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The effect of time-related mean differences on estimates of association in cross-sec-
tional studies has not been widely recognized in developmental and aging research.
Cross-sectional studies of samples varying in age have found moderate to high levels
of shared age-related variance among diverse age-related measures. These findings
may be misleading because high levels of association between time-dependent pro-
cesses can result simply from average population age differences and not necessarily
from associations between individual “rates of aging.” This is demonstrated both an-
alytically and in a simulation involving cross-sectional sampling of individual trajec-
tories. An alternative cross-sectional narrow age-cohort design is shown to provide a
useful alternative for evaluating the interdependence of time-related processes.

There has been no source more fruitful of fallacious statistical argument than
the common influence of the time factor.

Cave and Pearson (1914, p. 354)

The understanding of developmental processes must emphasize change within in-
dividuals and with individual differences in rates of change and in the dynamics of
such changes over time (e.g., Baltes & Nesselroade, 1979; Wohlwill, 1973). Yet
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the difficulty of following individuals for sufficiently long periods of time in order
to observe change, particularly in later adulthood, has led to a large number of
cross-sectional studies of aging (with an increasing number of exceptions, see
Schaie & Hofer, 2001). As a result, many developmental theories of aging have
been based largely on findings from cross-sectional studies, in which direct esti-
mates of individual change are unobserved. Instead, change must be inferred indi-
rectly from analyses of individuals at different ages (e.g., Schneider, Atkinson, &
Tardif, 2001; Verhaeghen & Salthouse, 1997), with the result that population aver-
age change and any individual differences in change are confounded.

The purpose of this article is to demonstrate both analytically and through sim-
ulation work three points regarding analysis of cross-sectional samples of individ-
uals varying in age: (a) that estimates of the associations among age-related differ-
ences (as proxy for age-related changes) are biased by mean age differences, (b)
that alternative cross-sectional analyses can mitigate this bias and can be per-
formed on data from existing studies, and (c) that statistically controlling for age
results in a loss of information regarding associations among age-related changes.
In cross-sectional studies of time-dependent variables, covariation between vari-
ables can arise from (a) magnitudes and patterns of population average change, or
fixed effects or mean trends, (b) individual differences in rates of change, or ran-
dom effects, and (c) commensurate rates of change within the same individual over
time, or intraindividual covariation. Because longitudinal studies are needed to
examine intraindividual covariation (e.g., Molenaar, 1985; Nesselroade &
Schmidt-McCollam, 2000; Wood & Brown, 1994), we focus here on fixed and ran-
dom effects and their implications for understanding the relation between rates of
change within two types of cross-sectional studies: samples varying broadly in age
(age-heterogeneous), and narrow-age cohort samples (age-homogeneous). These
issues are applicable to other cross-sectional (i.e., single measurement occasion)
designs as well and to covariance analysis of time-dependent processes more gen-
erally (quantitative genetic modeling, mediation models, and evaluation of factor
structure and invariance; Meredith & Horn, 2001).

CROSS-SECTIONAL ANALYSIS
OF AGE-HETEROGENEOUS SAMPLES

Mean Trends and Inferences of Association

That associations between independent processes can be produced by mean trends
alone has long been recognized in the time series literature (e.g., Hooker, 1905;
Persons, 1917, 1923; Yule, 1921, 1926), as well as in related work demonstrating
that random monotone data can produce high values of the squared Pearson corre-
lation coefficient (Parker, Casey, Ziriax, & Silberberg, 1988; Stigler, 1985a,
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1985b). To the extent that mean trends are present, estimates of association will be
high (the direction of which will depend on the direction of the trend). The essen-
tial problem was described by Yule (1903) as “illusory correlation” resulting from
the inappropriate aggregation of groups that differ in the means of the correlated
attributes, and is closely related to the ecological fallacy (Goodman, 1953; Robin-
son, 1950), Simpson’s paradox (Simpson, 1951), and Lord’s paradox (Lord,
1967).

However, that mean trends can also lead to spurious associations in the
cross-sectional analysis of time-dependent variables is not as well recognized by
developmental researchers. Although several authors have identified the associ-
ated problems this poses for single-occasion studies of development and aging
(e.g., Hertzog, 1985; Hofer, Berg, & Era, 2003; Hofer & Sliwinski, 2001; Hofer,
Sliwinski, & Flaherty, 2002; Kelley, 1928; Kraemer, Yesavage, Taylor, & Kupfer,
2000; Lindenberger & Potter, 1998; Storandt & Hudson, 1975; Wohlwill, 1973;
Yule, 1903), cross-sectional analyses of individuals differing in age continue to be
the rule rather than the exception. One analysis frequently used within cross-sec-
tional studies of aging concerns the extent to which age-related differences appear
common or specific across variables (i.e., decomposition of age-related variance).
A recurrent finding is that variance among chronological age and measures of cog-
nitive processing is highly shared, and that a common factor, such as processing
speed (i.e., the general slowing hypothesis; Salthouse, 1992; Verhaeghen &
Salthouse, 1997) or sensory functioning (i.e., the “common cause” hypothesis;
Anstey & Smith, 1999; Baltes & Lindenberger, 1997; Lindenberger & Baltes,
1994; Marsiske, Klumb, & Baltes, 1997; Salthouse, Hambrick, & McGuthry,
1998) is sufficient to account for individual differences in age-related decline
across numerous outcomes (Salthouse & Czaja, 2000).

Given that many cognitive and sensory processes decrease substantially with
age, however, it is more likely that shared age-related variance arises from average,
age-related mean trends than from true associations between rates of change. This
poses a significant problem for evaluating developmental theories with cross-sec-
tional data, and perhaps explains why cross-sectional studies with a broad age
range usually find large proportions of shared age-related variance and good fit of
simple common factor models for various age-related outcomes. Unfortunately,
these common factors may not reflect anything substantive about the interdepen-
dence of rates of change or the causal dimensionality of such changes, but rather,
may simply indicate that change, on average, has occurred (Hofer et al., 2003;
Hofer & Sliwinski, 2001; Hofer et al., 2002; Kraemer et al., 2000).

A simple example of how associations may arise solely from mean trends is
provided in Figure 1a, which displays two variables, X and Y, that exhibit mean
differences across age (to simplify the diagram, only two groups of out a possible
continuum of age groups are shown). Assume that the association between X and
Y within age groups is zero, and that there is no association between rates of
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change (random effects) within the population. The only similarity between the
two variables is that both exhibit average population differences across individuals
differing in chronological age. Under such circumstances, Figure 1b shows that the
high association between variables X and Y may result exclusively from the mean
trends.

Cross-Sectional Sampling of Longitudinal Trajectories:
Analytical Results

The following analytical results show how associations between time-dependent
variables are at least partly and may be entirely due to mean trends in cross-sec-
tional data. In this example we are concerned with cross-sectional sampling of
time-dependent processes and use a simple longitudinal model of change (of
which cross-sectional observations are essentially sampling draws of observations
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FIGURE 1 Effect of population-level average differences (fixed effects) on association be-
tween two age-dependent variables.



at particular points in time from individual trajectories) to demonstrate how these
associations may arise. We use the distinction between fixed and random effects,
terminology common to analysis of multilevel data structures, to denote popula-
tion averages and systematic individual-level deviations from the population aver-
ages, respectively (e.g., Laird & Ware, 1982). Suppose that we have a sample of in-
dividuals followed continuously over their lifespan such that each individual has a
complete realization of scores on two processes, X and Y, as a function of their ini-
tial level (L) and rate of change (slope or S) over time. Parameters subscripted by i
refer to an individual’s deviation from the population mean (i.e., the random ef-
fect). Equation 1 shows that an individual’s scores on X and Y at a time t are a func-
tion of both fixed and random effects,

where Lx, Ly are population average intercepts or levels, Lxi, Lyi are individual is de-
viations from the population average intercepts, t denotes time or age, Sx, Sy are the
population average rates of change or slopes, Sxi, Syi are individual is deviations
from the population average rates of change, and exi, eyi denote random errors, as-
sumed to be normally distributed and independent.

In an age-heterogeneous, cross-sectional design, a broad range of ages is poten-
tially represented in a sample of individuals differing in age, t. Equation 2 results
from substituting the population expectation of Equation 1 (where ti denotes indi-
vidual is age at time t) into the formula for a covariance (see Appendix A for com-
plete derivation). Equation 2 shows that the complexity of the covariation between
two time dependent processes, X and Y is, in part, a function of the fixed effects for
population average change in addition to other systematic sources of covariance
related to initial individual differences (i.e., intercepts), covariance between rates
of change (i.e., slopes), and covariance between intercepts and slopes,

To demonstrate further the potential influence of mean trends on covariance be-
tween processes, consider a situation in which processes are independent, but in
which both exhibit systematic average change over time. Because there are no as-
sociations between X and Y, all terms involving random effects (terms subscripted
by i) are zero and can be dropped. This condition is shown in Figure 1, where X and
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Y are not associated within age groups but where both X and Y exhibit mean differ-
ences across age. With only fixed effects present, Equation 2 simplifies to Equa-
tion 3, and the resulting covariance simplifies to the product of the variance of age
in the sample multiplied by the average rates of change in processes X and Y,

Therefore, as the age range increases, the variance of t will increase, as will the
effect that mean trends have on the covariance. Therefore, covariation will result
from mean trends in cross-sectional samples varying in age even when individual
differences in rates of changes are completely independent. Additionally, we ex-
pect that stronger covariances will obtain in samples that vary more broadly in age,
when the rates of change are larger, or both. It is important to recognize that al-
though Equations 2 and 3 are based on a simple linear model of change for both
processes, a more complex model of change would simply introduce more terms
and would not alter the main point of this derivation, namely, that fixed effects are a
component of covariance in age-heterogeneous, cross-sectional designs. Indeed,
the addition of more complex models of change to the derivation of the cross-sec-
tional covariance does not diminish the general problem but rather leads to even
greater difficulty in understanding individual differences in change.

Cross-Sectional Sampling of Longitudinal Trajectories:
Simulation Results

To provide a further exemplar of the analytical expectations from age-heteroge-
neous cross-sectional designs, a simulation was performed in which cross-sec-
tional estimates of the correlation between two time-dependent processes were
compared with the correlation between random effects specified in the simulated
data. Repeated measures data were generated that conform to patterns of data typi-
cally analyzed in studies of aging based on the linear model shown in Equation 1
(further details of the simulation are provided in Appendix B). A six-way analysis
of variance was used to evaluate the salient simulation conditions that contributed
to differences in the size of the correlation between X and Y in age-heterogeneous
samples. No four-way or higher-order interactions were significant. Although
many effects were significant, the two major contributing factors were magnitude
of slope correlation and mean slope, which accounted for 46% and 30% of the total
sums of squares, respectively. Other contributing factors accounting for 2% to 6%
of the total sums of squares included initial level correlation, variance in slope, er-
ror, and two interaction terms of slope correlation with mean slope and with slope
variance.
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To illustrate we describe the outcome from one simulation condition in which
there was a low positive correlation between individual slopes (.30), a high amount
of change over time (mean slope = –8 per unit time), low error variance (1), low
interindividual variation in slopes (5 and 4, for X and Y, respectively), and no asso-
ciation between initial levels or between level and slope. Under age-heteroge-
neous, cross-sectional sampling (drawing one observation at random from each
trajectory), the estimated X-Y correlation was .76, a substantial overestimate of the
specified value of .30. Across conditions, we observed moderate to highly positive
correlations and covariances even when the generated correlation was zero or neg-
ative (e.g., observed .43, .52, .62, and .74 instead of –.30, .00, .30, and .70, respec-
tively). Standardized biases (the standard deviation from the true parameter; see
Appendix B) further quantify the substantial bias in the estimates from the age-het-
erogeneous, cross-sectional sample. When the slope correlation was –30, the stan-
dardized bias was 2121. For the slope correlation conditions .00, .30, and .70, stan-
dardized bias estimates were 1745, 1304, and 363, respectively. Only when the
generated correlation was high and positive (.70) was the observed correlation a
close approximation. It is also interesting to note that greater error in age-heteroge-
neous cross-sectional sampling of time-dependent data lead to less-biased esti-
mates of the slope correlation. Further results of the simulation are available from
Scott Hofer at http://www.smhofer.net.

Summary

These analytical and simulation results demonstrate how associations between
time-dependent processes may arise from trends in mean level even in the ab-
sence of correlated rates of change and correlated initial individual differences.
This presents a fundamental problem for the evaluation of interdependency be-
tween age-related processes within age-heterogeneous, cross-sectional designs,
as there is no way to disentangle mean trends from other possible sources of
covariation. Thus, associations between variables that change with age on aver-
age should not be taken as evidence for a common causal aging mechanism,
given that such associations could have been produced solely by simple mean
age trends in the population.

CROSS-SECTIONAL ANALYSIS
OF AGE-HOMOGENEOUS SAMPLES

Mean Trends and Inferences of Association

An alternative type of cross-sectional design, the analysis of narrow-age cohorts,
examines associations between variables within and across age-homogeneous
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samples (i.e., individuals of the same or nearly the same chronological age; e.g.,
Era et al., 1996; Heikkinen, Berg, Schroll, Steen, & Viidik, 1997; Wohlwill, 1973).
Ideally, in age-homogeneous samples, age is a constant in order to minimize the in-
fluence of mean trends on the within-group covariance. If associations are calcu-
lated within groups with little to no variance in age, fixed effects or mean age
trends will not bias estimates of association between processes (in narrow-age co-
horts with some within-group age variance, the influence of mean trends on esti-
mates of association can be eliminated by partialing for age within groups).

The particular utility of sequential narrow-age cohort designs (i.e., multiple
age-homogeneous groups) for examining interdependency of age-related pro-
cesses relies on the existence of individual differences in rates of change. As time
elapses, the rank ordering of individuals at a given cross-section (e.g., age 8 or age
70) will increasingly reflect the rank ordering of individual rates of change. Corre-
lated rates of change on several different processes will be observed as moderate
and increasing covariances across narrow age-cohort samples of increasing age.
As a result, sequential narrow-age cohort designs are more suitable for examining
the interdependence of aging-related change than are age-heterogeneous designs.
Sequential narrow-age cohort designs have already been used to evaluate differen-
tiation of cognitive functioning in childhood and dedifferentiation in late life (e.g.,
Balinsky, 1941; Garrett, Bryan, & Perl, 1935; Garrett, 1946; Lindenberger &
Baltes, 1997; Reinert, 1970; Salthouse, Hancock, Meinz, & Hambrick, 1996), the
finding of decreasing or increasing covariance between age-related processes as a
function of correlated rates of development or aging, respectively. In addition, this
design has formed the basis for several gerontological studies (e.g., Era, 1987; Era
et al., 1996; Hofer, Berg, & Era, 1998, 2003).

Cross-Sectional Sampling of Longitudinal Trajectories:
Analytical Results

Beginning with Equation 2, we derive the covariance for a narrow age-cohort sam-
ple by omitting terms for fixed effects. Equation 4 shows the general case for a
covariance within a sample of individuals of exactly the same age (t is no longer
subscripted because it is constant within an age-group),

As shown, the covariance of any single narrow-age cohort will be a function of
covariance between levels and slopes, [t]Cov(LxiSyi), [t]Cov(SxiLyi), initial level
covariance, Cov(LxiLyi), and covariance related to rates of change, [t2]Cov(SxiSyi).
Average population change (fixed effects) will not enter into the estimate of as-
sociation.

172 HOFER, FLAHERTY, HOFFMAN

2( , ) ( ) [ ] ( ) [ ] ( ) [ ] ( ). (4)xi yi xi yi xi yi xi yiCov X Y Cov L L t Cov L S t Cov S L t Cov S S� � � �



In a narrow-age cohort sample, associations between variables may arise from
initial individual differences as well as common rates of aging. We must assume
that intraindividual change due to development or aging overwhelms any initial
(i.e., early childhood or adulthood) individual differences in functioning, and that
the rank order across individuals of same age (i.e., within a narrow-age cohort) will
become more and more informative regarding the associations between aging-re-
lated rates of change with the passage of time. Equation 5 shows how as time in-
creases, the effect of the covariance between the rates of change in the processes
increases as a function of t2, whereas the other sources of covariance increase only
as a function of t,

If the covariation among the rates of change is nonzero and moderate, it will
quickly overwhelm the contributions of the covariances involving initial level. The
observed association between processes will increasingly reflect individual differ-
ences in the rates of change, and will only be zero when initial individual differ-
ences are cancelled by the covariance among the rates of change, or when the true
covariance among the rates of change is indeed close to zero. Based on this reason-
ing, the within-group correlations across sequential narrow-age samples would be
expected to increase if the rates of change in the outcomes are correlated.

Cross-Sectional Sampling of Longitudinal Trajectories:
Simulation Results

A seven-way analysis of variance (the six previous factors, plus time) was used to
evaluate the salient simulation conditions that contributed to differences in the size
of the correlation between X and Y in age-homogeneous samples. The main effect
of time alone accounted for 92% of the total sums of squares, and interactions of
time with mean slope and with slope variance accounted for an additional 7%.
Faster convergence across time towards the specified X-Y correlations resulted
from greater magnitude and variability of change, and thus faster movement away
from initial patterns of covariation that are present earlier in the time sequence.

Age-homogeneous cross-sectional samples were selected from times 2 and 8
from the longitudinal trajectories generated in the same simulation condition as
described previously (i.e., correlation between slopes = .30, mean slope = –8 per

CROSS-SECTIONAL ANALYSIS OF TIME DEPENDENT DATA 173

2( , ) ( ) [ ] ( ) [ ] ( ) [ ] ( )

1 ( , ) ( ) [1] ( ) [1] ( ) [1] ( )

2 ( , ) ( ) [2] ( ) [2] ( ) [4] (

xi yi xi yi xi yi xi yi

xi yi xi yi xi yi xi yi

xi yi xi yi xi yi

t Cov X Y Cov L L t Cov L S t Cov S L t Cov S S

t Cov X Y Cov L L Cov L S Cov S L Cov S S

t Cov X Y Cov L L Cov L S Cov S L Cov S

� � � � �

� � � � � �

� � � � � � )

3 ( , ) ( ) [3] ( ) [3] ( ) [9] ( )

4 ( , ) ( ) [4] ( ) [4] ( ) [16] ( ). (5)

xi yi

xi yi xi yi xi yi xi yi

xi yi xi yi xi yi xi yi

S

t Cov X Y Cov L L Cov L S Cov S L Cov S S

t Cov X Y Cov L L Cov L S Cov S L Cov S S

� � � � � �

� � � � � �



unit time, error variance = 1, slope variance for X = 5, for Y = 4; see Appendix B).
The obtained X-Y correlation at time 2 was near zero as expected, given the initial
level correlation of zero. With time, however, the X-Y correlation increasingly re-
flected the covariance between rates of change, as observed at time 8, where the
X-Y correlation was .30 as specified in the data. As shown in Figure 2, convergence
towards the generated slope correlations was attained at later points in time across
all conditions.

Another important feature of sequential narrow-age cohort designs is that they
permit evaluation of increases or decreases in covariation arising from cumulative
effects of correlated rates of change, as shown graphically in Figure 3. Thus, se-
quential narrow-age cohort designs can distinguish covariance arising from initial
individual differences and common or unique rates of aging within individuals
from covariance arising from between-person differences, and may lead to differ-
ent conclusions than those from age-heterogeneous analyses. For example, in nar-
row-age cohort population samples of individuals aged 75 years from three coun-
tries, Hofer, Berg, and Era (1998, 2003) found no evidence for the common-cause
hypothesis—few associations were found between sensory acuity, balance, and
cognitive processing, in contrast to previous research. Similarly, Sliwinski and
Buschke (1999) reported that while statistical control of processing speed greatly
attenuated cross-sectional age effects, it did not attenuate longitudinal effects. If
strong associations found between variables in age-heterogeneous cross-sectional
samples are not found within age-homogeneous samples where mean trends can
be controlled, or in longitudinal analyses in which correlated rates of change can
be estimated separately from mean trends, then one must entertain the notion that
the association between age-related processes merely reflects the fact that both
variables change, on average, over time.
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FIGURE 2 Observed correlations between rates of change (random slope effects) across age
homogeneous samples at four population values.
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FIGURE 3 Sequential narrow age-cohort (SNAC) design demonstrating effect of common
rates of aging.
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FIGURE 4 Effect of chronological age regression partial on association between two age-de-
pendent variables.



THE UTILITY OF STATISTICALLY PARTIALING
FOR CHRONOLOGICAL AGE

An approach often taken to reduce the influence of mean trends within age-hetero-
geneous, cross-sectional studies is the statistical partialing of the effect of age from
the association between processes (i.e., the removal of age-related effects resulting
from covariance due to mean differences across individuals varying in age). How-
ever, the partial correlation between X and Y controlling for age, rxy.age, is the same
as the zero-order correlation for a narrow-age cohort sample at the mean age of the
age-heterogeneous sample (Lord, 1963). A similar result would be obtained by ag-
gregating the zero-order covariances across the multiple narrow-age cohorts that
comprise the full age-heterogeneous sample. The cumulative influences of corre-
lated rates of change (i.e., increasing or decreasing covariation across time) still re-
main, however, and are simply averaged over in the age-partial analysis of an
age-heterogeneous sample to produce an estimate of what the association would
be at the average age of the sample, as shown in Figure 4. Thus, the age-partialing
approach is not making full use of the available data, in that information regarding
the changing patterns of covariation between processes across time is lost.

Variance decomposition approaches for estimating the proportion of common
or shared age-related variance are also problematic in the age-heterogeneous,
cross-sectional design. Indeed, what is estimated as shared age-related variance is
confounded with any mean trends present in the data. Sources of common vari-
ance, observed in terms of shared age-related covariance and in common factors
associated with age, provide little information regarding individual differences in
rates of change when age-related mean trends are present. For this reason, when
only cross-sectional data are available, we view the analysis of sequential nar-
row-age cohort samples as more useful in examining covariances among age-re-
lated variables, given that direct estimates of the extent to which covariance be-
tween processes increases or decreases with time can be represented explicitly
(i.e., with product terms for Age Group × Process interactions).

DISCUSSION

Although cross-sectional studies of development and aging necessarily focus on
age-related individual differences and so confound age differences with age
changes, they remain one of the most utilized designs for understanding develop-
mental processes, particularly that of aging (Schaie & Hofer, 2001). Variance de-
composition has played a central role in the analysis of cross-sectional samples
varying broadly in age, for cognitive aging research in particular. For example,
Salthouse and Czaja (2000) reported high magnitudes of shared age-related
covariance in diverse cognitive processes and that the “current results strongly
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suggest that broad explanatory mechanisms play an important role in the age-re-
lated effects found in many cognitive variables” (p. 54). The problem is that many
researchers assume that they are studying aging-related changes in individuals,
and that cross-sectional estimates of the association between processes are useful
in this regard. In this article we sought to clarify the analytical basis for estimating
the interdependence between time-dependent processes, as well as the interpreta-
tional basis when associations are estimated within age-heterogeneous and
age-homogeneous cross-sectional designs. We offer the following conclusions on
the basis of our analytical and simulation results:

1. Analysis of cross-sectional samples varying broadly in age will result in up-
wardly biased estimates of association between processes exhibiting mean trends
over time. This bias in estimates of association results from the contribution of
fixed effects or mean trends, in addition to random effects, to an individual’s score
at a given time. The population mean trend will enter into the covariance in
age-heterogeneous samples as a function of the variability of the age range sam-
pled and the magnitude of average change. Because of this, we regard the evidence
based on age-heterogeneous cross-sectional samples, when used for understand-
ing covariance of aging-related change, to be highly misleading. Cross-sectional
analyses can be useful, however, in examining mean trends per se (i.e., experimen-
tal designs comparing young and old individuals), although Faust, Balota, Spieler,
and Ferraro (1999) have also demonstrated how group differences in response time
can often overshadow individual differences and produce spurious overadditive in-
teractions. Finally, variables that change little over time within age-heterogeneous
samples may not have mean trends as a major source of their covariances, and thus
estimates of association between such processes may be less biased.

2. In analyses of cross-sectional samples of narrow-age cohorts, the influ-
ence of mean trends is removed from estimates of covariance for a given cohort,
resulting in substantially less bias in the estimates of correlations between rates
of change than in age-heterogeneous samples. Further, changing patterns of
covariance across age (i.e., dedifferentiation) arising from correlated rates of
change can be observed directly across cohorts. For these reasons, we regard the
analysis of narrow-age cohorts to be more informative than the analysis of
age-heterogeneous samples in evaluating correlations between rates of aging and
the generality or specificity of aging-related changes. An additional strength of
the narrow-age cohort design is that it permits analysis of existing age-heteroge-
neous, cross-sectional data, either by analyzing a single narrow-age cohort or by
carving a sample varying broadly in age into sequential narrow-age cohorts. For
analysis of narrow-age cohorts in which age is not exactly constant, one could
partial for age within subsamples, and then analyze associations of age-partialed
estimates across narrow-age cohorts. Note that this is not the same as partialing
for age overall in age-heterogeneous cross-sectional samples, which we do not
recommend.
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3. Regression analyses that partial for chronological age in age-heterogeneous
samples estimate associations at the average age of the sample and ignore age-re-
lated changes in patterns of association, are thus, are not highly informative re-
garding the interdependence between rates of change. We have argued that the
most informative information regarding cross-sectional associations among
age-related outcomes is the interaction of age (or age-group) on the magnitude of
correlations among the outcomes of interest (Hofer, Sliwinski, & Flaherty, 2002).
The estimation of shared age-related variance from regression decomposition
analysis may be primarily informative about the mean trends across outcome vari-
ables and this is a poor basis for understanding individual differences in aging.
Certainly, the description and comparison of mean trends is a fundamental aspect
of understanding general change in the population but this is separate from an anal-
ysis of individual differences. Additionally, because there is only one measure for
each individual in a cross-sectional study, we must assume that population trends
can appropriately describe the level of each individual at a given age.

Finally, we offer the following observations about analysis of longitudinal sam-
ples that begin with individuals varying broadly in age. Despite providing direct
information on within-individual change, variation, and covariation of aging-re-
lated processes, the same problem of mean-induced associations can also affect as-
sociations between rates of change in longitudinal samples as in cross-sectional
samples. Rates of change may correlate due to age-based periods of relatively
greater change. Indeed, longitudinal designs that begin with a relatively homoge-
neous age sample at the first occasion may permit a clearer interpretation of the as-
sociations in much the same way as the cross-sectional age-homogeneous designs
permit. Researchers might consider employing multiple cohorts that are relatively
homogeneous in age (e.g., cohorts of 20, 35, 50, 65, and 80 years in age), which
would provide ample sample size for age-homogeneous cross-sectional analyses
and could also serve as a foundation for longitudinal investigations. Other impor-
tant sampling issues, such as cohort differences and population mortality, will in-
fluence results from age-heterogeneous designs, including the inspection of
cross-group levels of association.

CONCLUSION

In addition to the often cited statement that “correlation does not imply causation,”
our main message is that “correlation does not always imply association.” Finding
associations of scores in samples that vary in age does not imply association be-
tween rates of change at the level of the individual. The analytic and simulation re-
sults reported here have demonstrated that analysis of variables that exhibit mean
change over time — typical outcomes in developmental and aging studies — will
usually yield an overestimate of the association between processes unless the true
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association is positive and high. High magnitudes of association can obtain due to
mean trends even when the population association among rates of change is zero or
negative.

The potential for the confounding of fixed and random effects in estimates of
association appears to be profound in developmental and aging research. The in-
terpretations from many of these investigations have led researchers to hypothesize
that general, common causal effects produce many of the observed age-related
changes across a variety of functions. It is our opinion that many of the associa-
tions between age-related variables reported in the literature may be at least up-
wardly biased in terms of their importance, and some may be completely spurious.

We present an alternative solution, based on analysis of age-homogeneous co-
horts, which provides what we consider to be a superior cross-sectional approach
for understanding the relative interdependence of aging-related changes within in-
dividuals. The analysis of narrow-age cohorts offers certain strengths over the
age-heterogeneous analysis, mainly that it eliminates covariance arising from
mean trends present in developmental data. While we do not regard the age-homo-
geneous sampling design as a strong alternative to longitudinal designs and analy-
sis, it does permit the reanalysis of new and existing cross-sectional samples and
permits an alternative evaluation of developmental and aging hypotheses.
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APPENDIX A
Covariance Expectation in Age-Heterogeneous

and Age-Homogeneous Cross-Sectional Designs based
on Simple Linear Model of Change

Covariance Expectation in Age-Homogeneous
Cross-Sectional Designs

Equation A1 shows a simple linear model of change such that a particular individ-
ual’s scores on X and Y at a time t are a function of both fixed and random effects
(parameters subscripted by i refer to an individual’s deviation from the population
mean),

Where Lx, Ly are population average intercepts or levels, Lxi, Lyi are individual is
deviations from the population average intercepts, t denotes time or age, Sx, Sy are
the population average rates of change or slopes, Sxi, Syi are individual is deviations
from the population average rates of change, and exi, eyi denote random errors, as-
sumed to be normally distributed and independent. Equation A3 shows the
covariance between two time dependent processes, X and Y, which is the result of
substituting the population expectation of Equation A1 (where ti denotes an indi-
vidual is age at time t) into the formula for a covariance shown as Equation A2,

and
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Equation A4 derives the mean of the X process (with an equivalent representa-
tion for the expected mean for process Y). According to the algebra of expectation,
the expectation of a constant is the constant; therefore, E(Lx) = Lx. The random ef-
fects are deviations from the population mean; therefore E(Lxi) = 0. If we have a
variable multiplied by a constant, the constant can be pulled out of the expectation;
therefore, . To compute the expectation of Sxiti, we make
an assumption that an individual’s slope deviation, Sxi, is independent of time ti.
This assumption is not required, but it makes the following derivation more
straightforward. With this assumption, E(Sxiti) = E(Sxi)E(ti). Because Sxi are devia-
tions from a mean, E(Sxi) = 0, and therefore E(Sxiti) = 0. Last, because the error dis-
tribution is assumed to have a mean of zero, E(exi) = 0, leaving

Substituting the expectation for the mean of X and Y processes into Equation A3
gives,

The fixed effects for level cancel giving Equation A6,

Expanding Equation A6 produces Equation A7, a general formula for a
cross-sectional covariance between two processes based on a linear model of
change. However, in Equation A7 we have dropped the error terms. Because errors
are always assumed to be uncorrelated with other factors, any expectations involv-
ing an error term will factor into a product of expectations, one of which is E(e) = 0.
Furthermore, we can drop ( ) because they are the expectation of a
constant multiplied by a variable with an expectation of zero (Lxi, Lyi),

The covariance involving fixed effects only can be shown by dropping all terms
involving random effects. With only fixed effects present, Equation A7 simplifies
to Equation A8,
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Distributing the expectation over the terms on the right-hand side of in Equation
A8 and dropping terms that cancel leads to Equation A9,

To obtain Equation A9, we recognize that and that
.

Covariance Expectation in Age-Homogeneous
Cross-Sectional Designs

Beginning with Equation A7, we derive the covariance for a narrow-age cohort
sample. Because age (t) is the same for all members of a particular group, the fixed
effects are constant and do not contribute to the covariance between processes, and
thus can be omitted. Equation A10 shows the covariance within a sample of indi-
viduals of exactly the same age [VAR(t) = 0],

Note that t is no longer subscripted because it is assumed to be constant within
age-group (ti = c, where c is a constant age for a particular group). Also, in Equa-
tion A10, the processes of change in X and Y are not assumed to be independent; it
is the general case for a single age group.

By manipulating Equation A2 to obtain , Equation
A10 becomes

Because the means of the random effects terms are zero, all the means on the
right of Equation A11 drop out, leaving,
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APPENDIX B

Effects of Age-Heterogeneity on Associations
in Cross-Sectional Samples of Simulated Longitudinal Data

Each process, X and Y, is a simple linear function of time, as shown in Equation 1.
Fixed and random intercepts and slopes were specified for each process, as well as
correlations between the random components of the intercepts and slopes. The val-
ues of these functions were chosen with expected features of empirical data to
form a broad range of possible relations between two linear processes. This per-
mitted examination of a range of plausible values with which to evaluate differ-
ences between age-heterogeneous and age-homogeneous estimates of association.
The data were generated by using a bivariate normal mixed model of the form:

Parameters subscripted by i refer to the random effects. An individual’s score at a
given time is a function of the population average intercept or level (LX, LY), ran-
dom effects as deviation from population average intercept (LXi, LYi), population
average rate of change or slope ([t]SX, [t]SY), random effects as deviation from pop-
ulation average rate of change ([t]SXi, [t]SYi), and combined sources of systematic
and random variance (eX, eY).

In addition, data were generated to permit covariance between random effects of
level and slope under multivariate normal distributions with expected population
variance and covariance structure. All of the simulation factors were completely
crossed forming a simulation study with 192 cells. As seen in Table B1, manipulated
factors included the following: mean slope for rate of change per time interval (–5
and–8,with thesamevaluesspecifiedforbothcoefficientswithineachcondition,ei-
ther –5, –5, or –8, –8), individual variability in the slopes (either variances of 5 for X
and4forY, or10 forXand8forY),correlationbetween the intercepts (i.e., amountof
association at the beginning of each trajectory, .0, .3, or .6,), correlation between the
slopes (i.e., associatedbetweenratesofchange,–.3,0 , .3,or .7),correlationbetween
interceptandslope (i.e.,howinitial status is related tochange, .0 or–.3) , andrandom
error (variance of 1 or 10, where errors were drawn from a normal distribution with a
mean of zero in both conditions). Although the correlation between the intercepts
strongly influences the correlations observed between the X and Y processes, partic-
ularly at early time points, the correlation between slopes will quickly overwhelm
any such initial association with the passage of time. Random error was included to
reflect the combination of measurement error and nonsystematic within person vari-
ation commonly encountered in social science research.
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Data Generation

The simulation was run using a series of scripts written in the S-Plus program-
ming language (Mathsoft, 1997). Each of the 192 cells of the simulation con-
tained 500 replications of a dataset of 500 individuals with 100 generated values
for time, ranging from 1 to 10 by increments of .1. Variances, covariances, and
correlations were computed and stored as output. Analyses were performed on
both correlation and covariance metrics to evaluate the degree to which increas-
ing variance associated with linear models of this type (e.g., Mehta & West,
2000) influenced the results. Standardized bias of the estimates was calculated
for each condition as the difference between the average estimate (of the correla-
tion between X and Y) and the true parameter value, divided by the SD of the es-
timates, and multiplied by 100 to give the percentage standard deviation for a
particular simulation condition.

To estimate the X-Y correlation from an age-heterogeneous, cross-sectional
sample, a randomly drawn single “time-point” was chosen for each person and the
correlation between the processes was calculated from that random sample of 500
observations. This process was repeated 10 times for each data set, producing 10
correlation estimates of the correlation between processes based on random,
cross-sectional, age-heterogeneous samples. Because we generated longitudinal
data, we could draw multiple cross-sectional samples from the data to make these
multiple estimates. Therefore, each cell of the simulation contained 5000 esti-
mates of the age-heterogeneous correlation between the processes. Eleven esti-
mates of the X-Y correlation were also obtained for age-homogeneous, cross-sec-
tional samples by computing the correlation coefficient at each time point from
times 0 to 10. Age-homogeneous correlations reflect the combined effect of the
correlation of the intercepts and the slopes of the processes.
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TABLE B1
Simulation Factor Levels

Condition No. of Levels Values of Levels

Mean level 1 100
Variance level 1 100
Level correlation (Lc) 3 0.0, 0.3, 0.6
Mean slope (Sm) 2 –5, –8
Variance slope (Sv) 2 (5, 4), (10, 8)
Slope correlation (Sc) 4 –0.3, 0.0, 0.3, 0.7
Slope-level correlation (SLc) 2 –0.3, 0.0
Error (E) 2 1, 10
Time (age-homogeneous only) 11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


