, although the F′min interaction 
effect was significant ( p < .05), the main effects of neigh-
borhood frequency and semantic neighborhood size were 
not significant ( ps 5 .053 and .071, respectively). Thus, 
according to the logic of the F1 3 F2 criterion, the main 
effects and interaction of neighborhood frequency and se-
mantic neighborhood size could be generalized to both 
subjects and items; but according to the F′min criterion, 
only the interaction effect could be. As discussed above, 
however, both F1 and F2 analyses are each potentially bi-
ased, such that neither is an appropriate model for the mul-
tiple sources of variability within these response times. 
Importantly, the calculation of F′min does not overcome 
this limitation, and has been suggested to be unnecessarily 
conservative (e.g., Wike & Church, 1976).

Accordingly, we will now utilize a crossed random ef-
fects multilevel model for the same data in order to fur-
ther assess these findings. Although multilevel models are 
often presented hierarchically (i.e., as separate equations 
for each level), in the present example it is more straight-
forward to specify a combined equation, in which the 
higher level effects are inserted directly into the level-1 
equation. This also parallels how these models were esti-
mated within a general linear mixed model (i.e., as used 
by SAS and SPSS). It is important to note that a different 
data structure is required for multilevel analysis than is 
typically used for ANOVAs. Specifically, the data need 
to be in a “stacked” or “long” format, in which each case 
contains the independent and dependent variables for a 
single subject and a single item (see Hoffman & Rovine, 
2007, for more information).

Crossed random effects multilevel analysis
The first step in the analysis should be to examine the 

extent to which subjects and items both exhibit systematic 
effects, and thus the extent to which subjects and items 
each need to be considered as random factors. One can 

table 1 
mean response times (rts, in milliseconds) and 
standard errors (SEs) per Condition 3 model

Neighborhood

Model and Small Large

Condition  RT  SE  RT  SE

Subject ANOVA (F1)
 Low frequency 615.0 11.8 620.3 12.5
 High frequency 676.0 15.3 617.7 14.0

Item ANOVA (F2)
 Low frequency 616.7 14.7 621.0 10.1
 High frequency 689.7 23.7 619.5  6.9

Crossed random effects multilevel model
 Low frequency 615.8 18.6 620.2 18.5
 High frequency  685.8  18.7  618.2  18.6
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estimate an “empty” model with no random effects (i.e., 
only one error term) as a baseline for comparison, as 
shown in Equation 3:

 Ysi 5 γ0 1 esi (3)

in which Ysi is the observed response time for subject s 
and item i, γ0 is the intercept, or expected mean response 
time for the overall sample, and esi is the residual devia-
tion from the sample mean response time for subject s 
and item i. This model further specifies that residuals (the 
esis) are uncorrelated; that is, that no systematic effects of 
subjects or items are present. This assumption is not likely 
to be tenable, but provides a baseline for comparison with 
more complex models.

A random effect for subjects is added next, as seen in 
Equation 4:

 Ysi 5 γ0 1 U0s 1 esi (4)

in which Ysi is now also predicted from U0s, a random ef-
fect for subject s, which is the deviation of that subject’s 
mean response time from the grand mean response time. 
The residuals are now assumed to be uncorrelated across 
observations after considering from which subject the ob-
servation was taken. Because the empty model is nested 
within the random subject model, the improvement over the 
empty model from adding a random effect for subjects can 
be assessed by comparing the model deviance values from 
each. The difference of the model deviances is distributed 
as a χ2, with degrees of freedom equal to the difference in 
the number of parameters estimated within each model, or 
in this case, df = 1. The difference in the model deviances is 
280, which is highly significant ( p < .001), as is expected.

A random effect for items is then added in order to estimate 
a crossed random effects model, as seen in Equation 5:

 Ysi 5 γ0 1 U0s 1 V0i 1 esi (5)

in which Ysi is the observed response time for subject s and 
item i, γ0 is the intercept, or expected mean response time 
for the overall sample, U0s is the random effect of subject 
s, V0i is the random effect of item i, and esi is the residual 

deviation from the expected value for subject s and item 
i. The residuals are now assumed to be uncorrelated after 
considering from which item and from which subject the 
observation was taken. The difference in the model devi-
ances from adding a random effect for items (df = 1) is 
100, which is again highly significant ( p < .001).

One way of expressing the relative contribution of vari-
ance in response time due to items versus variance due 
to subjects is to calculate intraclass correlations (ICC) 
for each effect (Raudenbush & Bryk, 2002; Snijders & 
Bosker, 1999). The ICC is calculated as the proportion 
of variance of the random effect (i.e., subjects or items) 
over the total variance (i.e., subjects variance + items vari-
ance + residual variance). Given the variance components 
shown in Table 3, the proportion of total variance in re-
sponse time due to subjects is 24% (5,167 4 21,920), the 
proportion of total variance in response time due to items 
is 11% (2,409 4 21,920), and the unexplained variance 
in response time, or subject 3 item interaction, is 65% 
(14,344 4 21,920).

Upon identifying the proper error structure for the 
model (i.e., the presence of random effects of subjects and 
items), one can then examine the independent variables 
(i.e., predictors) of interest. In this example, we exam-
ine the effects of the item characteristics of neighborhood 
frequency (Freq) and semantic neighborhood size (Size) 
by adding to the model contrast codes representing low/
high frequency (coded ].5 or .5, respectively), small/large 
neighborhood (coded ].5 or .5, respectively), as well as 
their interaction, as shown in Equation 6:

 Ysi 5 γ0 1 γ1(Freq) 1 γ2(Size) 1 γ3(Freq)(Size)

  1 U0s 1 V0i 1 esi  (6)

in which all terms are defined as in Equation 5, except that 
γ1 represents the main effect of frequency, or the mean dif-
ference between items of low versus high frequency aver-
aged across semantic neighborhood size, γ2 represents the 
main effect of size, or the mean difference between items 
with small versus large neighborhoods averaged across 

table 2 
aNOva approximate F test results

Effect  F  df  MSe  p value

Subjects ANOVA (F1)
 Phonological neighborhood frequency 16.1 1,37 2,012.9 <.0003
 Semantic neighborhood size 14.9 1,37 1,793.3 <.0004
 Interaction 38.2 1,37 1,007.1 <.0001

Items ANOVA (F2)
 Phonological neighborhood frequency 5.3 1,35 2,361.9 <.0278
 Semantic neighborhood size 4.5 1,35 2,361.9 <.0415
 Interaction 5.7 1,35 2,361.9 <.0225

F′min
 Phonological neighborhood frequency 4.0 1,56.09 <.0530
 Semantic neighborhood size 3.5 1,54.62 <.0710
 Interaction 5.0 1,45.27 <.0310

Crossed random effects multilevel model
 Phonological neighborhood frequency 5.4 1,31.8* – <.0272
 Semantic neighborhood size 4.6 1,31.8* – <.0393
 Interaction 6.0 1,31.8* – <.0199
*Estimated denominator degrees of freedom using the Satterthwaite method; no 
mean squares estimated.
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neighborhood frequency, and γ3 represents the two-way 
interaction of frequency and size, or the additional differ-
ence in response time for items that are of high frequency 
and which have large neighborhoods.

The condition means as estimated via maximum likeli-
hood are given in the bottom of Table 1. In contrast to 
the observed condition means, the means estimated via 
maximum likelihood take into account the unbalanced 
nature of the data (i.e., that response times for individual 
trials may be missing if the response was not correct). Ap-
proximate F tests from the multilevel analysis for the two 
main effects and for their interaction are given in Table 2. 
Each effect is significant, with the same general pattern 
of results as was seen in the ANOVAs, although the sig-
nificance levels obtained from the crossed random effects 
model are more comparable to those obtained from the 
items analysis than that of the subjects analysis.

The proportion reduction in total variance (Snijders & 
Bosker, 1999) due to the three predictor effects was calcu-
lated as .033 [i.e., as (21,920 2 21,201) 4 21,920]. How-
ever, although only approximately 3% of the total variance 
was accounted for by the predictors, this estimate does not 
take into consideration which variance could be accounted 
for by item characteristics, given that there are three vari-
ances estimated: subjects variance, items variance, and 
subject 3 item residual variance. Thus, a more appropri-
ate comparison is to consider the proportion of random 
item variance accounted for, which was calculated as ap-
proximately 30% (1,692 4 2,409). Further, the random 
effect for items remained significant even after including 
the predictors, suggesting that item variance was not suffi-
ciently accounted for in terms of the experimental control 
variables or the model predictor variables. Therefore, an 
analysis treating items as a random sample from a larger 
population of words is appropriate in this example.

In order to illustrate the difference between the crossed 
random effects solution and that from a typical analysis, 
the F1 and F2 ANOVA models using condition means were 
also estimated as multilevel models. The variance com-
ponents and the proportion of total variance accounted 
for from F1 and F2 analysis can then be compared with 

those of the crossed random effects model. Two things are 
readily apparent in comparing these values, as shown in 
Table 3: The overall amount of variance within the F1 and 
F2 analyses is smaller, and the proportion of variance ac-
counted for is larger. These discrepancies occur because of 
the difference in the unit of analysis across methods. In the 
ANOVAs, trials are first averaged into condition means 
(either across items for F1 or across subjects for F2), and 
those condition means are then subjected to analysis. Ac-
cordingly, a significant portion of the observed variability 
in response times is never included in each analysis, which 
can result in overestimates of the size of the effects of the 
predictors. In contrast, the crossed random effects model 
considers all sources of variance simultaneously, without 
lost information, and thus is likely to be a more accurate 
depiction of the total observed variance in response time 
across subjects and items.

summary aNd CONCLusIONs

The purpose of the present work was to illustrate how 
a crossed random effects multilevel model can be used 
within psycholinguistic research as an alternative to sepa-
rate subjects and items ANOVAs (i.e., the F1 3 F2 crite-
rion or F′min). There are many advantages of a multilevel 
modeling approach within this context. The primary ad-
vantage is that it allows one to generalize to both popula-
tions of subjects and items on the basis of a single analy-
sis. A second advantage is that because multilevel models 
can be estimated with incomplete data, they do not suffer 
from the same drawbacks as the F′ test originally advo-
cated by Clark (1973).

A third advantage of the multilevel model is that any 
combination of continuous or categorical independent 
variables that pertain to subjects, items, or their interac-
tion may be included as predictors, and the reduction in 
each source of variance can be considered. For example, 
although the predictors of neighborhood frequency and 
semantic neighborhood size were dichotomous, this need 
not be the case; continuous predictors may be included as 
needed (see Hoffman & Rovine, 2007, or Quené & van den 

table 3 
mean variance Components With standard errors and proportion reduction 3 model

Unexplained Random Subject Random Item
Residual Variance Variance Variance Total

Model  M  SE  M  SE  M  SE  Variance

Subject ANOVA (F1) of condition means
 Empty model  2,418 320 5,066 1,321 7,484
 Predictor model  1,604 215 5,269 1,319 6,873
 Proportion reduction in variance .082

Item ANOVA (F2) of condition means
 Empty model  3,154 724 3,154
 Predictor model  2,362 565 2,362
 Proportion reduction in variance .251

Crossed random effects multilevel model of all responses
 Empty model 14,344 560 5,167 1,293 2,409 678 21,920
 Predictor model 14,341 560 5,168 1,293 1,692 527 21,201
 Proportion reduction in variance             .033
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Bergh, 2004, for more discussion). Furthermore, in Latin 
square designs, order of presentation can also be included 
as a covariate. Finally, the extent to which the effects of 
item characteristics also vary systematically across sub-
jects can also be examined. In other words, are there sys-
tematic individual differences in the effects of the indepen-
dent variables? This notion can be formalized and tested 
statistically in the form of a random effect across subjects 
of the independent variables, and individual differences in 
mean performance as well as in the effects of the indepen-
dent variables can then be related to subject-level predic-
tors (e.g., reading ability, phonemic awareness).

Given these advantages and the relative ease by which 
multilevel analyses can be conducted in standard statistical 
packages (see the electronic appendix), crossed random ef-
fects multilevel models may provide a viable approach to 
the “language-as-fixed-effect fallacy” (Clark, 1973; Raaij-
maker et al., 1999; Wike & Church, 1976). This conclusion 
has also been supported by simulation studies in which the 
multilevel model was shown to perform significantly bet-
ter than the F1 3 F2 criterion in terms of both Type I error 
rates and statistical power (Ghisletta & Renaud, 2005).

An important issue to consider in future research is the 
extent to which differential levels of experimental control 
upon selecting the items may necessitate different ana-
lytic strategies. As discussed by Raaijmakers et al. (1999), 
it is possible that if sufficient control of item variability 
can be achieved through matching of items on relevant 
control variables, then the issues raised by Clark (1973) 
may not be serious points of concern. Indeed, within the 
present example, the same conclusions about the experi-
mental manipulations would have been drawn in the F1 3 
F2 analysis as in the multilevel model (although a slightly 
different conclusion might have been reached by consider-
ing F′min instead). However, it is easy to envision scenar-
ios in which the inferences might change across analytic 
models, as well as experiments in which the matching 
of items across a wide range of extraneous variables is 
not feasible. In these scenarios a crossed random effects 
multilevel model could potentially be used as a diagnostic 
tool in order to assess whether item variance is indeed a 
systematic effect that should be modeled. In the absence 
of significant random item variance, a more traditional 
ANOVA may be sufficient.

In summary, the present work represents an attempt to re-
solve the difficulties surrounding Clark’s (1973) “language-
as-fixed-effect fallacy” through the use of multilevel models 
for crossed random effects. Although the current F1 3 F2 
criterion is the standard approach within the study of psy-
cholinguistics, the problems surrounding this method are 
well known. Thus, it is necessary as a field to investigate 
viable alternatives that ensure the quality of our inferences.
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NOtes

1. The data utilized in the present article are presented only as a means 
of illustrating the relevant statistical analyses.

2. The word list originally included 40 items. However, following data 
collection, it was observed that one item had been miscoded and incor-
rectly included in the stimulus list. The removal of this item did not 
affect the results.

appeNdIx 
sas syntax for estimating Crossed random effects multilevel models

*Library for data files;
*Replace path with location of .sasb7sat file;
LIBNAME folder ‘F:\folder’;
/***  Note: These models assume a stacked data structure in which each 
row provides the response time for a single subject and a single item. 
***/
*SAS: Bringing in data from folder to work library;
data Example; SET folder.Example; run;
TITLE ‘Eq3: SAS Empty Model: No Random Effects’;
prOC mIxed DATA = Example COVTEST NOCLPRINT NOITPRINT METHOD = REML;
 *Observations for subjects and items are considered categorical;
  CLASS Subject Item;
 *RT predicted from intercept only;
  MODEL rt = / SOLUTION DDFM = Satterthwaite; run;
TITLE ‘Eq4: SAS Random Effects of Subjects Model’;
prOC mIxed DATA = Example COVTEST NOCLPRINT NOITPRINT METHOD = REML;
 *Observations for subjects and items are considered categorical;
  CLASS Subject Item;
 *RT predicted from intercept only;
  MODEL rt = / SOLUTION DDFM = Satterthwaite;
 *Level 2 variance for subjects;
  RANDOM INTERCEPT / SUBJECT = Subject TYPE = UN; run;
TITLE ‘Eq5: SAS Random Subjects by Random Items Crossed Model’;
prOC mIxed DATA = Example COVTEST NOCLPRINT NOITPRINT METHOD = REML;
 *Observations for subjects and items are considered categorical;
  CLASS Subject Item;
 *RT predicted from intercept only;
  MODEL rt =  / SOLUTION DDFM = Satterthwaite;
 *Level 2 variance for items;
  RANDOM INTERCEPT / SUBJECT = Item TYPE = UN;
 *Level 2 variance for subjects;
  RANDOM INTERCEPT / SUBJECT = Subject TYPE = UN; run;
TITLE ‘Eq6: SAS Random Subjects by Random Items Crossed Model’;
prOC mIxed DATA = Example COVTEST NOCLPRINT NOITPRINT METHOD = REML;
 *Observations for subjects and items are considered categorical;
 *Item predictors are also categorical;
  CLASS Subject Item freq size;
 *RT predicted from freq, size, and freq*size;
  MODEL rt = freq|size / SOLUTION DDFM = Satterthwaite;
 *Level 2 variance for items;
  RANDOM INTERCEPT / SUBJECT = Item TYPE = UN;
 *Level 2 variance for subjects;
  RANDOM INTERCEPT / SUBJECT = Subject TYPE = UN;
 *Requesting means per condition;
  LSMEANS freq*size; run;

(Continued on next page)
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spss syntax for estimating Crossed random effects multilevel models

* Note: SPSS v. 11.5 or higher is required to estimate these models.
* Results reported are from SAS Proc Mixed – SPSS estimates differ slightly.
* In SPSS, BY is equivalent to CLASS in SAS.
* WITH denotes continuous variables.
* FIXED is equivalent to MODEL in SAS.
* EMMEANS is equivalent to LSMEANS in SAS.
* Replace path with location of .sav file.
GET FILE = ‘F:\folder\example.sav’.
TITLE ‘Eq3: SPSS Empty Model: No Random Effects’.
MIXED rt BY Subject Item
  /FIXED  =
  /METHOD = REML
  /PRINT  = SOLUTION TESTCOV.
TITLE ‘Eq4: SPSS Random Effects of Subjects Model’.
MIXED rt BY Subject Item
  /FIXED  =
  /METHOD = REML
  /PRINT  = SOLUTION TESTCOV
  /RANDOM = INTERCEPT | SUBJECT(Subject) COVTYPE(UN).
TITLE ‘Eq5: SPSS Random Subjects by Random Items Crossed Model’.
MIXED rt BY Subject Item
  /FIXED  =
  /METHOD = REML
  /PRINT  = SOLUTION TESTCOV
 /RANDOM = INTERCEPT | SUBJECT(Item) COVTYPE(UN)
  /RANDOM = INTERCEPT | SUBJECT(Subject) COVTYPE(UN).
TITLE ‘Eq6: SPSS Crossed Predictor Model’.
MIXED rt BY Subject Item Freq Size
  /FIXED  = Freq Size Freq*Size
  /METHOD = REML
  /PRINT  = SOLUTION TESTCOV
 /RANDOM = INTERCEPT | SUBJECT(Item) COVTYPE(UN)
  /RANDOM = INTERCEPT | SUBJECT(Subject) COVTYPE(UN)
 /EMMEANS TABLES (Freq*Size).

(Manuscript received January 16, 2006; 
revision accepted for publication September 11, 2006.)
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