
Review of Multilevel Models 
for Longitudinal Data
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• Topics:
 Concepts in longitudinal multilevel modeling
 Describing within-person fluctuation using ACS models
 Describing within-person change using random effects
 Likelihood estimation in random effects models
 Describing nonlinear patterns of change
 Time-invariant predictors



What is a Multilevel Model (MLM)?
• Same as other terms you have heard of:
 General Linear Mixed Model (if you are from statistics)

 Mixed = Fixed and Random effects
 Random Coefficients Model (also if you are from statistics)

 Random coefficients = Random effects
 Hierarchical Linear Model (if you are from education)

 Not the same as hierarchical regression

• Special cases of MLM:
 Random Effects ANOVA or Repeated Measures ANOVA
 (Latent) Growth Curve Model (where “Latent”  SEM)
 Within-Person Fluctuation Model (e.g., for daily diary data)
 Clustered/Nested Observations Model (e.g., for kids in schools)
 Cross-Classified Models (e.g., “value-added” models) 
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The Two Sides of Any Model
• Model for the Means:
 Aka Fixed Effects, Structural Part of Model
 What you are used to caring about for testing hypotheses
 How the expected outcome for a given observation varies as a 

function of values on predictor variables

• Model for the Variance:
 Aka Random Effects and Residuals, Stochastic Part of Model
 What you are used to making assumptions about instead
 How residuals are distributed and related across observations 

(persons, groups, time, etc.)  these relationships are called 
“dependency” and this is the primary way that multilevel 
models differ from general linear models (e.g., regression)
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Review:  Variances and Covariances

PSYC 945: Lecture 1 4

Variance:
Dispersion of y

N = # people,  t = time,  i = person
k = # fixed effects, yොti = y predicted from fixed effects

Covariance:
How y’s go together, 
unstandardized

Correlation:
How y’s go together, 
standardized (−1 to 1)
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Dimensions for Organizing Models
• Outcome type: General (normal) vs. Generalized (not normal)
• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome)  OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 
fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 
fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 
fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)

• “Linear” means the fixed effects predict the link-transformed DV in a linear 
combination of (effect*predictor) + (effect*predictor)…
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Note: Least 
Squares is 
only for GLM



What can MLM do for you?
1. Model dependency across observations

• Longitudinal, clustered, and/or cross-classified data? No problem!

• Tailor your model of sources of correlation to your data

2. Include categorical or continuous predictors at any level
• Time-varying, person-level, group-level predictors for each variance

• Explore reasons for dependency, don’t just control for dependency

3. Does not require same data structure for each person
• Unbalanced or missing data? No problem!

4. You already know how (or you will soon)!
• Use SPSS Mixed, SAS Mixed, Stata, Mplus, R, HLM, MlwiN…

• What’s an intercept? What’s a slope? What’s a pile of variance?
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Levels of Analysis in Longitudinal Data
• Between-Person (BP) Variation:

 Level-2 – “INTER-individual Differences” – Time-Invariant
 All longitudinal studies begin as cross-sectional studies

• Within-Person (WP) Variation:
 Level-1 – “INTRA-individual Differences” – Time-Varying
 Only longitudinal studies can provide this extra information

• Longitudinal studies allow examination of both types of 
relationships simultaneously (and their interactions)
 Any variable measured over time usually has both BP and WP variation
 BP = more/less than other people; WP = more/less than one’s average

• I use “person” here, but level-2 can be anything that is 
measured repeatedly (like animals, schools, countries…)
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A Longitudinal Data Continuum
• Within-Person Change: Systematic change

 Magnitude or direction of change can be different across individuals
 “Growth curve models”  Time is meaningfully sampled

• Within-Person Fluctuation: No systematic change
 Outcome just varies/fluctuates over time (e.g., emotion, stress)
 Time is just a way to get lots of data per individual
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The Two Sides of a (BP) Model
୧ ଴ ଵ ୧ ଶ ୧ ଷ ୧ ୧ ୧

• Model for the Means (Predicted Values):
• Each person’s expected (predicted) outcome is a weighted linear 

function of his/her values on X and Z (and here, their interaction), 
each measured once per person (i.e., this is a between-person model)

• Estimated parameters are called fixed effects (here, β଴, βଵ, βଶ, and βଷ)

• Model for the Variance (“Piles” of Variance):
• e୧ ∼ N 0, σୣଶ  ONE residual (unexplained) deviation
• e୧ has a mean of 0 with some estimated constant variance σୣଶ, 

is normally distributed, is unrelated to X and Z, and is unrelated across 
people (across all observations, just people here)

• Estimated parameter is residual variance only in above BP model
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Empty +Within-Person Model
Start off with Mean of Y as 
“best guess” for any value:

= Grand Mean

= Fixed Intercept

Can make better guess by 
taking advantage of 
repeated observations:

= Person Mean 

 Random Intercept
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Empty +Within-Person Model
Variance of Y  2 sources:

Between-Person (BP) Variance:
 Differences from GRAND mean

 INTER-Individual Differences

Within-Person (WP) Variance:
 Differences from OWN mean

 INTRA-Individual Differences

 This part is only observable 
through longitudinal data.

Now we have 2 piles of 
variance in Y to predict.
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Hypothetical Longitudinal Data
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“Error” in a BP Model for the Variance:
Single-Level Model
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eti represents all Y variance
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“Error” in a +WP Model for the Variance:
Multilevel Model
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U0i

U0i = random intercept that represents BP variance in mean Y 
eti = residual that represents WP variance in Y

e1i
e2i e3i

e4i e5i

U0i also represents constant 
dependency (covariance) due to 

mean differences in Y across persons



Empty +Within-Person Model
Variance of Y  2 sources:

Level 2 Random Intercept 
Variance (of U0i, as ૌ܃૛૙):

 Between-Person Variance

 Differences from GRAND mean

 INTER-Individual Differences

Level 1 Residual Variance
(of eti, as ો܍૛):

 Within-Person Variance

 Differences from OWN mean

 INTRA-Individual Differences
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BP vs. +WP Empty Models
• Empty Between-Person Model (used for 1 occasion):

yi =   β0 +  ei

 β0 = fixed intercept = grand mean

 ei = residual deviation from GRAND mean

• Empty +Within-Person Model (>1 occasions):

yti =   β0 +  U0i + eti

 β0 = fixed intercept = grand mean

 U0i = random intercept = individual deviation from GRAND mean

 eti = time-specific residual deviation from OWN mean
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Intraclass Correlation (ICC)
Intraclass Correlation (ICC):

ICC ൌ
BP

BP ൅WP ൌ
Intercept	Var.

Intercept	Var. ൅Residual	Var. ൌ
ૌ܃૛૙

ૌ܃૛૙ ൅ ો܍૛

• ICC = Proportion of total variance that is between persons
• ICC = Average correlation among occasions (in RCORR)
• ICC is a standardized way of expressing how much we need to 

worry about dependency due to person mean differences
(i.e., ICC is an effect size for constant person dependency)
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Counter-Intuitive: Between-Person Variance is in the 
numerator, but the ICC is the correlation over time!

ICC = BTW / BTW + within

 Large ICC 

 Large correlation over time

ICC = btw / btw + WITHIN
 Small ICC 

 Small correlation over time



BP and +WP Conditional Models
• Multiple Regression, Between-Person ANOVA: 1 PILE
 yi = (β0 + β1Xi + β2Zi…) + ei

 ei  ONE residual, assumed uncorrelated with equal variance 
across observations (here, just persons)  “BP (all) variation”

• Repeated Measures, Within-Person ANOVA: 2 PILES
 yti = (β0 + β1Xi + β2Zi…) + U0i + eti

 U0i  A random intercept for differences in person means, 
assumed uncorrelated with equal variance across persons 
 “BP (mean) variation”= ૌ܃૛૙ is now “leftover” after predictors

 eti  A residual that represents remaining time-to-time variation, 
usually assumed uncorrelated with equal variance across 
observations (now, persons and time)  “WP variation”
= ો܍૛ is also now “leftover” after predictors
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ANOVA for longitudinal data?
• There are 3 possible “kinds” of ANOVAs we could use:

 Between-Persons/Groups, Univariate RM, and Multivariate RM

• NONE OF THEM ALLOW:
 Missing occasions (do listwise deletion due to least squares)
 Time-varying predictors (covariates are BP predictors only)

• Each includes the same model for the means for time: all 
possible mean differences (so 4 parameters to get to 4 means)
 “Saturated means model”: β0 + β1(T1) + β2(T2) + β3(T3)
 The Time variable must be balanced and discrete in ANOVA!

• These ANOVAs differ by what they predict for the correlation 
across outcomes from the same person in the model for the 
variance…
 i.e., how they “handle dependency” due to persons, or what they says 

the variance and covariance of the yti residuals should look like…
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1. Between-Groups ANOVA
• Uses eti only (total variance = a single variance term of σୣଶ)
• Assumes no covariance at all among observations from the 

same person: Dependency? What dependency?
• Will usually be very, very wrong for longitudinal data

 WP effects tested against wrong residual variance 
(significance tests will often be way too conservative)

 Will also tend to be wrong for clustered data, but less so 
(because the correlation among persons from the same group is not 
as strong as the correlation among occasions from the same person)

• Predicts a variance-covariance matrix
over time (here, 4 occasions) like this, 
called “Variance Components”
(R matrix is TYPE=VC on REPEATED):
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2a. Univariate Repeated Measures
• Separates total variance into two sources:

 Between-Person (mean differences due to U0i, or ૌ܃૛૙)

 Within-Person (remaining variance due to eti, or ો܍૛)

• Predicts a variance-covariance matrix
over time (here, 4 occasions) like this, 
called “Compound Symmetry”
(R matrix is TYPE=CS on REPEATED): 
 Mean differences from U0i are the only

reason why occasions are correlated

• Will usually be at least somewhat wrong for longitudinal data
 If people change at different rates, 

the variances and covariances
over time have to change, too
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The Problem with Univariate RM ANOVA
• Univ. RM ANOVA τ୙ଶ ଴ ൅ σୣଶ predicts compound symmetry:

 All variances and all covariances are equal across occasions

 In other words, the amount of error observed should be the same at any 
occasion, so a single, pooled error variance term makes sense

 If not, tests of fixed effects may be biased (i.e., sometimes tested against 
too much or too little error, if error is not really constant over time)

 COMPOUND SYMMETRY RARELY FITS FOR LONGITUDINAL DATA

• But to get the correct tests of the fixed effects, the data must 
only meet a less restrictive assumption of sphericity:
 In English  pairwise differences between adjacent occasions have equal 

variance and covariance (satisfied by default with only 2 occasions)

 If compound symmetry is satisfied, so is sphericity (but see above)

 Significance test provided in ANOVA for where data meet sphericity assumption

 Other RM ANOVA approaches are used when sphericity fails…
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The Other Repeated Measures ANOVAs…
• 2b. Univariate RM ANOVA with sphericity corrections

 Based on ε  how far off sphericity (from 0-1, 1=spherical)
 Applies an overall correction for model df based on estimated ε, 

but it doesn’t really address the problem that data ≠ model

• 3. Multivariate Repeated Measures ANOVA
 All variances and covariances are estimated

separately over time (here, 4 occasions), 
called “Unstructured” (R matrix is TYPE=UN 
on REPEATED)—it’s not a model, it IS the data:

 Because it can never be wrong, UN can be useful for complete and 
balanced longitudinal data with few occasions (e.g., 2-4)

 Parameters = 
#୭ୡୡୟୱ୧୭୬ୱ	∗ሺ#୭ୡୡୟୱ୧୭୬ୱ	ାଵሻ

ଶ
so can be hard to estimate

 Unstructured can also be specified to include random intercept variance τ୙ଶ ଴
 Every other model for the variances is nested within Unstructured 

(we can do model comparisons to see if all other models are NOT WORSE)
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Summary: ANOVA approaches for 
longitudinal data are “one size fits most”

• Saturated Model for the Means (balanced time required)
 All possible mean differences

 Unparsimonious, but best-fitting (is a description, not a model)

• 3 kinds of Models for the Variances (complete data required)
 BP ANOVA (σୣଶ only)  assumes independence and constant variance over time

 Univ. RM ANOVA τ୙ଶ ଴ ൅ σୣଶ  assumes constant variance and covariance

 Multiv. RM ANOVA (whatever)  no assumptions; is a description, not a model

• MLM will give us more flexibility in both parts of the model:
 Fixed effects that predict the pattern of means (polynomials, pieces)

 Random intercepts and slopes and/or alternative covariance structures that 
predict intermediate patterns of variance and covariance over time
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there is no structure that shows up in a 
scalar equation (i.e., the way U0i + eti does) 



Review of Multilevel Models 
for Longitudinal Data
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• Topics:
 Concepts in longitudinal multilevel modeling
 Describing within-person fluctuation using ACS models
 Describing within-person change using random effects
 Likelihood estimation in random effects models
 Describing nonlinear patterns of change
 Time-invariant predictors



Modeling Change vs. Fluctuation

Model for the Means:
• WP Change   describe pattern of average change (over “time”)
• WP Fluctuation *may* not need anything (if no systematic change)

Model for the Variances:
• WP Change   describe individual differences in change (random effects)

 this allows variances and covariances to differ over time
• WP Fluctuation describe pattern of variances and covariances over time
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Big Picture Framework: Models for 
the Variance in Longitudinal Data
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Alternative Covariance Structure Models
• Useful in predicting patterns of variance and covariance that 

arise from fluctuation in the outcome over time:
 Variances: Same (homogeneous) or different (heterogeneous)?
 Covariances: Same or different? If different, what is the pattern?

 Models with heterogeneous variances predict correlation instead of covariance
 Often don’t need any fixed effects for systematic effects of time in the 

model for the means (although this is always an empirical question)

• Limitations for most of the ACS models:
 Require equal-interval occasions (they are based on idea of “time lag”)
 Require balanced time across persons (no intermediate time values)
 But do not require complete data (unlike when CS and UN are 

estimated via least squares in ANOVA instead of ML/REML in MLM)

• ACS models do require some new terminology to introduce…
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Two Families of ACS Models
• So far, we’ve referred to the variance and covariance matrix of the 

longitudinal outcomes as the R matrix
 We now refer to these as “R-only models” (use REPEATED statement only)
 Although the R matrix is actually specified per individual, ACS models 

usually assume the same R matrix for everyone
 R matrix is symmetric with dimensions n x n, in which n = # occasions per 

person (although people can have missing data, the same set of possible
occasions is required across people to use most R-only models)

• 3 other matrices we’ll see in “G and R combined” ACS models:
 G = matrix of random effects variances and covariances (stay tuned)
 Z = matrix of values for predictors that have random effects (stay tuned)
 V = symmetric n x n matrix of total variance and covariance over time

 If the model includes random effects, then G and Z get combined with R to make V
as ܄ ൌ ୘܈۵܈ ൅ ܀ (accomplished by adding the RANDOM statement)

 If the model does NOT include random effects in G, then ܄ ൌ so, R-only …܀
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R-Only ACS Models
• The R-only models to be presented next are all specified using the 

REPEATED statement only (no RANDOM statement)

• They are explained by showing their predicted R matrix, which 
provides the total variances and covariances across occasions
 Total variance per occasion on diagonal
 Total covariances across occasions on off-diagonals
 I’ve included in “ “ the labels SAS uses for each parameter

• Correlations across occasions can be calculated given variances and 
covariances, which would be shown in the RCORR matrix (available 
in SAS PROC MIXED)
 1’s on diagonal (standardized variables), correlations on off-diagonal

• Unstructured (TYPE=UN) will always fit best by −2LL
 All ACS models are nested within Unstructured (UN = the data)
 Goal: find an ACS model that is simpler but not worse fitting than UN
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R-Only ACS Models: CS/CSH
• Compound Symmetry: TYPE=CS

 2 parameters: 
 1 “residual” variance ો܍૛

 1 “CS” covariance 
across occasions

 Constant total variance: CS ൅ σୣଶ

 Constant total covariance: CS

• Compound Symmetry Heterogeneous: TYPE=CSH
 n+1 parameters: 

 n separate “Var(n)”
total variances ો࢔܂૛

 1 “CSH” total correlation
across occasions

 Separate total variances are estimated directly
 Still constant total correlation: CSH (but has non-constant covariances) 
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R-Only ACS Models:  AR1/ARH1
• 1st Order Auto-Regressive: TYPE=AR(1)

 2 parameters: 
 1 constant total variance 
ો܂૛ (mislabeled “residual”)

 1 “AR1” total auto-correlation rT
across occasions

 r୘ଵ is lag-1 correlation, r୘ଶ is lag-2 correlation, r୘ଷ is lag-3 correlation…. 

• 1st Order Auto-Regressive Heterogeneous: TYPE=ARH(1)
 n+1 parameters: 

 n separate “Var(n)”
total variances ો࢔܂૛

 1 “ARH1” total auto-
correlation rT across occasions

 r୘ଵ is lag-1 correlation, r୘ଶ is lag-2 correlation, r୘ଷ is lag-3 correlation…. 
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R-Only ACS Models:  TOEPn/TOEPHn
• Toeplitz(n): TYPE=TOEP(n)

 n parameters: 
 1 constant total variance 
ો܂૛ (mislabeled “residual”)

 n−1 “TOEP(lag)” cTn banded
total covariances across occasions

 c୘ଵ	is lag-1 covariance, c୘ଶ is lag-2 covariance, c୘ଷ	is lag-3 covariance…. 

• Toeplitz Heterogeneous(n): TYPE=TOEPH(n)
 n + (n−1) parameters: 

 n separate “Var(n)”
total variances ો࢔܂૛

 n−1 “TOEPH(lag)” rTn
banded total correlations 
across occasions

 r୘ଵis lag-1 correlation, r୘ଶ is lag-2 correlation, r୘ଷ is lag-3 correlation…. 
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Comparing R-only ACS Models
• Baseline models: CS =simplest, UN = most complex

 Relative to CS, more complex models fit “better” or “not better”
 Relative to UN, less complex models fit “worse” or “not worse”

• Other rules of nesting and model comparisons:
 Homogeneous variance models are nested within heterogeneous 

variance models (e.g., CS in CSH, AR1 in ARH1, TOEP in TOEPH)
 CS and AR1 are each nested within TOEP (i.e., TOEP can become 

CS or AR1 through restrictions of its covariance patterns)
 CS and AR1 are not nested (because both have 2 parameters)
 R-only models differ in unbounded parameters, so can be compared 

using regular −2∆LL tests (instead of mixture −2∆LL tests)
 Good idea to start by assuming heterogeneous variances until you settle 

on the covariance pattern, then test if het. var. are still necessary
 When in doubt, just compare AIC and BIC (useful even with −2∆LL tests) 
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The Other Family of ACS Models
• R-only models directly predict the total variance and covariance
• G and R models indirectly predict the total variance and covariance 

through between-person (BP) and within-person (WP) sources of 
variance and covariance  So, for this model: yti = β0 + U0i + eti

 BP = G matrix of level-2 random effect (U0i) variances and covariances
 Which effects get to be random (whose variance and covariances are then 

included in G) is specified using the RANDOM statement (always TYPE=UN)
 Our ACS models have a random intercept only, so G is 1x1 scalar of ሾૌ܃૛૙ሿ

 WP = R matrix of level-1 (eti) residual variances and covariances 
 The n x n R matrix of residual variances and covariances that remain after 

controlling for random intercept variance is then modeled with REPEATED
 Total = V = n x n matrix of total variance and covariance over time that 

results from putting G and R together: ܄ ൌ ୘܈۵܈ ൅ ܀
 Z is a matrix that holds the values of predictors with random effects, 

but Z will be an n x 1 column of 1’s for now (random intercept only)

PSYC 945: Lecture 1 36



A “Random Intercept” (G and R) Model

PSYC 945: Lecture 1 37

0

2
Uτ  

Unstructured G Matrix
(RANDOM statement)
Each person has same 1 x 1 G
matrix (no covariance across 
persons in two-level model)

Diagonal (VC) R Matrix
(REPEATED statement)

Each person has same n x n R
matrix  equal variances and 0 

covariances across time 
(no covariance across persons)
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CS as a “Random Intercept” Model
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RI and DIAG: Total predicted data matrix is called V matrix, created 
from the G [TYPE=UN] and R [TYPE=VC] matrices as follows:
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Does the end result V look 
familiar? It should: CS = ૌ܃૛૙

So if the R-only CS model 
(the simplest baseline) can be 
specified equivalently using 
G and R, can we do the same 
for the R-only UN model
(the most complex baseline)?

Absolutely! ...with one small catch 

Z represents 
n per person



UN via a “Random Intercept” Model
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RI and UNn−1: Total predicted data matrix is called V matrix, created 
from the G [TYPE=UN] and R [TYPE=UN(n−1)] matrices as follows:

This RI and UNn−1 model is equivalent to (makes same predictions as) 
the R-only UN model. But it shows the residual (not total) covariances.

Because we can’t estimate all possible variances and covariances in the R
matrix and also estimate the random intercept variance τ୙ଶ ଴ in the G matrix, 
we have to eliminate the last R matrix covariance by setting it to 0. 

Accordingly, in the RI and UNn−1 model, the random intercept variance 
τ୙ଶ ଴ takes on the value of the covariance for the first and last occasions. 



Rationale for G and R ACS models
• Modeling WP fluctuation traditionally involves using R only (no G) 
 Total BP + WP variance described by just R matrix (so R=V) 
 Correlations would still be expected even at distant time lags because of 

constant individual differences (i.e., the BP random intercept)

 Resulting R-only model may require lots of estimated parameters as a result
e.g., 8 time points? Pry need a 7-lag Toeplitz(8) model

• Why not take out the primary reason for the covariance across 
occasions (the random intercept variance) and see what’s left?
 Random intercept variance ૌ܃૛૙in G control for person mean differences

 THEN predict just the residual variance/covariance in R, not the total

 Resulting model may be more parsimonious (e.g., maybe only lag1 or lag2 
occasions are still related after removing ૌ܃૛૙ as a source of covariance)

 Has the advantage of still distinguishing BP from WP variance 
(useful for descriptive purposes and for calculating effect sizes later)
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Random Intercept + Diagonal R Models
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RI and DIAG: V is created from G [TYPE=UN] and R [TYPE=VC]:
homogeneous residual variances; no residual covariances

RI and DIAGH: V is created from G [TYPE=UN] and R [TYPE=UN(1)]:
heterogeneous residual variances; no residual covariances
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Same fit as 
R-only CS

NOT same fit 
as R-only CSH



Random Intercept + AR1 R Models
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RI and AR1: V is created from G [TYPE=UN] and R [TYPE=AR(1)]:
homogeneous residual variances; auto-regressive lagged residual covariances

RI and ARH1: V is created from G [TYPE=UN] and R [TYPE=ARH(1)]:
heterogeneous residual variances; auto-regressive lagged residual covariances
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Random Intercept + TOEPn−1 R Models
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RI and TOEPn−1: V is created from G [TYPE=UN] and R [TYPE=TOEP(n−1)]: 
homogeneous residual variances; banded residual covariances

RI and TOEPHn−1: V is created from G [TYPE=UN] and R [TYPE=TOEPH(n−1)]: 
homogeneous residual variances; banded residual covariances
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Same fit as 
R-only TOEP(n)

Because of τ୙ଶ ଴,  
highest lag 

covariance in R
must be set to 
0 for model to 
be identified

NOT same fit as 
R-only TOEPH(n)



Random Intercept + TOEP2 R Models
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RI and TOEP2: V is created from G [TYPE=UN] and R [TYPE=TOEP(2)]: 
homogeneous residual variances; banded residual covariance at lag1 only

RI and TOEPH1: V is created from G [TYPE=UN] and R [TYPE=TOEPH(2)]: 
homogeneous residual variances; banded residual covariance at lag1 only
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Now we can 
test the need 
for residual 

covariances at 
higher lags



Map of R-only and G and R ACS Models
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Stuff to Watch Out For…
• If using a random intercept, don’t forget to drop 1 parameter in: 

 n-1 order UN R: Can’t get all possible elements in R, plus τ୙ଶ ଴ in G
 TOEPn−1: Have to eliminate last lag covariance

• If using a random intercept…
 Can’t do RI + CS R: Can’t get a constant in R, and then another constant in G
 Can often test if random intercept helps (e.g., AR1 is nested within RI + AR1)

• If “time” is treated as continuous in the fixed effects, you will need another 
variable for time that is categorical to use in the syntax:
 “Continuous Time”  on MODEL statement 
 “Categorical Time”  on CLASS and REPEATED statements

• Most alternative covariance structure models assume time is balanced 
across persons with equal intervals across occasions
 If not, holding correlations of same lag equal doesn’t make sense
 Other structures can be used for unbalanced time 

 SP(POW)(time) = AR1 for unbalanced time (see SAS REPEATED statement for others)
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Summary: Two Families of ACS Models
• R-only models:

 Specify R model on REPEATED statement without any random effects 
variances in G (so no RANDOM statement is used)

 Include UN, CS, CSH, AR1, AR1H, TOEPn, TOEPHn (among others)

 Total variance and total covariance kept in R, so R = V

 Other than CS, does not partition total variance into BP vs. WP

• G and R combined models (so G and R V):
 Specify random intercept variance τ୙ଶ ଴ in G using RANDOM statement, 

then specify R model using REPEATED statement

 G matrix = Level-2 BP variance and covariance due to U଴୧, so 
R = Level-1 WP variance and covariance of the eti residuals

 R models what’s left after accounting for mean differences between 
persons (via the random intercept variance τ୙ଶ ଴ in G)
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Syntax for Models for the Variance
• Does your model include random intercept variance ૌ܃૛૙	(for U0i) ? 

 Use the RANDOM statement  G matrix

 Random intercept models BP interindividual differences in mean Y

• What about residual variance ો܍૛	(for eti) ?
 Use the REPEATED statement  R matrix

 WITHOUT a RANDOM statement: R is BP and WP variance together = ો܂૛	
 Total variances and covariances (to model all variation, so R = V)

 WITH a RANDOM statement: R is WP variance only = ો܍૛
 Residual variances and covariances to model WP intraindividual variation
 G and R put back together = V matrix of total variances and covariances

• The REPEATED statement is always there implicitly… 
 Any model always has at least one residual variance in R matrix

• But the RANDOM statement is only there if you write it
 G matrix isn’t always necessary (don’t always need random intercept)
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Wrapping Up:  ACS Models
• Even if you just expect fluctuation over time rather than 

change, you still should be concerned about accurately 
predicting the variances and covariances across occasions

• Baseline models (from ANOVA least squares) are CS & UN:
 Compound Symmetry: Equal variance and covariance over time

 Unstructured: All variances & covariances estimated separately

 CS and UN via ML or REML estimation allows missing data

• MLM gives us choices in the middle
 Goal: Get as close to UN as parsimoniously as possible

 R-only: Structure TOTAL variation in one matrix (R only)

 G+R: Put constant covariance due to random intercept in G, then 
structural RESIDUAL covariance in R (so that G and R V TOTAL)
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Review of Multilevel Models 
for Longitudinal Data
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• Topics:
 Concepts in longitudinal multilevel modeling
 Describing within-person fluctuation using ACS models
 Describing within-person change using random effects
 Likelihood estimation in random effects models
 Describing nonlinear patterns of change
 Time-invariant predictors



Modeling Change vs. Fluctuation

Model for the Means:
• WP Change   describe pattern of average change (over “time”)
• WP Fluctuation  *may* not need anything (if no systematic change)

Model for the Variance:
• WP Change   describe individual differences in change (random effects)

 this allows variances and covariances to differ over time
• WP Fluctuation  describe pattern of variances and covariances over time
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Time

Pure WP Change

Time

Pure WP FluctuationOur focus for today 
using random 
effects models

Uses alternative 
covariance structure 

models instead



The Big Picture of Longitudinal Data: 
Models for the Means
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• What kind of change occurs on average over “time”? 
There are two baseline models to consider:
 “Empty”  only a fixed intercept (predicts no change)
 “Saturated”  all occasion mean differences from time 0

(ANOVA model that uses # fixed effects= n)
*** may not be possible in unbalanced data

Empty Model:
Predicts NO 
change over time 
1 Fixed Effect

Saturated Means:
Reproduces mean 

at each occasion

# Fixed Effects 
=  # Occasions

Name… that… Trajectory!

In-between options:
polynomial slopes, 
piecewise slopes, 
nonlinear models…



The Big Picture of Longitudinal Data: 
Models for the Variance
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Unstructured (UN)Compound Symmetry (CS)

Name ...that … Structure!

Most useful 
model: likely 
somewhere 
in between!

Univariate
RM ANOVA

Multivariate 
RM ANOVA

What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available 
within MLM, including random effects models (for change) 
and alternative covariance structure models (for fluctuation).
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Empty Means, Random Intercept Model
GLM Empty Model:
• yi = β0 + ei

MLM Empty Model:
• Level 1:  

yti = β0i + eti

• Level 2: 
β0i = γ00 + U0i

3 Total Parameters: 
Model for the Means (1): 
• Fixed Intercept γ00

Model for the Variance (2):
• Level-1 Variance of eti  ો܍૛

• Level-2 Variance of U0i  ૌ܃૛૙
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Fixed Intercept 
=grand mean 
(because no 
predictors yet) 

Random Intercept 
= individual-specific 
deviation from 
predicted intercept

Residual = time-specific deviation 
from individual’s predicted outcome 

Composite equation:  
yti =  (γ00 + U0i ) + eti



Augmenting the empty means, 
random intercept model with time

• 2 questions about the possible effects of time:

1. Is there an effect of time on average?
 If the line describing the sample means not flat?
 Significant FIXED effect of time

2. Does the average effect of time vary across 
individuals?

 Does each individual need his or her own line?
 Significant RANDOM effect of time
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Fixed and Random Effects of Time
(Note:  The intercept is random in every figure)
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No Fixed, No Random Yes Fixed, No Random

No Fixed, Yes Random Yes Fixed, Yes Random



Fixed Linear Time, Random Intercept Model 
(4 total parameters: effect of time is FIXED only)

Multilevel Model
Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10

Composite Model
yti = (γ00 + U0i) + (γ10)(Timeti) + eti
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Fixed Intercept 
= predicted mean 
outcome at time 0

Fixed Linear Time Slope
= predicted mean rate 
of change per unit time

Random Intercept = individual-specific deviation 
from fixed intercept  estimated variance of ૌ܃૛૙

Residual = time-specific deviation from individual’s 
predicted outcome  estimated variance of ો܍૛

β0i β1i

Because the effect of 
time is fixed, everyone is 
predicted to change at 
exactly the same rate.



Explained Variance from Fixed Linear Time
• Most common measure of effect size in MLM is Pseudo-R2

 Is supposed to be variance accounted for by predictors

 Multiple piles of variance mean multiple possible values of pseudo R2

(can be calculated per variance component or per model level)

 A fixed linear effect of time will reduce level-1 residual variance σୣଶ in R

 By how much is the residual variance σୣଶ	reduced? 

 If time varies between persons, then level-2 random intercept variance 
τ୙ଶ ଴	in G may also be reduced:

 But you are likely to see a (net) INCREASE in τ୙ଶ ଴ instead…. Here’s why:
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2 fewer more
e

fewer

residual variance  - residual variancePseudo R  = 
residual variance

2 fewer more
U0

fewer

random intercept variance  - random intercept variancePseudo R  = 
random intercept variance



Increases in Random Intercept Variance
• Level-2 random intercept variance τ୙ଶ ଴	will often increase 

as a consequence of reducing level-1 residual variance σୣଶ

• Observed level-2 τ୙ଶ ଴ is NOT just between-person variance
 Also has a small part of within-person variance (level-1 σୣଶ), or:

Observed ૌ܃૛૙ = True ૌ܃૛૙ + (ો܍૛/n)
 As n occasions increases, bias of level-1 σୣଶ is minimized

 Likelihood-based estimates of “true” τ୙ଶ ଴ use (σୣଶ/n) as correction factor:
True ૌ܃૛૙ = Observed ૌ܃૛૙ − (ો܍૛/n)

• For example: observed level-2 τ୙ଶ ଴=4.65, level-1 σୣଶ=7.06, n=4
 True τ୙ଶ ଴= 4.65 −(7.60/4) = 2.88 in empty means model

 Add fixed linear time slope  reduce σୣଶ from 7.06 to 2.17 (R2 = .69)

 But now True τ୙ଶ ଴= 4.65 −(2.17/4) = 4.10 in fixed linear time model
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Random Intercept Models Imply…
• People differ from each other systematically in only ONE way—

in intercept (U0i), which implies ONE kind of BP variance, which 
translates to ONE source of person dependency (covariance or 
correlation in the outcomes from the same person)

• If so, after controlling for BP intercept differences (by estimating the 
variance of U0i as τ୙ଶ ଴in the G matrix), the eti residuals (whose 
variance and covariance are estimated in the R matrix) should be 
uncorrelated with homogeneous variance across time, as shown:
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Level-2 
G matrix: 
RANDOM 
TYPE=UN

Level-1 R matrix: 
REPEATED TYPE=VC

G and R matrices combine to create 
a total V matrix with CS pattern



Matrices in a Random Intercept Model
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Total predicted data matrix is called V matrix, created from 
the G [TYPE=UN] and R [TYPE=VC] matrices as follows:
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VCORR then provides the intraclass 
correlation, calculated as: 
ICC = ૌ܃૛૙	/ (ૌ܃૛૙ + ો܍૛)

assumes a 
constant 
correlation 
over time

For any random effects model: 

G matrix = BP variances/covariances

R matrix = WP variances/covariances

Z matrix = values of predictors with 
random effects (just intercept here), 
which can vary per person

V matrix = Total variance/covariance



Random Linear Time Model (6 total parameters)

Multilevel Model
Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10 + U1i

Composite Model
yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Fixed Intercept 
= predicted mean 
outcome at time 0

Fixed Linear Time Slope
= predicted mean rate 
of change per unit time

Random Intercept = 
individual-specific deviation 
from fixed intercept at time 0 
 estimated variance of ૌ܃૛૙

Random Linear Time Slope= 
individual-specific deviation 
from fixed linear time slope 
 estimated variance of ૌ܃૛૚

Residual = time-specific deviation from individual’s 
predicted outcome  estimated variance of ો܍૛

β0i β1i

Also has an 
estimated 
covariance
of random 
intercepts 
and slopes  
of ૌ܃૙૚



Random Linear Time Model
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6 Parameters:

2 Fixed Effects:
γ00 Intercept, γ10 Slope

2 Random Effects 
Variances:
U0i Intercept Variance 
ൌ ૌ܃૛૙
U1i Slope Variance 
ൌ ૌ܃૛૚
Int-Slope Covariance 
ൌ ૌ܃૙૚
1 eti Residual Variance 
= ો܍૛



Quantification of Random Effects Variances
• We can test if a random effect variance is significant, but the 

variance estimates are not likely to have inherent meaning
 e.g., “I have a significant fixed linear time effect of γ10 = 1.72, so people 

increase by 1.72/time on average. I also have a significant random linear 
time slope variance of ૌ܃૛૚= 0.91, so people need their own slopes 
(people change differently). But how much is a variance of 0.91, really?”

• 95% Random Effects Confidence Intervals can tell you
 Can be calculated for each effect that is random in your model

 Provide range around the fixed effect within which 95% of your sample 
is predicted to fall, based on your random effect variance: 

 So although people improve on average, individual slopes are predicted 
to range from −0.15 to 3.59 (so some people may actually decline)
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Random Effect 95% CI = fixed effect ± 1.96* Random Variance

Linear Time Slope 95% CI = γ  ± 1.96* τ   1.72  ± 1.96* 0.91  = 0.15 to 3.59     



Random Linear Time Models Imply:
• People differ from each other systematically in TWO ways—in 

intercept (U0i) and slope (U1i), which implies TWO kinds of BP 
variance, which translates to TWO sources of person dependency 
(covariance or correlation in the outcomes from the same person)

• If so, after controlling for both BP intercept and slope differences 
(by estimating the τ୙ଶ ଴ and τ୙ଶଵ	variances in the G matrix), the eti
residuals (whose variance and covariance are estimated in the R
matrix) should be uncorrelated with homogeneous variance 
across time, as shown:
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Level-2 
G matrix: 
RANDOM 
TYPE=UN

Level-1 R matrix: 
REPEATED TYPE=VC G and R combine to create a total 

V matrix whose per-person 
structure depends on the specific 
time occasions each person has 

(very flexible for unbalanced time)
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

• How the model predicts each element of the V matrix:
Level 1:  yti = β0i + β1i(Timeti) + eti

Level 2:  β0i = γ00 + U0i
β1i = γ10 + U0i

Composite Model: yti = (γ00 + U0i) + (γ10 + U0i)(Timeti) + eti
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

• How the model predicts each element of the V matrix:
Level 1:  yti = β0i + β1i(Timeti) + eti

Level 2:  β0i = γ00 + U0i
β1i = γ10 + U1i

Composite Model: yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Predicted Time-Specific Covariances (Time A with Time B):



Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

• Scalar “mixed” model equation per person:
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Xi = n x k values of predictors with 
fixed effects, so can differ per person 
(k = 2: intercept, linear time)

γ = k x 1 estimated fixed effects, 
so will be the same for all persons
(γ00 = intercept, γ10 = linear time)

Zi = n x u values of predictors with 
random effects, so can differ per person 
(u = 2: intercept, linear time)

Ui = u x 2 estimated individual random 
effects, so can differ per person

Ei = n x n time-specific residuals, 
so can differ per person
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

• Predicted total variances and covariances per person:
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Zi = n x u values of predictors with 
random effects, so can differ per 
person (u = 2: int., time slope)

Zi
T = u x n values of predictors with 

random effects (just Zi transposed)

Gi = u x u estimated random 
effects variances and covariances, 
so will be the same for all persons
(τ୙ଶ ଴ = int. var., τ୙ଶଵ = slope var.)

Ri = n x n time-specific residual 
variances and covariances, so will 
be same for all persons 
(here, just diagonal σୣଶ)
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• V for two persons with unbalanced time observations:

• The giant combined V matrix across persons is how the 
multilevel or mixed model is actually estimated

• Known as “block diagonal” structure  predictions are 
given for each person, but 0’s are given for the elements 
that describe relationships between persons (because 
persons are supposed to be independent here!)

Building V across persons: 
Random Linear Time Model
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• V for two persons also with different n per person:

• The “block diagonal” does not need to be the same size 
or contain the same time observations per person…

• R matrix can also include non-0 covariance or differential 
residual variance across time (as in ACS models), although 
the models based on the idea of a “lag” won’t work for 
unbalanced or unequal-interval time

Building V across persons: 
Random Linear Time Model
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G, R, and V:  The Take-Home Point
• The partitioning of variance into piles…

 Level 2 = BP  G matrix of random effects variances/covariances
 Level 1 = WP  R matrix of residual variances/covariances
 G and R combine via Z to create V matrix of total variances/covariances
 Many flexible options that allows the variances and covariances to vary 

in a time-dependent way that better matches the actual data
 Can allow differing variance and covariance due to other predictors, too
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How MLM “Handles” Dependency
• Common description of the purpose of MLM is that it 

“addresses” or “handles” correlated (dependent) data…
• But where does this correlation come from? 

3 places (here, an example with health as an outcome):

1. Mean differences across persons
 Some people are just healthier than others (at every time point)
 This is what a random intercept is for

2. Differences in effects of predictors across persons
 Does time (or stress) affect health more in some persons than others?
 This is what random slopes are for

3. Non-constant within-person correlation for unknown reasons
 Occasions closer together may just be more related 
 This is what alternative covariance structure models are for
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MLM “Handles” Dependency
• Where does each kind of person dependency go? Into a new 

random effects variance component (or “pile” of variance):

Residual
Variance

(ો܍૛)

Residual
Variance

(ો܍૛)

Residual
Variance

(ો܍૛)

BP Int
Variance

(ૌ܃૛૙)

BP Slope
Variance

(ૌ܃૛૚)

Level 2, Between-
Person Differences

Level 1, Within-
Person Differences

BP Int
Variance

(ૌ܃૛૙)

01U covariance
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Piles of Variance
• By adding a random slope, we carve up our total variance into 3 piles:

 BP (error) variance around intercept

 BP (error) variance around slope

 WP (error) residual variance

• But making piles does NOT make error variance go away…
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Level 2 (two sources of) 
Between-Person Variation:
gets accounted for by 
person-level predictors

Level 1 (one source of) 
Within-Person Variation:
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Fixed vs. Random Effects of Persons
• Person dependency: via fixed effects in the model for the 

means or via random effects in the model for the variance?
 Individual intercept differences can be included as:

 N-1 person dummy code fixed main effects OR 1 random U0i 

 Individual time slope differences can be included as:
 N-1*time person dummy code interactions  OR 1 random U1i*timeti

 Either approach would appropriately control for dependency (fixed 
effects are used in some programs that ‘control’ SEs for sampling)

• Two important advantages of random effects:
 Quantification: Direct measure of how much of the outcome variance is 

due to person differences (in intercept or in effects of predictors)

 Prediction: Person differences (main effects and effects of time) then 
become predictable quantities – this can’t happen using fixed effects

 Summary: Random effects give you predictable control of dependency
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Review of Multilevel Models 
for Longitudinal Data
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• Topics:
 Concepts in longitudinal multilevel modeling
 Describing within-person fluctuation using ACS models
 Describing within-person change using random effects
 Likelihood estimation in random effects models
 Describing nonlinear patterns of change
 Time-invariant predictors



3 Decision Points for Model Comparisons
1.   Are the models nested or non-nested?

 Nested: have to add OR subtract effects to go from one to other
 Can conduct significance tests for improvement in fit

 Non-nested: have to add AND subtract effects
 No significance tests available for these comparisons

2.  Differ in model for the means, variances, or both?
 Means? Can only use ML −2∆LL tests (or p-value of each fixed effect)

 Variances? Can use ML (or preferably REML) −2∆LL tests, no p-values

 Both sides? Can only use ML −2∆LL tests

3.  Models estimated using ML or REML?
 ML: All model comparisons are ok

 REML: Model comparisons are ok for the variance parameters only
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Likelihood-Based Model Comparisons
• Relative model fit is indexed by a “deviance” statistic  −2LL

 −2LL indicates BADNESS of fit, so smaller values = better models
 Two estimation flavors (given as −2 log likelihood in SAS, SPSS, but given as LL 

instead in STATA): Maximum Likelihood (ML) or Restricted (Residual) ML (REML) 

• Nested models are compared using their deviance values: −2∆LL Test 
(i.e., Likelihood Ratio Test, Deviance Difference Test)

1. Calculate −2∆LL:   (−2LLfewer)  – (−2LLmore)
2. Calculate  ∆df:  (# Parmsmore)  – (# Parmsfewer)
3. Compare −2∆LL to χ2 distribution with df = ∆df

CHIDIST in excel will give exact p-values for the difference test; so will STATA

• Nested or non-nested models can also be compared by Information 
Criteria that reflect −2LL AND # parameters used and/or sample size
 AIC = Akaike IC     = −2LL +        2 *(#parameters)
 BIC = Bayesian IC  = −2LL + log(N)*(#parameters)  penalty for complexity

 No significance tests or critical values, just “smaller is better”

PSYC 945: Lecture 1 79

1. & 2. must be 
positive values!



ML vs. REML
Remember “population” 
vs. “sample” formulas for 
calculating variance?
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But because it indexes 
the fit of the…
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Rules for Comparing Multilevel Models
All observations must be the same across models!
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Type of 
Comparison:

Means Model      
(Fixed) 
Only

Variance Model 
(Random) 

Only

Both Means and 
Variance Model 

(Fixed and Random)
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significance 
tests via…

Fixed effect 
p-values from 
ML or REML 

-- OR --
ML −2∆LL only 

(NO REML −2∆LL)

NO p-values

REML −2∆LL
(ML −2∆LL is 
ok if big N)

ML −2∆LL only 
(NO REML −2∆LL)

Non-Nested?
NO signif. tests, 
instead see…

ML AIC, BIC
(NO REML AIC, BIC)

REML AIC, BIC
(ML ok if big N)

ML AIC, BIC only
(NO REML AIC, BIC)

Compare Models Differing In:

Nested = one model is a direct subset of the other
Non-Nested = one model is not a direct subset of the other



Summary: Model Comparisons
• Significance of fixed effects can be tested with EITHER their 

p-values OR ML −2∆LL (LRT, deviance difference) tests
 p-value  Is EACH of these effects significant? (fine under ML or REML)

 ML −2∆LL test  Does this SET of predictors make my model better? 

 REML −2∆LL tests are WRONG for comparing models differing in fixed effects

• Significance of random effects can only be tested with −2∆LL tests
(preferably using REML; here ML is not wrong, but results in too small 
variance components and fixed effect SEs in smaller samples)
 Can get p-values as part of output but *shouldn’t* use them

 #parms added (df) should always include the random effect covariances

• My recommended approach to building models:
 Stay in REML (for best estimates), test new fixed effects with their p-values

 THEN add new random effects, testing −2∆LL against previous model
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Two Sides of Any Model: Estimation
• Fixed Effects in the Model for the Means:

 How the expected outcome for a given observation varies as a function 
of values on known predictor variables

 Fixed effects predict the Y values per se but are not parameters that are 
solved for iteratively in maximum likelihood estimation

• Random Effects in the Model for the Variances:
 How model residuals are related across observations 

(persons, groups, time, etc) – unknown things due to sampling
 Random effects variances and covariances are a mechanism by which 

complex patterns of variance and covariance among the Y residuals can 
be predicted (not the Y values, but their dispersion)

 Anything besides level-1 residual variance σୣଶ must be solved for 
iteratively – increases the dimensionality of estimation process

 Estimation utilizes the predicted V matrix for each person
 In the material that follows, V will be based on a random linear model
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End Goals of Maximum Likelihood Estimation

1. Obtain “most likely” values for each unknown model 
parameter (random effects variances and covariances, 
residual variances and covariances, which then are used to 
calculate the fixed effects)  the estimates

2. Obtain an index as to how likely each parameter value 
actually is (i.e., “really likely” or pretty much just a guess?) 
 the standard error (SE) of the estimates

3. Obtain an index as to how well the model we’ve specified 
actually describes the data  the model fit indices

How does all this happen? The magic of multivariate 
normal…(but let’s start with univariate normal first)
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Univariate Normal
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Multivariate Normal for Yi
(height for all n outcomes for person i)

• In a random linear time model, the only fixed effects (in γ) that predict the 
Yi outcome values are the fixed intercept and fixed linear time slope

• The model also gives us Vi  the model-predicted total variance and 
covariance matrix across the occasions, taking into account the time values

• Uses |Vi| = determinant of Vi = summary of non-redundant info
 Reflects sum of variances across occasions controlling for covariances

• (Vi)-1  matrix inverse  like dividing (so can’t be 0 or negative)
 (Vi)-1 must be “positive definite”, which in practice means no 0 random variances 

and no out-of-bound correlations between random effects

 Otherwise, software uses “generalized inverse”  questionable results
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Now Try Some Possible Answers... 
(e.g., for the 4 V parameters in this random linear model example)
• Plug Vi predictions into log-likelihood function, sum over persons:

• Try one set of possible parameter values for Vi, compute LL
• Try another possible set for Vi, compute LL….

 Different algorithms are used to decide which values to try given that 
each parameter has its own distribution  like an uncharted mountain

 Calculus helps the program scale this multidimensional mountain
 At the top, all first partial derivatives (linear slopes at that point) ≈ 0
 Positive first partial derivative? Too low, try again. Negative? Too high, try again.
 Matrix of partial first derivatives = “score function” = “gradient” 

(as in NLMIXED output for models with truly nonlinear effects)
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End Goals 1 and 2: Model Estimates and SEs

• Process terminates (the model “converges”) when the next set 
of tried values for Vi don’t improve the LL very much…
 e.g., SAS default convergence criteria = .00000001 

 Those are the values for the parameters that, relative to the other 
possible values tried, are “most likely”  the variance estimates

• But we need to know how trustworthy those estimates are…
 Precision is indexed by the steepness of the multidimensional mountain, 

where steepness  more negative partial second derivatives

 Matrix of partial second derivatives = “Hessian matrix”

 Hessian matrix * -1 = “information matrix”

 So steeper function = more information = more precision = smaller SE
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What about the Fixed Effects?
• Likelihood mountain does NOT include fixed effects as additional 

search dimensions (only variances and covariances that make Vi)
• Fixed effects are determined given the parameters for Vi:

• This is actually what happens in regular regression (GLM), too:

• Implication: fixed effects don’t cause estimation problems…
(at least in general models with normally distributed residuals)
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What about ML vs. REML?

• Extra part in REML is the sampling variance of the fixed effects… it is added 
back in to account for uncertainty in estimating fixed effects

• REML maximizes the likelihood of the residuals specifically, so models with 
different fixed effects are not on the same scale and are not comparable
 This is why you can’t do -2∆LL tests in REML when the models to be compared 

have different fixed effects  the model residuals are defined differently
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End Goal #3: How well do the model 
predictions match the data?

• End up with ML or REML LL from predicting Vi  so how good is it?

• Absolute model fit assessment is only possible when the Vi matrix is 
organized the same for everyone – in other words, balanced data
 Items are usually fixed, so can get absolute fit in CFA and SEM 
 ߯ଶ test is based on match between actual and predicted data matrix

 Time is often a continuous variable, so no absolute fit provided in MLM 
(or in SEM when using random slopes or T-scores for unbalanced time)
 Can compute absolute fit when the saturated means, unstructured variance model is 

estimable in ML  is -2∆LL versus “perfect” model for time

• Relative model fit is given as −2LL in SAS, in which smaller is better
 −2* needed to conduct “likelihood ratio” or “deviance difference” tests

 Also information criteria: 
 AIC: -2LL + 2*(#parms) ; BIC: -2LL + log(N)*(#parms)
 ML #parms = all parameters;  REML #parms = variance model parameters only
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What about testing variances > 0?
• −2∆LL between two nested models is χଶ-distributed only when 

the added parameters do not have a boundary (like 0 or 1)
 Ok for fixed effects (could be any positive or negative value)

 NOT ok for tests of random effects variances (must be > 0)

 Ok for tests of heterogeneous variances and covariances 
(extra parameters can be phrased as unbounded deviations)

• When testing addition of parameters that have a boundary, 
−2∆LL will follow a mixture of χଶ distributions instead
 e.g., when adding random intercept variance (test > 0?)

 When estimated as positive, will follow χଶ with df=1
 When estimated as negative… can’t happen, will follow χଶ with df=0

 End result: −2∆LL will be too conservative in boundary cases
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Solutions for Boundary Problems 
when using −2∆LL tests

• If adding random intercept variance only, use p < .10; χଶ(1) > 2.71
 Because χଶ	(0) = 0, can just cut p-value in half to get correct p-value

• If adding ONE random slope variance (and covariance with random 
intercept), can use mixture p-value from χଶ(1) and χଶ(2)

• However—using a 50/50 mixture assumes a diagonal information matrix 
for the random effects variances (assumes the estimated values for each 
are arrived at independently, which pry isn’t the case)

• Two options for more complex cases:
 Simulate data to determine actual mixture for calculating p-value

 Accept that −2∆LL is conservative in these cases, and use it anyway
 I’m using ~ to acknowledge this: e.g., −2∆LL(~2) > 5.99, p < .05 
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so critical χ2 = 
5.14, not 5.99
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Estimation: The Grand Finale
• Estimation in MLM is all about the random effects 

variances and covariances
 The more there are, the harder it is to find them (the more 

dimensions of the likelihood mountain there are to scale)
 “Non-positive-definite” G matrix means “broken model”
 Fixed effects are solved for after-the-fact, so they rarely cause 

estimation problems (at least in general models)
 Individual random effects are not model parameters, but can be 

predicted after-the-fact (with some problems in doing so)

• Estimation comes in two flavors:
 ML  maximize the data; compare any nested models
 REML  maximize the residuals; compare models that differ in 

their model for the variance only 
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Review of Multilevel Models 
for Longitudinal Data
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• Topics:
 Concepts in longitudinal multilevel modeling
 Describing within-person fluctuation using ACS models
 Describing within-person change using random effects
 Likelihood estimation in random effects models
 Describing nonlinear patterns of change
 Time-invariant predictors



Summary: Modeling Means and Variances
• We have two tasks in describing within-person change:

• Choose a Model for the Means
 What kind of change in the outcome do we have on average?
 What kind and how many fixed effects do we need to predict 

that mean change as parsimoniously but accurately as possible?

• Choose a Model for the Variances
 What pattern do the variances and covariances of the outcome 

show over time because of individual differences in change?
 What kind and how many random effects do we need to predict 

that pattern as parsimoniously but accurately as possible?
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The Big Picture of Longitudinal Data:
Model for the Means (Fixed Effects)

• What kind of change occurs on average over “time”?

 What is the most appropriate metric of time?
 Time in study (with predictors for BP differences in time)?
 Time since birth (age)? Time to event (time since diagnosis)?
 Measurement occasions need not be the same across persons or 

equally spaced (code time as exactly as possible)

 What kind of theoretical process generated the observed 
trajectories, and thus what kind of model do we need?
 Linear or nonlinear? Continuous or discontinuous? Does change 

keep happening or does it eventually stop?
 Many options: polynomial, piecewise, and nonlinear families
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Options for Nonlinear Change*
• Polynomial models (linear, quadratic, cubic…)
 Twice the quadratic coefficient is how the linear rate of change 

changes per unit time (becomes more/less positive/negative)
• Piecewise models (aka, spline models)
 Use discrete slopes to describe sections of time (e.g., before or 

after an event), each of which can be linear or nonlinear
• Truly nonlinear models (with asymptotes)
 e.g., exponential or logistic change for learning)

• Complexity possible depends on your (balanced) data:
 Fixed slopes for time  can have up to n – 1 
 Random slopes for time  can have up to n – 2

* These models are useful for predictors other than time…
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Competing Models of Change
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Which family should I choose?
• Within a given family of models of change, nested models 

can usually be compared to judge the need for each term
 e.g., linear vs. quadratic? one slope vs. two slopes?
 Usual nested model comparison rules apply (p-values for fixed 

effects, −2∆LL tests for assessing random effects)

• Between families, however, alternative models of change 
may not be nested, so deciding among them can be tricky
 e.g., quadratic vs. two-slope vs. exponential?
 Use ML AIC and BIC to see what is “preferred” among the families
 In balanced data, can also compare each alternative to a 

saturated means, UN model using ML as test of exact fit
 Also consider plausibility of alternative models in terms of both 

data predictions and theoretical predictions in deciding
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Review of Multilevel Models 
for Longitudinal Data
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• Topics:
 Concepts in longitudinal multilevel modeling
 Describing within-person fluctuation using ACS models
 Describing within-person change using random effects
 Likelihood estimation in random effects models
 Describing nonlinear patterns of change
 Time-invariant predictors



Missing Data in MLM
• Missing outcomes are assumed MAR

 Because the likelihood function is for predicted Y, just estimated on 
whatever Y responses a person does have (can be incomplete)

• Missing time-varying predictors are MAR-to-MCAR ish
 Would be MCAR because X is not in the likelihood function (is Y given X 

instead), but other occasions may have predictors (so MAR-ish)

• Missing time-invariant predictors are assumed MCAR
 Because the predictor would be missing for all occasions, whole people 

will be deleted (may lead to bias)

• Missingness on predictors can be accommodated:
 In Multilevel SEM with certain assumptions (≈ outcomes then)
 Via multilevel multiple imputation in Mplus v 6.0+ (but careful!)

 Must preserve all effects of potential interest in imputation model, including 
random effects; −2∆LL tests are not done in same way
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Centering Predictors
• Very useful to center all predictors such that 0 is a meaningful value:

 Same significance level of main effect, different interpretation of intercept

 Different (more interpretable) main effects within higher-order interactions
 With interactions, main effects = simple effects when other predictor = 0

• Choices for centering continuous predictors:
 At Mean: Reference point is average level of predictor within the sample

 Useful if predictor is on arbitrary metric (e.g., unfamiliar test)

 Better  At Meaningful Point: Reference point is chosen level of predictor
 Useful if predictor is already on a meaningful metric (e.g., age, education)

• Choices for centering categorical predictors:
 Re-code group so that your chosen reference group = reference (0) category!

(highest is the default in SAS and SPSS; lowest is default in STATA)

 I do not recommend mean-centering categorical predictors
(because who is at the mean of a categorical variable ?!?)

PSYC 945: Lecture 1 103



What Level-2 Predictors Do…
• The purpose of level-2 predictors in the model for the 

means is to moderate the effects of level-1 predictors
 Main effects moderate the intercept
 Interactions with time moderate the time slopes
 Interactions with other time-varying predictors moderate 

their effect between persons

• In addition, level-2 predictors can be used to allow 
heterogeneity of variance (stay tuned for next week)
 At level 2: different G matrix variances and covariances
 At level 1: different R matrix variances and covariances
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Variance Accounted For By 
Level-2 Time-Invariant Predictors

• Fixed effects of level 2 predictors by themselves:
 L2 (BP) main effects (e.g., sex) reduce L2 (BP) random intercept variance
 L2 (BP) interactions (e.g., sex by ed) also reduce L2 (BP) random 

intercept variance

• Fixed effects of cross-level interactions (level 1* level 2):
 If the interacting level-1 predictor is random, any cross-level interaction 

with it will reduce its corresponding level-2 BP random slope variance
 e.g., if time is random, then sex*time, ed*time, and sex*ed*time can each 

reduce the random linear time slope variance
 If the interacting level-1 predictor not random, any cross-level 

interaction with it will reduce the level-1 WP residual variance instead
 e.g., if time2 is fixed, then sex*time2, ed*time2, and sex*ed*time2 will reduce 

the L1 (WP) residual variance  Different quadratic slopes from sex and ed
will allow better trajectories, reduce the variance around trajectories
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3 Types of Effects: Fixed, Random, and 
Systematically (Non-Randomly) Varying

Let’s say we have a significant fixed linear effect of time. 
What happens after we test a sex*time interaction?

Linear effect of time is 
systematically varying

Linear effect of time 
is FIXED

Linear effect of time is 
systematically varying

---

Linear effect of time 
is RANDOM

Linear effect of time 
is RANDOM

Random time slope 
initially not significant

Random time initially sig, 
not sig. after sex*time

Random time initially sig, 
still sig. after sex*time

Significant 
Sex*Time effect?

Non-Significant 
Sex*Time effect?

The effects of level-1 predictors (time-level) can be fixed, random, or 
systematically varying. The effects of level-2 predictors (person-level) can 
only be fixed or systematically varying (nothing to be random over…yet).
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Variance Accounted for… For Real
• Pseudo-R2 is named that way for a reason… piles of variance 

can shift around, such that pseudo-R2 can actually be negative
 Sometimes a sign of model mis-specification
 Hard to explain to readers when it happens!

• One last simple alternative: Total R2

 Generate model-predicted y’s from fixed effects only (NOT including 
random effects) and correlate with observed y’s 

 Then square correlation  total R2

 Total R2 = total reduction in overall variance of y across levels
 Can be “unfair” in models with large unexplained sources of variance

• MORAL OF THE STORY: Specify EXACTLY which kind of 
pseudo-R2 you used—give the formula and the reference!!
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